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Abstract 

In this PhD Thesis are reported the main results from an interdisciplinary research 

focused on evaluating impacts and effects of black carbon (BC) on glacier snow and 

ice melting. With this purpose we selected two glaciers: the Changri Nup glacier 

(Nepal, Himalaya) and the Forni glacier (Italian Alps). The glaciers have been chosen 

due to their representativity (geographical setting, size, morphology) and the 

availability of meteorological and energy data collected at the glacier surface through 

Automatic Weather Stations (AWSs). 

In fact on both the glaciers AWSs have been installed in the recent years and they 

have been running without meaningful interruptions thus permitting to analyze glacier 

micrometeorology and to evaluate glacier surface energy balance and its variability 

(data are sampled with a hourly frequency all over the year). Moreover we planned 

and performed field campaigns to collect snow samples for  describing chemical and 

physical features of soot and dust present in the glacier snow. 

 More precisely, since the Autumn 2005 and AWS has been running at the melting 

surface of the Forni Glacier (Italian Alps). The AWS is property of UNIMI and it 

attends the international network SHARE (Stations at High Altitude for Research on 

the Environment) promoted and managed by EVK2CNR Committee. Within the Ev-

K2-CNR Project SHARE on February 2010 an AWS has been installed on the debris-

free surface of the Changri Nup Glacier (Nepal, Himalayas, Sagarmatha Nationa 

Park) at 5,700 m asl to acquire meteorological data and energy fluxes (incoming and 

outgoing) at the glacier surface. The AWS is property of EvK2CNR Committee. The 

acquired data permit the calculation of glacier energy balance and high resolution 

analysis of glacier albedo.  In the present study more than 85.000 meteorological 

parameters, related to the time window 2010-2012 and collected by The Changri Nup 

AWS, have been analyzed, processed and validated.  Average daily parameters 

estimated at glacier surface have been: temperature:  -4.61 °C, relative humidity: 

78.47%, atmospheric pressure: 505.6 hPa, SWin: 220 W m
-2

, SWout:136 W m
-2

, 

LWin: 240 W m
-2

, LWout: 280 W m
-2

, wind speed: 1.48 m s
-1

, prevalent wind 

direction: 183°. 

Yearly albedo, deriving from SWout/SWin was 0.7, with an average of 0.75 for snow 

and 0.26 for glacier ice.  Instead data from Forni AWS were already available thanks 

to another PhD research presently on line at the University of Milan.  

Ablation season at the Changri Nup glacier occurred in summer period, in the 

monsoon season, when the temperature conditions (T>0°C) and radiation and rain 

precipitation increase the melting process.  Results have been compared with the 

Alpine site of Forni glacier, the largest Italian valley glacier, located in the Stelvio 

National Park and characterized by a ―strategic‖ location on the Central-Eastern 

Alpine sector, able to be reached by southern fluxes and close to the northern Alpine 



 

 
 

Italian boundary.  This part of the research was performed within the SHARE 

STELVIO project aiming at detecting and quantifying climate change evidences and 

effects on a sensible area located in the Stelvio National Park – Lombardy sector (600 

km
2
 of area).  This project will permit to evaluate composition, quality and variability 

of high elevation atmosphere and effects on the alpine water resource (i.e. snow, 

glaciers and meltwater rivers).   

In both sites the main component deterring melting are positive temperature and 

shortwave radiation, this latter higher in the Himalaya due to the difference of 

latitude, altitude and incident direction.  Melting season in the Alps is longer than in 

the Himalaya and in both sites the effect of latent and sensible heat fluxes  have a 

minor effect in driving melting processes.  Both sites are characterized by a typical 

katabatic wind regime. 

At the Changri Nup glacier surface some ablation stakes have been positioned in the 

debris free  part of the glacier and two of these stakes were located nearby the AWS. 

Glacier ablation was evaluated through field campaigns twice: February-May 2010 

and May-November 2012. The field data allowed to compare measured glacier 

ablation with melting amount derived from energy balance measurements and to 

evaluate the reliability of our computations.   

It  was found by previous authors that absorbing aerosols and dust play a key role in 

varying snow and ice albedo and in driving glacier ablation on several high elevation 

glaciers. In this study, by coupling energy data (from the AWS) with the atmospheric 

measurement of BC concentration allow the investigation of the relations among 

atmosphere and cryosphere and to quantify impacts of atmospheric black carbon 

deposition on glacial ablation rates. 

In Himalaya atmospheric observations are carried out at the Nepal Climate 

Observatory-Pyramid (NCO-P) located at 5,079 m asl near the Pyramid Laboratory 

Observatory, while at Forni glacier a summer campaign has been held in 2012 at 

Guasti Hut (c. 3200 m asl). 

Results at Changri Nup glacier were consistent with the typical estimation available in 

literature of BC deposition and % of albedo reduction in premonsoon season, where 

the atmospheric concentration are high.  Experimental results reports that at Changri 

Nup the % of albedo reduction has been 4.26% for an estimated BC deposition in 

snow of 49 µg kg
-1

 consistent with the concentration range of BCC in snow of 26.0–

68.2 μg kg−1 due to snow density variations between 195–512 kg m
−3

 as reported in 

literature. 

The same estimation has been done at Forni Glacier too, but results were different 

because the summer BC monitoring campaign detected BC concentrations in the 

atmosphere typical of free troposphere background conditions, thus in the analyzed 

period, their deposition didn‘t have a predominant effect in driving melting process.  



 

 
 

To compare the estimated BC deposition in snow deriving from atmospheric 

measurements, snow samples has been done at the Changri Nup glaciers and the 

chemical analysis allow to determine a typical premonsoon concentration consistent 

with literature data and with the experimental estimation done at Changri Nup 

glaciers. 

Future step will foresee a further analysis of these results, thanks also to the 

availability of long term dataset, moreover, in order to improve the knowledge of the 

effect of dust and aerosol deposition on glacier, more samples will be collected and 

analyzed. 
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Chapter 1 

 

Introduction 

Significant orographic features occupy close to 25% of continental surfaces (Kapos et al., 

2000) and although only about 26% of the world's population resides within mountains or in 

the foothills of the mountains (Meybeck et al., 2001), mountain-based resources indirectly 

provide sustenance for overhalf. Moreover, 40% of global population lives in the watersheds 

of rivers originating in various mountains of the world. Although mountains differ 

considerably from one region to another, one common characteristic is the complexity of their 

topography. Orographic features include some of the sharpest gradients found in continental 

areas. Related characteristics include rapid and systematic changes in climatic parameters, in 

particular temperature and precipitation, over very short distances (Becker &Bugmann, 

1997). Since climate changes rapidly with height over relatively short horizontal distances, so 

do hydrology and vegetation (Whiteman, 2000). As a consequence, mountains exhibit high 

geo and bio diversities. As climate exerts a fundamental control on many biological, physical 

and chemical systems in mountains, it is of interest to assess here the climate-induced effects 

(Beniston, 2003). Since June 1992 the United Nations Environment and Development 

Conference (UNCED, Riode Janeiro) has included mountainous areas among the systems 

most sensible to climatic changes, and Chapter 13 of Agenda 21 states the importance of 

mountains in the global ecosystem. 

The Alps, in particular, due to their geographical location and configuration, are interesting 

regions form any climate and environmental studies; these mountains, in fact, are at a 

―climatic crossroads" that include oceanic, continental, polar, Mediterranean and, on 

occasion, Saharan influences. Moreover the temperature change in the Alps is more marked 

than on a global or hemispheric scale. The warming experienced on the Alps since the early 

1980s, while synchronous with warming at the global scale, is however of far greater 

amplitude, which represents roughly a two-fold amplification of the global climate signal 

(Diaz & Bradley, 1997). 

Concerning Himalaya, glaciers therein represent, with the Karakoram and Pamir-Tian Shan 

ones, the largest ice masses outside the Polar regions (c. 33.000 km², Dyurgerov and Meier, 

2005). Their runoff feeds major rivers (e.g. Indus, Ganges, Brahmaputra) whose tributaries 

deliver precious water for several hundred million people. Recent studies indicate that 

glaciers of south-eastern Tibet have negative mass balances (Aizen and Aizen, 1994), 

witnessing overall degradation of these glaciers as well. Ageta and Kadota (1992) suggested 

that small glaciers in the Nepal Himalaya and Tibetan Plateau would disappear in a few 

decades if air temperature persistently exceeds a few degrees above that required for an 

equilibrium state of mass balance. However, global warming should intensify the summer 

monsoon with consequent increased moisture fluxes, precipitation and cloudiness therein, 

which could end the rise of local air temperature, so still raising questions about the 

mechanism of air temperature-precipitation and glacier interaction, which requires further 



1  Introduction 

 

2 

 

scientific efforts (e.g. Aizen et al., 2002). Bethier et al. (2007), monitoring mass balances in 

the Spiti/Lahaul region (Himachal Pradesh, Western Himalaya) for the window 1999-2004, 

found on most glaciers clear thinning at low elevations, even on debris-covered tongues. They 

obtained a specific mass balance of -0.7 to -0.85m/year of water equivalent, twice as much as 

the long-term (1977 to 1999) mass balance record for Himalaya, with higher losses for 

glaciers larger than 30 km
2
. The hydrological regimes of Himalayan rivers and potential 

impact of climate change therein have been hitherto assessed in a number of contribution in 

the scientific available literature (e.g. Aizen et al., 2002; Hannah et al, 2005). Economy of 

Himalayan regions is relying upon agriculture, and thus is highly dependent on water 

availability and irrigation systems (e.g. Snow and ice hydrology project, 1990; Akhtar et al., 

2008). Over the last 30 years, a 10-25% increase in agricultural cover of the middle mountain 

area of Nepal has occurred (Collins et al., 1999). Consequently, water supply systems went 

under increasing pressure to meet the\rising demands of irrigation. Therefore, local authorities 

witness an upwelling need of tools for water resources management to effectively sustain 

agricultural politics (Chalise et al., 2003; Rees et al., 2006)and adaptation of food production 

and water allocation strategies to climate change. However, long term measurements of 

hydrological and climatological data of highest glacierized areas are seldom available (see 

Chalise et al., 2003), thus making assessment of hydro-climatic trends difficult to say the 

least. Seasonal snow cover dynamics in Himalaya is also tremendously important in 

regulating monsoonal season precipitation (e.g. Robock et al., 2003). Albeit such, 

comprehensive studies of snow cover patterns on Himalaya chain are still lacking (e.g. 

Immerzeel et al., 2009). Due to lack of long term series of climatic data, proxy data are used 

in some cases for identification of historical series, including e.g. dendro-chronological 

analysis of tree rings (e.g. Yadav et al., 2002), and modified frozen ground signature (e.g. 

Fukui et al., 2007 for an application on Khumbu glacier) for temperature and snow cores, for 

seasonal snow cover depth and chemistry estimation (e.g. Polesello et al., 2007, for a case 

study in Khumbu Valley). 

As such, evaluation of the present conditions is important for assessment of water resource 

distribution, while future scenarios need to be worked out to develop new water management 

strategies. For this purpose, local evaluation of climatic trends coupled with scenarios from 

climatic models is used (e.g.Drogue et al., 2004; Kang & Ramirez, 2007) to provide the 

climatic input for medium to long term impact analysis on water resources (e.g. Beniston et 

al., 2003; Hagg and Braun, 2005) and hydrological extremes (e.g. Boroneant et al., 2006). 

Schneeberger et al. (2004) investigated mass balance for 11glaciers and 6 small glacierized 

areas worldwide, two of which in Swiss Alps (Arolla and Griesglaciers). In all cases, they 

found a strong decrease (i.e. water loss) in the net mass balance, due to decrease of snowfall 

precipitation, snow cover duration and, more importantly, to temperature rise. Bavay et al. 

(2009) preliminarily used climate change scenarios and a sophisticated model ALPINE 3Dto 

investigate the consequences of climate change (A2 and B2 scenarios of IPCC until year 

2100) on the runoff of two snow fed watersheds of different size (Dischma Catchment, 43 

km
2
, Inn catchment,1945 km

2
) in Swiss Alps, and found strong decrease of water storage in 

snow and shortening of snow cover in the whole range of altitude (1500 to 3200 m asl), with 

no continuous snow cover predicted. Also, they found considerably high winter runoff (up to 

twice as much as presently) and shortened spring flow seasons. Bultot et al. (1994) studied 

the Broye catchment (CH, 400 to 1500 m asl),predicting that, even for a rise in air 

temperature of about 1°C, snow cover duration and mean snow water equivalent on the 

ground during the first and last months of the snow season may sensibly decrease, while 
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trading of snow for rainfall due to temperature rise may generate additional floods during the 

winter season. Recently Akhtar et al. (2008) investigated hydrological conditions pending 

different climate change scenario for three glacierized watersheds in the Hindukush-

Karakorum-Himalaya (Hunza, 13925 km
2
, glacierized 4688 km

2
; Gilgit, 12800 km

2
, 

glacierized 915 km
2
; Astore, 3750 km

2
, glacierized 612 km

2
). Future climate SRES A2 

scenario (2071-2100) are simulated by a regional climate model (PRECIS, 25 by 25 km). 

Hydrological simulation of future conditions for three fixed stages of glacier coverage (100%, 

50%, 0% of glacier area) is carried out in view of the largely unknown extent of glacier area 

and especially volume. Results indicate temperature and precipitation increase towards the 

end of 21st century, with discharges increasing for 100% and 50% glacier scenarios, whereas 

noticeable decrease is conjectured for 0% scenario, i.e. for depletion of ice caps. The authors 

suggest that transfer of climate change signals into hydrological changes is likely consistent. 

Immerzeel et al. (2009) studied the strongly snow fed Indus watershed (NW Himalaya, 

200.677 km
2
, including the Hunza and Gilgit basins) and found warming in all seasons, and 

greater at the highest altitudes, giving diminished snow fall, whereas total precipitation 

increases of 20% or so. Flow wise, they found snow melt peaks shifted up to one month 

earlier, increased glacial flow due to driving of temperature, and significant increase of 

rainfall runoff. 

Observations on atmospheric composition and physico-chemical processes carried out at high 

altitude research stations are in fact being considered representative of a wide spatial area. 

These stations have a fundamental role in the detection of changing and damages of terrestrial 

ecosystem and environmental conditions (Wathne et al., 1993; Bonasoni, 2008). The analysis 

of atmospheric and cryospheric recent variations (last decade and present) in high altitude 

glacial areas allow to identify the connections between the to systems (atmosphere and 

cryosphere), contributing to the comprehension of recent atmospheric dynamics an their 

effects on glacier and water resources at local scale in the Himalayas, comparing the results 

with the Italian Alps. 
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1.1 Area of study 

1.1.1 Sagarmatha National Park (SNP), Nepal 

SNP (Fig .1) is located in the northeastern part of Nepal, amidst the world‘s highest peaks. 

The park encompasses extremely rugged terrain, deeply incised valleys, and glaciers; the 

elevation ranges from 2300 m (Surke villagein the Buffer Zone) to the summit of Mount 

Sagarmatha (Nepaliname of Mount Everest) at 8848 m. It spreads over a total area of about 

1400 km
2
, including the upper catchment of the Dudh Kosi River basin. Byers (2005) and 

Salerno et al (2008) have described the climatic and physical–chemical features of SNP, 

which are determined by the monsoon regime with most precipitation (70–80%) occurring 

between June and September. Although relatively small in size, SNP has abroad range of 

bioclimatic conditions, with 4 bioclimatic zones: a forested lower zone; a zone of alpine 

scrub; the upper alpine zone, which includes the upper limit of vegetation growth, and the 

Arctic zone, where no plant scan grow (United Nations Environment Programme [UNEP] and 

World Conservation Monitoring Centre[WCMC] 2008).  
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Figure 2. Sagarmatha National Park land Cover Map 
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Land cover (Fig. 2) classes for elevation ranges in SNP are summarized in Table 1, which 

shows that almost one third of the territory is characterized by snow and glaciers, while less 

than 10% of the park area is forested. In 2008, the park included about 100 settlements with 

6221 local residents, mostly of the Sherpa people, with over 1892 head of livestock. Although 

in many villages, traditional agriculture and animal husbandry are still the main sources of 

livelihood, more recently the local economy has become dependent upon tourism and 

tourism-related activities (climbing, portering, guiding, and lodge management), which 

represent increasingly important employment sources for local communities (Department of 

National Park and Wildlife Conservation[DNPWC] 2003). Exceptional natural beauty and 

diversity in cultural and biological endowment dominated by Mount Everest make SNP a 

prime destination for nature- and adventure-loving tourists. The growth of mountaineering 

and trekking tourism since the 1970s has had a major influence on the social –economical 

system, often with a positive economic impact, providing tourism-related employment 

opportunities, but also causing landscape and cultural changes (Daconto and Sherpa 2010; 

DNPWC 2003). The number of international visitors reached 28,800 people in 2008 (Caroli 

2008). The high influx of tourism puts an additional pressure on precious local resources, 

such as fuel wood, which remains the predominant source of energy for the majority of 

people in the park for cooking, boiling, and heating (DNPWC 2003) because it is relatively 

accessible and affordable, especially at lower altitudes.  Overexploitation of forest resources 

is omnipresent in the region currently, but fuel wood is not produced adequately to meet the 

increasing demand for energy caused by a booming tourist industry and growing local 

population (UNEP and WCMC 2008). The limited supply of reliable and efficient energy has 

compelled a majority of the population to burn fuelwood, resulting in deforestation as well as 

indoor and ambient air pollution and health hazards (Pandey and Basnet 1987; Nepal 2008) 

(Salerno et al., 2010). 

Table 1 Land cover classification by elevation zones in SNP. (Source: Bajracharya et al 2010) 

 

 



1  Introduction 

 

7 

 

  

Land cover (ASTER 2006) Area per elevation zone (104 m2) 

 
 

Figure 2. Sagarmatha National Park land Cover Map 
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1.1.2 Changri Nup Glacier 

The Changri Nup Glacier is one of the tributaries of the larger Khumbu Glacier. It is located 

in the Sagarmatha National Park, in the Nepal Himalaya (Fig. 3). The glacier is oriented E-W 

(Fig. 4) and it is partially debris covered from the terminus until it reaches an altitude of about 

5350 ma.s.l. From that elevation to the highest parts (5700 ma.s.l.) its surface is debris free. 

The debris cover on the glacier tongue varies in thickness between a few cm to 1-2 m. The 

glacier terminus is at an elevation of about 5200 m a.s.l. not far from the tongue of Khumbu 

glacier, on its right lateral side. The glacier area is about 8 km
2
, whereas the mean glacier 

width is approximately 800 m. The accumulation area starts at an elevation of around 5400 m 

which leads to two separate accumulation basins. Only the north one resulted nowadays still 

contribution to the glacier flow . 

 
Figure 3. Location of Changri Nup respect to the SNP boarder 

On its debris covered tongue several supraglacial lakes exist and the roughness is rather high 

(with elevation changes of 30-40 m on small distances due to differential ablation). . 

Changri Nup Glacier is located not far away from the Ev-K2-CNR Pyramid Laboratory-

Observatory (5050 m a.s.l.) (fig. 5) which allows frequent investigations and the rather easy 

implementation of different experiments (Smiraglia et al.; 2007). 
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Figure 4; DEM of the Changri Nup Glacier area 

 

 

 

 

Figure 5. Location of the Changri Nup Glacier and the Ev-K2-CNR Pyramid Laboratory 

 

Pyramid 
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1.1.3 The Forni Valley and the Forni Glacier 

The Forni Valley (46_25N, 10_34E), is located in Upper Valtellina (Lombardy Alps, Italy) 

(Fig. 6). 

 

Figure 6. Location of the Forni Glacier 

 

The valley is dominated by the Forni Glacier, the largest Italian valley glacier (ca.12 km2 of 

surface area), in the Ortles-Cevedale group. The Forni Glacier is also located in a protected 

area, the Stelvio National Park, one of most important Italian protected area.  The Forni 

Glacier lies on the northern slopes below Mt. S Matteo, at an elevation range between 3,670 

and 2,600 m a.s.l. The glacier and the glacierized basin are identified as ‗‗Sites of Community 

Importance‘‘ (SCI) under directive 92/43/EEC and managed by the Stelvio National Park.  

The Forni Glacier has been visited for scientific and tourist purposes (e.g. Smiraglia 1984, 

1985, 1989; Guglielmin and others1995; Diolaiuti and Smiraglia 2001b, 2010; Pelfini and 

Gobbi 2005; Pelfini 1987, 1996) since the middle of the 19th century, thus representing a 

strong element of the mountain landscape and environment for people at local and national 

level. More recently, the first supraglacial Automatic Weather Station (AWS) in the Italian 

Alps (Citterio and others 2007b; Senese and others 2012) was installed on its surface, thereby 

increasing the scientific value of the glacier.   
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The Forni Glacier is also included in the list of glaciers monitored by the Italian Glaciological 

Committee to evaluate changes in length (Comitato Glaciologico Italiano – CGI- 1914–1977, 

1978–2011); moreover, from historic maps and aerial photos, its area coverage has been 

calculated for the last 150 years. The results show that the Forni Glacier has experienced a 

marked decrease in length and area: from 17.80 km
2
 at the end of the Little Ice Age (LIA 

*1860) to 11.36 km2 in 2007 (-36.2 %). In the same time frame its tongue retreated by about 

2 km (Fig. 7).  

 
Figure 7: Cumulated length variations of the Forni Glacier (data from CGI data base) 

 

 Records for length variations in the Forni Glacier are among the longest standing in the 

Italian Alps, making Forni a benchmark glacier of primary importance. Fluctuation data for 

the glacier terminus show a basic retreating trend from 1895 to the present. A more detailed 

analysis of the front reveals a more complex picture, showing a strong retreat from the end of 

the LIA up to the seventies, then a small advancing phase up to the second half of the 

eighties, when glacier decrease again became dominant (Diolaiuti and Smiraglia 2010). The 

Forni glacier was also the scene of an important event in Italian history during the First World 

War, when battles were fought on the glacier surface and on the mountain ridges overlooking 

the glacier valley. These events and the remaining evidence, now revealed by the large 

quantity of ruins and finds present at the glacier surface, add a cultural value to the glacier. 

For all of the above reasons the Forni glacier was included in the Lombardy Region official 

Geosite List (Regione Lombardia 2009). 

The Forni valley is characterized by easy accessibility, several climbing routes areavailable 

for climbers and expert alpinists. The huts are open in summer for tourists, trekkers and 

alpinists visiting the glacier area and in spring for skiers who enjoy the glacier snow and can 

reach the main peaks surrounding the Forni Glacier (Garavaglia et al., 2012). 
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1.2 Microclimate of glaciers 

In spite of the oldest series of direct mass balance measurements in the world was from the 

Clariden firnin Switzerland (Vincent &alii, 2004) where observations have been carried out 

since 1914, the first studies performed to describe and analyze glacier microclimate started 

later, only after the second world war. At the end of the forties Ahlmann (1948) studied 

processes and mechanisms involved in the strong glacier reduction he observed around the 

North Atlantic Ocean. Moreover in the same period, a comprehensive study of water, ice and 

energy budgets was started on several glaciers in Oetztal, Austria, and greatly expanded 

during the International Hydrological Decade in the 1950s (Hoinkes&Untersteiner, 1952; 

Hoinkes,1955), during which several long-term mass balance series were initiated 

(Hoinkes&Steinacker, 1975; Reinwarth& Escher-Vetter, 1999). 

Actual systematic investigations of the meteorological parameters on melting glaciers were 

performed only from the 1960s (Capello, 1959-1960; Björnsson, 1972; Wendler& Weller, 

1974; Munro & Davies, 1978; Hogg &alii, 1982; Munro, 1989; Ohata&alii, 1989; Ishikawa 

&alii, 1992). These studies provided supraglacial meteorological data and energy fluxes 

measurements only for short periods (one or more ablation seasons) and only on 

accumulation basins: Hintereisferner, Austria (Van deWal et al, 1991), West-Greenland 

(Oerlemans&Vugts,1993), Pasterze, Austria (Greuell et al, 1997), Vatnajökull, Iceland 

(Oerlemans at al, 1999). The data obtained in these experiments have made clear that longer 

series of measurements from ablation zones are also needed. 

Especially on larger glaciers, melting on the lower parts is not restricted to the summer 

season. A better calibration of mass balance models could be achieved if data over longer 

time periods would be available. Thus from 1987longer dataset are recorded on the melting 

zones of the Greenland ice-sheet, of Hardangerjokulen (Norway) and of Morteratschgletscher 

(Switzerland) (Oerlemans, 2000;Oerlemans&Klok, 2002; Klok&Oerlemans, 2004). Up to 

now the longest glacier data series is obtained from the Automatic Weather Station (from here 

AWS) located on the Morteratsch gletscher; due to the possibility of regular visits and to the 

favorable atmospheric conditions (little icing) a good quality meteorological data set is 

obtained during the last 2 decades (Oerlemans, 2001; 2009). 

On short period melting areas also of debris covered glaciers were analyzed through AWS for 

evaluating energy fluxes and supraglacial meteorology features (see the experiment on the 

Miage debris covered glacier, Mont Blanc, Italian Alps, further details in Brock &alii, 2010). 

After the recognizing of AWS importance, these stations have been deployed over a wide 

variety of glaciated surfaces (e.g. continental ice sheets, valley glaciers, sea ice and icebergs) 

and have a variety of applications, including climate variability assessment, in support of 

operational weather forecasting, model validation and in avalanche information support. 

AWS applications share a common challenge of obtaining continuous and reliable 

measurements both unattended and often in extreme environments. AWSs have facilitated 

growth in the branch of glacio-meteorology. 

The collection of meteorological data recorded by permanent AWSs, in fact, is essential for 

measuring energy fluxes at the glacier-atmosphere interface and snow accumulation, for 

calculating the energy available for snow/ice melt, for the validation of mass balance models, 
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meteorological models (regional/mesoscale) and satellite products, for constructing 

parameterizations for energy balance models (Oerlemans&Vugts, 1993; Greuell&alii, 

1997;Oerlemans & alii, 1999; Oerlemans, 2000; Klok&Oerlemans,2002; Oerlemans&Klok, 

2002; De Ruyter de Wildt & alii, 2003; Klok & Oerlemans, 2004; Senese & alii, 2012). 

The meteorological parameters are also fundamental to characterize glacier surface and sky 

conditions. For example albedo and cloudiness are the most important parameters that 

determine the amount of solar radiation adsorbed at the surface (apart from geometric effects 

like shading): at the glacier surface the solar radiation mainly drives ice and snow melt. From 

the incoming radiation the cloud conditions can normally be inferred qualitatively: days with 

overcast conditions are marked by lower values of incoming solar radiation and higher ones 

of incoming longwave radiation. In fact, clouds and water vapor make the atmospheric 

emissivity larger. On the contrary glacier outgoing longwave radiation shows less pronounced 

variations. 
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1.3 Atmospheric Black Carbon and its deposition on snow/ice surface 
 

The transport of atmospheric pollutants can significantly impact high mountain areas and 

glaciers, which are generally considered ―clean‖ regions. An important component of such 

atmospheric pollution is black carbon (BC), also called ―soot‖,an aerosol produced by the 

incomplete combustion of biomass (e.g. wood, dung, crop residue, wild fire,etc.), coal and 

fossil fuels (e.g. petroleum, diesel, charcoal, and etc.) and able to contribute to climate change 

by altering the Earth‘s radiative balance (Andreae and Crutzen,1997). Atmospheric BC has a 

significant impact on the earth‘s climate (IPCC, 2007), scattering and absorbing the incoming 

and outcoming solar radiation. Once deposited onto snow-surface in the cryosphere, BC can 

considerably reduce the surface albedo, (e.g., Warren and Wiscombe, 1980; Aoki et al., 2006, 

2007). The impurity effect on snow albedo reduction is more important for visible wavelength 

than that for near infrared radiation (e.g., Warren and Wiscombe, 1980; Flanner et al., 2009). 

possibly resulting in increased glacier retreat and earlier seasonal snowpack melt and 

therefore impacting water re-sources, agriculture, and human health. Knowledge of BC 

concentrations and variability in high mountain regions and deposition on glaciers is therefore 

essential to evaluate the impacts of pollutants on the environment.  

Due to the large amount of absorbing aerosols present in the Atmospheric Brown Cloud 

(Ramanathan et al., 2008), these aerosols may be directly warming the atmosphere in the 

Indian-monsoon region. Lau et al. (2006, 2008), proposed the so-called Elevated Heat Pump 

(EHP) effect, whereby heating of the atmosphere by elevated absorbing aerosols strengthens 

local atmospheric circulation, leading to a northward shift of the monsoon rain belt, resulting 

in increased rainfall in northern Indian and the foothills of the Himalayas in the late boreal 

spring and early summer season. More recently, Lau et al. (2010) showed that the EHP effect 

can also lead to accelerated melting of snow cover in the Himalayas and Tibetan Plateau, by a 

transfer of energy from the upper troposphere to the land surface over Tibetan Plateau.  

In recent years, a highlight on BC's climatic effects is drawing more and more attention from 

scientists, i.e. BC deposited in the surfaces of snow and ice (e.g. snowpack, glacier, ice sheet, 

sea ice, and etc.) (Fig. 10) could enhance solar radiation absorption, reduce the albedos 

intensively, and thus accelerate the melting of ice (Ming et al., 2009). It was found that a 

concentration of 15 μg kg−1 of BC in snow may reduce the snow albedo by ∼1% (Light et 

al. 1998) calculated that 150 μg kg
−1

 of BC embedded in sea ice could reduce the albedo of 

sea ice by ∼30% at its maximum. Hansen and Nazarenko (2004) used a model (GISSE) to 

simulate the solar absorption of BC in snow and ice, suggesting it may be responsible for 

∼0.17 °C of the observed global warming in the past century (accounting for ∼25% of the 

20th-centurywarming); for the same purpose, Jacobson (2004) used a different model 

(GATOR-GCMOM) to calculate the global warming caused by BC in snow and ice, 

suggesting the global mean of BC concentrations in snow and ice was ∼5 μg kg
−1

 and this 

level of concentration could reduce the albedos of snow and sea ice by ∼0.4% and thus could 

contribute the global warmingby +0.06 °C per decade. IPCC Fourth Assessment Report: 

Climate Change (IPCC AR4, 2007) reported the radiative forcing caused by BC in snow and 

ice was 0.10±0.10 W m
−2

 of global mean. And a new result from another model 

(SNICAR)revealed from1906 to 1910 when the maximum BC concentration appeared in an 

Arctic ice core, estimated surface climate forcing in early summer from BC in Arctic snow 

was ∼3Wm
−2

,whichwas eight times of the typical preindustrial forcing value (McConnell et 
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al., 2007).  Using the same model, a north hemisphere-based simulation suggested the 

greatest instantaneous forcing by BC in snow appeared on the Tibetan Plateau (TP), 

exceeding 20Wm
−2

 in some places during spring (Flanneret al., 2009); in particular, the mean 

forcing by BC deposited in the ice of the middle Himalayas exceeded 2 W m
−2

 after 

2000(Ming et al., 2008). These results indicated the solar absorption by BC in snow and ice 

on the Tibetan Plateau might have significant impact on the mass balance of the glaciers. 

Neighboring west China, there are two strong BC-emitting regions, South Asia and East Asia, 

respectively (Bond et al., 2007).This effect increases heating of the snow and ice surface, thus 

accelerating melting, shortening snow duration, altering mass balance and causing the retreat 

of mountain glaciers. These physical activities change the amount of available water resource 

in the region (e.g., Hansen and Nazarenko, 2004;IPCC, 2007; Flanner et al., 2007, 2009). 

 
Figure 9: Surface forcing (W m-2) from BC in snow 

The southern slope of the Himalaya is directly exposed to Indian emissions and more likely to 

be impacted by BC than the northern slope. However, the available data of black carbon 

concentrations in atmosphere and BC deposition (BCD), for studying snow albedo reduction 

at the southern slopes in Himalayan regions, are still very scarce. Moreover, only a few BC 

concentrations (BCC) and morphological properties in the snow and ice cores, in the 

northernslopes of the Himalayan and Tibetan Plateau regions, have been measured thus far 

(Ming et al.,2008, 2009). Studies on BC concentration in snowpack at the southern slope in 

Himalayas are less. In addition, glaciers in Himalayas are located in severe topography. 

Consequently, logistic constraints have severely limited data availability on snow and ice 

composition, as wellas atmospheric composition observations. Hence, an alternative approach 

to estimating BCD over Himalayan glaciers is necessary for understanding the impact of 

BCD on melting glaciers (Yasunari at al., 2010). 

Atmospheric data of equivalent BC concentration(eq BCC), aerosol particle number 

concentration and size distribution, as well as meteorological parameters, are continuously 

measured at the Nepal Climate Observatory– Pyramid (NCO-P, 5079 a.s.l.) on Southern slope 

of the Himalayans since 2006 (Bonasoni et al., 2008, 2010) (Fig. 9). The NCO-P is the 

highest aerosol observatory managed within the Ev-K2-CNR Stations at High Altitude for 

Research on the Environment (SHARE) and the United Nations Environmental Program 

(UNEP) Atmospheric Brown Clouds (ABC) projects. This station was established in March 

2006 for atmospheric research in the Khumbu Valley, Sagarmatha National Park, near the 

base of the Nepalese side of Mt. Everest (5079 ma.s.l.) (http://evk2.isac.cnr.it/).In July 2010 

the NCO-P was upgraded to Global Atmospheric Watch Global Station in the framework of 

WMO program. Because high altitude measurement sites are relatively clean and far from 

http://evk2.isac.cnr.it/
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anthropogenic emission sources, they offer an opportunity to study the influence of 

anthropogenic pollution transported from remote areas. The Indian sub-continent, especially 

the Indo-Gangetic Plain is one of the largest BC emission sources in the world (Ramanathan 

et al., 2007) and it is in the vicinity of the Himalayan glaciers. Preliminary work of Bonasoni 

et al. (2008)has found very elevated eq BCC under different meteorological conditions, with 

well defined seasonality showing a maximum in pre-monsoon season (Marinoni et al., 2010).  

 

Figure10: Albedo variability as a function of BC (Courtesy of F. Dominé, LGGE) 
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Chapter 2 

 

Material & Methods 

 
2.1 Meterology 

On February 2010 an Automatic Weather Stations (AWS) (Tab. 2) has been installed on the 

debris-free surface of the Changri Nup Glacier (Nepal, Himalayas) at 5,700 m asl (N 

27°58‘54‘‘.5 ; E 86°45‘53‘‘.8) (Smiraglia et al.; 2007).  During the field campaign, ablation 

stakes have been positioned and snow sampling have been carried out. The AWS is acquiring 

continuously meteorological data and energy fluxes (incoming and outgoing) at the glacier 

surface. The data will permit the calculation of the glacier energy balance and the high 

resolution analysis of surface albedo (snow or ice). Obtained results would be correlated with 

the atmospheric observations carried out at the Nepal Climate Observatory-Pyramid (NCO-P) 

located at 5,079 m asl, 5.7 km away, near the Pyramid Laboratory Observatory and part of 

UNEP-ABC and WMO-GAW networks.   

The first Italian permanent glacial AWS (Tab.2) , installed in 2005 by the University of 

Milan, in collaboration with Ev-K2-CNR is fundamental to analyze the atmospheric boundary 

layer characteristics to quantify energy fluxes on the ice-atmospheric interface and to 

calculate energy and mass balance.  The AWS1 Forni (46°23‘56.0‖ N,10°35‘25.2‖ E), ca. 

2700 m, is located on the lower glacier sector, about 800 m far from the glacier front (Citterio 

et al., 2007). From 2009 the AWS was inserted in the CEOP network in the frame of the 

GEWEX project. Data analyses permitted to characterise the glacier surface conditions, the 

calculation of the energy balance and the evaluation of the ablation amount; moreover snow 

accumulation was considered thus permitting to estimate the glacier mass balance. Both 

stations measure continuously every 30 minutes temperature, relative humidity, atmospheric 

pressure, wind speed and direction, solar radiation and at present only in the Italian site, snow 

level too.   

Table 2: measurements at Forni and Changri Nup AWSs 

PARAMETER AWS FORNI AWS CHANGRI NUP 

Air temperature   

Relative humidity   

Wind speed   

Wind direction   

Atmospheric pressure  To be installed 

Incoming Shortwave Radiation   

Outgoing Shortwave Radiation   

Incoming Longwave Radiation   

Outgoing Longwave Radiation   

Total precipitation   

Snow level  To be installed 
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Data points, sampled at 60-second intervals and averaged over a 30-minute time period for 

most of the sensors, are recorded in the flash memory card, together with basic distribution 

parameters (maximum, minimum and standard deviation values). Wind data are sampled 

every 5 seconds, and then processed by the data-logger software, which produces an hourly 

set of information, including minimum, maximum and average speed, dominant wind 

direction and statistics on the azimuth sectors. This information is stored in the flash memory. 

Prior to storage in the memory, the raw analog and digital signals are converted by the data 

logger into the corresponding physical values by applying programmed calibration factors or 

tables. Basic validation checks such as out-of-range values and cable connection defects are 

also run by the data logger, and any error codes are saved in the flash memory card. However, 

most calculations involving data from more than one sensor, such as sound speed corrections 

for air temperature in snow level measurements or radiometer temperatures for infrared 

radiation must be carried out later through the following equation: 

LW+5,67*(10
-8

)*(TCNR1+273,15)
4
 

Where LW is the raw measured data and TCNR1 is the net radiometer sensor temperature 

At Forni Glacier, snow accumulation on the sky facing radiometers has been detected in the 

recorded data, which needs to be carefully filtered for such occurrences. 

Pressure sensor was not available at Changri Nup AWS, thus Atmospheric Pressure data have 

been derived from Kala Patther AWS, located at 5.600 m asl,near the Everest Base Camp 

according to the following ipsometric formula (Wallace and Hobbs, 2006):  

p2=p1 exp-(Z2-Z1/H) 

Where : 

p2=Pressure Changri 

p1= Pressure Kala Patthar 

 

Z2=Elevation Changri AWS 

Z1= Elevation Khala Pattar AWS 
 
H=scale height (29.3 Tv) 

 

Tv= Virtual temperature  tv=t/(1-(e/p)*0.622); 

 

t= Kala Pattar AWS temperature 

e=water vapour pressure estimated as  e=exp(20.386-5132(kelvin)/t); 

 

Kala Patther temperature has been used as Tv for a major accuracy.  Normally Tv should be 

integrated in the whole atmospheric layer dividing Kalpatthar AWS from Changri Nup AWS, 

but in this case Tv has been approximated and considered as constant in the atmospheric layer 

dividing Kala Patthar and Chanfri Nup AWS. 
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2.2 Radiation 

To calculate the surface energy balance, the 30-min radiation data were analyzed. At the 

glacier surface, solar radiation is the most important energy balance component driving ice 

and snow melt. Therefore the albedo (from here α) is an important and noteworthy parameter 

of glacier surface to be analyzed in terms of temporal variability.  

Firstly we filtered the incoming and outgoing shortwave radiation data (SWin and SWout, 

respectively) in order to remove erroneous values (e.g.: after a snow fall event, values 

showing SWout exceeding SWin due to the presence of fresh snow on the top pyranometer); 

then the following relation was applied: 

α = SWout * SWin
-1

 

The incoming and outgoing longwave radiation (LWin and LWout, respectively), were 

measured by the CNR1 pyrgeometers. The acquired data represent the flux at each sensor 

surface, and the values have been converted to the ground and atmospheric (upward and 

downward) directional flux by Stephan-Boltzmann‘s law. 
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2.3 Turbulent fluxes 

Because measurements are available for one level only, no attempt was made to use 

sophisticated schemes for the calculation of the turbulent heat fluxes. Instead the well-known 

bulk aerodynamic formulas were used according to the methods introduced by Oerlemans 

(2000): 

SH = ra * cp * Ch * V2m * (T2m – TS) 

LE = 0.622 * ra * Lv * Ch * V2m * (e2m – eS)*p
-1

 

where ra is air density (0.87 kg m-3), cp is the specific heat of dry air (1.006 kJ kg-1 °C-1), 

Ch is the turbulent exchange coefficient (0.00127 ± 0.00030; from Oerlemans, 2000), V2m is 

wind speed value at 2 m, T2m is air temperature value at 2 m, TS is the surface temperature, 

Lv is the latent heat of vaporization (Harrison, 1963), e2m is vapor pressure value at 2 m, eS 

is vapor pressure value at the surface (calculated using the Wexler formula; Wexler, 1976) 

and p is air pressure value at sensor level. The TS is calculated by using the Stephan-

Boltzmann law: TS=4√(LWout * σ-1 * ε-1), where σ is the Stephan-Boltzmann constant, 5.67 

* 10-8 W m-2 K-4 and ε is the emissivity of the snow/ice surface, assumed to be equal to the 

unity. Wind speed is measured at 5 m thus it has been calculated at 2 m (following the 

method introduced by Oerlemans, 2000). At this stage the Ch is assumed to be constant, 

(Oerlemans and Klok, 2002).  

 

2.4 Surface energy balance 

To calculate the glacier energy balance components, we applied the following methods by 

considering the 30-min meteorological values. 

The energy balance at the glacier surface (RS) determines the net energy available for heating 

and melting. RS was calculated as 

RS = SWnet + LWnet + SH + LE 

All the fluxes (W m
-2

) were defined positive when directed towards the surface. The 

conductive heat flux at the surface was neglected since no temperature sensors were located 

in the snowpack and in the ice surface layer. During the ablation season, when melting occurs 

and surface ice temperature is ~0°C, at the glacier surface all the energy is used to melt the 

ice. Consequently the conductive heat flux at the surface is equal to zero thus permitting to 

calculate RS without considering the conductive heat flux. Differently, when the glacier 

surface is not at the melting point and RS is lower than 0 W m
-2

, the surface cools and the 

conductive heat flux value is not equal to zero and has to be evaluated. In our study, 

neglecting the conductive heat flux at the surface, is resulting in a slight overestimation of ice 

melting. 
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2.5 Monitoring of Black Carbon (BC) concentrations in the atmosphere 

BC concentration are monitored continuously at NCO-P (Nepal Climate Observatory at 

Pyramid) station, the UNEP-ABC and WMO-GAW observatory installed in February 2006 

(Fig. 11). 

The station measured aerosol concentration and size distribution, aerosol optical properties, 

ozone, halogenated compounds.  BC concentration in particular are monitored through the 

Multi Angle Absorption Photometer (MAAP).  Collected data are sent to the CNR-Institute of 

Atmospheric Science and Climate of Bologna in real time through satellite connection. 

 

Figure 11: The NCO-P Station and the aethalometer for BC monitoring 
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2.5 Snow sampling procedure at Changri Nup Glacier 

Snow samples, which are planned to be acquired periodically, to understand seasonal 

behaviour and through intensive field campaign to estimate aerosol deposition rate, will be 

analyzed to quantify the presence of atmospheric absorbing aerosols (e.g. black carbon, soil 

dust). In fact, this latter was found to play a key role in varying snow and ice albedo and in 

driving glacier ablations on several high elevation Himalayan and Alpine glaciers. In this 

experiment, by coupling energy data (from the AWS) with the results from snow sample 

chemical analysis, will be possible to investigate the relations between atmosphere and 

cryosphere and to quantify the impacts, if any, of atmospheric dust and/or black carbon 

deposition on the Changri Nup and Forni Glaciers ablation rates. 

Snow sampling should take place at each snow fall and durng each periodical fiels visit to the 

monitoring sites. 3 samples should be collected (2 glass jars (Schott) of 100mL and 1 glass jar 

of 500 ml).  

The bottles have been preconditioned at the Laboratoire di Glaciologie et Géophysique de 

l‘Environnemenmt - LGGE - in Grenoble (cleaned and dried) and packed into sealed plastic 

bags.  The snow collection is very very sensitive to contamination, and the following 

procedure should be followed very attentively: 

Needed equipments: 

» One bag with a 500mL bottle 

» One bag with 2 bottles of 100mL 

» One-Two pair(s) of gloves 

» Two ziplocks to place the label papers inside 

» One large bag (sealed on one side) 

» Some rubber bands 

» The Teflon scraper 

Arriving at one site, the operator should: 

» Put on the pair of new disposable plastic gloves 

» Open the bags of the individual bottles (using a knife) (1 bottle of 500 mL 

and 2 bottles of 100mL) 

» Collect the snow sample with the operator always staying with the wind 

coming from face. The collection of the snow should take place by scraping 

de surface with the teflon scraper. The depth of collection should only be on 

the first 5 cm of the upper snow layer, and care should be taken to collect a 

single layer. Try to take as much snow as possible by knocking the back of 

the bottle to compact the snow in it. Recap the bottle tightly. 

» Write the date and place of collect on the label, and place the label in a 

ziplock. Does that twice. 

» After sampling, put the bottles back in their original bags and place in each 

bag a ziplock with the label; close each one with one of the rubber bands.  
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» Place the 3 bottles in the large bag, and close it also with a rubber band. 

Remove your gloves and dispose them.  

Samples are preserved frozen until their arrival to the analytical laboratory (Kaspari, et al. in 

press).  Chemical analysis will allow the determination of the contents of aerosol derived 

absorbing material through SP2 (Single Particle Soot Photometer). 

 

2.5 Debris cover quantification 

The quantification of presence and coverage of supraglacial sparse fine debris was 

performed by acquiring high resolution digital photos at each site we analyzed and 

processing them with a freeware software following the method proposed by Irvine-

Fynn et al. (2010) who quantified cryoconite features. Digital imagines were taken, 

after the albedo measurements, in the central hours of the two days of surveys, when 

the sun was at its Zenith. At the studied parcels, 1 x 1 m wide, digital RGB (red-

green-blue) imagines were acquired using a digital camera (Nikon D40, 6.1 

megapixel). Image analysis was carried out with the public domain image-processing 

software ImageJ (http://rsbweb.nih.gov/ij/index.html). Firstly, in each image the area 

enclosed in a parcel 1 m
2
 wide was blanked. After converting the pictures to 8 bit 

greyscale for highlighting the contrast between glacier ice and debris/dust, a 

characteristic threshold was fixed to discriminate between the debris-covered and 

debris-free ice surfaces. An 8 bit image is composed by 254 grey‘s tone included from 

0 (i.e., black) to 255 (i.e., white) and ice surface could be isolated by selecting the 

pixels with brightness values higher than a specified threshold level; for instance, if 

the threshold is fixed at 100, pixels with a grey‘s tone from 0 to 100 represent debris, 

vice versa pixels with a grey‘s tone from 101 to 255 represent ice. Finally, for each 

image the number of pixels with a value lower than the threshold was calculated with 

the measure function of the software obtaining the percentage of the surface covered 

by debris. 
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Chapter 3 

 

Results 

 
3.1 Meteorological characterization 

The Himalayan high-altitude climate is intensely characterized by its relationship with large 

scale circulation, and strongly dominated by the diurnal cycle of thermal parameters. In fact, 

at the Nepal Climate Observatory – Pyramid (NCO-P), the seasonal variation of atmospheric 

conditions is influenced both by the local mountain wind system (with a strong diurnal valley 

wind and a weak mountain night-breeze), and by the large-scale Asian monsoon circulation. 

In particular, besides determining the seasonal variations of the meteorological parameters, 

the annual variations of the main synoptic circulation can also modulate their diurnal cycles 

characterizing the local mountain weather regime (Bonasoni et al., 2010). 

 

Figure 11: Daily mean values of the main meteorological parameters registered at NCO-P from March 2006 to 

March 2010: Temperature (a), Atmospheric Pressure(b), Relative Humidity (c), Wind Speed (d), wind direction 

(e), total precipitation (f) (Bonasoni et al., 2010) 
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The temperature behaviour registered at  NCO-P in the four year period 2006-2010 (Fig. 11a, 

average value = -2.6°C) is characterized by lower values during the pre-monsoon period 

(daily average value: −5.5 °C) than those recorded during the summer monsoon season (daily 

average value of 1.5 °C)  that is also characterized by a lower diurnal variation due to the 

frequently cloudy conditions occurring at the measurement site (Bollasina et al., 

2002).Atmospheric pressure (Fig. 11b) is characterized by higher values(daily mean: 552.3 

hPa) between June and July  and lower values (daily mean:548.1hPa) between November and 

March. During pre-monsoon  pressure showed a much greater variability with some rapid 

variations recorded in connection with the passage of synoptic. Relative humidity (Fig, 11c) 

shows a seasonal cycle with higher value (daily mean: 91.7%)between the end of May and the 

end of September and lower values (daily mean: 22.5%)from the end of November and 

January/February while during pre-monsoon, can decreased to a small percent. Relative 

humidity data allow the determination of the seasonal transition period.  

Wind speed (Fig. 11d) shows mean values in the period of 3.0 m s-1 while wind direction 

(Fig. 11e) is characterized by a bimodal distribution due to the configuration of the Valley, 

oriented in North East – South West direction and by the presence of an evident mountain – 

valley breeze regime (Bollasina et al., 2002).From October to May valley wind prevail during 

the day, while mountain wind during the night. In summer monsoon period, due to the effect 

of South-East Asian monsoon synoptic circulation (Ueno et al., 2008),valley wind are 

predominant during nighttime too. 

Total precipitation at NCO-P (Fig. 11e) is governed by the Himalayan monsoon regime, and  

precipitation days are concentrated from June to September, reaching the maximum values in 

August. Monsoon precipitations were characterized by light showers or drizzles while only 

sporadic events with heavier rain(>10 mm/day) were detected even if such values could be 

underestimated due to the loss of snowfall that would also explain the absence of any signal 

of precipitation from November to April, when air  temperatures below 0 °C characterized the 

92% of observations. The identification of the onset and decay of monsoon season at NCO-P 

(Tab. 3) has been defined taking in account the meteorological regime variation (Bonasoni et 

al., 2010),considering in particular relative humidity and wind direction data at NCO-P 

station.  The monsoon season has been identified as the period characterized by high 

persistent humidity levels (never under 70%) and the presence at the measurement site of 

southerly wind, also during night-time (Ueno et al., 2008).In fact, in the Southern Himalayas 

significant changes in mountain weather regime, due to the summer onset of the large scale 

southern monsoon circulation, strongly anticipate the precipitation onset, as showed by Ueno 

et al. (2008) and Barros and Lang (2003). Winter season has been identified when daily 

relative humidity values never exceeded 70%, and northerly mountain winds were well 

established during night-time.  The two remaining period of the year are defined on the basis 

of the monsoon season and are indicated as pre-monsoon and post-monsoon period. 

Table 3: Onset and decay of monsoon season in the period 2010-2012 from NCO-P station data 

Year Starting Date Ending Date 

2010 May 6 September 24 

2011 June 14 September 27 

2012 June 17 September 20 
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Figure 12:Relative Humidity at the Nepal Climate Observatory at Pyramid in the period 2010-2012 

Monsoon onset and decay, as reported in table 3, are shown in figure 12 where the trend of 

relative humidity is characterized by a marked seasonality with lowest values in winter (dry 

period) and higher values in summer (monsoon season). 

 

Relative humidity sensor at Changri Nup AWS show a malfunctioning from September 2010, 

for this reason Changri Nup relative Humidity data from February to September 2010 have 

been correlated with the AWS installed at 5.600 at Kala Patthar, close to the Mt. Everest Base 

Camp and located at similar altitude of Changri Nup station. 

 

The correlation is reported in figure 13, and has been done considering the data from 0 to 

85%, in order to minimize the instrumental problem in measuring relative humidity levels 

close to the saturation (instrument data sheet, LSI Lastem 2010) 
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Figure 13: Correlation between relative humidity data of Changri Nup and Kala Patther AWSs from February to 

September 2010 
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Figure 14: Relative humidity daily mean values from Kala Patther station in the period 2010-2012.   

Daily mean relative humidity of Kala Patthar (Fig. 14) is consistent with the trend registered 

at Pyramid station with minimum values of 5% and maximum values of 100%. 

Considering data availability at Changri Nup station compare to the 2010-2012 dataset of 

Pyramid station, the number of data registered at Changri Nup correspond to the 82% of the 

Pyramid station dataset, which represent a good number of measurement for an extreme 

remote site. 

The following graphs describe the trend of both stations in the period 2010-2012 in order to 

have a complete vision of their behavior in the analyzed period. 

Daily mean temperature data at Changri Nup and Pyramid AWS are reported in figures 15 

and 16. 
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Figure 15: Daily mean temperature at Pyramid AWS in the period 2010-2012 
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Figure 16: Daily mean temperature at Changri Nup AWS in the period 2010-2012 

Daily mean values of air temperature at Changri Nup show an annual cycle with maxima 

value during summer period (monsoon), the only season on which temperature reaches value 

above 0 °C, and minimum value in winter.  In the period 2010-2012 the average period has 

been -4.75 °C and the temperature range was between 3.69 °C and -21.87 °C. 

Wind speed daily average at Changri Nup AWS (Fig. 17) is 1.46 m s
-1

, lowest that the 

average value registered at NCO-P, due both to the effect of the orographic barrier but also to 

the fact that, due to the lowest temperature in winter time, the anemometer could become 

frozen and as a consequence underestimate wind speed in winter time.  Maximum values are 

lower than the values registered at the Pyramid (Fig. 18). 

 

Figure 17: Daily mean wind speed at Changri Nup AWS in the period 2010-2012 
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Figure 18. Daily mean wind speed at Pyramid AWS in the period 2010-2012 

Prevailing wind direction (Fig. 19) is NNO, indicating a strong influence of mountain breeze 

circulation.  Changri Nup glacier is exposed to East and the presence of the Shangri-La pass, 

affect the local circulation. 
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Figure 19: Daily mean wind direction at Changri Nup AWS in the period 2010-2012 
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The wind regime in the near surface glacier layer can be better understood with scatter plots 

of wind speed and wind direction, (30 minutes values) (Oerlemans & Grisogono, 2002). 
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Figure 20: 30-min mean wind direction vs wind speed at Changri Nup AWS in the period 2010-2012 

In yearly wind direction vs wind speed (Fig. 20), the more frequent wind directions (cluster 

around a provenance (from ca. 70°) occur with higher wind speed of  around 8 m s-1.  These 

features of direction and speed are characteristics of the katabatic regime (Oerlemans, 2010). 

Wind directions around 200° occur in correspondence of lowest wind speed values. 



3  Results 

 

32 

 

3.2 Surface energy fluxes 

The effect of clouds on the shortwave and longwave radiation budgets is just the opposite. 

More clouds simply less shortwave radiation and more longwave radiation. The net effect 

depends on the surface albedo and on cloud transmissivity (Ambach, 1974; Bintanja & 

Broeke, 1996, Oerlemans, 1996, Oerlemans, 2005a). In the case of high surface albedo (e.g. 

fresh snow), the net change in longwave radiation for a given increase in cloudiness is greater 

than the net change in the solar radiation. Then, an increase in the net radiation balance 

occurs. In the case of lower albedo (e.g. ice), the solar radiation effect dominates and the net 

radiation budget decreases with cloudiness. 

Figure 21 shows the global radiation (SWin)  behavior measured at the Changri Nup glacier 

during 2010-2012 period together with those calculated with birds model (bleu). Daily 

variability of SWin is high and maxima values are present in winter season while minima 

values are evident during monsoon season which is characterized by a higher number of 

cloudy days compare to clear sky days.  This feature seems to be enhanced by the 

disappearance of snow cover, reducing the effect of multiple reflection over the glacier 

surface too (Oerlemans, 2000). 

 

Fig. 21. Daily mean SWin measured at Changri Nup AWS in the period 2010-2012 and SWextra calculated with  

Bird models in the period 2010-2012. 

Clear sky and cloudy days conditions at Changri Nup, seen in Fig. 22, are consistent with the 

seasonal behavior analyzed at NCO-P station in the period 2006-2008 and reported in 

Bonasoni et al., 2010. 
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Figure 22: Frequency of occurrence of clear skies (light blue),thin/moderate clouds (grey), thick clouds (pink), 

and scattered clouds (white) versus time of day for the different seasons, as derived from the NCO-P observations 

(Bonasoni et al., 2010) 

Daily mean global radiation measured at Changri Nup station in the period 2010-2012 has 

been 220 W m
-2

.  Measured daily mean values has been compared with the annual mean 

extraterrestrial irradiance calculated for the same latitude and elevation and estimated as 465 

W m-2 using Bird method (Tab 4) which permit to produces estimates of clear sky direct 

beam, hemispherical diffuse, and total hemispherical solar radiation on a surface (Bird and 

Hulstrom, 1981). The comparison between the two values put in evidence that shading and 

clouds strongly decrease the amount of solar energy at the earth surface and in our case at the 

glacier surface. The reduction is ca. 53% excluding the processes of scattering and absorption 

of the clear atmosphere. 

Table 4: Input parameter for the calculation of solar position based on NOAA's functions and clear-sky solar 

radiation based on Bird and Hulstrom's model at Changri Nup AWS 

Site data and time info   

latitude in decimal degrees (positive in northern hemisphere) 28,800 

longitude in decimal degrees (negative for western hemisphere) 86,800 

Ground surface elevation (m) 5700,0 

time zone in hours relative to GMT/UTC (PST= -8, MST= -7, CST= -6, EST= -5) 5,45 

daylight savings time (no= 0, yes= 1) 0 

start date to calculate solar position and radiation 23-Feb-10 

start time 12:00 AM 

time step (hours) 1 

number of days to calculate solar position and radiation 1042 

Bird model parameters   

barometric pressure (mb, sea level = 1013) 506 

ozone thickness of atmosphere (cm, typical 0.05 to 0.4 cm) 0,27 

water vapor thickness of atmosphere (cm, typical 0.01 to 6.5 cm) 0,27 

aerosol optical depth at 500 nm (typical 0.02 to 0.5) 0,08 

aerosol optical depth at 380 nm (typical 0.1 to 0.5) 0,08 

forward scattering of incoming radiation (typical 0.85) 0,85 
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surface albedo (typical 0.2 for land, 0.25 for vegetation, 0.9 for snow) 0,7 

The mean 3-years albedo value (Fig. 23, part a) is 0.65.  During the accumulation season the 

3-years mean annual albedo was 0.75 while during the ablation season was 0.26.   

 

   

Figure 23: Daily albedo values characterizing exposed ice and snow covered surface in the period 2010-2012 (a) 

and per year (b, c, d) 

 
Table 5:Snow and ice albedo values at Changri Nup Glacier 

Period Ice Albedo Snow Albedo 

2010-2012 0.26 0.65 

2010 0.23 0.63 

2011 0.32 0.68 

2012 0.26 0.63 

Yearly mean annual accumulation and ablation albedo are reported in table 5.  Yearly values 

in 2010 and 2012 are almost the same, while in 2011 the snow and ice ablation values are 

higher.  This is consistent with the duration of the ablation season which has been shorten in 

2011, as reported in the table below. In general snowfall implies higher albedo, increasing 

outgoing radiation and less energy available for melting (Senese at al., 2012). 

The ice-albedo correlation in figure 23a clearly put in evidence two group of data related to 

exposed ice (lower values) and snow covered ice (highest values). 

In order to understand if this characteristics were related to a particular year, yearly albedo 

has been analyzed. The graphs in figure 23b and c shows the same situation and the evident 

a) 

b) 
c) 

d) 
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presence of both exposed and snow covered ice in the 2010 and 2012 melting season (see 

violet points in the graphs showing two different tendencies), while in 2011 (Fig. 23c) the line 

interpolating the violet plotted data reveals the presence of snow covered ice only (i.e.: 

highest mean albedo).  As highlighted from the other results, ablation season in 2011 has been 

shortened and glacier melting was less compared to the results of 2010 and 2012.  Table 7 

summarize the length of the ice ablation period at Changri Nup Glacier. 

Table: 7: Snow and ice days at ChangriNup Glacier 

Ice ablation 

period 

Tot days Tot snow days Tot ice days N°of snowfalls 

2010 (17-5/19-7) 64 24 40 1 

2011 (4-6/23-6) 19 1 18 1 

2012 (24-5/1-7) 38 3 35 1 

The four components of energy balance (SH, LE, SWnet and LWnet) are reported in figures 

24 and 26 shows a comparable trend of the annual cycle in the period, consistently with the 

ablation seasons, values entity are more similar in 2010 and 2012 then in 2011. 

Higher values of net shortwave radiation (Fig. 24) are present in June, while lowest in July-

August daily mean values have a similar behavior in the whole period, coherent with  increase 

and decrease during the June peaks.  Net longwave radiation increase up to values close to 0 

W m
-2

 during monsoon season, confirming the higher presence of cloudy days.  Negative 

values, up to -85 W m
-2

 are constantly present in the whole period.  Generally LWnet up to -

100 W m-2 are due to the 0°C glacier surface temperature (Oerlemans, 2001).  During the 

transition from snow to ice, the lowering of the albedo (Fig. 25) occurs when the flux of 

SWin is large, determining a very steep increase in the net  solar radiation. 

On glacier surfaces, solar radiation contributes to the surface energy flux most when melting 

occurs. This makes surface albedo a particularly important parameter worthy of special 

attention. Albedo, the reflection coefficient, depends, in a complicated way, on crystal 

structure, surface morphology, dust and soot concentrations, moraine material, the presence 

of liquid water in veins and at the surface, solar elevation, cloudiness, etc. (Oerlemans, 2001; 

Citterio et al, 2007).   

The incoming SW radiation could reach high value (higher then 1000 W m
-2

), typical of a 

glacier surface on days with few clouds, when the multiple reflections between clouds, snow-

covered valley slopes and the glacier surface lead to a peak value comparable to the 

extraterrestrial irradiance. 
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Figure 24: Daily mean SWnet and LWnet at ChangriNup AWS in the period 2010-2012. 

 

Figure 25: Daily mean albedo at ChangriNup AWS in the period 2010-2012. 

During the ablation season, the latent heat flux (LE) (Fig. 26) is generally positive or close to 

zero, while in the rest of the year, the negative values correspond to low humidity combined 

with a minimal temperature difference between the glacier surface and the air (Oerlemans, 

2000).  Consequently sensible heat flux is higher in correspondence of negative LE values 

and lower or close to zero during the ablation season. 
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Figure26: Daily mean SH and LE at Changri Nup AWS in the period 2010-2012. 
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Net energy values (Rs) in figure 27 characterize non-monsoon/winter season, when snow/ice 

melting is absent, showing high values during the ablation monsoon season. 

 

Figure 27: Daily mean RS at ChangriNup AWS in the period 2010-2012. 

Cumulative daily melt in the three years period is reported in figure 28.  In accordance with 

previous data, glacier melting has been more high in 2010/2012 then in 2011. 

 

Figure 28: Cumulative daily melt at Changri Nup AWS in the period 2010-2012.  Ice ablation is highlighted in 

grey. 
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3.3 Ablation measurements  

To validate the melting computation, these results have been compared to field measurements 

in two periods: February 24-May 28, 2010 and May 5-November 25, 2012, periods in which 

ablation stakes was installed on glacier surface.  

In 2010, three stakes have been positioned nearby the AWS. Location and field data are 

reported in the tables below (8 and 9). 

Table 8: Location of the ablation stakes positioned nearby Changri Nup AWS in 2010 and related field 

measurement. 
DATE LOCAL STAKE No Stake height from SNOW LEVEL 

(cm) 

LOCATION 

TIME ALTITUDE (m asl) LAT N LONG E 

24/02/2010 11:00 Stake 1 88 5.643 27 58.908 86 45.896 

11:00 Stake 2 80 5.673 27 58.913 86 45.886 

11:00 Stake 3 100 5.660 27 58.922 86 45.893 

 

16/04/2010 11:23 Stake 1 146 5.646 27°58'922'' 86° 45'862'' 

11:24 Stake 2 157 5.646 27° 58'928'' 86° 45'848'' 

11:25 Stake 3 128 5.644 27° 58'937'' 86° 45'856'' 

 

10/05/2010 12.15 Stake 1 184 5.649 27°58'54.2" 86°45'54.0" 

12.25 Stake 2 190 5.649 27°58'54.4" 86°45'53.0" 

12.28 Stake 3 170 5.648 27°58'55.8" 86°45'53.5" 

 

28/05/2010 12:30 Stake 1 200 5.648 27°58'52.2'' 86° 45'46.2'' 

12:35 Stake 2 200 5.648 27° 58'52.6'' 86° 45'54.8'' 

12:45 Stake 3 195 5.647 27° 58'53.7'' 86° 45'55.6'' 

 
No measurement from June 2010 due to the melting of glacier surface. Ablation stake network has been repositioned on May 2012 

Table 9: Snow ablation data from stake measurements. The time frame covered by our survey is 93 days long. data 

are reported as cm of snow. 
Snow ablation 

(cm) 
stake period lenght 

-58 Stake 1 from 24-02-2010 to 

16-04-2010 

51 

-77 Stake2 from 24-02-2010 to 

16-04-2010 

51 

-28 Stake3 from 24-02-2010 to 

16-04-2010 

51 

 

-38 Stake1 from 16-04-2010 to 

10-05-2010 

24 

-33 Stake2 from 16-04-2010 to 
10-05-2010 

24 

-42 Stake3 from 16-04-2010 to 

10-05-2010 

24 

 

-16 Stake1 from  10-05-2010 to 

28/05/2010 

18 

-10 Stake2 from  10-05-2010 to 
28/05/2010 

18 

-25 Stake3 from  10-05-2010 to 
28/05/2010 

18 
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Snow ablation 

(cm) 
stake period lenght 

-112 Stake1 from  24-02-2010 to 
28/05/2010 

93 

-120 Stake2 from  24-02-2010 to 
28/05/2010 

93 

-95 Stake3 from  24-02-2010 to 

28/05/2010 

93 

In 2012, three stakes have been positioned nearby the AWS. Location and field data are 

reported in  figure 29 and in the tables below (10 and 11). 

 

Figure 29.Ablation Stakes at Changri Nup Glacier in 2012 

 

Table 10: Location of the ablation stakes positioned at Changri Nup glacier in 2012 and related field 

measurement. 

DATE STAKE No Stake 

length 

(cm( 

Stake height 

from SNOW 

LEVEL (cm) 

Snowdepth 

(cm) 

LOCATION 

ALTITUDE (m asl) LAT N LONG E 

03/05/2012 Stake 1 550 82 148 5.602 27°58'54.35" 86°45'53.82‖ 

Stake 2 550 92 157 5.602 27°58'54.35 86°45'53.82" 

Stake 3 605 185 80 5.497 27°58'51.93" 86°46'17.42" 

Stake 4 590 75 60 5.486 27°58'51.75" 86°46'25.32" 

Stake 5 549 80 75 5.493 27°58'48.48" 86°46'24.97" 

Stake 6 580 108 45 5.462 27°58'56.13" 86°46'23.77" 

Stake 7 580 124 35 5.442 27°58'56.27" 86°46'33.44" 

 

23/11/2012 Stake 1 550 Stake not found - 5.602 27°58'54.35" 86°45'53.82‖ 

Stake 2 550 Stake not found - 5.602 27°58'54.35 86°45'53.82" 

Stake 3 605 30 50 5.497 27°58'51.93" 86°46'17.42" 

Stake 4 590 Stake not found - 5.486 27°58'51.75" 86°46'25.32" 

Stake 5 549 114 30 5.493 27°58'48.48" 86°46'24.97" 

Stake 6 580 39 25 5.462 27°58'56.13" 86°46'23.77" 
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Stake 7 580 16 0 5.442 27°58'56.27" 86°46'33.44" 

 
Table 11: Snow ablation data from stake measurements. The time frame covered by our survey is 113 days long. 

data are reported as cm of snow. 

Ablation Stake Period 
Lenght of 

stakepiece 

Ice Depth 

5 May 

Ice Depth 

23 Nov 

-17 Stake3 

From May 5 to 
November 23, 2012 

202 265 282 

-169 Stake5 180 155 324 

-298 Stake6 193 153 451 

-364 Stake7 193 159 523 

The comparison between field measurements and calculated melt values present a good trend.  

The difference between measured ablation and calculated ablation is 80 m w.e., calculated 

melting is rapidly decreasing from middle April and from the ablation stakes, this situation is 

not so evident (Fig. 30). 

It has to be considered that the ablation stakes have been positioned in winter season and the 

thickness of snow and the cold temperature didn‘t allow a good positioning of the stakes until 

the glacier surface. The rapid ablation at glacier surface has been also highlight by the fact 

that after May 28, no more field measurement were possible due to the falling down of the 

stakes. 

From 24 Feb to 28 May 2010
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Figure 30: Comparison between field measurements during February-March 2010 and calculated melt values in 

the same period. 
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The comparison between field measurements and calculated melt values presents a good 

trend.  The field measurements have been taken only one time after the positioning of the 

stakes (November), while calculated melting has been done hourly until October 2012.  This 

fact didn‘t allow to compare the data at the same day, but figure 31, put in evidence a good 

trend between measured and calculated melt.  

Moreover field measurement are available only from the stakes positioned more far from the 

station, at lower altitude.  This aspect needs also to be considered in comparing the data, 

because good results are also related to the fact that ablation stakes and AWS measurement 

are very close. 

From 3 May to 25 Nov 2012
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Figure 31:Comparison between field measurements during May-November 2012 and calculated melt values in the 

same period. 
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Filtering surface temperature (TS), net energy (RS), and latent heat flux (LE) data, the hours 

when melting (i.e.: TS>0 °C and RS>0 Wm
-2

) and condensation (TS>0°C and LE>0 W m
-2

) 

occurr have been identified . Considering these criteria, SWnet, LWnet, SH, LE, and RS have 

been averaged (Fig. 32). 

 
Figure 32: Components of the surface energy flux (from hourly mean values), averaged over time, when melting 

(red) and condensation (purple) conditions occurred. The units of measure for the x-axis are W m-2 

By analyzing mean values, net shortwave proves to be the parameter with the highest energy 

flux during both melting and condensation (with values of 258 and 87 W m
-2

 respectively), Rs 

has the similar behavior with mean values of 220 W m-2 during melting and 44 W m
-2

 during 

condensation; LE is higher during condensation (5 W m
-2

) than during melting (-2 W m
-2

).  

SH is a similar rend with a maximun during condensation (5 W m
-2

) and a minimum during 

melting (0.5 W m
-2

). 
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3.4 BC concentration and effect on the albedo reduction 

In order to investigate any possible influence of BC in glacier albedo reduction and  as a 

consequence in accelerating melting processes, daily mean concentrations of albedo at 

Changri Nup Glacier have been compared with daily mean value of atmospheric Black 

Carbon (BC) concentrations continuously monitored at NCO-P station (Fig. 33). 

 
Figure 33: Daily mean albedo values measured at Changri Nup AWS and daily mean atmospheric BC 

concentration measured at NCO-P station in the period 2010-2012. 

With the aim of have a more clear vision of the behavior of these two parameters and their 

relationship, data have been correlated calculating their respective weekly moving average 

(Fig. 34).  This permits to better highlight the correlation between the high values of BC 

concentration measured during premonsoon season (April 2010) in the Changri Nup 

Humalayan area (NCO-P)  and the consequent  dramatic reduction of albedo values measured 

on the Glacier and starting from late pre-monsoon season up to monsoon season. 

 
Figure 34: Moving average (7 Per.) of daily mean albedo values measured at ChangriNup AWS and daily mean 

atmospheric BC concentration measured at NCO-P station in the period 2010-2012. 
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To understand the influence of BC deposition in snow in the reduction of albedo, it has been 

needed to calculate the amount of BC deposition starting from BC atmospheric concentration. 

Therefore,  total BC mass deposition flux per 30 minutes(1800 seconds) was calculated using 

assumption by Yasunari et al., 2010: 

BC deposition= 

[atmospheric BC] × (the minimal deposition velocity of1.0×10−4 ms−1) × (interval 

time=1800 s) 

 

In this way, summating the BC flux for March–June 2010, it has been obtained the total 

deposition amount of BC of 394μg m
−3

. 

Usually, on a glacier,  the 2-cm top layer (5-cm top layer in Aoki et al., 2000)of snow surface 

is more contaminated than the deeper part of the snow layer because the snow impurities are 

derived from dry depositions of atmospheric aerosols (Aoki et al., 2000, 2007; Tanikawa et 

al., 2009). In addition, Tanikawa et al. (2009) showed that the mass concentrations of snow 

impurities deposited in the surface layer of 2 cm were about 30–50 ppmw (part per million by 

weight) whereas that the concentrations in 2–10 cm were about 2–6 ppmw.  This difference in 

characteristics between surface layer and lower snow layer were consistent for elemental 

carbon, organic carbon, and dust in their study. It indicates that the impurity concentration at 

the top 2-cm is much higher than that below 2 cm and the top snow layer is considered the 

key to assessment of albedo reductions (Yasunari et al., 2010). 

For this reason, assuming that total BC of 394 μg m
−3

 is deposited on 2 cm of thickness of 

pure snow, without pre-existing od other contamination (e.g. dust), BC concentration in snow 

surface at Changri Nup, considering a measured snow density of 400 kgm−3, has been 

calculated as: 

[BC concentration in snow] = BC dep / snow depth / snow density 

Calculated amount of BC concentration in snow has been: 49 µg kg
-1

, consistent with the 

concentration range of BCC in snow of 26.0–68.2 μg kg
−1

 due to snow density variations 

between 195–512 kg m
−3

 as reported in Yasunari et al., 2010 (Tab. 12). 

Table 12: Comparison between estimated (a) and observed (b, c, d, e, f) BCCs in surface snow and ice core for 

locations reported in figure 35. 

 
a yasunarii work. 

b The EC concentration data in snow sample by Xu et al. (2006). 

c The BCC data in snow sample by Ming et al. (2009). 

d The BCC data during 1995-2002 in an ice core by Ming et al. (2008). The BCC exceeded 50µg kg−1 in the 

summer of 2001. 

e Estimated BCC in 2-cm surface snow with density variations of 195–512 kgm−3 at Yala Glacier 
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The percentage of the albedo reduction corresponded to the peak of atmospheric BC 

concentration deposited and measured at Changr iNup has been determined as: 

(Min Albedo after [atmosph. Max BC] – natural snow albedo) / natural snow albedo 

that permitted to obtain the value  4.29. 

In order the put in relationship the estimated BCC in snow with the measured snow albedo 

reduction at Changri Nup, the  obtained results have been compared with the correlation 

equation calculated by Ming at al., 2009 from available field and modeling data of BC 

concentration and % of albedo reduction of different worldwide glaciers (Fig. 35). As 

reported in figure 35, % of albedo reduction measured at Changri Nup related to BCC in 

snow estimated from atmospheric [BC] measured at NCO-P station are well correlated. 

 
Figure 35: Albedo reduction vs BC concentration in snow (Ming tl al., 2009 modified).  Orange indicator is 

related to ChangriNup glacier data. 

In order to better verify the % of albedo reduction measured at Changri Nup with theoretical 

estimation of albedo reduction by Ming et al., 2009, the correlation equation: 

y = 0.0757x + 0.575 

has been applied considering as x value the BCC in snow estimated at Changri Nup glacier. 

Deriving % of albedo reduction has been 4.23, very close to the value measured at Changri 

Nup as reported in the table below: 

Table 13: Estimated BCC in snow and % of albedo reduction deriving from Ming equation and measured at 

Changri Nup AWS. 

BC deposition in snow (µg kg
-

1
) 

% Albedo reduction (from 

ChangriNup measurement) 

% Albedo reduction 

(Calculated from Ming 

equation) 

49 4.29 4.30 
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3.4 BC concentrations in snow 

From 2010, at Changri Nup glacier started.  Samples were collected during the field check by 

Nepalese local staff, monthly when possible. 

Table 14 shows the number of samples, the location and the scarce availability of samples for 

the analysis due to problems occurred during the transportation from Nepal to France at 

LGGE, where BC concentration in snow have been determined with SP2 analysis (Fig. 36).  

Table 14: Snow samples collected at Changri Nup in 2010 

 

Sampling date Comments Bottle type 

19/03/2010  stake 2 1 shott 500 ml  empty 

19/03/2010 stake 3 2 shotts 500 ml with 1 empty 

10/05/2010 12.00 h 3 cm of snow 3 days before 6*tubes with 4 empty 

28/05/2010 

Fresh snow of today, snow level total 

from three days before, 10 cm 5* tubes 

21/07/2010 

fresh snow from today 10 cm snow 

level to ice 10 cm 4*tubes 

08/08/2010 30 cm 4*tubes 

 

 

Figure 36: Analysis of BC concentration in snow through SP2. 
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The preliminary results of the characterization of snow samples collected at Changri Nup 

glacier (5,700 m asl) show higher concentration of BC due to the effect of aerosol dry 

deposition that allow to classify the snow as aged snow.  

 
Figure 37  Preliminary results of snow samples analysis in Nepali sites (courtesy of LGGE, Grenoble) 

Chemical analysis at Changri Nup glacier /Fug. 37), compared to the analysis carried out at 

Changir Nup show highest values compared to the samples collected at NCO-P because 

Changri Nup samples are related to aged snow, while at NCO-P, samples are representatives 

of fresh snow. For this reason SP2 results at NCO-P, comparable to the estimation of BC 

deposition in fresh snow calculated from atmospheric BC concentrations, are consistent and 

confirmed the estimation done by Yasunari et al,. 2010 for the premonsoon season.   

Annual cycle is very similar to atmospheric BC in fresh and old snow, while BC in the older 

snow (Changri) tends to be higher then in fresh snow (Pyramid) during the same season,  

Field results confirmed that a strong dry deposition is present during premonsoon season. 
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Chapter 4 

 

Discussion 

Table 15 summarizes the features of the ChagriNup and the Forni glaciers.  Glaciers‘ length is 

the same and the areas, even if similar for dimensions, highlight that Forni Glacier is a debris 

free glacier, while the ChangriNup shows a heavy debris coverage thus making it an actual 

debris covered glacier. In fact, only the 35% of the glacier surface is debris free. On this 

smaller sector we focused our attention and the field experiments were performed on this 

white area. Latitude and elevation ranges influence glacier micrometeorology and surface 

energy components.  Contribution of SW radiation is higher in both sites, but in Himalaya, as 

expected it is higher than in the Alps.  

Table 15: Comparison between CangriNup and Forni Glaciers: site characteristics, meteorological and energy 

balance data. 

 ChangriNupGlacier Forni Glacier 

Coordinates 28° 00‘ N; 86° 48‘ E 46° 23' 56" N; 10° 35‘ 25" E 

Elevation range (m a.s.l.) 5.000-5.700 2.600 – 3.670 

Length (km) 3 3 

Area (km
2
) 7 

(65% debriscovered) 

12 

Only medial moraines are 

present featuring continuous 

and uninterrupted debris 

coverage 

 

AWS elevation (m a.s.l.) 5.700 2.631 

 

net SW (W m
-2

) 84 68 

net LW (W m
-2

) -39 -38 

SH (W m
-2

) 7 18 

LE (W m
-2

) -2 -5 

RS (W m
-2

) 40 36 

 

SW in (W m
-2

) 220 151 

SW out (W m
-2

) 136 91 

SW in extra (W m
-2

) 465 267 

Air temperature °C -4,6 -1,3 

Snow albedo 0,75 0,85 

Ice albedo 0,26 0,35 

Net longwave radiation is similar, while latent and sensible heat fluxes are higher at the Forni 

glacier surface. As expected extraterrestrial shortwave radiation is higher at Changri Nup, and 

the difference between SWextra and SWin shows the impact of clouds and aerosols in 

absorbing part of the solar radiation reaching the Earth surface. 

Average temperature is lower in the Himalayan site, while average snow/ice albedo are 

similar.
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In both glaciers, the melting occurs in summer, the only season during which the combined 

effect of positive temperature (T>0 °C) and solar radiation allows melting processes.  In 

Himalaya this period correspond to the monsoon season, during which not only T and SW 

affect glacier surface, but also liquid precipitation.  In fact, in Himalaya, the upper limit  

where snow precipitation occur is located at around 6,000 m asl (RIF) and during the 

monsoon season, liquid precipitation events accelerate snow melting.  

Figure 38 shows daily total liquid precipitation of Kala Patthar AWS, installed at 5,600 m asl 

close to Everest Base Camp.  In monsoon season, total liquid precipitation reach amount of 

15-25 mm even at above 5,000 m asl. 
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Figure 38:Lliquid precipitation at Kala Patther AWS in 2010-2012. 

At the Forni Glacier liquid precipitation occur during summer season and they reach 30-40 

cm thus surely affecting glacier melt rates. Rainfall are measured through a rain gauge located 

on the Forni AWS.  

The components of the radiative balance at the melting surface of Forni and Changri glaciers 

were evaluated from AWSs data for a day with clear sky conditions. Downward longwave 

radiation (LW in), upward longwave (LW out), the net solar (SW in - SW out), net longwave 

(LW in - LW out) and net radiation (Rs) were calculated according to Hartmann (1994). 
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The diagram in figure 39 highlights in both sites the strong influence of the diurnal variation 

in insulation the surface energy balance. The incoming SW radiation reached high levels 

(close to 1000 Wm
-2

 in the Alpine site but also superior in the Himalayan glacier), which is 

typical of a glacier surface on days with few clouds, when the multiple reflections between 

clouds, snow-covered valley slopes and the glacier surface lead to a peak value comparable to 

the extraterrestrial irradiance. 

 

Figure 39.Components of the radiative balance at the melting surface of Forni (Citterio et al., 2007) and Changri 

Nup glaciers as measured on a day with clear sky conditions from the supraglacial AWSs. SW in= downward 

shortwave; SW out = upward shortwave; LW in = downward longwave, LW out = upward longwave; SW in - SW 

out = net solar; Lw in – LW out = net longwave; Rs = net radiation 

Differences in precipitation intensity and occurrence and in radiation budget affect glacier 

melt which results different at the two studied glaciers. Table 16 shows a comparison between 

Changri Nup and Forni glaciers ice ablation seasons in the time window 2010-2012.  The 

analysis is based on glacier albedo which permits to discriminate between exposed ice surface 

(lower albedo values) and snow covered surface (higher albedo values). Then it was possible 

not only to evaluate the temporal length of ice ablation season but also the occurrence of 

summer snow falls which could impact on magnitude and rates of glacier melting. Length of 

the ablation season is longer at the Alpine site than in the Himalaya, however number of 

snowfalls is similar (Tab.16).   

AWS FORNI AWS CHANGRI NUP 
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Table 16: Comparison between CangriNup (a) and Forni (b) Glaciers: sites snow and ice days and snowfalls 

during the ice ablation seasons of 2010-2012 

 (a) CHANGRI 

NUP snow ice  

    

year date albedo date albedo snowdays tot days tot snowdays tot icedays numsnowfalls 

iceablationperiod 

of 2010 

  17/05/10 0,37  

64 24 40 5 

20/05/10 0,69   3 

  23/05/10 0,36  

24/05/10 0,85   1 

  01/06/10 0,38  

17/06/10 0,76   8 

  19/06/13 0,33  

26/06/13 0,68   2 

  29/06/10 0,32  

04/07/10 0,56   10 

  14/07/10 0,31  

  19/7/10 0,68               

iceablationperiod 

of 2011 

  04/06/11 0,37  

19 1 18 1 

07/06/13 0,48   1 

  08/06/11 0,39  

  23/6/11 0,90               

iceablationperiod 

of 2012 

  24/05/12 0,39  

38 3 35 1 
18/06/12 0,74   25 

  21/06/12 0,34  

  1/7/12 0,61               
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(b) FORNI snow ice      

year date albedo date albedo snowdays tot days tot snowdays tot icedays numsnowfalls 

iceablationperiod 

of 2010 

  29/6/10 0,39  

88 16,5 71,5 6 

5/8/10 0,95   4 

  9/8/10 0,39  

16/8/10 0,85   2,5 

  18/8/10 0,30  

30/8/10 0,70   2,5 

  1/9/10 0,38  

10/9/10 0,80   0,5 

  10/9/10 0,37  

13/9/10 0,90   3 

  16/9/10 0,30  

18/9/10 0,60   4 

  22/9/10 0,36  

  25/9/10 0,80               

iceablationperiod 

of 2011 

  14/6/11 0,37  

115 18 97 3 

20/7/11 0,88   3 

  23/7/11 0,38  

24/7/11 6.00 0,90   2 

  26/7/11 0,38  

  11/8/11 0,35  

NO DATA  

  28/8/11 0,27  

18/9/11 0,90   13 

  1/10/11 0,38  

  7/10/11 0,9               

iceablationperiod 

of 2012 

  16/6/12 0,30  

119 8 111 2 

31/8/12 0,88   4 

  4/9/12 0,31  

12/9/12 0,90   4 

  16/9/12 0,30  

  13/10/12 0,8               
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Comparing the components of surface energy fluxes at Changi Nup (Fig. 40) and at Forni 

Glacier (Fig. 41), it is evident that in both sites RS and net SW play a fundamental role in 

determining glacier melting and condensation, and the contribution of net LW is similar in 

both glaciers for melting and condensation conditions. Sensible and latent heat fluxes play a 

minor role, with minor contribution at the Changri Nup then at the  Forni glacier. 

 
Figure 40: Components of the surface energy flux (from hourly mean values), averaged over time, when melting 

(red) and condensation (purple) conditions occurred. The units of measure for the x-axis are W m-2 

 

 
Figure 41: Components of the surface energy flux (from hourly mean values), averaged over time, when melting 

(i.e. about 31% of the time) (light gray) and condensation (i.e. about 24% of the time) W m-2 (Senese at al., 2012) 

Moreover melting values obtained from the AWS data were also applied to evaluate the 

whole meltwater production at the Changri Nup debris free glacier. This evaluation was 

performed also with the aim to obtain data to be compared with the glacier runoff amount 

measured by an automatic hydrometer we have just installed at the debris free snout of the 

Changri Nup Glacier. From the next summer season we will have runoff data to describe 

glacier meltwater production then distribute ablation data will be fundamental to evaluate 

reliability and accuracy of hydrological investigations.   
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With this aim we downloaded the NASA DEM RSTM (Radar Shuttle Topography Mission) 

surveyed in 2001 and available for free at the NASA site. The DEM has a low spatial 

resolution (90 x 90 m) but it covers almost the whole Planet thus permitting to apply models 

for analysing environmental features variability. Among the other features, glacier melting 

can be distributed and analysed through this DEM. We downloaded DEM data describing 

Changri Nup area. Moreover though analysing recent satellite imagines (SPOT and Landsat) 

(Fig. 41) we also delimited the Changri Nup Glacier boundary glacier debris free area 

resulted about 0,99 km
2
 wide (Fig. 42). By coupling DEM and glacier boundary data we 

calculated the glacier surface area distribution which is the fundamental input data to 

distribute glacier melt. 

 
Figure 41:: Changri Nup glacier area estimated by analyzing SPOT Imagines. 

 
 

 
Figure 42: The surface area distribution of the ChangriNup glacier evaluated by coupling glacier boundary from 

SPOT with glacier DEM from SRTM NASA. 
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We distributed the glacier melt following a simple approach. We started from melt amount 

calculated in 2010, 2011 and 2012 from AWS data measured at 5700 m asl. 

We applied a vertical ablation rate of 0,007 m w.e./m of elevation (see also Oerlemans, 2001). 

It means that ablation increases of 0,007m w.e. per an elevation decrease of 1 m. Then glacier 

zones located upper the AWS result with an ablation minor than the one we calculated at the 

AWS and glacier areas located lower the AWS have an ablation stronger. The glacier debris 

free area features an elevation range between 5358 m asl and 5791 m asl. 

We divided the glacier area into 293 glacier belts and by a GIS software we evaluated their 

surface coverage. By applying the vertical melt rate we evaluated for each elevation belt the 

glacier melt  and considering elevation belt area we computed the derived volume of 

meltwater.  The total volume variation resulted to be -2609529,892 m
3
w.e. in 2010 

corresponding to -2,62 m of mean thickness variation.  In 2011 the volume variation resulted 

to be-2095997,944 m
3
w.e. corresponding to -2,02 mw.e. of mean thickness variation and in 

2012 the volume change resulted -2728190,672 m
3
 w.e. corresponding to -2,74 mw.e. of 

thickness variation.   

Moreover through this simple modelling approach we also evaluated ELA (Equilibrium Line 

Altitude) of the Changri Nup Glacier. When melt amounts evaluated by applying the vertical 

gradient results equal to zero it means that ELA has been reached. It has been estimated at 

6.000 masl in 2010 and 2012 as highlighted from the previous results showing a similarity in 

there two years, while in 2011 ELA was estimated at 5.850 m asl. 

In summer 2012 (July-October) an atmospheric measurement campaign has been carried out 

at the Guasti Hut to measure atmospheric composition.  In this period atmospheric BC 

concentrations have been measured continuously.  Daily trend of BC concentrations highlight 

(Fig. 43) conditions sufficiently representative of the free troposphere background conditions.  

This consideration is due to the fact that daily average BC concentrations represent typical 

continental background conditions, non predominantly influenced by photochemical transport 

processes normally occurring at daily scale. 

Applying the same methodology used to analyze Changri Nup data, daily atmospheric BC 

concentrations have been related to albedo values (Fig. 43).  
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Figure 43: Daily mean albedo values measured at Forni Glacier AWS and daily mean atmospheric BC 

concentration measured at Guasti Hut in the 2012 summer campaign. 
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Figure: 44: Moving average (7 Per.) of daily mean albedo values measured at Forni Glacier AWS and daily mean 

atmospheric BC concentration measured at Guasti Hut in the 2012 summer campaign. 

Using the moving average (7 per.) ( Fig. 44) it is highlighted that, in this short summer 

campaign, it seems that there is a correspondence between trend of BC concentration and 

variation of albedo.  In order to quantify the amount of BC deposition in snow, the method of 

Yasunari et al., 2012 has been applied for the period 13/07-22/09 2012.  BC deposition in 

snow, considering a snow density of 200 kg m
−3

and considering as depth of snow layer 0.02  

m has been estimated as: 74 μg m
−3

., corresponding to 18.5 μg kg
−1

 in snow and to an albedo 

reduction due to BC impact of 1.97%, using the correlation of Ming at al, 2009). 

This estimated results is different from the average albedo reduction determined as difference 

between the natural snow albedo at Forni glacier and the average albedo in the period of BC 

measurement. 

This result obtained for Forni Glacier is different from the results obtained at ChangiNup, 

where the percentage of albedo reduction correspondent to the BC deposition in snow 

calculated from the atmospheric observation at NCO-P station,  and the albedo reduction 

effectively measured at the ChangriNup AWS, are very well correlated. 

Both the results obtained in this work have to be consider as a preliminary analysis to be 

better verified through the analysis of BC concentration in snow measured from samples 

collected on the field. 

However. Some considerations could be done: reduction of albedo estimated consider that the 

only factor determining this phenomenon is the presence of BC in snow, for this reasons, the 

difference obtained in the two sites underline that at Changri Nup, this assumption seems to 

be consistent with the field measurement, thus, the albedo reduction measured after the peak 

of BC concentrations could be effectively mostly determined by this factor.  On the contrary, 

at Forni Glacier the situation seems to be different, and a possible cause could be that in this 

site the effect of BC deposition has a lower impact compare to other factors in affecting the 

reduction of albedo at glacier surface, particular because in the summer campaign BC 

concentrations was typical of background free troposphere conditions, while at Changri Nup 

and in Yasunari et al., 2010 considered BC concentration in the atmosphere were related to 
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the premonsoon season, period on which aereosol concentration are higher and comparable to 

the concentrations of a polluted site (ref). 

In order to verify this hypothesis, more data on atmospheric BC and on BC in snow need to 

be collected and discussed. 

BC concentrations and impact on melting processes are usually analyzed in surface snow or 

in the ice core, but, the impact of their deposition on the ice surface is another important issue 

to be studied.   

In both sites samples for the chemical-physics analysis have been collected in order to 

identify the seasonal evolution of the debris fraction covering the glacial surface, not 

classified as fine debris.  To collect the samples, surface debris has been removed in an area 

of 1 m
2
 sampled snow have been transported to the laboratory analysis maintaining the 

temperature below zero, in order to preserve the material., without altering the organic 

substances,  Analysis has been carried out by Roberto Azzoni and Andrea Zerboni from 

UNIMI. 

In laboratory organic substances and organic carbon have been quantified.  More repetitive 

samples have been observed through XRD ant at the electron microscope (SEM) in order to 

better understand their morphological characteristics (Fig. 45). 

Each sediment sub-sample was submitted to a specific analysis and the analytical procedures 

are summarized as follows: (1) Grain-size analyses (Gale and Hoare, 1991) were performed 

after removing organics by hydrogen peroxide (130 vol) treatment; sediments were wet 

sieved (diameter from 1000 to 63 mm), then the finer fraction (63 mm) was determined by 

aerometer on the basis of Stokes‘s law. (2) Humified organic carbon was identified by means 

of the Walkley and Black (1934) method, using chromic acid to measure the oxidizable 

organic carbon (titration). (3) Total organic carbon (TOC) was estimated by loss on ignition 

(LOI; Heiri et al., 2001); samples were air-dried and organic matter was oxidized at 500–

550°C to carbon dioxide and ash, then the weight lost during the reaction was measured by 

weighing the samples before and after heating. Additionally, we performed several XRD (X-

Ray Diffraction Analysis) on randomly oriented powder from the bulk debris samples to 

investigate the mineralogical properties of the fine debris. 

Moreover  samples have been observed through at the electron microscope (SEM) in order to 

better understand their morphological characteristics (Fig. 15). 
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Figure 45: SEM analysis at ChangriNup (left image) and at Forni Glacier (right image) 

Debris deposited in both sites is made up of similar granolometry fractions. Grain has high 

angular, underlining a minimal surface transport.  EDS analysis show that mineral grain are 

compatible with the geological substrate, and in these preliminary work, no alloctonous 

contribution has been found (e.g. long range transport phenomena) (Fig. 45). 
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Figure 46  reveals an initial alteration stage of the mineral fraction, while poor and difficultly 

evident is the new formation of minerals  due to the effect of the pedogenesis.  An initial 

interaction between mineral and organic is present. 

.  
Figure 46: Mineral analysis at Changri Nup 

Same analyses have been carried out at Forni Glacier for a longer period (Fig. 48).  From the 

beginning and the end of the season, grain size fraction of the debris remain the same, but at 

SEM it is observed that at the end of the season mineral grain are organized in aggregate 

microscopic aggregates, probably related to the presence of organic matter that constitutes 

complexes between mineral and organic molecules.  The origin from local rock substrate is 

also confirmed (Fig. 48). 

 
Figure 48: SEM analysis at Forni Glacier  
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Organic traces are present at a minimum level at the beginning of the season, while major 

concentration of organic substances at the end of the season if demonstrated by the bulk 

chemical analysis and a big increase is evident at SEM too. 

There is a good interaction between organic and mineral fraction with clay mineral (probably 

newly formed) that cover the organic filaments (Fig. 49).  

 

 

Figure 49: SEM analysis at Forni Glacier and presence of organic traces 
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Chapter 5 

 

Conclusion 

Himalyan and Alpine debris free glaciers are both subjected to the impact of climate 

variations which in the last decades are driving stronger melting processes thus impacting 

future water availability.  In remote sites, and particularly in the Himalaya, the quantification 

of this melting amount is difficult due to the lack of permanent monitoring sites and long term 

reliable data.   

The Himalayan situation allows to identify a clear regression of the  larger glaciers, whose 

terminus tongues reach now the lowest levels (about 4.000 m asl), with a thinning rate 

ranging from 8 to 10 m below 4.400 m asl,  Such loss varies 4 to 7 m between 4.400 and 5000 

m asl and become higher up to 5.000 m asl (Bhertier at al., in press). 

In the Alps too, regression processes are predominant. The Lombardy glaciers had lost c. 20% 

of their surface coverage in the time window 1992-2003 (Diolaiuti et al., 2012a) and the 

Aosta valley glaciers had reduced their surface area of about 1/4th over the last 30 years (time 

window 1975-2005, further details in Diolaiuti et al., 2012b). Moreover the glacier thinning 

rate is strong and stronger and during the last 6 years the Forni glacier tongue decreased its 

thickness of about 4-5 m per year at an elevation of 2700 m asl (Senese et al., 2012a; 2012b). 

As reported in the figure below, mountain atmospheric structure and transport in mountain 

regions, in clear sky conditions and solar irradiance typical of a summer day, could be 

summarize as follows  

 

Figure 50: Atmospheric structure and transport process in mountain regions (Henne et al., 2004). 
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It has been recently put in evidence that the factors driving ablation, are not only related to the 

radiative forcing at glacier surface and climate conditions, but also to the effect of deposition 

of deposition of absorbing aerosol and dust at the glacier surface, varying the albedo and thus 

accelerating melting.  The quantification of this effect is now been estimating and the study is 

still in progress. 

These main aspects: surface and energy balance at glacier surface, and effect of BC 

deposition in albedo reduction have been experimentally evaluated in two glacial sites: the 

Changri Nup (5.500 masl) in the Nepal Himalaya and the Forni Glacier (2.600 m asl) in the 

Italian Alps. 

In both sites the ablation season occur in summer season, during which the condition of 

temperature and solar radiation reaching glacial surface are favourable to drive melting 

processes.  The two site, characterized by different latitude, elevation and climate regime, has 

similarity in indentifying the components mainly contributing to the melting, which are the 

positive temperature and the shortwave radiation, while in both cases sensible and heat fluxes 

have a minor effect.  The ablation season at Forni Glacier is longer, while ay the Changri Nup 

the rainy season contributes to increase surface melting. 

Close to both the supraglacial AWSs of Changri Nup and Forni glaciers, atmospheric BC 

concentrations have been monitored, The analysis of BC deposition in snow calculated from 

atmospheric data and the % of the albedo reduction has been more consistent with the 

estimation available in literature for Changri Nup site, where the highest amount of BC in the 

atmosphere during premonsoon season allows a consistent correlation with the % of albedo 

reduction measured and calculated. On the contrary at Forni Glacier, this correlation has been 

not so evident probably due to the lowest concentration of BC concentration in the period of 

the summer campaign and the fact that the deposition of other components such as fine 

debris, vegetation spores, yeasts and bacteria etc. could have a major effect in this case. 

The importance of analyzing BC in snow is fundamental to understand the impact on glacier, 

completing the study related to their effect in the atmosphere and on climate.  BC radiative 

forcing in the atmosphere is very high, moreover they have a cooling effect on the Earth 

surface, reducing the amount of the solar radiation reaching the Earth.  Since BC are 

considered a short-lived climate pollutant (SLCP), their mitigation could have an immediate 

effect on climate and environment. 

Field measurements on the glaciers are fundamental to con tribute to the understanding of 

water availability future scenarios,  thus, the estimation of water loss needs to be validated by 

the positioning of hydrometric station in order to measure glacier water discharge, thus 

estimation at Changri Nup glacier will be compared to flow measurements. 

Future step will foresee a more detailed analysis of these results, thanks also to the 

availability of long term dataset, moreover, in order to improve the knowledge of the effect of 

dust and aerosol deposition on glacier, more samples will be collected and analyzed. 
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