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CHAPTER 1

Abstract

The thesis aims to study the applicability of techniques of Quantum Information theory

to complex systems, like molecules and biomolecules.

Recently, concepts of Quantum Information theory have been applied to the study of phe-
nomena involving molecules, for instance the interaction light-biomolecules. In particular,

the entanglement has been proposed to quantify the non-classicality of interactions.

The computation of molecular structures and interactions, on the other hand, has been
studied for decades mainly to understand reactions’ kinetic and energetic characteris-
tics. It is not straightforward to apply these methods to the computation of quantum

correlations.

We have therefore explored the computability of such effects using Quantum Information
techniques. We started with the study of the electronic correlations in the Helium atom,
that is the simplest non trivial case, in order to evaluate the computational problems and

to develop approximate methods suitable to more complex systems.

We start recalling the definition and basic properties of entanglement, as it is considered
in Quantum Information theory. We illustrate how it can be measured and the difficulties
one encounters when identical particles are involved, then we concentrate on the case of

Helium in particular.
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In order to study the entanglement in Helium, we treat separately the singlet and the
triplet configurations. The method we use consists in computing the reduced density

matrix and then the entropy.

The possible choices of coordinates, basis functions and computation strategies are dis-

cussed, together with their impact on the algorithms.

The reduced, single-electron von Neumann and linear entropy for several low-energy eigen-
states of Helium are computed by means of a simple configuration-interaction variational

method.
This approach has several advantages.

First of all, we do not need to evaluate multidimensional integrals: the reduced density

matrix is obtained by purely algebraic methods.

The reduced density matrix can then be easily diagonalized and therefore we can access

not only the linear entropy but also the von Neumann entropy.

We report the main results of our computation, starting with the energy values, that are
compared to high precision results from the literature to check our computations. Then
we discuss our results for entanglement of fundamental and first excited states of Helium,
with a special consideration for their sensitivity to the dimension of the spaces that are

used.

In order to apply our method to more complex situations, as the Hydrogen molecule, we
compare the above results, obtained using Slater Type Orbitals, with an approximation
using gaussian expansions. After having adapted the computation algorithms, we compute

the fundamental and first three excited levels of the Hydrogen molecule (S shell only).



CHAPTER 2

Introduction

2.1 General description of the present work

Quantum information and computation of atoms and molecules

Quantum information has been related from its very beginning to the problem of comput-
ing the structure of atoms and molecules. Feynman’s proposal to use a quantum system
for solving problems in quantum chemistry and many body physics (see e.g. (Feynman ,

1982)) is most frequently quoted as the beginning of the quantum information field.

On the other hand, entanglement is a key factor for quantum computers. We quote for

instance:

- quantum algorithms, such as the Shor’s factoring algorithm and the Grover’s search
- quantum teleportation

- some protocols used in quantum cryptography e.g. the E91 protocols

Moreover entanglement is necessary to build any 2 qubit gate, that in turn is mandatory
in any quantum computer implementation. A typical case is the C-NOT gate, that flips
the state of a qubit, depending on the state of a control qubit. It generates entangled
states whenever it is applied to a superposition of states. All these examples are well-

known and can be found in any text on quantum information, e.g. (Benenti, Casati et al.
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, 2007).

It is necessary, therefore, to obtain a measure of entanglement in specific physical set-
tings, to make sure that it is not a negligible effect, and that it can be used to process

information in sight of the above described applications.

More specifically, it is important to measure entanglement in natural atoms and molecules,

as they play a central role in several situations, as:

- classical computers where miniaturization is approaching the molecular dimensions. Here

the quantum effects could interfere with the normal behaviour of the systems

- computers having molecules as their active elements. Already in the eighties, (Carter
, 1987) proposed a (classical) molecular computer. It could be proposed a quantum

molecular computer too.

- in Biology some authors proposed models of phenomena like the photosynthesis where
the entanglement would be a critical factor to enhance the efficiency. It have also been
proposed to use similar mechanisms to build devices to convert the light in electrochemical

energy (Sarovar, Whaley , 2012).

- in Chemistry it has been proposed a method based on orbital entanglement to evaluate
the relative importance of several components of the correlation energy, and to accordingly

choose the best model for the case at hand (Boguslawski, Tecmer et al. , 2012).

The role of entanglement and quantum coherence has also been considered in laser-induced

fragmentation experiments, see e.g. (Akoury, Kreidi et al. , 2007) (Becker, Langer, 2009).

We will review the main methods that can be found in the literature to compute eletronic
structures and their entanglement in section 4. We here limit ourselves to some general

considerations:

- models used to compute entanglement for implementing quantum computers, both
with natural atoms, ions, molecules and artificial atoms, consider these systems in very

special conditions, e.g. at ultra low temperature, trapped by electrical fields or in optical
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lattices, etc. Moreover they focus only on the levels of interest for the experiments, or
on the entanglement that can be generated between two systems. On the other hand
we aim to compute entanglement in "natural” situations. See (Buluta, Ashab et al. |
2011), (Blatt, Wineland , 2008), (Bloch , 2008), (Saffman, Walker et al. , 2010), (Micheli,
Brennen et al. , 2006).

- models used in biology e. g. (Renger, May , 1998), (Engel, Calhoun et al. , 2007),
(Mohseni, Rebentrost et al. , 2008), (Pereverzev, Bittner et al. , 2009), (Adolphs, Miih
et al. , 2010), (Sarovar, Ishizaki et al. , 2010), (Scholak, Mintert et al. , 2010), (Scholak,
de Melo et al. , 2011), (Olbrich, Jansen et al. | 2011), (Scholak, Wellens et al. , 2011),
(Christensson, Kauffmann , 2012), (Walschaers, Mulet et al. |, 2012), (Zech, Mulet et
al. , 2012), (Alicki, Miklaszewski , 2012). Unfortunately, in the biology the systems are
so complex that authors are often forced to resort to models borrowed from the Quan-
tum Computers. This means that phenomenological parameters are introduced, because
an "ab initio” treatment is not feasible. The "active sites” are considered as two levels
systems, without describing the underlying chemical structure. In this way just phe-
nomenological descriptions can be obtained. Moreover, recently (Tiersch, Popescu et al.
, 2012) pointed out that the presence of entanglement in photosynthesis could be illu-
sory, and, even if present, its importance in the overall efficiency could be overestimated.
Among their arguments, we recall that the light in these phenomena is classical, and that
the models substitute the rich set of states of the involved molecules, with two states only.
A simple model where two interacting molecules are represented by harmonic oscillators
shows that no entanglement is present ((Tiersch, Popescu et al. , 2012)). Section 4.2 is
devoted to a more detailed discussion of the quoted papers. In this situation it is hoped

that more realistic models can be computed.

We now consider a more specific problem, i.e. the bipartite entanglement of two-particle

systems as the Helium atom.

- the classical Hartree-Fock method, still used in computational chemistry, consists in

approximating the state vector with a single Slater determinant

U(r1,12) = J5(61(r1) da(r2) — ¢1(r2) da(ry1))
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where the ¢ are single particle wave functions. It is a first approximation method; more-

over, using a single Slater determinant it is not suitable for entanglement computation.

The Interaction of Configuration method, that we use in the present work, can be
coinsidered an evolution of the Hartree-Fock method, considering a linear combination of

Slater determinants or permanents for each atomic shell:

Fnl,ll;n2,l2(r17 7"2)3/21m1 (Ql)YEQm2(Qz)

where the Y are spherical harmonics, and the F are Slater determinants or permanents.
In section 5.4 we will describe in depth our implementation of this method, the choice of
coordinates, the orthonormalization issues, etc. in order to obtain the best simplification

in the density matrix and reduced density matrix computations (section 5.3).

- other classical methods that were proposed for energy computation can be difficult
to extend to entanglement computations. In section 4.4.2 we describe for instance the
Pekeris’ method that uses the Hylleras coordinates u = €(ry + ris — r1), v = €(r; +
rig — 1), w = €(ry + 19 — r12) where € is a parameter, r; e ry are the distances of the
electrons from the nucleus, and 715 is the distance between the electrons. See (Barnett
, 2003), (Barnett, Capitani et al. , 2004), (Koutschan, Zeilberger , 2010), (Pekeris ,
1958), (Pekeris , 1959).  This method was used by (Biirgers, Wintgen et al. , 1995)
with a complex variational parameter to compute double excited states of Helium, see
also (Wintgen, Delande , 1993), (Gremaud, Delande , 1997), and to compute molecular
structures (e.g. (Hilico, Billy et al. , 2000)).

The state vectors are then expressed by a Laguerre polynomial expansions whose coef-
ficients can be found solving recursive equations. In this way high precision values for

energies can be computed.

However the computation of the density matrix, that is necessary for entanglement eval-
uation, is complex as it must be made integrating in these coordinates, that do not allow

any simplifications.

- other approximate methods are used in computational Chemistry, one of the most im-
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portant being the Density Matrix Renormalization Group, see (White , 1992). Tt
has been applied to entanglement computations, e.g. (Barcza, Legeza et al. , 2011). One
of the aims of the present work is to establish a simple example that can be computed

with full accuracy, against which such approximate methods could be evaluated

Also Quantum algorithms for Physics and Chemistry have been proposed, and recently
reviewed by (Yung, Whitfield et al. , 2012). The simulation of the time evolution of
the quantum state of the system according to the Schrodinger equation on a ”quantum
computer” is one of the main application of quantum computation. Actually it is
not granted that quantum computers, let alone their simulations on classical ones, could

achieve better results than computational physicists have obtained so far.

These simulations could compute both typical physical quantities, like the energy, and

information-related quantities, like non classical correlations, that is entanglement.
The Hamiltonian H of the system can be represented in first or second quantized form.

When represented in first quantized form, it is decomposed in the kinetic and potential
energy terms, that are written considering the nuclei, the electrons and their interac-
tions. The time evolution is then simulated approximating the time evolution e~*#* with

products of the quantum Fourier transform of kinetic and potential energy.

An approach of this kind has been used e.g. by (Benenti, Strini , 2008); we recall some
results of a simulation of this kind, in which we studied the entanglement within the
simulator, in section 3.2.1. We stress, however, that we quote these results here just for
the sake of completeness, because we are listing the methods that have been proposed to
study the problem of atomic structures. The main topic of the present work is not related

to quantum algorithms.

Moreover, the actual advantages of using quantum algorithms, compared to classical ones,
cannot be given for granted, as standard techniques employed to integrate the Schrodinger
equation have produced many important results. We quote e.g. (Scrinzi, Piraux , 1997),
(Scrinzi, Piraux , 1998) who computed the evolution of a two-electron atom exposed to a

laser field by direct time integration of the Schrodinger equation without any approxima-
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tions except for the dipole approximation of the laser field; (Bachau, Lambropoulos et al.
, 1991), (Cornier, Lambropoulos , 1995) who studied ionization in two-electron systems;
(Dundas, Taylor et a. , 1999) and (Nikolopoulos, Lambropoulos , 2001) who studied
double-ionization in Helium; (Madronero, Piraux , 2010) who studied ionization of atoms
exposed to low frequency fields; (Madronero, Schlagheck et al. | 2005) who studied the
autoionization rates of characteristic configurations of the doubly excited helium atom,

in one, two and three dimensions; etc.

When represented in second quantization form, the Hamiltonian is written in the form:

1
H = Z gty ag + 52 Popgrs @) ) Gyl (2.1)
pq p

qrs

where the a; are the creation operators that create an electron in the p mode, and the

a, are the annihilation operators.

The h,, are the single-electron integrals and the h,,,s are the electron-electron coulombian
interaction integrals. The method requires that they must be pre-computed with classical
computers, and their values are then passed to the quantum algorithms to simulate time

dynamics.

Although we did not focus on this kind of problems, some preliminary computations of
the Hs molecule, that we report in section 5.2.5, seem to show that the computation of
the h is actually much heavier than the other parts of the computation. This could lead

to reconsider the importance of these methods.

Besides these problems of a computational nature, the quantification of entanglement of

identical particles in the most general case still remains vague.

There are excellent review papers (Horodecki, Horodecki et al. (2009), Amico, Fazio et
al. (2008)), but even these do not treat all the possible cases. A more modern review,
Tichy, Mintert et al. (2011), treates extensively the entanglement of identical particles

and the main measures that have been used for such situations.
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We studied the entanglement in the Helium case (pioneered by the Dehesa group (Man-
zano, Plastino et al. | 2011), (Dehesa, Koga et al. , 2012)), in order to explore such

difficulties, exactly define the problems and contribute to solving some of them.

We discuss some methods used to solve this problem in section 4.3, we now just stress
that in spite of the large literature about several aspects of the Helium atom, only a few

papers studied its electronic entanglement, and anticipate that:

- some models use simplified Hamiltonians, in order to obtain equations that can be
analytically solved, see (Amovilli, March , 2003), (Amovilli, March , 2004), (Nagy ,
2006), (Moshinsky , 1968), (March, Cabo et al. , 2008), (Yanez, Plastino et al. , 2010).
Although useful to get some insight of the problem, these models cannot be considered

realistic description of Helium

- (Osenda, Serra , 2007), (Osenda, Serra , 2008) used a more realistic, but still not
exact, model and obtained interesting results. We compare our results to these works in

9.7

- (Dehesa, Koga et al. , 2012) obtained an evaluation of entanglement in the Helium
atom using wavefunctions in the Hylleraas coordinates, and computing the linear entropy.
The present work can be considered an extension of those computations, as we obtained

some more levels, and computed the von Neumann entropy too.
Having summarized the scenario, we now state our main goals:

- find an exact method of computation to extend the available results on Helium and
other atoms or molecules entanglement. The method found is an algebraic one and has
two approximations only: the Hilbert space dimension and the hypothesis of nuclei at a

fixed distance for molecules

- the method should be easy to extend to the computation of the entanglement to other
cases and more complex situations. We tested it for the isoelectronic Helium series (see
sec. 9.6) and studied its extension to the Hydrogen molecule (chapter 7). Of course, we

do not expect that our method will cover without efforts all the more difficult situations
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that on can consider, like the doubly excited states of Helium that can exhibit considerable

complexity - see e.g. (Piittner, Gremaud et al. , 2001).

- obtain exact results in a simple case, the Helium atom, that can be used to test approx-
imated methods suited to more complex situations. We replicated the (Osenda, Serra ,

2007) results as an example of this idea (sect. 9.7).

- evaluate the hardness of the entanglement computation compared to the energy com-
putation problem. A large number of computations has been devoted to the study of
this point, varying the Hilbert space dimension of the S, P and D shells: tables and plots
are reported in appendix 9.5; section 6.6 is devoted to the problem of optimizing the

dimension of the Hilbert space for P and D shells, fixed the dimension for lower shells.

The problem has been divided into two parts: the first consisting of the Helium wave
function computation (in the non relativistic setting, see (Drake , 1999), (Koga , 1996),
(Pekeris , 1959), (Kono, Hattori , 1985), (Kono, Hattori , 1986), (Kono, Hattori , 1988); the
second consisting of the computation of the reduced density matrix and of the evaluation

of the entanglement, based on the reduced density matrix eigenvalues.

In the present work, the main issue considered is the reduced density matrix computation,

and entanglement has been evaluated using simplifying hypotheses.

Another important point is that the computation is performed using the usual coordinates
of the Fock space, so that the same method can be applied to more complex cases. The

generalization would have been more difficult if we had used Hylleraas coordinates.

Of course, it is well known that to obtain the maximum precision it is in practice manda-
tory to use Hylleraas coordinates, or others of a similar kind, but in the case of entangle-

ment we believe that such a great precision is unnecessary.

Once having defined the Fock space for the two Helium electrons, we introduced some
variational parameters and optimized them separately for the fundamental and several

excited states of triplet and singlet states.
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The algorithm is described in detail in chapter 5, and appendix 9.1 contains several
sections of the fortran code. No parts of the algorithm are original in themselves, however
it is the general composition of the computation steps and its application to the problem

at hand.
Several computational sides of the problem have been dealt with:

- first of all, after some tests with Fortran double precision, we adopted quadruple

precision routines for all the computations of this kind

- we have already quoted the convergence rate of entropies versus the Hilbert space di-

mension

- we also considered the number of shells that must be taken into account and found that

S-P-D shells suffice for singlets and S-P for triplets

- as one of the hardest sections, in principle, is the eigenvectors computation, we considered
several algorithms, as specificed in sect. 5.2.1. For all the computations performed up to

now, the Jacobi method gave satisfactory results.

- for the search of the minima too, we tested several methods (see 5.2.2), starting with
euristic scans of the parameter intervals. In our final computations, we gave up the
multimensional minimization (see 6.1.1.2 for an example) and used unidimensional mini-

mization one shell at a time.

- in sight of the extension to the Hs molecule computation, gaussian expansions of the base
functions have been considered, see 5.2.3 for some general observations, and all chapter 7

for evaluations of the quality of the approximation

- the execution time of the heaviest subroutines has been measured and compared varying
the Hilbert space dimension and the number of shells considered (sect. 5.2.5). These data
will be considered to plan program extensions, and to consider which points should be

reimplemented with more efficient algorithms

Our main results for Helium entanglement are described in sect. 6.3. Sect. 6.4 reports the
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approximation of our computations of energy, compared to high quality standard results:
a good energy approximation is the most important measure of the soundness of our work,

as some of the entropy values that we got were obtained for the first time.

Another interesting result, that can be achieved with our method, is the explicit com-
putation of the reduced density matrix eigenvalues. In sect. 6.5 we list some typical

cases.
Two extensions of the method have been considered:

- in appendix 9.6 we briefly describe some preliminary results for the Li™ ion, that were
obtained with the same software used for Helium, just changing some parameters. We

plan to investigate the Helium isoelectronic series in a forthcoming work

- in chapter 7 we extended our computation to the Hydrogen molecule. This task implied
all the steps needed to check a ”true” extension, that is: 1) we started with the simple
case of the H,, using a single STO, approximated it with 1 to 6 gaussians and studied
the errors (sect. 7.1.1). 2) Then we modified the algorithms to use 1 or more gaussians
in the Hy computations (sect. 7.2, 7.3). 3) At this point, we compared our results to
standard energy values from the literature. Moreover, we compared the results of the
new programs for Hydrogen, run with the internuclear distance set equal to zero, to our
results for Helium (sect. 7.4.1) 4) At the end, we were able to describe our preliminary
results for the Hy molecule entanglement considering the S shell only (sect. 7.4.2). Also

this work will be completed considering other shells.
S states.

To obtain a precision of the order of 1% in Entanglement (that we presently consider
sufficient), it has been enough to take into account the shells S-P-D for singlet and triplet.
Using only S shells, on the other hand, is not sufficient.

It is to be noted that, optimizing separately the variational parameters for each level,
we limit the Fock space dimension at the minimum possible value, but we obtain non

orthogonal eigenfunctions for the states.
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During the computation using this technique we were required to digonalize matrices up

to dimension 400x400.

It must be noted that we used a single variational parameter for each shell, that is three

parameters for singlet and three for triplet states.

A last important point is that we used othonormal base functions for the single particle

spaces, so we avoided the generalized eigenvalue problem.

To diagonalize the biggest matrices at best we used the quadruple precision (fortran
real*16). Fortunately the computation time took no more than a few hours even on a

modern portable workstation.
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CHAPTER 3

Entanglement

3.1 Entanglement in Quantum Information.

Entanglement is a key factor in Quantum Information: in this chapter we recall some

basic definitions, examples and theoretical motivations.

3.1.1 Entanglement definition

A problem that one must face while developing Quantum Mechanics and Quantum In-
formation theory is the study of composite systems. For instance, the Hydrogen atom is
composed of a proton and an electron. Any system composed of two or more qubits is
another example. The description of the dynamics can be developed, like in the classical
case, starting from the dynamics of the components and adding their interactions. On
the other hand, the description of the state space of such systems generates non classical

effects.

The Hilbert space H associated with a composite system is the tensor product of the

Hilbert spaces H; associated with the subsystems.

For the sake of simplicity, we consider the case of just two subsystems, both of dimension
2, that is two qubits. Denoting { |0)1, [1); } and {]0)s, |1)2 } their bases, a base of the
complete system is: {|0); @10)2, [0)1 ®@]1)2, [1)1 ®|0)a, [1); ®|1)2, } that can be written

o1
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{100, 101), [10), [11) } (3.1)

The general state in the space H is a superposition of states of H; and Hs,, and can be

written:
[0y = eijlij) (3.2)
%)

where i refers to states in H; and j to states in Ho.

The state | 1) is defined entangled if it cannot be expressed as the tensor product of a

state in H; and one in Hy. On the contrary, if a relation like

[9) = [a)r @ [F)a (3.3)

holds, with |«); in H;y and | 5)s in Hs the state is called separable.

Entanglement is a typical quantum mechanical effect, a key ingredient in quantum infor-
mation science. There is wide consensus that it is one of the most fundamental charac-

teristics of quantum physics, and its study has attracted intense efforts in recent years.

When two systems are entangled, it is not possible to assign them individual state vectors
| )y and | 3),. It is also well known that entangled states possess intriguing non-classical
properties; those have been illustrated for the first times by Einstein, Podolsky and Rosen

in 1935, with their celebrated paradox and by the also famous Schrodinger cat paradox.

We stress that entanglement is a resource. This resource is essential to quantum-information

science in order to perform computation and communication tasks far beyond the classical
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capabilities. In later sections we will briefly recall some topics of quantum-information

science in which entanglement shows its importance.

3.1.2 Schrodinger’s cat

Schrodinger described the following situation in order to enlighten the strange conse-

quences of the superposition of states.

In a box there is a cat and a radioactive source, constituted of an atom, that can be in
the excited state | 1) and in the corresponding ground state | 0). The atom is connected
to a device that, if the atom decays, breaks a glass contanining some poisons, that will
kill the cat. Call 7 the hemilife time of the atom, | 1) the state of the alive cat, and |0)
the state of the dead cat, | R.,) the state of the environment.

At time ¢ = 0 the box is closed; the total wave function of the system is:

() = 1) ® |1) ® | Rewt) (3-4)

As the evolution equation is linear, after the time 7, the state will be (we intend to

present a qualitative argument, not an exact model):

6) = S=(1) @ 1)@ | Ra) +10) © 10) © | Rewa) (3:5)

This means that the cat should be in a superposition state, having 50% probability of
being alive and 50% of being dead. This superposition state, according to the Quantum
Machanics postulates, ceases only when the system is observed. In that moment, the
wave function ”collapses” in one of the two states, with the quoted probabilities. This is

the situation each time two systems interacts.
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Two points must be stressed:

- the first is that quantum superposition does not have any analogous concepts in the
classical setting, as it means that the system is in an undetermined state until it is
measured and, after the measure it will be in one of the two states. On the contrary,
in a classical setting ”superposition” means that the system is in specific state, obtained
summing in a suitable way two or more states, e.g. two waves. In the next paragraph we

will see that also entanglement does not have any classical counterpart.

- the second is the problem related with the measuring act. The effect of the measure
is that the system must choose one of two different states, and that cannot be described
by the Schrodinger equation, that is linear. This means that the evolution of quantum
systems must be described by two different kinds of processes: the Schrodinger equation

and the state collapse during the measure.

3.1.3 The EPR paradox

The paradox described by Einstein, Podolsky and Rosen forms the basis for a class of
interesting problems and situations in Quantum Mechanics. It is also the conceptual
paradigm of many quantum information and quantum communication protocols based on
entangled systems. We will follow a very simple version of the paradox, due to Bohm. We
have a source, emitting two particles with spin 1/2 in a singlet state (that is two qubits,
in quantum information terms). Call |0) the state with spin parallel to the z axis, and

| 1) the state with antiparallel spin. The total state is:

0} = —=(01) — [10)) (3:6)

Sl

One of the particles travels towards Alice, the other towards Bob. From (3.6) it is obvious
that if Alice measures the spin along the z axis and obtain the value 0, then if Bob too
measures the spin along the z axis, he will find the value 1. Analogously, if Alice obtain

1, Bob will obtain 0. This has nothing extraordinary, and would be the same even using
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classical objects.

Now suppose that Alice and Bob will measure the spin along the x axis. This means that

they will use another instrument, that can be represented by the operator

Op = (3.7)

This operator has eigenstates

[+) = Z 10 +10); =) = —5(0) = [1)) (3.8)

-
-

The effect of this measure on the state (3.6) is obtained rewriting it in the new basis. The

result is

9 = —=( -+ -1+ -) (3.9)

This means that if Alice measures the spin along this basis and finds the value -, then
Bob will find the value +, and vice versa, that is the measures are still anticorrelated.
The critical point is that the two measures are incompatible: if the spin is measured
along the z axis, nothing can be said about its component about the x axis, because the
corresponding operators do not commute. But Alice can decide without constraints the
axis along which to perform the measure, and can forecast without any action on the

other particle, which result will obtain Bob if he uses the same axis.

Alice’s choice can be made when the particles have travelled far away from each other,

and cannot interact anymore.
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So their wave function must contain an ”element of reality” pertaining the measures along
the axes x and z (and any other). It is important to stress that the point is not the perfect
anticorrelation of the measure, but the fact that it is not dependent on the choice of the

Hilbert space basis.

3.2 Difficulties in the entanglement definition

A very important point, that is usually insufficiently covered by the literature, is that
the Entanglement of a register in a pure state is defined as the entropy of the reduced
density matrix obtained partitioning it. But the possibilities of such partitioning grow
exponentially with the number of qubits, and a complete quantization of entanglement

should take this fact into account.

It is still an open problem how such situations should be treated in general (see however
(Mintert, Carvalho et al. , 2005) and (Facchi, Florio et al. , 2006) for discussions of
multipartite entanglement measures and of the problem of the growth of the number of

partitions).

3.2.1 Entanglement in the simulation of a quantum computer

It is important to have a method to measure the entanglement of a system. Here we

introduce the problem with an example.

First of all, we recall that the entropy of a pure state is zero. If, for instance, a pure
state of n qubits is decomposable into the product of two pure states of 3 qubits, then

the entropy of these states is zero too.

Computing the entropy of the reduced matrices of these two subsystems one can determine

if their state is a pure one.

As an example, we consider the simulator of a quantum computer obtained solving the

Schrodinger equation for a harmonic oscillator on a classical computer. The simulator
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used 6 qubits.

The interval of the spatial coordinate x has been divided into 2¢ intervals, that have been

represented by a 6 qubit register.

The Schrodinger equation has been solved propagating the initial wave function

n? d?

where H() = T omd2

and V(x) is the potential energy. In a small interval of time € one

can approximate

e~ U/M(Ho+V(x))e o o—i/hHoe  —i/hV () <3'11>

then a quantum Fourier transform is used to obtain the solution.

The method is illustrated in fig. 3.2, 3.3 and 3.4. In figure 3.2 left, the x axis represents
the time evolution, in 40 steps. The y axis represents the spatial interval at each instant;
it has been divided in 2° = 64 subintervals. So the (monodimensional) wavefunction is
moving from left to right. Figure 3.2 right shows the wavefunction, as a function of the
spatial coordinate x only, at a fixed instant of time. Figures 3.3 and 3.4 show the same
data, for different runs, with a three dimensional representation of the wavefunction, that

again is to be understood as moving from time=0 to time=40.

Being a (simulation of) a quantum system, the quantum simulator has a density matrix,
whose entropy can be computed to check that if it is in a pure state. Moreover, being
made of 6 qubits, several reduced density matrix can be computed to check if there is

entanglement between the qubits.

In all the plots of entropy, the abscissa represents time and the ordinate the von Neumann



58 ENTANGLEMENT

entropy.

In fig. 3.1 the total entropy is plotted as expected it is very near to zero: the small values

are due to numerical errors.
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Figure 3.1 — Simulator - total entropy is zero, apart from small numerical errors.
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Figure 3.2 — Method to read the plots computed by the simulations
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Figure 3.4 — Schrodinger’s equation solutions with no errors with spreading of the Gaussian
packet
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To evaluate the entanglement, we have plotted the entropies of each single qubit, from
qubit 0 to qubit 5 see fig. 3.5 - 3.8. In the first and last figures, also the values of the
entropy of the other qubits have been plotted. The entropies are the same, as expected

for a pure state.

Fig. 3.9 and 3.10 represent entropies of the systems of qubits 45 and 0123 and of qubits
012 and 345.

The results show a strong entanglement within the simulator.
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Figure 3.5 — Entropy on qubit 0 (LSB) and on qubits 12345
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Figure 3.6 — Entropy on qubit 1 and on qubit 2
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Figure 3.7 — Entropy on qubit 3 and on qubit 4
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Figure 3.8 — Entropy on qubit 5 and on qubits 01234
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Figure 3.9 — Entropy on qubits 45 and on qubits 0123
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Figure 3.10 — Entropy on qubits 012 and on qubits 345

3.2.2 Entanglement in the Grover quantum search algorithm

As a second example of the simulator, in this section, we show the results of entropy
computation in a simulation of the Grover algorithm. The case is analogous to the previ-
ous: the simulator used 6 qubits, and the entropies were computed as the von Neumann

entropies of the reduced density matrices obtained tracing on one or more qubits. Of
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course, the algorithm performed by the simulator was different and used the gate shown

in fig. 3.11.
The plots have as usual time in abscissa and the von Neumann entropy in ordinate.

Entropies have been computed at every algorithm iteration. In the plots, q0 is the Least
Significant Bit and b is the Most Significant Bit. Reduced entropies computed on more
than 1 qubit are labelled with multiple indexes.
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Figure 3.11 — Synthesis of Grover's D matrix by a generalized controlled phase gate
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Figure 3.12 — q0 Entropy
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Figure 3.13 — q01 entropy
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3.3 The problem of entanglement computation in He-

lium

The non-relativistic Hamiltonian of the helium atom reads, in atomic units,

1 1 A A 1
H=-p’+-p2—- == 4+ — 3.12
2p1+2pg " T2+7“127 ( )

where Z = 2 denotes the nuclear charge, p; the momentum of electron ¢ (i = 1, 2), r; its

distance from the nucleus and rq, the inter-electronic separation.

Since we are neglecting the spin-orbit interaction, we can consider global wavefunctions

= factorized into the product of a coordinate wavefunction ¥ and a spin wavefunction y:

50-1702(1'171'2) - \Ij(rlar2)X0'10'2' (313)

The overall state must be antisymmetric and therefore a measure (Schliemann, Cirac
et al. , 2001), (Schliemann, Loss et al. , 2001) of the amount of entanglement E(|Z))
of the state = has been proposed in terms of the von Neumann entropy of the reduced
density operator R; = Try(|Z)(Z]|) of one particle, say particle 1, obtained after tracing
the overall, two-body density operator over the other particle (see also (Amico, Fazio et

al. , 2008), (Ghirardi, Marinatto , 2004)):
E(|Z)) = S(Ry) — 1, (3.14)
with the von Neumann entropy

S(Ry) == Ailog, A;, (3.15)

where {A;} are the eigenvalues of R;. The term —1 is due to the fact that the entropy
S(Ry) of indistinguishable particles is bounded from below by unity instead than zero (See
(Tichy, Mintert et al. , 2011)), as a state obtained by antisymmetrization of a product of

two states has entropy=1, and is not entangled.
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However, with such definition a first problem arises.

When considering the triplet subspace, spanned by the spin states x11, \%(XT 1+x11), and

X\, it is clear that we should consider the case \%(XT | + X11) separately from the cases

X1 and Xy

Indeed, considering only the spin part, in the hypothesis of Spin-Orbit Independence,
\%(XT | + xJ1) is a maximally entangled Bell state of the two spins while x4 and x| are

separable states.

Therefore, the standard spectroscopic characterization in terms of triplet and singlet states
is no longer useful for the purposes of computing entanglement and one should study

separately the entanglement properties of the states composing the triplet.

In this context, we would like to point out that, neglecting spin-spin interaction, the choice
of the basis states spanning the triplet state is completely arbitrary and that the above

discussed {x11, \%(XT L+ X11)s X 1} is only one in between the infinite possible choices.

In particular, in the Chemical literature, the spin degrees of freedom are referred to as
{a, B} without any other specification, and are sometimes considered just as statistical

weights.

In the present work, given the present uncertainty in entaglement definition for a group
of fermions, we decided to use a more precise notation, namely the spectroscopic notation

as it is used in spectroscopy of atoms and small molecules.

Obviously, in this way the entanglement characterization in complex molecules is com-

pletely omitted.

This is a major limit of the available knowledge in this field, while in the literature it is
"popular” to affirm the key role of entanglement in important biological processes, such

as light-harvesting in photosynthetic processes.

These processes are described quite schematically, modelling the excitons of the involved

molecules as qubit systems, without more detailed descriptions.
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Coming back to Helium, we have treated separatedly the orbital and spin degrees of

freedom.

Another ambiguity that can be found in the literature is that sometimes a numerical

factor is added to equation (3.14) for instance % or 2, in order to normalize somehow
the possible entanglement values. This must be taken into account when comparing the

results reported herein with those of other works.

Another point, fortunately easy to detect, is that in the chemical literature natural loga-
rithms are used in the von Neumann entropy definition, while in the informatical literature
base 2 logarithms are almost always used. In the present work we will always use the

second definition.

Another entropy definition that is sometimes used is the purity or linear entropy, defined

by

Linear Entropy = 1 — Tr{p.qucea} (3.16)

For the sake of completeness, we will also report the linear entropy, together with the von

Neumann entropy.

To avoid this ambiguity, we compute the entanglement for the orbital part ¥ only of the

wavelunction.

Since the global wavefunction = must be antisymmetric due to the Pauli principle, and
in the triplet case the spin part is symmetric, the orbital part ¥ is antisymmetric and we

can measure the amount of entanglement E(|W)) of ¥ as follows:

E(¥)) = S(p) - 1, (3.17)
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where

S(pr) == Ailogy Ai (3.18)

is the von Neumann entropy of the reduced density operator p; = Tro(|¥)(¥|), and {\;}

are the eigenvalues of p;.

When the spin part of the wavefunction is in the singlet state yg = \%(XT | — X11), the
orbital part is necessarily symmetric and this causes an additional, open problem in the

quantification of entanglement.

Indeed in this case the reduced von Neumann entropy alone is not sufficient to discriminate

between entangled and separable states (Ghirardi, Marinatto , 2004).

The core of the problem is the fact that we can have separable states with either S(p;) = 0
or S(p) = 1.

The first instance corresponds to basis states of the kind W;;(ry,re) = ¢;(r1)¢i(r2), the
second to basis states like U;;(ry, ry) = \%[qﬁi(rl)@ (ra) + ¢(r1)pi(ra)], with @ # j.

On the other hand, even the quantification of entanglement of the global, antisymmetric

wavefunction by means of Eq. (3.14) poses a problem.

Indeed, as the von Neummann entropy is additive for tensor products, for the state
E = V;xs Eq. (3.14) gives E(|=)) = 0, while for the state = = U;;xg (i # j) we have
E(|Z)) = 1.

Even though measure (3.14) gives different results, the amount of entanglement in both
cases is the same, since the orbital wavefunctions W; and V;; are both separable: the
reduced density matrices for these two states have different entropies only due to the

symmetrization of the state W;;.

It is now worthwhile discussing separately the triplet and singlet cases, going into detail.

We will first present the triplet case.
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3.3.1 The triplet case

In this work, the Fock space of two particles is built from single particle orbitals, using

Slater determinants. The antisymmetrical orbital states are therefore n(n-1)/2.

For the sake of clarity, we will make an explicit example, the simplest possible, for n=4

and a single shell.

For n=4 we have a basis of 6 Slater determinants, that can be denoted:

Dy = 1,2) = —={oi(r)oalra) = dalr)on(r)} (3.19)
Dy = [1.8) = —={6r(r)on(rs) = s(ri)on(r2)} (3.20)
Dy = 1, 4) = Z={6u(r)en(r) — a(r)en(r)) (3.21)
Di = 2.8) = —={0alr)on(ra) = a(ri)on(ra)} (3.22)
Ds = 2.4) = —={6a(r)ou(rs) = ou(r)oulr)} (3.23)
Dy = [3,4) = —={a(r)x(r2) — G1(r1)6a(r2)} (3.24)

V2
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The wavefunction for the variational problem can therefore be written:

) = DGy (3.25)

Using this expression, one can compute the reduced entropy matrix and the von Neumann

and linear entropies.

It is interesting to note that if the wavefunction is made of only one Slater determinant,
(for instance only C; # 0) then the corresponding state is not entangled as the sum (3.25)

is necessary to satisfy the Pauli exclusion principle.

Now we note that for {C # 0,Cy # 0}, the corresponding state can also be written as a

single Slater determinant.
Indeed we have immediately:
|Y) = Ci1Dy + CyDy =

= Cl\%{(ﬁl(ﬁ)@(?“z) - ¢2(7"1)¢1(7“2)} + 02\%{%(7”1)%(7“2) - ¢3(7“1)¢1(7”2)} =

1
= E{%('f’l)[cﬂz(ﬁ) + Codz(r2)] — [Cia(r1) + Cogs(ri)]éi(r2)} (3.26)

that obviously constitutes just one Slater determinant.
Analogously if only {Cy, Cy, C3} are different from zero.

We again have the same situation if only {Cy, Cs} are different from zero. These obser-

vations have been very useful for interpreting our results.
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We also note that we could describe in detail the entanglement origin, just because we
used an orthonormal Fock basis. If we had used a non orthonormal basis, as in the Pekeris
method, this detail would not have been possible, and the dubious cases would have been

much more difficult to discuss (see the singlet discussion).

3.3.2 The singlet case

In this case the orbital eigenfunctions must be symmetrical, and Slater permanents must
be used instead of determinants. The discussion parallels that of the triplet case, but we
have a considerable extra complication. This is evident if one explicitly writes the Fock

space for n=3 base orbitals. We have 3 x 4/2 = 6 states:

Pr=|1,1) = ¢1(r1)p1(r2) (3.27)

P = 11.2) = (o)) + dalr)on(r)} (3.28)

1
P=11,3) = E{Cbl(?“l)sbs(?“?) + ¢3(r1)1(r2)} (3.29)
Py =12,2) = ¢a(r1)pa(ra) (3.30)

Py = 12.3) = S={6a(r)én(ra) + s(r)0nlra)} (3.31)
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Fo = [3,3) = ¢3(r1)es(r2) (3.32)

The new problem is given by the states P, P, and P, that are clearly separable. There
is therefore a great uncertainty about how to consider for instance the entanglement in

the state

This problem has to be added to the others already faced in the triplet case.

Anyway, we can assert that, in the present case, using a single particle orthonormal basis,
we can state the problem in a very precise way. As already noted in the triplet case,
using an unorthonormal basis, as in the Pekeris method, would completely obscure the

situation.

We will not address here the unsolved problem of quantification of entanglement for a

generic state .

On the other hand, since from our calculations it turns out that for each low-energy helium
eigenstate the reduced density operator for the orbital part is rather weakly perturbed
with respect to one of the two above non-entangled cases, we expect that an approximate
quantification of entanglement is provided by the distance between the von Neumann
entropy S(p;) of p; and the von Neumann entropy S(pgo)) (S(pgo)) =0 or S(pgo)) =1)
of the reduced density operator ,050) for the corresponding non-interacting, non-entangled

state:

E(1®)) = |S(p1) — S(p")]. (3.34)

We expect such quantification to be in general meaningful only in the regime of weak
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interactions, such that [S(p;) — S(pgo))] < 1. Note, however, that for antisymmetric
orbital wave functions this definition reduces to (3.17) and therefore could be applied in

this case also for strong interactions.

First of all, it is necessary to develop some intuition about the physical nature of the
eigenfunctions of the states listed in the tables that follow. We will limit our investigation

to the ground state and singly excited eigenstates of helium.

With regards to the computation of energies, those states can be described with an optimal

approximation using a single Slater determinant or permanent for the orbital part.

The spin part is not important, as in the adopted approximation the spin motion is

separable.

This means that in a first approximation the orbital part of singlets in 3.2 is given by a

Slater permanent, and that of triplets in 3.3 by a Slater determinant.

These two descriptions basically differ for the Fermi Heap of the singlet case and the

Fermi Hole in the triplet case.

It must be taken into account that when one considers more excited cases, that is when
n of states 1s,ns is increased, the difference between the orbital parts of states 1S and 3S
is more and more attenuated, as it is confirmed considering the energies of the ”exact”
states, that become more similar. In table 3.1 we report the energies and their differences

for some values of n, with data from (Kono, Hattori , 1986); see also (Kono, Hattori ,

1985) and (Drake , 1999)

This suggests that in these Helium states, when the energy increases, one obtains the

situation in which one electron is in the 1s state and the other is in the ns state.

This is confirmed by the von Neumann entropy values, as reported in tables 3.2 and 3.3,

that are taken from the result section 6.3 and copied here to facilitate the discussion.

The von Neumann and linear entropies have been computed first finding the minimum

value of the energy of each state, then computing the eigenvalues of the reduced density
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n singlet triplet difference
energy abs. | energy abs.
value in a.u. | value in a.u

1 2.903 724 — —

2 2.145 974 2.175 229 | 0.029 255
3 2.061 272 2.068 689 | 0.007 417
4 1 2.033 587 2.036 512 | 0.002 925
5) 2.021 177 2.022 619 | 0.001 442
6 2.014 563 2.015 377 | 0.000 814
7| 2.010 626 2.011 130 | 0.000 504
8 2.008 094 2.008 427 | 0.000 333

Table 3.1 — Energy of singlet and triplet eigenstates from (Kono, Hattori , 1986)
State S(p1) Sr(p1)

|(1s)?;1S) 0.0785 0.01606
|1s,2s;15) | 0.991099 | 0.48871
|1s,3s;15) | 0.998513 | 0.49724
|1s,4s;18) | 0.999577 | 0.49892
|1s,5s;15) | 0.999838 | 0.499465
|1s,6s;15) | 0.999923 | 0.499665
|1s,7s;15) | 0.999961 | 0.499777

Table 3.2 — Reduced von Neumann and linear entropies for the lowest energy singlet eigen-
states of helium.

State S(p1) Sr(p1)
) | 1.00494 | 0.500378
) | 1.00114 | 0.5000736
|1s,4s;3S) | 1.000453 | 0.5000267
)
)

1.000229 | 0.5000127
1.000133 | 0.5000070
|1s,7s;%5) | 1.000091 | 0.5000047

Table 3.3 — Same as in Table 3.2, but for the lowest energy triplet eigenstates of helium.

matrices built with the corresponding eigenvectors.

We remark that the von Neumann entropy, that has been computed in bits, that is using

base 2 logarithms, approaches the value 1 for increasing energy.

This is in agreement with the fact that the approximation gets better using a single Slater

permanent or determinant, with the exception of the case 1s? that is separable.
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But the value 1 must be subtracted from entanglement as it is due only to the wave

function simmetry that must be imposed to fulfill the Pauli exclusion principle.

This subtraction must not be performed for the fundamental state 1s? as this state is

separable.

So the physical meaning of the figures in tables 3.2 and 3.3 is that the fundamental
state has entropy near to zero, as it is separable. Higher states have some difference
entropy from the other separable state, with entropy = 1 due to antisymmetrization only.
Increasing the energy, however, their entropy approaches 1, that is they tend to a separable

state.

Another point that must be noted in 3.2, corresponding to the Slater permanents, with the
exception of the fundamental state, the entropy is constantly increasing and approaches

1 increasing n.

This suggests to take as a measure of entanglement the modulus of the difference between
the entropy and the value 1 due to the symmetrization only. ~ We do not intend to propose
an entanglement measure in a rigorous sense; that is not one satisfying all the requirements
listed e.g. in (Vedral, Plenio et al. , 1997), (Plenio, Virmani , 2007); in particular we
are not going to show that it is not increasing under Local General Measurements and
Classical Communication. Our aim is just to have some provisional heuristics that could

put some order in the data.

In the analogous case of table 3.3, the von Neumann entropy value is always greater than
1, and approaches 1 increasing the energy. The same reasoning holds as before, but now

the value 1 must be subtracted from the von Neumann entropy.

The fact that, with the exception of the fundamental state, the entropy is slightly less
than 1 for table 3.2 and slightly greater than 1 for table 3.3 can be quite simply explained
observing the reduced density eigenvalues, that in the case of table 3.3 are pairwise iden-

tical.

In this ways it is justified the expression (3.34) assumed for the entanglement of the
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considered Helium states.



CHAPTER 4

Entanglement computation: state of the art

In order to highlight the specificities of our method and the importance of the points that

we deal with, we now illustrate the main results from the literature.

As outlined in the introduction, we will consider studies from the quantum computers
implementation area and from Biology, that apply to several systems, and other works

that are specific for the Helium atom.

4.1 Studies related to implementations of quantum

computers

Miniaturization provides us with an intuitive way of understanding why, in the near future,

quantum mechanics will become important for computation, even for classical computers.

Smaller size circuits boost computer power because the communication between compo-
nents is faster, smaller active components are faster and at the same time their density

increases.

The progress in miniaturization may be quantified empirically in Moores law (Moore |,
1965). This law is the result of a remarkable observation made by Gordon Moore in

1965: the number of transistors on a single integrated-circuit chip doubles approximately

75
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every 18 - 24 months. This exponential growth has not yet saturated and Moores law
is still valid. Presently integrated circuits feature minimum size is about 25 nm. In 8
years we can expect that it will decrease by another order of magnitude. As the size
of the smallest molecule, Hy, is &~ 0.1 nm at that point, quantum effects will become

unavoidably dominant.

They will have a disturbance effect on classical computing devices, or will be used to build
quantum computers. For both reasons it is important to study quantum effects in atoms

and molecules, from the point of view of computing machines engineering.

Many studies have dealt with many physical systems that might be good candidates for the
implementation of quantum computers, and very interesting few-qubit experiments have
been performed both with natural and artificial atoms and molecules, see e.g. (Benenti,

Strini , 2007), (Buluta, Ashab et al. , 2011).

However even when studying natural systems, pratically all the authors use some specific

setting, that is well suited only to the experimental situation in which they are interested.

For instance (Blatt, Wineland , 2008) reviewed the research about entangled states of
trapped atomic ions. lons can be confined for long durations while experiencing only

small perturbations from the environment, and can be coherently manipulated.

To study entanglement, a group of atomic ions is confined in a particular arrangement of
electric and /or magnetic fields. In this way one gets a collection of quantum systems that
can be individually manipulated, their states entangled, and their coherences maintained

for long durations, while suppressing the effects of couplings to the environment.

Two specific internal states of each ion are selected, and entanglment between pairs of

ions is studied.

(Bloch , 2008) considered neutral atoms in optical lattices. In these experiments, neutral
atoms are trapped in microscopic potentials engineered by laser light and their interactions

are controlled with increasing precision.
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Ultracold atoms are loaded into three-dimensional arrays of microscopic trapping poten-
tials, known as optical lattices, in such a way that every lattice site is occupied by a single
atom. After initialization, the interactions and the states of the atoms are controlled to

coax them into the correct entangled state.

Rydberg atoms, that is atoms with an external electron in a highly excited state, have been
extensively used in quantum information experiments, as reviewed in (Saffman, Walker
et al. , 2010). Also in this cases, in general, two specific levels are selected, and the
experiments involve the interactions and entanglement of Rydberg atoms and photons or
of couples of Rydberg atoms. The approach can be based on trapped atoms, or on cavity

quantum electrodynamics.

Also polar molecules have been considered to realize qubits, see e.g. (Micheli, Brennen et
al. , 2006). The basic building block is a system of two polar molecules strongly trapped
at given sites of an optical lattice, where the qubit is represented by a single electron
outside a closed shell of a molecule formed by more than one element in its rotational

ground state.

All the above cases share the fact that 1) only a few states of the systems are selected,
often just the two levels that are necessary to engineer a qubit, and the experimental
setting tends to exclude all the other states; 2) the systems are artificially kept in the
experimental environment. So, however intersting, they do not study entanglement in

natural conditions.

On the other hand, studying natural atoms and molecules in their natural conditions, as

we do in the present work, has two important advantages as it can shed light on:

1) the difficulties that one will meet when the dimensions of classical computer will become
of the order of magnitude of molecules and atoms, and natural quantum effects in the

materials will interfere with the computer operations

2) the possibility of using natural molecules, or polymers, to hold active elements (gates,
etc.) instead of artificially trapping them. In this way one could achieve the maximal

miniaturization, probably the same of biological systems.
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4.2 Methods used in Biochemistry and Biology

We consider a family of models used to model active sites, see for instance (Sarovar,
Ishizaki et al. , 2010) and (Whaley, Sarovar et al. , 2010). The physical elements that are
relevant for the phenomenon of interest, e.g. the ”chromophores” in photosyntesis, are
described as two level systems, that can be grouped in higher level structures. A hamil-
tonian function is then derived for these structures, using measures of site energies and
coupling strengths. In general, a term is added to take into account the interplay between

internal coherent dynamics and decoherence effects due to enviromental interactions.

So the total Hamiltonian has the form:

H = Hint + Hint—env + Henv (41>

where H,,; is the term describing the dynamics of the N active elements considered as

closed systems, and can be written in the form:

Hine = 3 Bl (i) + 3 D Ja(l (1 + 15) G1) (4.2)

i=1 j>i

here |i) represents the state in which only the ith element is excited, F; are the on-site

energies and J;; are the coupling strengths, both measured experimentally.

For the term expressing the interaction with the environment it is used a form like the

following:

Hint—env - Zi:l |Z> <Z| Zf gEQﬁ

where QZ is a phonon mode indexed by &, coupled to the chromophore i with strength gé.
With some realistic hypotheses on the enviromental properties, one can obtain a practical

expression of the above Hamiltonian, suitable for numerical calculations.
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At this point, numerical values for the relevant quantities are derived from the experiments

and used in simulations to evaluate the entanglement.

(Adolphs, Miih et al. | 2010) study the crystal structure of the photosystem I (PSI)
core complex from the thermophilic cyanobacterium Thermosynechococcus (T.) elonga-
tus. This pigment-protein complex (PPC) binds both RC pigments and light harvesting
antenna pigments inseparably on the same protein. To model their optical spectra, they
take into account the pigment-pigment (excitonic) as well as the pigment-protein (exciton-
vibrational) coupling. Their approach is based on a standard Hamiltonian for PPCs that
models the pigments as coupled two-level systems interacting with vibrational degrees
of freedom of the protein. The method combines quantum chemical calculations on the
pigments in vacuum with electrostatic Poisson-Boltzmann type calculations on the whole
PPC in atomic detail. They calculate the site energies of the 96 Chlorophyll a molecules
composing the PSI. These site energies are used together with the excitonic couplings to
simulate optical spectra. The calculated spectra match the experimental data semiquan-

titatively and allow for a detailed analysis of structure-function relationships.

(Olbrich, Jansen et al. | 2011) give a parameter-free calculation of the excited-state
dynamics and the linear and two-dimensional spectra for Fenna-Matthews-Olson (FMO)
Light Harvesting system. Their method is based on a combination of classical molecular
dynamics (to describe the systems) and electronic structure calculations (to model their
optical properties and the excitation transfer). The computations are based on the Hartree
Fock framework but two-center electron interaction integrals are neglected. They present
simulations of the linear absorption, population transfer, and two-dimensional spectra
of the FMO complex. From the simulations they find that even though little coherent
population transfer between sites is observed in the FMO complex at room temperature
the overall excitation transfer is very efficient with transfer times across the complex of

only 100 fs.

(Christensson, Kauffmann , 2012) use a vibronic exciton model to explain the long-lived
oscillatory features in the two-dimensional electronic spectra of the FMO complex. Us-
ing experimentally determined parameters and uncorrelated site energy fluctuations, the

model predicts oscillations with dephasing times in a good agreement with the experi-
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mental results. The long-lived oscillations are found to reflect coherent superpositions of
vibronic exciton states with dominant contributions from vibrational excitations on the
same pigment. Such ”intrapigment” coherences experience weak homogeneous and inho-
mogeneous dephasing due to the inherent correlation of transition frequency fluctuations

of the involved states.

(Alicki, Miklaszewski , 2012) propose a model based on a resonant, coherent energy ex-
change between the donor site and the acceptor one accompanied by an irreversible energy
transfer to the sink. They consider an optical cavity which consists of two parabolic mir-
rors with a common symmetry axis and two identical two-level atoms placed in the focuses
of the mirrors with transition dipoles parallel to the axis. When one of the atoms is ex-
cited the emitted photon will be bouncing between atoms. If additionally the first atom
(donor) is excited by a light source and the second (acceptor) is coupled to an energy
sink, a mechanism of energy transfer from a source to a sink is obtained. A standard
tight-binding model of energy transport in quantum networks in the single-exciton ap-
proximation is used. This approximation is valid when the exciton lifetime is much longer
than any other relevant time scale. To describe irreversible energy transfer phenomena

they take into account the coupling to vibrational degrees of freedom.

(Pereverzev, Bittner et al. , 2009) consider the problem of partitioning a system with both
discrete and continuous degrees of freedom into interacting subspaces such that the mo-
tions that are most strongly coupled are given explicit treatment while the remainder serve
as auxiliary degrees of freedom, quantum or classical, as a thermal bath, or are ignored
completely. Their methods can be applied to charge transfer in a model donor/acceptor
system to reduce dramatically the number of explicit phonon modes needed to compute

accurate correlation functions.

(Walschaers, Mulet et al. , 2012) describe a general mechanism to achieve fast quantum
energy transport in disordered systems, that could be at the core of the light harvesting.
The two main ingredients are: the centro-symmetry of the Hamiltonian H of the system
and the existence of a dominant doublet coupling the input and output states. Centro-
symmetry, with respect to the input and output sites’ states, means that defining J;; =

din—j+1 the exchange matrix, JH = HJ and |in) = J|out). This property has been
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shown to be strongly correlated to transfer efficiency by (Zech, Mulet et al. , 2012).
These authors found that, starting from a random network of intermediate sites and
using a genetic algorithm to maximize the efficiency, one moves towards higher degrees

of centro-symmetry.

The role of quantum interference on the transport effciency has been studied by (Scholak,
Mintert et al. , 2010). As the Hamiltonian of the whole system in many cases is not known,
they introduced disorder into the model, treating the matrix elements of the Hamiltonian
as stochastic variables. In some conditions (localization in 1 or 2 dimensions and short
range interactions), the quantum interference suppresses the classical transport, and the
input remains localized near the initial site. There are however some realization of the
disorder for which the transfer may be enhanced by quantum interference. Moreover, it
is shown that exceptional multisite entanglement properties characterize those configura-
tions that show particularly good transport properties. In particular, entanglement must
ensure that the excitation is distributed on several sites of the chain from the input to the
target (e.g. at least four out in a chain of seven). Moreover entanglement must vanish

when the excitation reaches the output site.

(Scholak, Wellens et al. , 2011) used a statistical ensemble of Hamiltonians of the form 4.2
to evaluate the importance of coherence on the energy transport efficiency and the effect
of noise. They considered a chain of N molecules, with the first one acting as the ”input”
site, that is receiving energy from outside, and the last acting as the "output” of the
transport. Two quantitative measures of efficiency are defined: the first is the probability
‘P that the excitation reaches the output site in a short time; the second is the transfer time
7T to a "sink”, that is a reservoir that absorbs energy. A numerical optimization method
is used to find the configurations that maximize P or minimize 7, both in absence and in
presence of noise. The authors point out that the two efficiency measures lead to different
optimal configurations. Moreover, the fastest excitation transfer is realized without noise.
Most configurations of the statistical ensemble are not very efficient, as the quantum
interference is destructive: in these cases, adding noise accelerates the transfer of energy.
However, there are some very efficient coherent configurations that benefit of constructive

interference and that are slowed down by noise.
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(Scholak, Wellens et al. , 2011) conclude that molecular Hamiltonian should be charac-
terized as precisely as possible, since their statistical studies indicate that the transport
properties sensitively depend on the particular configuration. The same need for more
detailed models is stressed by (Tiersch, Popescu et al. , 2012), who describe a counter-
example showing that the arguments presented so far are not sufficient to prove neihter the

presence of entanglement in the excitation transport nor its importance, even if present.

For our purposes, it is important to stress that, however detailed, these models do not
start from the basic chemical structures of the proteins involved, they are not ”ab-initio”
computations, but phenomenological models that provide entaglement estimates, once

they are feeded with experimental data.

The approach that we will follow in the present work is, on the contrary, to start from
the bottom level of intra atomic entanglement, with the goal of eventually arrive at the

level of the phenomenological description.

In this way, models like those described above will be completely justified.

4.3 Computations for Helium and other atoms

4.3.1 Analytical methods

Some authors, see e.g. (Amovilli, March , 2003), (Amovilli, March , 2004), (Nagy , 2006),
(Moshinsky , 1968), (March, Cabo et al. , 2008), (Yanez, Plastino et al. , 2010), used
analytical models to compute the entanglement in atoms. Some of these will be described

more extensively in section 4.4.1.

Although these papers highlight some interesting aspects of the problem, it must be
stressed that all of them use some simplifications in the hamiltonian, so that the problem

can be treated analytically.

We used the hamiltonian of the system, that has the form:
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1

on the contrary, these models use hamiltonians like the following:

1 1
H = =5 (Vi + V3) + 507 (] +13) + Plro) (4.4)

where P(r12) is the interaction potential, and is o 7, in the Moshinsky, oc — in the
12

Crandall and o é in the Hooke model.

As a consequence, none of those models can be considered an high precision description

of a real atom.

The main enhancement of our method is that we decided to use the hamiltonian without
any simplifications, in order to represent the actual behaviour of the Helium and other
atoms or molecules. We used standard high precision results about energies to check that
our model did not substantially differ from an accurate description of the atom, as it will

be extensively shown in the result sections.

4.3.2 The Osenda Serra results

In a set of papers, (Osenda, Serra , 2007) (Osenda, Serra , 2008) (Ferron, Osenda et al.
, 2009), the authors computed the von Neumann entropy of a two electron system, a

heliumlike atom, near the ionization threshold.

Their model considers again a simplified hamiltonian, namely one of the form:

1 1 1
H:—§v§—§v§—3—3+A— (4.5)

T T2 rs
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where r~ = max(ry,7r9). This means that the models uses a spherical average of the

repulsion between electrons.

We note that, on the contrary, we considered both the interactions for r~ and for r., see

section 5.11 about the Coulson and Sharma integrals.

Results: in (Osenda, Serra , 2007) the von Neumann entropy of the ground state only
of Helium is computed. The focus of the paper is on its dependence on the ”coupling”
parameter A. When A\ — 0 the two electrons become independent, and a critical value A,
is found such that for A > A, the system consists of one electron bounded to the nucleus

and a free electron.

In (Osenda, Serra , 2008) a similar model is used to compute the dependence on A of the

von Neumann entropy of the lowest energy triplet state.

In (Ferron, Osenda et al. | 2009) a differend model is used, namely a quantum dot system
is considered, in which the two electrons are confined by a potential of radius R. The

hamiltonian has the form:

1 1
H = —5 (V% + V%) + V(ﬁ) + V(Tz) + m (4.6)
12

with
V(ir) =Vo,r<R; V(r) =0,r>R (4.7)

This model is actually quite different from the Helium atom that we are considering.

4.3.3 A computation for the Helium atom

In (Dehesa, Koga et al. , 2012) the entanglement of a full model of the Helium atom is

computed.
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State present work | (Dehesa, Koga et al. | 2012)
[(15)% 1S) | 0.01606 0.015914 = 0.000044
|1s,2s; 1.S) | 0.48871 0.48866 + 0.00030

|1s,3s; 1S) | 0.49724 0.49857 + 0.00097

| 1s,4s; IS> 0.49892 0.49892 + 0.00052

| s, 5s; 15} 0.499465 0.4993 £ 0.0019

| 1s,65s; 1S) | 0.499665 -

|1s,7s; 1S) | 0.499777 -

Table 4.1 — Comparison of Linear Entropy values for singlet

The model employes wavefunctions in Hylleraas coordinates, described in section 4.4.2,

eq. (4.23) and (4.24).
The entanglement is evaluated computing the linear entropy, that implies to evaluate:

Tr((p" ™)) = [ |04 (0, v1) [Pdrydry = [oo | [ps €8y, v2)00*(v1, T2) dra [ dry dry =

= / P(r], ra)*(re, r2)(r], r5)(ry, 5) dry dry dry dry (4.8)
R12

that is a 12-dimensional integral, that was computed using Monte Carlo multidimensional

numerical integration.

The authors computed the linear entropy for several levels of the singlet and triplet; in

tables (4.1) and (4.2) we report their results and a comparison with ours when applicable.

Actually, our work can be considered an extension of (Dehesa, Koga et al. , 2012), as we
computed some more levels, and we were able to evaluate also the von Neumann entropy,

because our method computes the eigenvalues of the density matrix.

Another difference is that the Monte Carlo integration implies some numerical errors, as
reported in the tables. On the contrary, in our method, once one has attained a requested
precisions in the energy, the entropies are computed using only algebraic operations, so

no other approximations or errors are involved.
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State present work | (Dehesa, Koga et al. | 2012)
| 1s,2s; 3S) | 0.500378 0.47778 £+ 0.00027
| 1s,3s; 3S) | 0.5000736 0.49342 £ 0.00045
| 1s,4s; 3S) | 0.5000267 0.49746 + 0.00055

1s,6s: 3S) | 0.5000070 | -
|
| 1s,7s; 3S) | 0.5000047 -

)
)
)
| 1s,5s; 2S) | 0.5000127 | 0.499 55 + 0.00098
)
)

Table 4.2 — Comparison of Linear Entropy values for triplet

As (Dehesa, Koga et al. | 2012) aims are very similar to ours, we will spend some words
to describe their computation, the main differences with our results, and their physical

meaning.

Considering a pure state | ®) of N identical fermions, the autors consider the single par-
ticle reduced density matrix p"" "7 = Trys (| ®)(® ), that includes both the spin
and orbital contributions to entanglement, and propose as a measure for the amount of

entanglement:

(19)) = NSy (7t — T (1.9

where Sp(p) = 1—Tr(p?) is the linear entropy and the factor =+ takes into account the
fact that even for separable states the linear entropy of the single particle density matrix

does not vanish. In the Helium case N=2 and we get:

(@) = 28L(p™ ) — 1 (4.10)

Then the authors, as we ourselves will do, consider wavefunctions factorized in a coordi-

nate and a spin factor, obtaining for the density matrix:

p = pcoord ®pspin (411>
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and substituting in 4.10:

E(1@)) = 1 — 2Tr((p"™)?) Tr((p)?) (4.12)

At this point the authors discuss separately the case of parallel and anti-parallel spins. In
case of parallel spins, that is in two out of the three possibilities for triplets, 7[(p}" Z”)2] =

1, and the entanglement measure becomes:

¢(| @) =1 — 2Tr[(p)?) (4.13)

The anti-parallel case can happen for the third triplet possibility, with an antisymmetric
coordinate wavefunction, and for the singlet states, with a symmetric coordinate wave-

function. In both cases Tr[(p"™)?] = 1/2 and we get for the entanglement measure:

(1)) =1 = Trl(pi)?] (4.14)

that is the Linear Entropy of the reduced density matrix of the coordinate part.

Table 4.1 shows that there is a good agreement between our and (Dehesa, Koga et al. |
2012) values for the entanglement of the singlet states, (that coincides with the Linear

coord

Entropy of p§°™®) and that it is increasing with the energy of the states.

Table 4.2 compares our results for the Linear Entropy of p§?¢ of the triplet states and

(Dehesa, Koga et al. , 2012) values for the entanglement of the anti-parallel spin triplets,

that is computed with the same formula (4.14). It can be seen that in this case we do not



88 ENTANGLEMENT COMPUTATION: STATE OF THE ART

State present work | (Dehesa, Koga et al. | 2012)+err | -err

| 1s,2s; 3S) | 0.000756 -0.0439 -0.04498
15,35 3S) | 0.000147 | -0.01226 -0.01406
| 1s,4s; 3S) | 0.000053 -0.00398 -0.00618
| 1s, 5s; 3S> 0.000025 0.00106 -0.00286
1s,6s; 3S) | 0.000014 | - ;

| 1s,7s; 3S) | 0.000009 - -

Table 4.3 — Comparison of Entanglement values for triplet, parallel spin

have a good agreement, specifically we get values greater that 1/2, while (Dehesa, Koga

et al. , 2012) are lower than 1/2.

Of course, it is possible to compute also the entanglement for the parallel spin triplets,
using the data in table 4.2 and formulas (4.14), (4.13). This computation is shown in
table 4.3 both for our and (Dehesa, Koga et al. | 2012) data, adding and subtracting the
errors; in this case it is seen that one gets negative values for the entanglement, something

that should not happen.

4.4 Examples of computation methods

Many methods have been used for the study of energies, some of these could be modified

for the study of entanglement.

4.4.1 The Moshinsky, Crandall and Hooke models

These models have been used to obtain estimates of energies and entanglement in two
electrons atoms. As they are solvable analytically, the role of some aspects of atomic
physics can be investigated through detailed computations. Entanglement has been one

of the most studied properties of the models.

The Moshinsky model consists of a system of two particles, interacting harmonically
and immersed in a common harmonic isotropic potential. The model has been used to

investigate fundamental properties of atomic physics, and to test the applicability in this
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field of quantum information concepts. (See (Amovilli, March , 2003), (Amovilli, March
, 2004), (Nagy , 2006), (Moshinsky , 1968), (March, Cabo et al. , 2008), (Yanez, Plastino
et al. , 2010)

In the monodimensional case, if x; and x5 are the coordinates of the particles, \ is the
frequency of their interaction and w is the frequency of the external field, the system’s

hamiltonian is:

162 102 1 1 1
H= ———— — —— 4+ %% + ~0%2% + “\ay — 1) 4.15
202 2042 "YU T (71 = 72) (4.15)

We have set the common mass of the particles = 1, and h = 1, that is we are using atomic

units.

In the Crandall model, the Hamiltonian is:

1 1 A
H = —§(V% + Vg) + 5@02 (T% + 7“%) + = (4.16)
T2

while in the Hooke’s model (see (Atre, Mohapatra et al. |, 2004), (Coe, Sudbery et al. |
2008), (Loos , 2010)) it is:

1 1 1
H = —§(Vf + V3) + §w2 (r; +713) + — (4.17)
12

where w is the frequency of the confining potential.

Using the center of mass system of coordinates, that is defining;:
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R = (x1 + z9) r = (4.18)

L L( )
NG VA

in the monodimensional case and in the three dimensional:

R:\%(rlqL rs), r:\%(rl— rs)

the Hamiltonian splits in a term depending only on r (or r) and one depending only on

R (or R), and it is possible to find analytical solutions of the form f(r)g(R).

In this way, (Yanez, Plastino et al. , 2010) have computed the linear entropy of the
Moshinsky atom through the reduced density matrix

—+00

oz, zy) = ¥ (21, ) Y(x], x2) dxy (4.19)
computing the trace of its square:
+oo
) = [ 1l Paras (1.20)

Defining the parameter

r=2
that represents the relative strength of the interactions between the two particles, com-
pared with the external field, they have derived the following behaviour of the entangle-

ment:
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state lim, oo lim._g
|00) 1 0

|01) 1 0.5

|10) 1 0.5

|11) 1 0.5

120) 1 5/8

102) 1 5/8

The same authors report some interesting qualitative observations for this model:
- in general the entanglement increases with 7, the strength of the interaction

- the entanglement tends to increase also with the energy (that is considering more excited

states)

- however, there are exceptions to this rule, for instance for high values of the interaction
the state |11) with anti parallel spins has more entanglement than |02) also with anti

parallel spins.

- for states sharing the same anti symmetric coordinate wave function states with parallel

spins have less entanglement than those with anti parallel spins

- the entanglement of excited states with anti parallel spins does not go to zero for 7 — 0.
This entanglement is not due to the correlations arising from the antisymmetry of the

global state.

Turning to the Hooke’s atom, (Coe, Sudbery et al. , 2008) have computed both the
linear and von Neumann entropies of the model in function of the parameter w. The
entanglement increases with decreasing confining potential, as this means that the relative

strength of the electrons’ interaction increases.

For large values of w the entanglement is essentially zero. For intermediate values of w, the
entanglement increases sharply. When w < 0.001 Hartrees, the increase of entanglement

diminishes significantly. The behaviour is qualitatively the same both for the linear and
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the von Neumann entropies.

4.4.2 Helium in Hylleraas coordinates - the Pekeris model

This model is more realistic than the Moshinsky, Crandall and Hooke atoms, as it uses a

physically sound potential.

Following Pekeris’s approach (see (Barnett , 2003), (Barnett, Capitani et al. , 2004),
(Koutschan, Zeilberger , 2010), (Pekeris , 1958), (Pekeris , 1959)), we used this model to

perform some preliminary computations.

The Hamiltonian is:

1

where z is the nucleus charge, r; and r, are the distances of the electrons from the nucleus

and 719 is their mutual distance. One has:

Y = 1P(r1, o, T12) (4.22)

With

S=1r1+ 1o, t =19 — 11, U= T (4.23)

We look for a v of the form
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_1
'QD = Ne 2ks E Clmnk?l+m+n8l 1y

The so-called perimetric coordinates u, v e w are defined in the following way:

u = 6(7”2 +7’12 — 7“1)

v = 6(7”1 + rio — 7’2)

w = 2e(ry + 19 — T12)

u, v and w are independent from each other and vary from 0 to oc.

We set

(o) By, v, w)

N|=

Y = e

We consider the series expansion

F = Z A(l, m, n) Ly(u) Ly, (v) Ly (w)

1,m,n=0

Where L, (w) is the Laguerre normalized plynomial of order n.

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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Substituting the expressions (4.29) and (4.28) in the equation (4.21), and using the prop-
erties of the Laguerre polynomials, we obtain a (rather complex) recursion relation for
the coefficients A(l,m,n), that is we obtain an equation in the A, that can be written in

the more concise form

+2
Y Capall,mn)A(l + a,m + B,n +7) =0 (4.31)
a,B,y=—2
Then:
C*Oéﬁﬁﬁ’v(l? m, n) = Caﬂﬂ(l —a,m—f,n—7) (4.32)

If ¢ is symmetric in the two electrons (singlet case) we have

A(l, m,n) = A(m, [, n) (4.33)

while, if it is antisymmetric (triplet):

A(l, m, n) = —A(m, [, n) (4.34)

The recursion equations represent a linear system for the A(1,m,n) coefficients. To manage
this system, it is necessary to arrange the triple set of coefficients in a monodimensional
array. This is done by first ordering the triples (I,m,n) and then assigning to each triple

an index k in the following way:
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A(l, m, n) = By (4.35)

k(l, m,n) = (p)w(w + 2) 2w + 5) + #=[1 — (—1)“] +

+711(l + m)? + %[1 — (=D L+ 1+ %(Hm) (4.36)

where

w=Il+m+n (4.37)

The triples (I,mn) are obtained with the schema of table 9.5 for the singlet and of table
9.6 for the triplet, (appendix 9.2), together with the a;, and by, of order 13 for the singlet
and triplet.

Substituting the triples (I,m,n) and the By in the equation (4.31), we obtain the equations:

Z Cszk =0, Czk = Qi + Gbik (438)
k

The a;; and by, are integers, and Cj, = Cy;

In order to evaluate the quality of the Pekeris equations, we solved the generalized eigen-

value problem for Z=2.
The results of 13 eigenvalues for states 1S are reported in table 4.4.

In the first column there are the fundamental, 1st excited,... etc. states. In column A
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A B C
F 2.90357 2.903724366 53
1 2.07015 2.145974044 35333
2 1.53793 2.061271989 253893
3 0.884622 2.033586716 564994
4 0.787611 2.021176851 610321
) 0.721997 2.014563098 641611
6 0.618008 2.010625776 692629
7 0.510235 2.008093621 745911
8 0.453354
9 0.292778
10 0.219117
11 0.123265
12 0.00681448

Table 4.4 — Pekeris energies 'S z=2

we have reported the energies computed with the present method. In column B we have
reported the standard energies (Kono, Hattori , 1985) and in column C the differencies

in parts per million.

It must be noted that the Pekeris method does not have any variational parameters. Even
if it was originally thought only for the computation of the fundamental state, one can

see from the table that it gives good results also for some excited states.
It must also be noted that we used a matrix of dimension 13x13 only.
In table 4.5, we report the analogous computations for the triplet, Z=2.

Unfortunately, although we had these encouraging results, we did not pursue this kind of

computation, because of the difficulty of the reduced density matrix computation.

Heavy numerical integration would be necessary in this case, that uses a unorthonormal

basis.

In the next chapter we will describe the method that we employed, using an orthonormal

basis.
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A B C
1 2.16715 2.175229378 3714
2 1.84795 2.068689067 106705
3 1.27713 2.036512083 372884
4 0.762199 2.0226189 623162
b} 0.585709 2.015377452 709380
6 0.577895 2.011129919 712652
7 0.519663 2.008427122 741259
8 0.406628
9 0.400415
10 0.227294
11 0.197454
12 0.116188
13 0.000405704

Table 4.5 — Pekeris energies 35 z=2
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CHAPTER 5

Method used for the computations

5.1 Aims of the chapter

The present work basically consists of the computation of entanglement in Helium.

We aim at solving a standard problem, as simple as possible but not trivial, to test several

computation methods and different approximations.

For this reason it is very useful to decribe in detail the method we employed, so that
possible changes can be easily made. This will be necessary, as the numerical computation
showed to be not trivial, and it must be checked which points can be simplified, to obtain

a method that can be suitable even for more complex and interesting cases.

An important point is that we use a variational method to find the optimal values of
the parameters. We use a well-known theorem, stating that the optimal values of the
parameters can be found looking for the minimum energy, both for the fundamental and

for the excited states.

We stress that we optimize the parameters looking for the minimum energy, but the goal

of the computation is the evaluation of entanglement.

One of the goals of the present work is the evaluation of the sensitivity of the entanglement

value on the parameters. Fortunately, we found that the entanglement computation is

99
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not more critical than the energy, and the von Neumann entropy is slightly more difficult
to compute than the linear entropy. By "difficulty” we mean the dimension of the Hilbert

space that one must use to obtain a given precision.

In the following pages we report many details about the Hilbert and Fock spaces we
employeded, so that when different bases are used in other chapters, a simple change of

symbols will suffice.

5.2 Sketch of the algorithm

The computation is composed by the following steps:

Step 1: computation of the energy of a specific state of the system. The computation is

done solving the stationary Schrodinger equation:

Hy = M) (5.1)

where H is the system’s hamiltonian, and finding the minimum of the eigenvalue corre-
sponding to the selected state. The minimum is found varying a suitable parameter of

the Hilbert space.

We have 3 substeps:

Step 1.1: computation of the Hamiltonian H of the system
Step 1.2: computation of eigenvalues and eigenvectors of H

Step 1.3: computation of the minimum of the eigenvalues

Step 2: computation of entanglement, with the substeps

Step 2.1: computation of the density matrix and reduced density matrix using the eigen-
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vectors computed in step 1

Step 2.2: computation of the eigenvalues of the reduced density matrix, then computation

of the entropies using egs. (3.16), (3.18) and of the entanglement using eq. (3.34).

Step 1.1 will be extensively discussed in sections 5.4 and the following for Helium and in

section 7.3 for the Hy molecule.
Step 2.1 will be discussed in depth in section 5.3.

We now describe the other main substeps from a computational point of view.

5.2.1 Step 1.2: computation of eigenvalues and eigenvectors of

the hamiltonian H

The computation of eigenvalues and eigenvectors of a matrix is a well-studied topic, see
e.g. (Saad , 2011) where the calculation of electronic structure is quoted as a classical

eigenvalue problem.

We considered several algorithms, trying to find the best mix of simplicity, speed, and

accuracy. It is to be noted that the H matrix is symmetric.

The Jacobi algorithm consists of a sequence of plane rotations, designed to annihilate
one of the off-diagonal elements. Even if successive transformations undo previously set

zeroes, it is possible to make off-diagonal elements smaller and smaller.

The product of the transformations gives the matrix of eigenvectors, and the elements of

the final diagonal matrix are the eigenvalues.

The method is slower than other, more sophisticated, but is quite simple, and it was our

first choice.

A Jacobi rotation is a matrix of the form:
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(10 0|
0 1 0. 0
0 .. C. S .0
P(pg) = | 0 . 1 .0 (5.2)
0 .. =S. C .0
0 . .0
00 .. 1

that is, it is a unit matrix, except for the elements P,,, P,,, P, and FP,,, that are chosen

to be:

S = sing, C = coso (5.3)

with an angle ¢ that has to be determined. Given the H matrix, rotations are applied in

order to obtain:

H' = P7(pg) HP(pq) (5.4)

Only elements in the columns and rows p and q of H are changed, and one can compute

explicitly the transformed element:

My = (C* — SQ)hpq + SC (hyp — hyq) (5.5)

rq

Setting h;,, = 0 one can find ¢. Defining

= hel? (5.6)

r#s

it can be shown that at each stage
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Y= % = 2] hyy|? (5.7)

so the sequence converges monotonically to a diagonal matrix D. The elements of this

matrix are the eigenvalues of H and the columns of the matrix

V = P(pq) P'(p'q) ... (5.8)

are the eigenvectors, since HV = V D.
The divide and conqueror algorithm

We considered some improvements of the algorithm just described. We adopted as a

starting point the Lapack library, and its divide and conquer driver (DSYEVD routine).

The first step of such algorithms is to reduce the input symmetric matrix to tridiagonal
form. This is performed, in the Lapack library, by the routine DSYTRD, finding a

decomposition

H=QTQ’ (5.9)

with Q orthogonal and T tridiagonal.

The second step is to compute the eigenvalues and eigenvectors of T, that is equivalent

to factorizing

T = SAS” (5.10)

Then the diagonal entries of A are the eigenvalues and coincide with the eigenvalues of
the input matrix H. The columns of S are the eigenvectors of T, and the eigenvectors of

H are the columns of Q S.
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The idea of the divide and conqueror algorithm is the following. Consider:

_ - | -
by b |
b1 |
b1 Qm | b
T=| - —-— — — | —— — — — | =
b | @1 b
| b1 Qg
| bn—1
i | bu1 an |
- - | -
by b |
b1 |
bn—1 G Fbm |
= - _ ‘ - S - +
| @1 Fbm bt
| bt Gy
‘ bnfl
I | bu1 an |
|
|
|
+b,, | by
+ - - — - | - —= = —| =
b | b
|
|
|
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T, |
= | — | — | + pud’, p = +b, (5.11)
| T2
Then one solves the smaller eigenvalue problems (i=1,2):

These decompositions can be computed by any algorithm, and can also be further split

by the same divide and conqueror algorithm. In this way one obtains a sequence of small

problems, that can also be made suitable for parallel solving.

Then, sobstituting in (5.11), we arrive at the problem:

(D + pvvl)x = Ax

where D is the diagonal matrix of the eigenvalues of Q; and Qs and

Qf |
| Q

Finding this spectral decomposition is the hearth of the algorithm. If

D + pvvl = QAQT

then we have for the original tridiagonal matrix:

(5.13)

(5.14)

(5.15)
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(5.16)

Parallel algorithms

Although we did not face the problem of using very fast algorithms in the actual com-
putations that we performed, we considered the possibility that, further increasing the

dimension of the spaces, some major improvement could be necessary.
For this reason we considered the possibility of parallelization of the algorithms.

As already mentioned, one way could be to parallelize the divide and conqueror algorithm,
see e.g. (Tisseur, Dongarra , 1999), who used the Lapack divide and conqueror routines

as building blocks.

Other authors have adapted approximation methods, e.g (Dashti, Siahpirani et al. , 2010)
have started with the classical Matrix Power Method. As it is well known, the main idea
is to repeatedly apply the matrix to a suitably chosen start vector x. Eventually the
trasformed vectors will align in the direction of the eigenvector associated with the largest

(in absolute value) eigenvalue.

Very sophisticated refinements of this algorithm have been proposed for parallel com-
putation, but we did not study in deep the topic, as it is not presently needed for our

goals.

5.2.2 Step 1.3: computation of the minimum of the eigenvalues

In what follows we consider the function

A= f(&) (5.17)

where \ is the eigenvalue of the level in which we are interested, and f is the hamiltonian
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considered as a funciton of the variational parameter of the Hilbert space; we will now

discuss algorithms to find local minima of f.
Golden search algorithm

The algorithm (Press, Teukolsky et al. , 2001) starts with a ”bracketed” minimum of the
function f, that is three points, say a < b < ¢ such that f(b) < f(a) and f(b) < f(c).

Then a new point d is chosen, either between a and b, if b —a > ¢ — b or between b and
¢ in the opposite case. Suppose for instance that d is chosen between b and c¢. Then if
f(b) < f(d) the new bracketing triple is (a,b,d), on the contrary if f(b) > f(d) the new
triplet is (b,d,c).

The bracketing process is continued until the desired tolerance is reached, at each step:
- the middle point of the new triplet is the abscissa of the best minimum obtained

- the new point is choosen in the bigger of the two segments, at a distance of 0.38197 from

one end and 0.61803 from the other (the golden section).

The initial bracketing was done either by a first coarse scanning or starting with any
two points a,b and using a routine that computes f in a point external to (a,b) until a

bracketing triplet is found.
Multidimensional minimum - Powell’s method

In some tests we used bidimensional minimization, to evaluate the advantages one gets
either using two parameters for a single shell or seeking the minima of the (single) param-
eters of two shells. Our tests showed that these advantages do not compensate for the
higher complexity of those methods, and we accordingly minimized one shell at a time in
our final computations. Nevertheless, we report the algorithm used, as it could be useful

in some other system configurations.

The algorithm supposes that a linear minimization routine is available that, given as

input the function f to be minimized, and vectors P (the initial point) and n (the initial
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direction), finds the scalar A that minimizes f(P + An). Then the initial point is replaced
by P + An and the initial direction by An.

This linear minimization routine is basically a monodimansional minimization routine,
like the one already described, applied to the function of one variable which is the value

of f along the line from the initial point in the initial direction.

The structure of Powell’s algorithm in N dimensional space is:

1) start with the directions u; = e;, the basis vectors, for i = 1,..., N.

2) call the initial point Py.

3) for i =1, ..., N start from P;_; and find the minimum along u; and call this point P;
4) for i =1,...,N set u; = u;;; (that is: discard direction uy)

5) set uy = Py — Py

6) start from Py and find the minimum along uy and call this point Py

As pointed out in (Brent , 2002), the procedure of throwing away, at each step, u; in
favor of Py — Py can result in a set of directions that become linearly dependent. When
this happens, the procedures finds a minimum over a subspace of the full N dimensional

space.

There are several ways of overcoming this problem, we used the simplest, consisting of
throwing away, instead of uy, the old direction along which the function f made the largest

decrease.

Before doing this, however, f is evaluated in a point further away in the direction Py — Py.

If this value is greater of f(Py) the old set of directions is kept.
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5.2.3 Gaussian approximation

As it will be discussed in the chapter about the Hy molecule computation, in order to
calculate the hamiltonian when two or more centers are involved, it is convenient to

approximate the functions of the Hilbert space basis with gaussians.

The great advantage of the gaussian representation, based on the linear combination of
gaussian functions, is that an integral over a product of two gaussians of the form ke "1,
he P2 centered about two positions reduces to a single integral over a third gaussian
centered in an intermediate point. Even more complicated integrals can be deduced from

this basic result.

In our exploratory computations we used standard values computed in (Stewart , 1969),
however we considered also the algorithm used by this author to compute gaussian ex-

pansions, so that, if necessary, we could compute other terms of the expansion.

The algorithm used in (Stewart , 1969) consists in minimizing the error

e—/|¢—x\2dT+A(1—/X*XdT) (5.18)

where ¢ is the orbital to approximate, x is the linear combination of N gaussian functions,
A is a Lagrange multiplier, and the integration is performed in the three dimensional space.
As both the ¢ and y have the same angular components, the integration is actually carried

on the volume element r2dr.

To have a minimum with respect to the gaussian parameters P;, a necessary condition is

¢ = =0, P,=1,...2N (5.19)

Expanding in Taylor series about an approximate starting set of parameters PP, one gets:
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e = €(P°) + > (0€;/0P:)po (P — PY) (5.20)
k
for i=1,...,2N. Hence:
D¢ 2N+1 92¢ ,
<0B)P = - > (838&>P (P, — P?) (5.21)
0 k=1 0

In the above equation the Lagrange multiplier has been considered as one of the param-

eters P,.

We have thus a system of linear equations in the 2N+1 unknown parameters F;, that can

be solved iteratively until P, — P ~ 0.

5.2.4 Complexity considerations and quantum algorithms pro-

posals

Some authors, e.g. (Whitfield, Loved et al. , 2012) considered the problem of evaluating
the computational complexity of the algorithms used to compute the electronic struc-
ture. One of the purposes of these considerations is to investigate if and when quantum

computers would be useful.

The main focus of the quoted paper is about time complexity, that is how the running

time required by the computation increases with the problem size.

Among the computational problems considered there is the electronic structure prob-
lem, that basically corresponds to our Step 1. It can be formalized as follows: given the
number of electrons N, the number of orbitals M, a configuration of nuclei, a trial energy

E an error tolerance § and the hamiltonian

H=T+ Ve + Viy (5.22)
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where the operators are: T the kinetic energy, V.. the electron-electron interaction end V_y
the electron-nuclear interaction. The problem consists in deciding if the ground energy is

less than ' — § or greater than E + ¢, promised that it is not between those values.

It can be shown that methods for getting approximate solutions to this problem have
complexities ranging from NP-complete to QMA-complete. We recall that QMA, Quan-
tum Merlin Arthur, contains problems that are hard to solve even by quantum computers,

but that, once a solution is found, it can be efficently checked by a quantum computer.

In particular, the quoted paper and (Schuch, Verstraete , 2010) show that the Hartree-
Fock method is NP-complete. The Hartree-Fock method consists in minimizing the energy
of N electrons given n basis functions that must be optimized, starting from the antisym-

metrized product of single particle wave functions.
It is also known that this method scales as somewhere between O(n?) and O(n?).

We did not try to rigorously evaluate the computational complexity of our algorithms.
We performed, however, some test to get some estimates of the scaling of the complexity

increasing the basis dimension.

5.2.5 Execution time

During the computations, we measured the time needed to perform the main subroutines.
Tables 5.1, 5.2 and 5.4 report summaries that were obtained:

- taking the system time before and after the routine calls

- summing all the calls in a program run (e. g. 30 loops to find the minimum of energy)
- taking the average of several runs with different parameters

The entries = 0 mean that the time was too short for the fortran cpu_time instruction.
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Table 5.1 refers to computation of the S states of Helium for the singlet. We have taken as
unit of measure the total duration of the run for n=3. The columns correspond to the main
subroutines. Here eigl is the computation of eigenvalues of the reduced density matrix,
while eig2 is the computation of eigenvalues of the hamiltonian for energy computation.
The subroutine ulm computes the single particle matrix elements, the other subroutines

compute some auxiliary matrices.
It can be seen that we have the following approximate scaling with n:

- eigl = linear: the dimension of the reduced density matrix is n, that is < 20 in our

tests, a value that is not critical at all, to low to show the actual scaling of the algorithm.

58 Note that the actual dimension of the matrix to diagonalize is m =

-eig2 & n
n(n+1)/2, so the scaling in function of the matrix dimension is &~ m*?, that is reasonable

for this kind of problems

calex &~ linear and cikkr ~ constant

- ulm, the single particle matrix elements computation, ~ n*6

- ampp ~ n>°

for the total runtime, neglecting the cases n < 9, we have a scaling ~ n3®

The plot 5.1 shows the scaling of the subroutines, relative to the highest time of each of
them. Table 5.2 and plot 5.2 refer to the scaling of routines for S-P computations. Here
twoq computes the interactions between electron in different shells. The scaling of this
routine is n°. ortho orthogonalizes the STO functions, and scales linearly. All the others

are similar to the case of shell S only.

We compared also the total run times for runs considering only the S, the S-P and the
S-P-D shells. Mean times in seconds are shown in table 5.3. For these runs we used a 1.66

Ghz, 1 Gb Ram, 32 bit Windows system. The ratio between the S and S-P runs scales

1.

approximately as n'-%, and the ratio between S and S-P-D runs as n?°.
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He singlet S only runtine scaling
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Figure 5.1 — Scaling of the main subroutines with n; He singlet S states

He singlet S-P only runtine scaling

—+—eigl
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— twop
—— twoq
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Figure 5.2 — Scaling of the main subroutines with n; He singlet S-P states

For the Hy computation we have considered the scaling with the number of basis functions
and with the number of gaussian functions used in the expansions. In table 5.4, S, the
number of STO of the basis, corresponds to n in table 5.1, and G is of course the number
of gaussians. The table shows that, notwithstanding some fluctuations, increasing the
values of S and G, the time needed to compute the 2 bodies interactions (twdir, twsc) is
far longer than the duration of all the other subroutines. Times are relative to the total

run time for n=3, G=1.
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n eigl eig2 | calex | cikkr ulm | ampp total
31 0.0000 | 0.0003 | 0.0000 | 0.2659 | 0.0023 | 0.0010 | 1.0000
51 0.0013 | 0.0043 | 0.0003 | 0.2655 | 0.0144 | 0.0020 | 1.0187
7 10.0030 | 0.0314 | 0.0007 | 0.2659 | 0.0725 | 0.0047 | 1.1089
91 0.0070 | 0.1416 | 0.0013 | 0.2655 | 0.2438 | 0.0124 | 1.4021
11 | 0.0150 | 0.4693 | 0.0030 | 0.2659 | 0.6536 | 0.0294 | 2.1690
13 1 0.0210 | 1.3133 | 0.0040 | 0.2722 | 1.4957 | 0.0665 | 3.9092
151 0.0361 | 2.9312 | 0.0073 | 0.2682 | 3.0361 | 0.1346 | 7.1523
17 1 0.0558 | 6.0564 | 0.0104 | 0.2665 | 5.6673 | 0.2672 | 13.0631
19 | 0.0815 | 12.1232 | 0.0147 | 0.2669 | 9.7993 | 0.4873 | 23.5164
Table 5.1 — Execution time - He S

n | eigl | eig2 | Ortho | singp | twop | twoq | total

51 0.000 | 0.040 | 0.001 | 0.027 | 0.005 | 0,004 | 1.000

7 10.001 | 0.288 | 0.001 | 0.136 | 0.011 | 0.008 | 1.361

910.002 | 1.277 | 0.002 | 0.459 | 0.028 | 0.018 | 2.701
11 1 0.003 | 4.471 | 0.005 | 1.210 | 0.068 | 0.042 | 6.701
13 1 0.005 | 11.85 | 0.008 | 2.775 | 0.149 | 0.090 | 15.80
151 0.008 | 27.16 | 0.012 | 5.645 | 0.299 | 0.175 | 34.22

Table 5.2 — Execution time - He S-P

n S S-P| S-P-D|SP/S|SP-D/S

51 47.6 50.6 56.8 1.06 1.19

71 51.8 68.8 | 115.3 1.33 2.23

9| 65.5| 136.5 | 350.3 2.08 5.35
11 | 101.3 | 339.4 | 1032.5 3.35 10.19
13 ] 182.6 | 798.4 | 2598.6 4.37 14.23
15 ] 334.1 | 1728.9 | 6525.2 5.18 18.72

Table 5.3 — Execution time - He S, S-P, S-P-D shells

This point should be considered in more depth, as it is sometimes proposed to use quantum

algorithms to compute the electronic structure (e.g. yung2012; seeley2012), but these

algorithms need that the single electron and electron-electron integrals are classically

computed before applying the algorithm.
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eigl eig2 | ortho twop
0.0000 | 0.0294 | 0.0009 | 0.0069
0.0000 | 0.0025 | 0.0057 | 0.3173
0.0000 | 0.0018 | 0.0261 | 4.4026
0.0003 | 2.0691 | 0.0186 | 2.8533
0.0006 | 0.1536 | 0.0742 | 40.6721

o w o w | R

Lot W W w| B

Table 5.4 — Relative execution time - Hy S

5.3 Computation of the reduced density matrix and

entropy evaluation

We will treat separtely the main cases for triplet and singlet.

5.3.1 Case I: one configuration, triplet

We have for the state vector:

n—1 n
v = Z Z CZJDBt[’L,j]

i=1 j=i+1

and for the density matrix:

n n—1

p=|UNT| = z_: >N Y Cij- Cu- Detli, j] Det[k, ]

i=1 j=i4+1 k=1 I=k+1

that is:

_ n—1 n n—1 n 1
pP=Ds Zj:iJrl > it Dteior1 Cij - Crag

[pi(r1) - @i(r2) — @5(r1) - @i(r2)] - [@h(r'r) - &7 (x'2) — @7 (x'1) - Pf(r'2)]

(5.23)

(5.24)

(5.25)
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To obtain the reduced density matrix, we set ro = r’5 and integrate in ry:

= i Ykt 3 C - Cre
[@i(r1) - @ (x'1)0(4, 1) + ¢;(r1) - @7 (x'1)d(d, k) —

—¢i(r1) - ¢ (t'1)0(j, k) — ¢;(r1) - ¢ (x'1)d (i, 1)) (5.26)

The ds consent to drop a sum.

This is a n x n matrix in the single particle space. We now break it into four pieces,

rewriting the indexes.

Py = 2im i o Yotk 5 G Cra - () - 91 (0 65, 1) =

-3y {% > cﬂckl}rmkl (5:27)

i=1 k=1 l=k+1

= 2 Y it Lotk 3 Cig - Cua ) (1180, k) =

n—1

=> > > %ij Cha 7)1 (5.28)

k=1 j=k+1I=k+1

= 2 Y Yo ot~ Cig - Cua [i)(1] (5. k) =

—_

3

n n—l1
1

-5 Clis Cra )] (5.29)

i=1 [=k+1 k=1
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Play = S S Yt — 5 - Cli - Cra i) (k[ 6(6, 1) =

n—1 n n—1

=3 3 5 Culi (5.30)

So we obtain:

pl=ply+ Pl + P+ ol =

= S A Ca Cra Ik + Yy Sy St 5Ck Cra ) (1 —

n—1 n n—1 n—1 n n—1
D ID BRI S Bl DEIAM I (5.31)
2 2
=1 I=k+1 k=1 i=1 j=i+1 k=1

It is useful to expand the C;; matrix with zeroes in order to get indexes varying always

in the set {1, ..., n}

With this convention, we get:

ph = A5 2 Ca Gk 1) (G + 225 {5 20k Cri O } 1) (1 —
— 225 {5 220 Cin Cig 1) (Gl = 2055 {5 220 Oni Cnc } 1) (5] =

1

= Z IVIE {5 Z[Cik Cji + Cyi Cj — Cit, Crj — Ci Cjk]} (5.32)
!

This is the expression used in our fortran programs for the triplet case.

In the case of interacting configurations, it is easy to verify that the total reduced density

matrix is block-diagonal, and that each block refers to a single shell.

For instance, for S and P we have:
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[) = [)) + |¢)P) (5.33)

and for the density matrix:

SS + pPP

p=0p (5.34)

We haven’t written terms p°* and p® because of the angular integrations.

For the reduced density matrix we have the situation:

X X X ]
X X X ndds
pPhr=1X X X (5.35)
X X
I X X | nddp

where ndds is the dimension of the S states, and nddp that of the P states.

An explicit example: triplet, n=3

We consider the simplest case, with the dimension of the Hilbert space of single particle

n=3. Then also the dimension of the Fock space is n(n —1)/2 = 3.

Supposing for the sake of simplicity that the components a, b, ¢ of the state vector are

real, we write:
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a 0 a b
W) = | b|; cc=100 ¢ (5.36)
¢ 000

that is we build the matrix cc disposing the state vector components from left to right
above the principal diagonal. This is the same operation of expanding the state vector

with zeroes that conducted to eq. (5.32).

The total density matrix is:

a a2 a-b a-c
p=|0b|labc] = |b-a V¥ b-c (5.37)
c c-a c-b

a?+b b-c 0 0 0 0
,0{=% c-b A 0 |; szé 0 a* a-b (5.38)
0 0 0 0 b-a b +c
00 a-c 0 00
—p§=% 00 0 |; —p :% 0 00 (5.39)
00 O c-a 0 0

and the total reduced density matrix is then:
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c-b a>+cAF a-b (5.40)

Note that this matrix has trace = 1, as expected.

To link this computation of the reduced density matrix to the methods used in the The-
ory of Quantum Information, we embed the density matrix (5.37) in the Fock space of

distinguishable particles, obtaining a 9x9 matrix.

Starting from this 9x9 matrix, one can obtain the partial density matrix p! summing the
elements in the principal diagonals of the nine 3x3 matrices in the way indicated in fig.

5.3 left (only 2 elements have been explicitly drawn):

The matrix p’! can be obtained summing as in figure 5.3 right. The method is illus-

trated in the following pages. The disposition of fig. 5.4 is obtained multiplying
[0,a,b,0,0,c,0,0,0]7-[0,a,b,0,0,c,0,0,0], 5.5 multiplying [0, 0,0, a, 0,0, b, ¢,0]7-[0,0,0,a,0,0,b, c,0],
that is exchanging rows with columns of the matrix cc of formula (5.36), 5.6 multiply-

ing [0,a,b,0,0,¢,0,0,0]7-[0,0,0,a,0,0,b,c, 0], and 5.7 multiplying [0, 0,0, a,0,0,b, ¢, 0] -
0,a,b,0,0,¢,0,0,0].

T 5

Figure 5.3 — Summing elements to obtain p! and p!!
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Computing p!
a2+ v b-c 0
1
=3 c-b 0 |; (5.41)
0 0 O
1 45 43 2% 9% 03 a1 3 Ay
11
12
a"2 | ab ac

13 ba | b4 Hi:
21
21 ca |cb <2
i1
iz
3

Figure 5.4 — Computation of p!
Computing pl

0 O 0
1 1 2
P2=5 |0 a a-b (5.42)

0 b-a b+

11 12 13 2¢ 22 23 31 32 33

1
12
13
21 a7 ab | ac
2
23
- ba 2| be
32 ca ch |2
33

Figure 5.5 — Computation of pl
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Computing p}

0 0 a-c
1
I
Ps=75100 0 |; (5.43)
00 0
11 12 13 21 22 23 31 32 33
11
12 23 ab | ac
13 ba b2 be
21
22
33 ca cb o2
31
iz
i3
Figure 5.6 — Computation of pl
Computing p}
0 00
1
1
P= 5 0 0 0 (5.44)
c-a 0 0
i 12 13 2122 23 31 32 33
1
12
13
21 a2 | gp ac
22
23
3 ba |b2 be
32 ca | ch el
33

Figure 5.7 — Computation of p}
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At the end we find the (5.40):

a?+b b-c —a-c
1
pIZE c-b a*+cA a-b (5.45)
—c-a b-a b+
In the same way, we obtain:
a2+ b-c —a-c
1
pl = 3 c-b ad*+cF a-b (5.46)

—c-a b-a bV +2

That is p! = p'! as it must be. It is easy to extend those computations to the general

case.
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5.3.2 Case II: one configuration, singlet

In this case, we have permanents instead of determinants, and instead of \/Li as a normal-

izing factor, we have:

1
Nz’j = 5 fOTi :]

fori < jei >

Sl

iy

(rira|9) = Y Ciy - Nig - [6i(r1) - 05(r2) + 65(r1) - ¢i(rs)]

i<y

For the reduced density matrix of the simmetrical case (singlet), we have:
pl = [drp(ry, r; vy, 1) =

= Jdr 3 ic; Dk Cij Gy Nij Nia-

[0i(r1) - ¢5(r) + 05(ra) - gi(r)] - [Gr(r'"s) - G7(x) + ¢ (r'"s) - G1(r)] =

= > i<i 2n<t Cij Oy Nij Nig -

Abi(r1) - d5(x'1) - 0(4,1) + dj(r1) - ¢ (x'1) - (i, k) +

+di(r1) - ¢ (x'1) - 0(4, k) + ¢s(r1) - @p(x'y) - 0(3, 1)}

Defining C;; = 0 for ¢ > j we obtain

(5.47)

(5.48)

(5.49)

(5.50)
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pl=pi+ps+ s+ (5.51)
(P1)iy = Zm: Cim Cy Niem N (5.52)
(p3)ij = ; Coni Ctyy Nuni Ning (5.53)
(03)ij = Xm: Cim Cpj Nim Ninj (5.54)
(ph)i; = Em: Coni Con Nuni Ny (5.55)

An explicit example: singlet, n=3

Taking again n=3 as the dimension of the Hilbert space of a particle, we have that the

Fock space dimension now is n(n + 1)/2 = 6.

Setting:

d2

Sl

(5.56)

S



126 METHOD USED FOR THE COMPUTATIONS

_a_
b
0.5 d2 d2
C
N=14d2 05 a2 |; |v) = ;
d2 d2 0.5
_f_
a b c
cc = 0 d e
00 f

we obtain:

0.25a% + 0.56* + 0.5¢> d8bd + 0.5ce dScf

ol = d8bd + 0.5ce 0.25d2 + 0.5¢*> dSef
dscf dSef 0.25f2
0.25a2 d8 ab d8 ac
ph =1 dSab 0.56% + 0.25d2 0.5bc + d8de

dSac  0.5bc + d8de 0.5¢% + 0.5¢% + 0.25f2

0.25a%> d8ab + d8bd dSac + 0.5be + dScf
= 0 0.25d2 d8de + dlef
0 0 0.25 f2

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)
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0.25a2 0 0
L= d8ab + d8bd 0.2542 0 (5.62)
d8ac + 0.5be + dScf d8de + dSef 0.25f

In the following pages, we illustrate the computation. The figures are built embedding
the density matrix in the space of distinguishable particles, in the same way as for the
triplet. The vector cc of formula (5.58) is multiplied by itself to obtain the disposition for
pl in fig. 5.8. The other dispositions are obtained switching rows and columns of cc. In
all the pictures, the vectors that have been multiplied are specified by the dots in the top
row and leftmost column, outside of the squares. Each dot stands for a nonzero element

of vectors and matrices.
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Computing p!

In order to simplify the figures, we indicated with a dot the nonzero elements.

[ 0.25a% + 0.5b2 + 0.5¢2 dSbd + 0.5ce  dScf
pi = d8bd + 0.5ce 0.25d% + 0.5¢2  dSef (5.63)

d8cf d8ef 0.25f2
- @ - - &
a8 & o e |® -
s g - LR ]
al® LR ]
I R | -
- - -
al® 8 | a ® | a -

Figure 5.8 — Computing p!

Computing pl

0.25a> d8 ab d8ac
ph = | dSab 0.5b% + 0.25d2 0.5bc + d8de (5.64)
d8ac  0.5bc + dS8de 0.5¢ + 0.5¢2 + 0.25f2

Figure 5.9 — Computing p}
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Computing pl

0.25a%> dSab + d8bd dSac + 0.5be + dScf

ph = 0 0.25d> d8de + def
0 0 0.25f2

- - - - - -

- - - - - -

& ] - - - -

- - - - - -

- E ] - - - -
- - - - -

a|l® - - - - -

Figure 5.10 — Computing pl

Computing pl

0.25a> 0 0
ph = d8ab + d8bd 0.25d2 0
d8ac + 0.5be + dScf dS8de + dSef 0.25f2

Figure 5.11 — Computing p}

(5.65)

(5.66)
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The reduced density matrix is:

a? + 0.50> + 0.5¢2  d2ab + d2bd + 0.5ce d2ac + 0.5be + d2cf
pl = | d2ab + d2bd + 0.5ce  0.50* + d® + 0.5¢2  0.5bc + d2de + d2ef

d2ac + 0.5be + d2cf 0.5bc + d2de + d2ef  0.5¢* + 0.5¢? + f?
(5.67)

whose trace is, as expected:

Trip) =a*> + V¥ + 2 +d> + &+ f2 =1 (5.68)

5.4 The method in summary

We compute with high accuracy the lowest energy eigenstates of helium by means of
a variational method, the configuration-interaction method.  This method, in several
variants, has been extensively used in atomic physics, see, for instance, (Fulde , 2002),
(Hilico, Billy et al. , 2000), (Biirgers, Wintgen et al. , 1995), (Wintgen, Delande , 1993).

Orthonormal basis functions are provided by

(I)nl,h,mum,lzmz (I‘1 ) r2)

(5.69)
= Lng gl (frlv r2>Y21m1 (Ql)YEsz (92)7

where Y},,,,, are spherical harmonics, with (2; solid angle for particle ¢ and the radial

functions F,,, j,.n,1, (71, 72) are obtained after orthonormalizing the Slater-type orbitals

Ry(r) = r™* " exp(=&ur), (5.70)
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with &, ; variational parameters, and properly symmetrizing the products of the obtained
one-particle radial wafefunctions f,;(r). That is, if the spin wavefunction is symmetric,

F must be antisymmetric,

1
Fn17ll§n2712 (Th T2> - E[fmll (rl)fmlz (T2)
(5.71)
_fn2l2 (Tl)fnlll (7’2)];
if the spin wavefunction is antisymmetric, F' must be symmetric:
1
Fnlyl1§n27l2 (Tlv T2) = E[fmh (r1>fn212 (TQ)
(5.72)
+fn2l2 (rl)fmh (TQ)]
lf (nl, ll) 7£ (ng, lg),
Fm,ll;m,h (Tl’ TQ) - fmh (Tl)fmll (TQ) (573>
otherwise.
We then compute the reduced (single-electron) density matrix
p1(ry, 1)) = /dr2\11(r1,r2)\11*(r’1,r2), (5.74)
with
\P(rlarQ) = 26117[2(1)11712(1‘171'2)’ (575>
Iy,12
with the multi-indexes Iy = (ny,l;,m1) and I, = (ng,ls,ms). Since the expan-

sion is done over an orthonormal basis the reduced density matrix on that basis is
simply given by a partial trace over the second particle of the overall density matrix:
(;01)11,1{ = 212 Pl 020 Ia s where PL,In; 1,1, = 011120711; We point out a major advantage
of the configuration-interaction method and the use of orthonormal orbitals: the reduced
density matrix is obtained by purely algebraic methods, without numerical computation
of the multi-dimensional integrals of Eq. (5.74). Of course this kind of methods and their

advantages are well-known in the treatment of atomic problems; we chose them just be-
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cause are particularly well suited for the entanglement computation. The reduced density
matrix can then be easily diagonalized and in this paper we will study the entanglement

properties of helium by means of the eigenvalues {\;} of p;.

5.5 About the choice between an orthonormal basis

and a non orthonormal one

A critical point is the choice of the Hilbert space basis, in particular the choice between
an orthonormal and an unorthonormal basis. Moreover, one has to choose the coordinate

system.

As reported in the literature, "Hylleraas” or " Pekeris” coordinates are often used when one

aims at an optimal precision, and excellent results have been obtained for two electrons.

This method, however, cannot easily be applied to cases with more than 2-3 electrons,
therefore, after some initial tests with the Pekeris method, we decided to discard it.
Another reason is that to compute the entropy we need the reduced density matrix and,
using this method, to obtain it one has to perform numerical integrations on a large

number of variables.
For this reason we decided to use the usual polar coordinates.

Given that, one has still to choose between orthonormal and unorthonormal basis func-

tions.

Non orthonormal functions, like for instance simple STO (Slater Type Orbitals), have
the great advantage that the radial wavefunctions are expressed by monomials, instead
of polynomials as in the orthonormal case. This greatly simplifies the computation of the

matrix elements.

Unfortunately, on the other hand, in this case one has to solve a generalized eigenvalue
problem to compute the eigenvalues and eigenfunctions of the Hamiltonian, and the com-

putation of the reduced density matrix is still a complex task.
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After several tests, we decided to use orthonormal radial functions, as will be described

in the following sections.



134 METHOD USED FOR THE COMPUTATIONS

5.6 About the choice between Slater Type Orbitals

and Gaussian functions

This is a very important choice, because using gaussians one obtains a great simplification,

but it can be a too crude approximation if a great precision is needed.

As we aim at solving the Helium case as a standard against which to evaluate other
approximate solutions, we decided to use STO at first, then switch to gaussians, and

compare the results (see section 7.1).

We recall the form of the Gaussian Type Orbitals (GTO:

GTO(a, r) = (2a/m)** exp(—ar?) (5.76)

where « is a parameter that identifies the specific GTO; we will use the notation:

GTO(k, &) = (20zk/7r)3/4 eajp(—ak(f’mlr)Q) (5.77)

to highlight that we are using a set of k GTOs and that the variational parameter §,; is

used.

For convenience, we report here the radial part of the wave function:

n—I

(r|n) = Zuc[n, I, 4] - STO(i, &,,) (5.78)

n=I1+1,14+2, ...
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Setting
k'maz
STO(, éu1) = Y Cli, k] - GTO(k, &uy) (5.79)
k=1
we have
kma:c
(r|vn) = > AG(n, I, k) - GTO(k, &) (5.80)
k=1
with
n—I
AG(n, 1, k) =Y ucln, 1, i] - CG(i, k) (5.81)
=1

5.7 Details about the Slater Type Orbitals

Instead of a generic function of the coordinates, for the above exposed reasons, we use a

specific basis to express the state vector: the ”Slater Type Orbitals” (STO)

The STO, in polar coordinates, are by definition:

i >=1r"texp(=&r)Y" (0, 0) (5.82)

where the Y are the spherical harmonics, and depend on the considered atomic shell. &

is a scalar parameter, that has to be optimized.
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Each shell corresponds to a different & parameter. The dimension n of the basis is fixed

in order to obtain the desired precision.

The |i) function are unorthogonal and unnormalized. For every shell [, we define the

orthonormal functions ||k)); as linear combinations of the | ).
The ||k)); are the basis of the Hilbert space of a single particle.

For two particles, a basis of the so-called Fock space is defined using combinations of the

functions that have just been defined

For instance, in the anti symmetric case:

[k i)y = o | ) o) (5.83)

(1) dw(ra)

where ¢ is a normalization coefficient, the ¢ functions are the orthonormalized STOs and
the indexes k, k’ are all the distinct combinations of numbers from 1 to the dimension n

of the single particle Hilbert space.
In this way we obtain a basis of n(n—1)/2 elements for the Hilbert space of the 2 electrons.

Using this basis, we solve the Schrodinger equation, to find the energies of the stationary

states.

Varying the £ parameters, we find the minimum of the energy. It corresponds to the best

approximation for the state considered.

With the optimum values of the parameters we compute the density matrix, the reduced

matrix, its eigenvalues, and the von Neumann entropy, using only algebraic procedures.

In order to have a self-contained description, to avoid too many cross-references with the

literature, and to explain the conventions we used, we report some details.
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Notation [ = quantum orbital number [l = [+ 1

We assume the following definitions for the STO:
ORBITALS - Definition

1)Ul =Shell: {ll=1,2,3,...=S, P, D, F,G H, I, J ..}
2)n=STATE : {n =1l,1+1, ...}

3) i = component

Slater orbital: definition

Setting Il =11+ 1 we have

(rln,11,i) = r"texp] — Luui * 7] (5.84)

In the simplest case, when one does not use the i degree of freedom, we get: &(n, ll, i) =

Eln, 10, 11)

The angular moment is [ = Il — 1. The maximum of the (5.84) is achieved for

Tmax = (Z - 1) (585)

The parameters &, j;; are the variational parameters.
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5.7.1 Orthogonalization of the Slater Type Orbitals and of sim-

ilar systems

Starting with a system that is not orhtonormal, it is always possible to build an orthonor-

mal one.

In our programs it is done by the routine calex(n,l) for the STOs and by clxnn for the

generic case. In the following sections we give some details.

Case of the Slater Type Orbitals: routine calcx(n,l)

Starting with the unorthogonal basis functions, we numerically deduce an orthogonal set.

The orthogonalization is performed by the routine calcz(n, ) and checked by the routine
arn(n )

Starting from the first STO, and implying the indexes n, 1I:

1)) = [1) (5.86)

The second orthonormal eigenfunction is obtained by the linear combination:

12)) = [1) + A[2) (5.87)

imposing ((2]| 1)) = 0 that determines the coefficient A
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(1]2)) =0=(1]1) +A(1]|2) (5.88)

One goes on, solving linear systems of increasing dimensions. Finally, the states are

normalized. The coefficients of the orbitals are given by the vector uc(n, [ + 1, 7)

From the large number of tests run, we noted that optimizing the &, ;; using for instance

two parameters

§nti = Ang + Bpy-i (5.89)

one gets a more rapid convergence to the optimal energy value, specially for low values of

the maximum n used for the Hilbert space dimension.

On the contrary, if one seeks a great precision, using a high value of n, then the use of
two variational parameters is not justified, that is optimizing A, ;, B, ; instead of taking

simply &,1; = &ny, one does not get major advantages (indipendence on i)

Anyway this possibility has been maintained in the development of the computation

software.

Orthonormalization in the Fock space

In the general case of many particles, we start with a single particle space, then we build

the Fock space.
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For atoms, and specifically for the Helium atom, we found that a convenient basis was

obtained orthonormalizing a STO basis.

For molecules, starting with a multicentric, non orthonormal STO basis of single particles,

one has two possibilities.

The first consists of orthonormalizing the single particle space, and then build the Fock

space, that automatically results in an orthonormal one.

The second, that we used for the Hy molecule, consists of starting with single particle
monocentric orthonormal functions, obtaining non orthonormal multicenter eigenfunc-

tions, building the Fock space, and finally orthonormalizing its basis.

General case: clxnn routine

This general case will be used in chapter 7 to orthonormalize the Fock space basis to

compute the Hy molecule.

We call sovr(ki, kj) the superposition matrix of the function set that must be orthonor-

malized.

It is given for the symmetrical states by the following formula:

sovr(ki, kj) = (1,7 k1) = 2-Nij - N - {001 + ss(3, 1) ss(yg, k) } (5.90)

where:
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ss(i, j) = ssij(i, j) (5.91)

1

Nij = —
\/2 (1 + ss(i, 5)?)

= anij(i, j) (5.92)

We recall that its dimension is given by:

nnzz = dimension of the single particle space = 1, ..., 5.
For the symmetrical two particles states we have:

ndim = nnzz (nnzz+1)/2 = 1; 3; 6; 10; 15

In appendix 9.3 we describe the program and the computational method used.

sovr(i, j) = initial superposition

axx(i, j) = unknown matrix to be recursively computed
The method is recursive on the index k

The unknown matrix must satisfy the condition:

axx(i, i) = 1

Define

| h) = non orthonormal vectors that must be orthonormalized.
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sovr(i, 7) = (i|J) (5.93)

| h)) = orthonormal vectors that must be computed

Then define:

k—1

1K) = D axx(k, j) 1) + | k) (5.94)

J=1

where the initial position has been written explicitly

azz(k, k) =1 (5.95)
The unknown is the axx(i, j) matrix. It will be computed recursively for h= 1, 2, ..., k-1.
Write
h—1
Ih)) = > axw(h, i)|i) + |h) (5.96)
i=1
k-1
k) = > _axx(k, j)|j) + k) (5.97)
j=1

We have the k-1 equations
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(kY =0 {h=1,2 . k—1} (5.98)

Writing explicitly, we have:

(X awah, )9 + W)Y aaath DIy + WY =0 (599)

Recalling that axx(h, h)=1, we have

iaxx(k, e Zam(h, W) (i|j) = — Zam:(h, DGlky {h=12 . k—1}
H - - (5.100)

The equations must be solved recursively, starting with k=1. For each other k, we get

k-1 equation setting h =1, 2, ..., k-1.

Fixed k, the unknown are:

azz(k, j) {j=1,2, ., k—1} (5.101)

azz(k, k) = 1 (5.102)

Writing the equations in matrix form, we have:
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alf(h, j) = [axz(k, j)] = —vvk(h) (5.103)

Then we can write the solution for the S shell as:

Ik)) = ufli, 1, ik | ik) (5.104)

k=1

analogously as for uc[i, 1, ik] of the STOs.

Now we must normalize the vector ||k)).

k k

k) = aza(k, 1)[1) = > uflk, 1, 1]]1) (5.105)
=1 =1

(k| k) Z Z axx(k, l) - axz(k, m) - sovr(l, m) (5.106)

=1 m=1
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5.8 Generalized Laguerre polynomials

In the special case when one takes &, 51, = &, that is one does not have any dependence

on the index i, one obtains the generalized Laguerre polynomials for o = 2] + 2 = 21l
n + « 1
Lo(z) = ) (-1 —xa2™ {n=0,1,..} (5.107)

These polynomials are orthogonal, with the weighting function:

w(z) = 2% exp{—=x} (5.108)

Moreover

o0 |
/ w(x){Ly(x)}* de = (a ;; n) (5.109)
B !
Then we get an orthonormal set if we define:
n! o

As we are interested in functions of the form

W(r) = { polynomial } - exp{ —&r} (5.111)
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we change the x variable accordingly to

x = 2&r (5.112)

Important remark: in order to apply this method to molecules, which we will do later, we
recall that for orbitals with [ # 0, in atoms there are no problems defining the angular

part of the wave functions using the usual spherical harmonics Y;"™ (0, ¢).

In the case of molecules, however, e.g. the Hydrogen molecule, it is more convenient to

combine the term 7! of the radial part with the angular part and develop

r'Y™(0, ¢) — harmonics (5.113)

of cartesian or cubic type.

Coming back to the spherical case, given the normalizations that we performed, we develop
the uc[i, 141, ik] in the following form, used in the calcnewx routine, in which the r
dependent part is in STO form (note that the indexes start from 1 instead than from 0

as usual, for programming convenience):

i

i—1+204+2 | (26*1

ucli, [+ 1, ik] = N;( 1)ik—1 - G (5.114)
with
VG ) (5.115)

(n—1+ 2 + 2)
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5.9 Useful expressions for Slater Type Orbitals

We report some expressions that will be useful in the following. From the:

> N n!
/0 drjz" x exp(—a* x)| = o (5.116)

we get:

1) Superposition integral fixed [ (lv=1—1):

(i4+7+2xlv)

<n7l77"m7l7j> = [frhl’i+£m7l7j][i+j+2*l’u+1] (5117)
2) Matrix elements of 7~
47+ 2xlv+k)!
(n, 1, ilrHm, 1,y = I+ 2x v+ h) (5.118)

[t + Emu j][i+j+2*lu+k+1}

3) Matrix elements of d?/dr?

(n,1ild? /dr?|m, 1, j) =

_ Ut =D+l =2) (i +j+2xlv—2)
R [fn,l,z’ + fm,l’j][i+j+2*lv—1}
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2% Enag ¥ (=) (i+j+ 25l =1

[fn,l,i + gm,l,j] [i+j+2xlv]

[Emag)? % (i + 7+ 2% )

" (Enti + €m7lyj][i+j+2*lv+1]

4) Matrix elements of (2/r) xd/dr

. W 2x(JHlw—1)x(i+7+2xlv—2)!
(n,1,i|(2/r) xd/dr|m,l,j) = [t + Em ]l 2ev—1] a

258 x(T+7+2xv—1)!
[SnJ,i +£m,l,j][i+j+2*lv]

5) Sum of 3) 4+ 4) = radial part of the Laplacian =

i+7+2xlv—2)! ‘ |
B [£<l i+ Emu 4][i+j+2*12+1] * {63,l,i * [(5+ W) * (j+1v—1)]+
n,li m,l,j

ngEni,j k(04 w) (i 4+ 1o —=1)] = &pi* &y *x 2% [(1+1v) * (5 + v)]}

that is symmetrical, as expected.

6) Matrix elements of exp|—a * r|

(t4+J+2xlv)

(n, 1 ilexp[—axr]|lm,l, j) = [Ensi + o+ §m,z,j][i+j+2*lv+1]

It is useful to derive a second expression for the radial part of the Laplacian (here [ =

lv = ltrue)
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G2
dr? rdr J
+j + 20— 2)! 26, +DGE+ 5420 —1)! 2 (i+g+20)!
[gm + é’m,j][z—i-]—&-?l 1] [gm + é’m’j][z-i-j—i—Zl] [gm + §m7j][z+]+2l+1}

To obtain the radial kinetik energy a -1/2 factor is still needed.
In the routine ancl

anl = —in2(n2 —1)

an2 = & -n2

and = —3&7

nl =i+, n2=75+1

nal = nl +n2 — 1

na2 = nl + n2

nad = nl +n2 + 1
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5.10 Routines for one and two particles operators

5.10.1 One particle operators

For the triplet (antisymmetric case) we have:
(035 (r1, r2)[V(11) + V (r2)]dpi(r1, 72)) =

= (CVIIE)) - 005, 1) + (GIVIID) -0, k)=

— (VDY) -0, k) = (GIVIIRY) - 6(i, 1) (5.119)

For the singlet the different normalization of the Slater permanents must be taken into

account. Defining the normalization of permanents according to:

Nij

sfori=j
Nij = s lori#j
(Dij(r1,m2) [V (r1) + V(ro)gm(ri, m2)) =

= Nij - N - 2 - {{GlIVI[RY) - 65, 1) + (GIVIID) - 62, k)+

HUIVIRY - 06, 1) + (VD) -0, k) (5.120)

5.10.2 Two particles operators

The matrix elements of the two particles operators are computed by the routines: ampp(i)

for the diagonal case in shells and amqq(i,j) for the out of diagonal case in shells.
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Denoting (i, |V | k,I) the matrix elements in the STO basis, in the orthonormal basis

we have at once:

{{n, m|[V]]n',m’))

’ /

Z Zuc(n,i) cuc(m, j) - ue(n', k) - uc(m’, 1) - (i, j|V]k, 1) (5.121)

i=1 j=1 k=1 I=1

n

that holds, with obvious changes, both for the direct and the exchange integrals.

It is worthwhile recalling some details. The routines ampp and amqq call the subroutine
rrr(n, a, b, i, j, k)

where

n = vector of STO exponents

a = vector of the r exponents

b = output vector

The output vector contains the direct and exchange Coulson and Sharma integrals.

In turn the routine rrr calls the routines rmioz / u / d ... that compute the integrals

00 o] Tk
rmioz(m,n, a, b, output) E/ / 7 Ty e e~ dry dr, (5.122)
0 o >
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5.11 The integrals of Coulson and Sharma

To use the STO, the following integrals are needed:
I Zil PR e A e 02 dpy dry =

ko1 =k =1 (m+n-—1-—13)
= Zizok ' L _ 1 _ A\ R+l m+n—i +
(n—k—1—=14)! bt (a + b)

m—k—1 )
m—-—k—-—1)! (m+n-—1-—7)

; . 12

i " m—k—l—z)l al+1(a+b)m+n—z (5 3)

m,n = positive integers, k = 0 or a positive integer < theleastof {(m —1), (n — 1)}, r

= min(rl,r2), r~ = max(rl,r2)

J fo k+1 ritry e e dry dry =

(m A+ ) g (B n)! y
— _bk+n+1 Zi:() ’l'(k‘ + n — Z)' <_1) a szb(a/7 m)+
RURD S ) IR (5.124)
ak+m+1 Z Z'(k Lom — Z)' - ika\0, TV .

=0

where
k—p—1i

c+d
} ifi #k—p

Likale,p) = [l{:——p—z

=In{(c+d)/c} ifi=k—p (5.125)

that holds for k=0 and all positive values +[ z="c¢+d"]; -[z="¢"].
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5.12  Singlet 'S and triplet states S in Configura-

tions Interaction

5.12.1 Elements of two particles matrix

The interaction between the two electrons can be developed in the spherical coordinates

of the two electrons:

2 o) k k
e 1 r
— =4 2§ § — Y () Yim (2 5.126
" e Lo Lo 2k‘+17"1;+1 km( 1) k ( 2) ( )

Therefore the matrix element can be written:

(a(1) b(2)[ 5 le(1)d(2)) =

1 . “ 1 e 1 . . 1
(5.127)
We are interested in the S states, that can be written:
’ 1
e(d(2) = ) (1" | Yo () YL, () (5.128)
i 20+ 1
i 1

(@) = D (1) o V() V(@) (5.129)
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with I, =13 = ; o=l =10
Therefore
(a(1) b(2)|r12]e(1)d(2)) =

. l U l—m '—m’ __ 1 1
- Zm:fl mezfz' (_1) (_1) V2I+1 V2041 X

[oe) oo ’I"k
X D heo Zﬁasz 21?11 : {Rk(ab‘?d) = ¢ fo 0 ,J;% P (1) Pl(ra) Pgy(ry) Py (rs) drldﬁ} X

X (Y ()] Vi (1) Y25, (20) ) (Vi (Q2)| Vi (22) [ Vi (Q2)) (5.130)

The terms in the spherical harmonics can be written:

/
U | Yieas | Im) = (—1)™ \/(25 DK+ DRI+
47
rooK rOK
) (5.131)
_m/ M m 0 0 0

It must be —m/ + M +m = 0
I'+ K +1 = EVEN; A(I'K D)

It is usual to define the quantity c*(Im, I'm’) as follows:

47T /
H(im, ') = \| g Vi Vi [Yiwe) = (1) (U Im) - (5.132)
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5.12.2 Example for the S - S shell

(5.133)

e(1)d2)) = -, la(1)b(2)) = 1

Therefore

(a(1) b(2)]-;51e(1)d(2)) =

. 00 k 4
- Zk:o Zﬁl:*k 2]€+ 1

o0 o0 T‘k
: {Rk(ade) =, ) @Pﬁl(rl)Pgl(ﬁ)Pﬁz(Tl)sz(ﬁ)drld?“z} :

(Y

Ilmy

() Vi () [Yi5, (20) ) (Vi (Q2)] Yiewn () ¥z, (22)) (5.134)
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5.12.3 S states of two electrons

In sight of the more complex cases that we will consider later, it is useful to collect the

expressions in the simplest case:
Case L=M=0
For the case |I[; L = 0; M = 0), we have:

= Zm:—l(_1>l \/211+1 21;1 El+ImB lel (00501)[)1‘ ‘(00592)6 (617¢2) —

= Y () e V() Y ) (5135)

m=—I

From the definitions we have:

= \/(=1)mtlml4 l—|— )l Pz (cost) e (5.136)
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5.13 Partial trace in {?

To compute the reduced density matrix we need the partial trace of the density matrix.

In sight of the applications to perturbative computations, that will follow, we will compute

the partial trace of a more general expression: p = | ¢, ) (¢, |
with

[6n) = Y B{Q, Q|l; L=0, M =0)
l

[Gm) = Y CU (D, Q[ 1; L=0, M =0)

l/

We do not write explicitly the radial variables.
Now we are interested in the partial trace of the p in Q for Qy = Q) = Q

Then we have:

P, ) = [ dQén) (| =

=SS Bt [ani, 160,00 50,0/ 9%, )
l 14

(5.137)

(5.138)

(5.139)

The important point is to check if the double sum reduces to a single sum, and if so with

which coefficients.

Explicitating the integral, we have:



158 METHOD USED FOR THE COMPUTATIONS

I = [dQu, Q110,00 0,0]9), Q) =

= [ A2 3, (CD) T Y () YT ()

'—m/ 1 my,* —my, *
>, (= Z’WKII Q)Y ()

Then we need the integral

-m/, rom!

[y, ™(Q) Y, Q) = [ d (1) () (1) Y (@) =

_ my+m/ _
— <_1) ! v 5ll’ ' 5mlm;, - 5ll’ ' 5mlm2,

T = 0w Yoy ()™ (1) A Y () V() =

= ow }:l(%i_n(—1wnnm%9g)7m@%)

Then we obtain the final expression:

l

Y CDMY(Q) V()

my=—1

1

I AN I lx
M%m_;BC@Hn

(5.140)

(5.141)

(5.142)

(5.143)



CHAPTER 6

Results

In this chapter we summarize our main results for the Helium atom.

After some general considerations about the general behaviour in function of the varia-
tional parameters, we report the von Neumann and linear values for several singlet and

triplet states.

Plots of the error of energy, compared to standard high precision value, show the approx-

imation level of our computations.
We report also details about the eigenvalues for some typical cases.

The final section discusses some optimization of the choice of the Hilbert space dimension

for shells P and D.

6.1 Form of the eigenfunctions

It is very interesting to plot the radial single particle eigenfunctions that have been ob-
tained optimizing different states, and compare them to the analogous eigenfunctions of

Hydrogen.

The use of bound states of Hydrogen cannot suffice, as for a greater quantum number n

159
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they correspond to more excited states, where consequently the electrons are at a greater

distance from the nucleus.

On the contrary, to compute the electron-electron interaction one needs more ”compact”

functions, describing the short range effects.

For convenience we report the radial Hydrogen-like eigenfunctions for some values of the

quantum numbers.

In the Helium case, and for instance considering the 1S fundamental state, the single parti-
cle components are needed to describe the short range correlations due to the interactions

between the two electrons.

We note that for such orbitals, increasing n the wavefunction concentrates near the origin,

as it must be for short range correlations.

The situation is similar for other excited states and for the triplet.

6.1.1 Hydrogen-like eigenfunctions

The standard expression are:

22\ n—1—-1) _z (27 \' 27
_ _ . na = L2l+1 = Y,
Unim (7, 0, ) \/(nao) 2n[(n + 1)1 - (naor) nt (naor> m (0, 9)

Ignoring the orbital part, we have:



6.1 Form of the eigenfunctions 161

Uy (1) = C % e 5 (26r) % Liljll(%r) (6.2)

with ¢ = Z- o L,
nao n

It must be observed that the indexes of the generalized Laguerre functions are defined

following several conventions in the literature.

In our programs, we have (setting £ = %)

azl = (2/n)3 * Factorialln - 1 - 1],

az2 = 2xn*(Factorialln + 1])3,

axn = Sqrtlazl/az2],

al = Exp[- r/nl*(2*r/n)1,

aa = axn*al * LaguerreL[n - 1 - 1, 2%1 + 1, 2*r/n],
ggllil] = aa,

gpl[il] = aaxaaxr*r

Y(r) = gg, [(r)]? 1> = gp.

The important point is that £ = 1/n and that it does not depend on I.
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Level aals=¢ Tables in sect. 9.5

Fundamental 2.1553 9.7 'S/S
I 1.0218 9.8 1S/I/S
I 0.7861 9.9 1S/11/S
I 0.6061 0.10 'S/I11/S
v 0.4442 9.11 'S/I11/S

Table 6.1 — S Shell - £ values

Shell S

Considering the data of the runs with mimimal dimension, we have table 6.1 for the shell

S and the state 1.

This is in general agreement with the 1/n dependency of the Hydrogen eigenfunctions for

7=2.
Of course this must be intended in a qualitative sense.

If one now considers the variation of the £ parameter when the basis dimension increases,
it can be observed that, for the fundamental state the £ varies greatly without a significant

refinement of the energy value.

For the excited states, the & value resembles the Hydrogen value, but the variation is in

general less pronunced when the Hilbert space dimension is increased.

This can be interpreted as a weaker radial correlation for more excited levels.
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It is very important to note that the variational optimization was performed separately
for each state. Therefore the energy values have been optimized separately, and the states
that have been obtained are not necessarily orthogonal. We did not consider necessary to
compute, in this preliminary study, the deviation from orthonormality, however, as it is

not computationally heavy, it will be studied later.

Shell S-P

It is very interesting to compare those data to the optimization in Configurations Inter-

action for the shell S-P.

It is worthwhile noting that, in the case of shell S, only one has just one variational

parameter, aals.

Now, considering also the P shell, we must optimize two parameters, one for the S shell

and another for the P shell.

After several tests, we concluded that the search for a minimum in the aals/aalp space,

does not present a significant correlation, see fig. 6.1 and 6.2.

We then considered that it is sufficient to optimize one parameter at a time.

Moreover, several tests showed that it is sufficient to use the aals value that was obtained
from the optimization of the S shell alone, in the optimization of the P shell for the case

CLS/P.
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Figure 6.1 — Energy of shell S-P in 3D format. Fundamental levels

4.2875 4.325 4.3625

2.538 ///< >§ 2.538
2.523 & % 2.523

4,.2875 4.325 4.3625
aalp

aals

Figure 6.2 — Energy of shell S-P: level curves. Fundamental level.

Then the optimization task for the S-P shell reduces to the optimization of the single
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Level

Fundamental
I

II

I11

1A%

aalp=¢

4
2
24
1.7
1.9

Tables in sect. 9.5

9.14
9.15
9.16
9.17
9.18

Table 6.2 — S-P Shell - £ values

variational parameter of the P shell: aalp.

Fundamental and excited states 'S: S-P shell

It is sufficient to report the values of the aalp parameters for the first excited states and

for low n values (with ns = np). We have table 6.2.

From the plots and tables reported, is is evident that the aalp parameter value is not

critical.

A great qualitative difference can be noted between these variational parameters and

those of the S shell.

We recall that, as we saw at the beginning of this discussion, the ¢ parameters for the

Hydrogen-like atoms are £ o< 1/n independent on the quantic number [, and that for the

S shell this dependence is qualitatively maintained.
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Level aald=¢ Tables in sect. 9.5

Fundamental 4.4 9.21
1 3.4 9.22

II 3.8 9.23

111 3.9 9.24

1A% 3.8 9.25

Table 6.3 — S-P-D Shell - £ values
In the case of the P states for the P shell of the CI computation, the behaviour is quite

different, and the result is not sensible to the aalp parameter value, within a large interval.

One can easily interpret this difference in behaviour between S and P states for the com-
putation of the 1S levels. Indeed, we note that the S states must ”compute” the ”base”
energy of the levels, plus the correlation corrections due to the electron-electron interac-

tions; the P states, on the contrary, are only involved in the correlation computation.

Similar considerations can be made for the S-P-D shells, as shown by table 6.3.

6.2 Errors of energies of fundamental and excited

states
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In the following graph (fig. 6.3) we plot the error in ppm of the energy of the fundamental
and first 7 excited levels of the states | 1s, ns; 1S. The abscissae are the maximum number

of shells considered in the computation in Configurations Interaction.

The graph clearly shows that by increasing the number of shells considered the error
quickly decreases . This implies the effect of the orbital correlation between the two

electrons.

Moreover, we note that for the excited states the error decreases with increasing the
excitation. This can be explained by the fact that the more excited the state, the less the

electrons interact and as a consequence, the less perturbation we have.

It is reasonable to expect a smaller entanglement value for the excited states, as the

interaction is weaker. This hypothesis will be discussed later.
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Error in energies of fundanental and excited states

s p d f g h
1000
N
4
100 100
I
N
£ Y
2 10 10
L
©
N Y
) \\ \ L .
N
A \ \
\\: I/
0.1
s p d f g h i
n

Figure 6.3 — Error of energies of fundamental (top line) and excited states | to VII, top to
bottom.



6.3 Entanglement in Helium: summary of results 169

In figure 6.4 we report the convergence of the energy of the fundamental state 1S as
a function of the single particle Hilbert space dimension. In abscissa the variational

parameter &;.

We note that increasing the dimension of the Hilbert space the sensitiveness on the vari-

ational parameter & decreases.

8540

8535
8530 | : - n=6
! % n=7
8525 ‘m n-8
w . +n:9
= 8520+ "~ n=1d
8515 | =it
-x- N=12
8510} ‘= n=13
—- n=14
8505+ -— n=18

parametro Xxi

Figure 6.4 — Energy error for several Hilbert space dimensions

6.3 Entanglement in Helium: summary of results

In the following, we will present data only for total orbital momentum quantum number

L =0, thus implying l; = I, = [ and m; = — ms.

We first discuss convergence of our method, as a function of the number 1., (1) of radial

wavefunctions for a given [ and as a function of the cut-off [, on [.

For the low-energy states discussed below, we found that [,.. = 2 (S, P, and D shells)
and Npax ~ 10 — 20 (from npy.x = 10 for the ground state up to nyax = 20 for the highest

excited states reported below) are sufficient to reproduce helium eigenergies with at least
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lpax =0 | lpax = 1 | lax = 2 | lpax = 3
Nmax = o | 0.04131 | 0.07772 | 0.07844 | 0.07833
Nmax = 6 | 0.04133 | 0.07776 | 0.07848 | 0.07837
Nmax = 10 | 0.04134 | 0.07777 | 0.07849 | 0.07839
Nmax = 11 | 0.04134 | 0.07777 | 0.07849 | 0.07839

Table 6.4 — Reduced von Neumann entropy of the ground state of helium, computed with

different cut-off values in the basis of Slater-type orbitals.

State S(p1) Sr(p1)
[(15)%7S) | 0.0785 | 0.01606
I15,25:15) | 0.991099 | 0.48871
I15,35;15) | 0.998513 | 0.49724
|1s,4s;1S5) | 0.999577 | 0.49892
|1s,5s;15) | 0.999838 | 0.499465
|1s,6s;15) | 0.999923 | 0.499665
115, 7s;1S) | 0.999961 | 0.499777

Table 6.5 — Reduced von Neumann and linear entropies for the lowest energy singlet eigen-
states of helium.

four significant digits (as deduced from comparison of our results with those of (Drake
, 1999), (Koga , 1996), (Kono, Hattori , 1985), (Kono, Hattori , 1986) and reduced von

Neumann entropy S(p;), estimating at least two-three significant digits.

To illustrate the convergence of our method, we provide in Table 6.4 the obtained values
of S(p1) of the ground state of helium for different values of the cut-offs [;,.x and np.x (we
take the same np,. for all values of [). It can be seen that increasing np., the results

are almost costant.

The reduced von Neumann entropy S(p;), as well as the linearized entropy Si(p1) =
1 —Tr(p?) often used in the literature, are shown in Table 6.5 and in Table 6.6 for several

low-energy singlet and triplet eigenstates, respectively.

Since the obtained values of the von Neumann entropy are very close to those expected for
Fock states, which are separable, the entanglement content is weak and can be estimated

by means of Eq. (3.34).

The obtained results are shown in Fig. 6.5 as a function of the state number n, for both
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State S(pl) SL(p1>
1s,2s;35) | 1.00494 | 0.500378
|1s,35;35) | 1.00114 | 0.5000736
|1s,4s;3S) | 1.000453 | 0.5000267
|1s,5s;35) | 1.000229 | 0.5000127
|1s,6s;35) | 1.000133 | 0.5000070

|1s,75;35) | 1.000091 | 0.5000047

Table 6.6 — Same as in Table 6.5, but for the lowest energy triplet eigenstates of helium.

singlet states |1s,ns;'S) and triplet states |1s, ns;3S9).

Note that data, with the exception of the ground state value of entanglement, are consis-

tent with a power law decay of entanglement with n.

From a power-law fit we obtained E(n) = 0.19n~*% for singlet states at n > 2 and

E(n) = 0.040 =31 for triplet states.
The same entanglement data are shown as a function of energy in Fig. 6.6.
It can be clearly seen that the entanglement content drops with energy.

This result is rather intuitive in that for states [1s,ns;'S) and |1s,ns;3S) the wave

functions corresponding to the states 1s and ns are localized far apart for large n.

Therefore, electron-electron interactions become weaker (and entanglement smaller) when

n increases.
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Figure 6.5 — Entanglement of the singlet states |1s,ns;S) (circles) and of the triplet states
[1s,ms;3S) (triangles).
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Figure 6.6 — Same as in Fig. 6.5, but with the entanglement of the helium eigenstates plotted
as a function of their energy W (measured in hartrees).
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S SP S-PD
Fond. 85049  1105.7 332.8
I 828.1 97.4 31.4
M 2321 29.8 14.7
I 95.7 13.6 15.0
IV 49.3 7.9 15.1
Vo 40.3 33.6 143.9

VI 1253 201.2 348.0

Table 6.7 - 1S AE (ppm) S shell

n S S-P S-P-D

I 2 443.0 26.7 3.3
II 3 96.3 6.9 1.8
I 4 36.3 2.8 2.2
IV. 5 202 3.9 2.9
V 6 18.0 8.8 8.3
VI 7 845 78.4 78.0

Table 6.8 - 3S AE (ppm) S shell

6.4 Results of energy computations in Configurations

Interaction for shells S/S - P/S-P-D

In the following tables we report the final results of the energy computation for the first
6 levels of the 1S and 29 states as differences from the standard values (Kono, Hattori ,

1985), (Kono, Hattori , 1986) in parts per million.

We immediately note an error reduction, comparing the results of the triplet with the

correspondent singlet cases.

This is evidently due to the fact that, being the orbital eigenfunction antisimmetrical, it

is necessarily zero for ry = ry and very little for r; ~ rs.

This phenomenon is known as Fermi Hole. Then, because of this fact, the electrons have

a weaker interaction and, if the other conditions are the same, we get smaller errors.

For the same reason, the error is in general bigger for the state | 1s,2s;3S), compared to



174 RESULTS

the states | 1s,ns;3S) for n > 1.
The bigger error for n=7 (VI level) is due to numerical errors.

Moreover, we remark that the error, with the exception of n=2, rapidly decreases passing
from the shell S alone to the S-P shell. On the other hand, again with the only exception

of n=2, we obtain a negligible improvement using the S-P-D shell.

For this reason we did not extend our computations to F-G-... shells, even if our programs

allow these extensions.
In our computations we assume ndds=nddp=nddd to avoid useless parameters.

It is now interesting to compare the energy convergence versus the Hilbert space dimen-

sion.

In the graphs 6.7 6.8 6.9 6.10 6.11 6.12 we plotted the data for S/S - P/S-P-D shells for

several levels; in abscissa the n=ndds=nddp=nddd values.
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Figure 6.8 — 'S Levels from Fund. to VI, S-P shell

In all these graphs we note that increasing n to n+2 the error initially decreases by about
an order of magnitude. Then it stabilizes to an increase from n. to n.+ 3, where n. is the

critical n value starting from which the dependence of the error on n ceases to be linear

in a log-linear graph.
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Figure 6.9 — 1S Levels from Fundam. to VI, S-P-D shell
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Figure 6.10 — 35 Levels | to VI, S shell

A second evident feature is that the approximately linear part of the curve in the graphs

6.10 6.11 6.12 moves towards greater abscissae values for a value about An = 2—3 passing

from a level to the next.

This implies that, increasing the excitation, one needs a Hilbert space of bigger dimension.

We recall that in the triplet case it is necessary to diagonalize matrices of n(n-1)/2 di-
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Figure 6.12 — 35 Levels I-VI, S-P-D shell

mension.

This implies not only a longer computation time, but also the necessity of using quadruple

precision (real*16) routines to compute high excitation levels.

In the plots 6.13 6.14 6.15 6.16 6.17 6.18 we report the minimum errors obtained in the

present computations.
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Comparing with the graphs 6.10 6.11 6.12, we remark that these are not the minimal

asymptotic errors for highly excited levels, but just the numerical limits of the computation

method used.
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Figure 6.13 - 1S AE vs. levels, S shell
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Figure 6.15 - 1S AE vs. levels, S-P-D shell

It is also to be recalled that the aim of the present computation is the entropy not

the energy evaluation. Energies have been reported just to evaluate the quality of the

approximation that we obtained.
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Figure 6.17 — 38 AE vs. livels, shell S-P
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6.5 Reduced density matrix eigenvalues

As the computation of the linear and von Neumann entropies depends on the eigenvalues
of the reduced density matrix, it is very interesting to discuss their values, at least in

some typical cases.

6.5.1 Fundamental and first excited states 1S S-S Shell

The simplest case is the case of the S shell for states 1S, both fundamental and excited.

In the tables 6.9, 6.10, 6.11, 6.12, and plots 6.19, 6.20, 6.21, 6.22 we report the data for

the fundamental and first 3 excited states.

Table 6.9 shows that this state is very similar to a separable one, and the higher com-
ponents reduce by 2 orders of magnitude at each step in n. This explains the quite low

entropy of this state.

This entropy value can be considered the entanglement value in the approximation of the

shell S alone.

In table 6.10, we report the data of the first excited state |1s,2s; 1S). The first two

eigenvalues are near to the 0.5 value that one gets with a single Slater permanent.

The other eignevalues are lower by at least 3 orders of magnitude. Using these values one

immediatly computes the von Neumann entropy.

To evaluate the entanglement one must subtract ”according to some convention” the part

due to the simmetrization of the wave function, as discussed in sect. 3.2.
In tables 6.11 and 6.12, we report the analogous results for the IT and III excited states.

Comparing tables 6.10, 6.11, 6.12 we note the remarkable feature that, increasing the
excitation, the two bigger eigenvalues get nearer to the 0.5 value due to the symmetrization

only, while the others are smaller by many orders of magnitude (up to 12), and decrease
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183

Z,

—_

O © 00~ O U= Wh

Sum

by increasing the energy. Thus the state approaches a separable symmetrized one.

value
0.9956101603245105
0.0043054470424728
0.0000779840413816
0.0000054942911793
0.0000007322303219
0.0000001470172639
0.0000000298761453
0.0000000037219788
0.0000000014124194
0.0000000000423267

1.0

Table 6.9 — Singlet, S shell, fundamental level eigenvalues

—)\ilOgg)\i
0.006319279
0.033839183
0.001064206
9.60052E-05
1.49237E-05
3.33693E-06
7.46797E-07

1.0422E-07
4.1524E-08
1.45856E-09

0.041337828

In the presence of such a large range of orders of magnitude, it is worth recalling that all

the computations have been done in quadruple precision (real*16).

Log (Ei genval ue (i ))

0

-10+

Log (Ei genval ues) Fundam | evel

only S n=10

Figure 6.19 — Eigenvalues Singlet S only, fundamental, n=10, log scale

8 10
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N value —\iloga A\
1 0.5793842200474583 0.456211598
2 0.4204485851413293 0.525560187
3 0.0001628527164212 0.002049362
4 0.0000040622321363 7.27517E-05
5) 0.0000002630193014 5.74916E-06
6 0.0000000168342871 4.34729E-07
7 0.0000000000077432 2.85803E-10
8 0.0000000000012018 4.75888E-11
9 0.0000000000000821 3.56886E-12
10 0.0000000000000394 1.75443E-12
Sum 1.0 0.983900082
Table 6.10 — Singlet, S shell, level | eigenvalues
Log (Ei genval ues) Level I only S n=10
or : : ‘ ‘
— ) 2 I
= g4l
(O]
=)
T -6
=
(O]
o -8t
o
2 -10}
-
-12¢
0 2 6 10

Figure 6.20 — Eigenvalues Singlet S only, level I, n=10, log scale
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Z,
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—_

Sum

Log (Ei genval ue (i ))

-10+

-12+

value
0.5396859946620111
0.4602574264847250
0.0000549866748567
0.0000015255975355
0.0000000660911895
0.0000000003650133
0.0000000000961249
0.0000000000247272
0.0000000000035127
0.0000000000003041

1.0

Table 6.11 — Singlet, S shell, level Il eigenvalues

Log (Ei genval ues) Level

—)\ilOgg)\i
0.480216833
0.515252249
0.000778092
2.94779E-05
1.57634E-06
1.14437E-08
3.19868E-09
8.71266E-10

1.3366E-10
1.26446E-11

0.9962782

Il only S n=10

Figure 6.21 — Eigenvalues Singlet S only, level I, n=10, log scale

10
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N value —\iloga A\
1 0.5271689590050625 0.486926289
2 0.4728015044789180 0.510953498
3 0.0000286227347072 0.000431988
4 0.0000009039700290 1.81492E-05
5) 0.0000000065467414 1.77983E-07
6 0.0000000023847937 6.83088E-08
7 0.0000000007696116 2.33001E-08
8 0.0000000000975508 3.24406E-09
9 0.0000000000075941 2.80513E-10
10 0.0000000000049916 1.87403E-10
Sum 1.0 0.9983302
Table 6.12 — Singlet, S shell, level Il eigenvalues
Log (Ei genval ues) Level Il only S n=10
or : ‘ ‘ ‘
—~ -2
©
=
o 61
(@]
o
> "8
o
-
- 10 L
0 2 6 10

Figure 6.22 — Eigenvalues Singlet S only, level Ill, n=10, log scale
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N value —\iloga \;
1 0.99186985949 0.011681503
2 0.003856134911 0.030920914
3 0.000064773376 0.000901272
4 0.000004253380 7.58929E-05
5 0.000000539815 1.12395E-05
6 0.000000107321 2.48465E-06
7 0.000000018895 4.84797E-07
8 0.000000003204 9.04088E-08
9 0.000000000771 2.33401E-08
10 0.0000000000223 7.89067E-10

Sum 0.995795691 0.04359

Table 6.13 — Singlet, S-P shells, fundamental level, part S eigenvalues

6.5.2 Fundamental and excited states 'S. S-P Shell

No great qualitative differences from the case of S shell only can be noted. Obviously, we

now have a contribution due to the P shell.

Log (Ei genval ues) Fundam | evel only S-P part S n=10
0 ‘ ‘ ‘ ‘

Log (Ei genval ue (i ))
o

-10+

2 4 6 8 10
i

Figure 6.23 — Eigenvalues Singlet S-P only,S part, fund. level, n=10, log scale
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N value —Niloga \;
1 0.004058167942 0.032241965
2 0.000133077867 0.001713436
3 0.000011035101 0.000181721
4 0.000001580425 3.04568E-05
5 0.000000325125 7.00726E-06
6 0.000000085452 2.00644E-06
7 0.000000025439 6.41785E-07
8 0.000000009040 2.41558E-07
9 0.000000001484 4.35225E-08
10 0.000000000923 2.7702E-08
Sum 0.004204309 0.03418
Sum S+P 1.0 0.07777

Log (Ei genval ues) Fundam | evel

Log (Ei genval ue (i ))

Table 6.14 — Singlet, S-P shells, fundamental level, part P eigenvalues

only S-P part P n=10

Figure 6.24 — Eigenvalues Singlet S-P only, P part, fund. llevel, n=10, log scale
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Z,
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—_

Sum

Log (Ei genval ue (i ))

0

-10+

-12¢

-141

value
0.5771793556581271
0.4221766345150768
0.0001723768839147
0.0000045108612084
0.0000002839657735
0.0000000257087672
0.0000000000594147
0.0000000000010217
0.0000000000003550
0.0000000000000024

0.999533188

Table 6.15 — Singlet, S-P shells, level |, part S eigenvalues

Log (Ei genval ues) Level

—)\ilOgg)\i
0.457650357
0.525222082
0.002155081
8.01046E-05
6.17563E-06
6.48199E-07
2.01834E-09
4.06965E-11
1.46818E-11
1.16558E-13

0.98511

| only S-P part S n=10

Figure 6.25 — Eigenvalues Singlet S-P only, S part, level I, n=10, log scale
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N value —\iloga \;

1 0.00026353829987 0.003133391

2 0.00019510237361 0.00240434

3 0.00000741093141 0.000126296

4 0.00000066557989 1.3657E-05

5 0.00000008102990 1.90882E-06

6 0.00000001234285 3.24268E-07

7 0.00000000122588 3.62904E-08

8 0.00000000040001 1.2488E-08

9 0.00000000016170 5.25945E-09

10 0.00000000000116 4.59929E-11

Sum 0.000466812 0.005679972

Sum S+P 1.0 0.9907944

Table 6.16 — Singlet, S-P shells, level |, part P eigenvalues
Log (Ei genval ues) Level | only S-P part P n=10

°
o}
©
=
()
(@]
]
(@]
bt

2 4 6 8 10
i

Figure 6.26 — Eigenvalues Singlet S-P only, P part, level I, n=10, log scale
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—_
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Sum

Log (Ei genval ue (i ))

Log (Ei genval ues) Level

-10¢+

-12¢+

value
0.53861317995912
0.46119916549997
0.00006051969241
0.00000177192525
0.00000009830323
0.00000000075634
0.00000000008071
0.00000000003176
0.00000000000341
0.00000000000012

0.999533188

Table 6.17 — Singlet, S-P shells, level Il, part S eigenvalues

— )\Z'ZOQQ )\1
0.480808439
0.514946483
0.000848016
3.38548E-05
2.28832E-06
2.29173E-08
2.70608E-09

1.1076E-09
1.29898E-10
5.15064E-12

0.996639

Il only S-P part S n=10

Figure 6.27 — Eigenvalues Singlet S-P only, S part, level I, n=10, log scale
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N value —\iloga \;
1 0.00007538676917 0.001032447
2 0.00004808095928 0.000689682
3 0.00000164233203 3.15588E-05
4 0.00000013304918 3.03905E-06
5 0.00000001973873 5.05201E-07
6 0.00000000068913 2.09733E-08
7 0.00000000014130 4.62341E-09
8 0.00000000003520 1.22234E-09
9 0.00000000002795 9.79881E-10
10 0.00000000000563 2.10393E-10
Sum 0.000125264 0.001757259
Sum S+P 1.0 0.998396367
Table 6.18 — Singlet, S-P shells, level I, part P eigenvalues
Log (Ei genval ues) Level Il only S-P part P n=10
-4 ‘ ‘ ‘ ‘ .
-5t
— -6
g
— -7t
T
>
S -8l
(@]
o .o
(@]
9 -10¢
- 11 L

Figure 6.28 — Eigenvalues Singlet S-P only, P part, level Il, n=10, log scale
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N value —\iloga \;
1 0.52634345999714 0.487353817
2 0.47356285396475 0.510677004
3 0.00003154891359 0.000471721
4 0.00000105745533 2.09915E-05
5) 0.00000001105074 2.92085E-07
6 0.00000000182748 5.30472E-08
7 0.00000000139155 4.09403E-08
8 0.00000000010593 3.51011E-09
9 0.00000000000465 1.75053E-10
10 0.00000000000021 8.84408E-12
Sum 0.999938935 0.998523923
Table 6.19 — Singlet, S-P shells, level Ill, part S eigenvalues
Log (Ei genval ues) Level Il only S-P part S n=10
0 : : : :
— - 2 [
% 4l
>
= ¢
()
2 -8]
w
S -10/
-
- 12 L

2 4 6 8 10

Figure 6.29 — Eigenvalues Singlet S-P only,S part, level Ill, n=10, log scale
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RESULTS

Z

O © 00 IO Ui Wi+~

—_

Sum

Sum S+P

value
0.00003777958387
0.00002247511010
0.00000073711972
0.00000006292539
0.00000000855280
0.00000000099196
0.00000000092249
0.00000000004546
0.00000000003043
0.00000000000633

6.10653E-05

1.0

Table 6.20 — Singlet, S-P shells, level Il part P eigenvalues

_>\il092/\i
0.000555059
0.000347045
1.50163E-05
1.50529E-06
2.29223E-07
2.96685E-08
2.76874E-08
1.56185E-09
1.06309E-09
2.35482E-10

0.000918915

0.999442838

Log (Ei genval ues) Level

Log (Ei genval ue (i ))

-10¢+

-11¢

1l only S-P part P n=10

Figure 6.30 — Eigenvalues Singlet S-P only, P part, level lll, n=10, log scale
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—_

Sum

6.5.3 Fundamental and excited states 1S. S-P-D Shell

We limit ourselves to the fundamental and I excited level.

Log (Ei genval ue (i ))

-10¢+

0

Figure 6.31 — Eigenvalues Singlet S-P-D, S part, fundamental level, n=10, log scale

value
0.991924498905
0.003804264016
0.000062939798
0.000004047667
0.000000503071
0.000000098614
0.000000016473
0.000000003075
0.000000000641
0.000000000019

0.995796372279

Table 6.21 — Singlet, S-P-D shells, fundamental level, part S eigenvalues

— )\JOQQ )\1
0.011603316486
0.030579309135
0.000878366916
0.000072511835
0.000010525629
0.000002295099
0.000000425920
0.000000086955
0.000000019579
0.000000000684

0.043146858239

Log (Ei genval ues) Singlet Fundam |evel S-P-D S part n=10
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RESULTS

Z,

O © 00~ O U= Wh

—_

Sum

value
0.003875223866
0.000125262431
0.000010190336
0.000001434663
0.000000291486
0.000000075877
0.000000022758
0.000000007733
0.000000001253
0.000000000840

0.004012511242

Table 6.22 — Singlet, S-P-D shells, fundamental level, part P eigenvalues

— )\JOQQ )\1
0.031046373945
0.001623746650
0.000168980630
0.000027848040
0.000006328173
0.000001794615
0.000000577798
0.000000208382
0.000000037040
0.000000025316

0.032875920589

Log (Ei genval ues) Singlet Fundam |evel S-P-D P part n=10

Log (Ei genval ue (i ))

Figure 6.32 — Eigenvalues Singlet S-P-D, P part, fundamental level, n=10, log scale
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N value —Niloga\;
1 0.000170798661 0.002137616249
2 0.000016943459 0.000268535398
3 0.000002610341 0.000048414860
4 0.000000548567 0.000011409000
5 0.000000144939 0.000003292736
6 0.000000045411 0.000001107678
7 0.000000015804 0.000000409564
8 0.000000006254 0.000000170439
9 0.000000002518 0.000000071913

10 0.000000000525 0.000000016178

Sum 0.000191116479 0.002471044015

Sum S+P+D 1.0 0.078493822844

Table 6.23 — Singlet, S-P-D shells, fundamental level, part D eigenvalues

Log (Ei genval ues) Singlet Fundam |evel S-P-D D part n=10

Log (Ei genval ue (i ))

]
(o]

2 4 6 8 10
i

Figure 6.33 — Eigenvalues Singlet S-P-D, D part, fundamental level, n=10, log scale
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RESULTS

Z,

O © 00~ O U= Wh

—_

Sum

Log (Ei genval ue (i ))

value
0.576959454566
0.422389174918
0.000173911650
0.000004607122
0.000000290210
0.000000028477
0.000000000134
0.000000000002
0.000000000000
0.000000000000

0.999527467078

— )\JOQQ )\1
0.457793185408
0.525179791175
0.002172044819
0.000081673687
0.000006302314
0.000000713801
0.000000004382
0.000000000072
0.000000000004
0.000000000000

0.985233715661

Table 6.24 — Singlet, S-P-D shells, | level, part S eigenvalues

Log (Ei genval ues) Singlet |I level S-P-D S part n=10

Figure 6.34 — Eigenvalues Singlet S-P-D, S part, | level, n=10, log scale

10
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Z,

O © 00~ O U= Wh

—_

Sum

Log (Ei genval ue (i ))

value
0.000254711264
0.000189613397
0.000007330251
0.000000660714
0.000000081492
0.000000012569
0.000000001679
0.000000000187
0.000000000065
0.000000000004

0.000452411622

— )\JOQQ )\1
0.003040959473
0.002344503571
0.000125037266
0.000013564100
0.000001919030
0.000000329882
0.000000048950
0.000000006051
0.000000002214
0.000000000162

0.005526370699

Table 6.25 — Singlet, S-P-D shells, | level, part P eigenvalues

Log (Ei genval ues) Singlet | |evel S-P-D P part n=10

Figure 6.35 — Eigenvalues Singlet S-P-D, P part, | level, n=10, log scale
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Z,

O © 00 1O Ui Wi =~

—_

Sum S+P+D

value
0.000013901230
0.000005731921
0.000000416728
0.000000054984
0.000000010777
0.000000002528
0.000000001576
0.000000000846
0.000000000704
0.000000000006

0.000020121299

1.0

— )\7;1092 /\z
0.000224288390
0.000099807354
0.000008832290
0.000001326026
0.000000285247
0.000000072198
0.000000046088
0.000000025487
0.000000021396
0.000000000223

0.000334704700

0.991094791060

Table 6.26 — Singlet, S-P-D shells, | level, part D eigenvalues

Log (Ei genval ues) Singlet Fundam |evel S-P-D D part n=10

Log (Ei genval ue (i ))

]
(o]

2 4 6 8 10
i

Figure 6.36 — Eigenvalues Singlet S-P-D, D part, | level, n=10, log scale
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N value —\iloga A\
1 0.4999985023786676 0.500000663
2 0.4999985023786676 0.500000663
3 0.0000014897546265 2.88364E-05
4 0.0000014897546265 2.88364E-05
5 0.0000000078534824 2.11447E-07
6 0.0000000078534824 2.11447E-07
7 0.0000000000132234 4.77869E-10
8 0.0000000000132234 4.77869E-10
9 0.0000000000000000

10 0.0000000000000000

Sum 1 1.000059423

Table 6.27 — Triplet, S shell, level | eigenvalues

6.5.4 First excited states *S S-S Shell

In the tables 6.27, 6.28, 6.29, 6.32, we report the data for the first four 35 states.

The tables show that the eigenvalues occur in pairs as expected. The first two eigenvalues

are very near to 0.5, just < 1075 lower in all the cases that we considered.

The other eignevalues are lower by at least 6 orders of magnitude.

Log (Ei genval ues) Tri pl et Level | only S n=10

Log (Ei genval ue (i ))
»

10

Figure 6.37 — Eigenvalues Triplet S only, level |, n=10, log scale
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N value —\iloga A\

1 0.4999993605336170 0.500000283

2 0.4999993605336170 0.500000283

3 0.0000006371576348 1.31139E-05

4 0.0000006371576348 1.31139E-05

5 0.0000000022773766 6.53834E-08

6 0.0000000022773766 6.53834E-08

7 0.0000000000311200 1.08619E-09

8 0.0000000000311200 1.08619E-09

9 0.0000000000002516 1.05304E-11

10 0.0000000000002516 1.05304E-11
Sum 1 1.000026927

Table 6.28 — Triplet, S shell, level Il eigenvalues

Table P Triplet S Shell, level 11

Log (Ei genval ue (i ))

Log (Ei genval ues) Tripl et
0 ‘

-10+

-12+

Level Il only S n=10

Figure 6.38 — Eigenvalues Triplet S only, level Il, n=10, log scale
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Z,

—_

O © 00~ O U= Wh

Sum

value
0.4999997147810680
0.4999997147810680
0.0000002813350571
0.0000002813350571
0.0000000036355178
0.0000000036355178
0.0000000002448654
0.0000000002448654
0.0000000000034916
0.0000000000034916

1

Table 6.29 — Triplet, S shell, level Il eigenvalues

—)\ilOgg)\i
0.500000126
0.500000126
6.12219E-06
6.12219E-06
1.01922E-07
1.01922E-07
7.81789E-09
7.81789E-09
1.32888E-10
1.32888E-10

1.000012717

Table Q Triplet S Shell, level III

only S n=10

Log (Ei genval ues) Tri pl et

Log (Ei genval ue (i ))

Level I

Figure 6.39 — Eigenvalues Triplet S only, level Ill, n=10, log scale

10
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N value —\iloga A\

1 0.4999996506520183 0.500000155

2 0.4999996506520183 0.500000155

3 0.0000003390204608 7.28627E-06

4 0.0000003390204608 7.28627E-06

5 0.0000000101265390 2.68933E-07

6 0.0000000101265390 2.68933E-07

7 0.0000000001855780 5.99923E-09

8 0.0000000001855780 5.99923E-09

9 0.0000000000154039 5.53276E-10

10 0.0000000000154039 5.53276E-10
Sum 1 1.000015433

Table 6.30 — Triplet, S shell, level IV eigenvalues

Table R Triplet S Shell, level IV

Log (Ei genval ue (i ))

Log (Ei genval ues) Tripl et

Level

IV only S n=10

Figure 6.40 — Eigenvalues Triplet S only, level IV, n=10, log scale
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Z,

—_

O © 00~ O U= Wh =~

Sum

value
0.499814480999730000
0.499814480999730000
0.000001020511748924
0.000001020511748924
0.000000004493259714
0.000000004493259714
0.000000000003420622
0.000000000003420622
0.000000000000000025
0.000000000000000025

0.9996310

Table 6.31 — Triplet, S-P shell, level | eigenvalues, S part

—)\ilOgg)\i
0.500082078681601
0.500082078681601
0.000020310506261
0.000020310506261
0.000000124596251
0.000000124596251
0.000000000130288
0.000000000130288
0.000000000000001
0.000000000000001

1.0002050

6.5.5 First excited state *S S-P Shell

We limit ourselves to the I excited level.

Log (Ei genval ue (i ))

-10+

-12.5¢

-15+

Log (Ei genval ues) Triplet Level |I S-P, part S n=10

Figure 6.41 — Eigenvalues Triplet S-P only, S part, level I, n=10, log scale



206 RESULTS
N value —\iloga \;
1 0.000184216695698561 0.002285449168676
2 0.000184216695698561 0.002285449168676
3 0.000000271365762596 0.000005919371379
4 0.000000271365762596 0.000005919371379
5 0.000000005809870612 0.000000158951360
6 0.000000005809870612 0.000000158951360
7 0.000000000120017351 0.000000003955296
8 0.000000000120017351 0.000000003955296
9 0.000000000000491529 0.000000000020098
10 0.000000000000491529 0.000000000020098
Sum 0.0003690 0.0045831
Sum S+P 1 1.0047881
Table 6.32 — Triplet, S-P shell, P part, level | eigenvalues
Log (Ei genval ues) Triplet Level | S-P, part P n=10
-4+ ‘ ‘ ‘
Z -6
o
=)
©
: -8
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(@]
]
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-
-12+

2 4 6 8 10
i

Figure 6.42 — Eigenvalues Triplet S-P only, P part level |, n=10, log scale
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6.6 Sensitivity of the Configurations Interaction re-

sults to the Fock space dimension

6.6.1 'S states

For the singlet states 1S, denoting ng, n,, ng the single particle state dimensions, we have

for the dimension of the matrices that must be diagonalized:
Niot = ns(ns + 1)/2 + np(np + 1)/2 + nd(nd + 1)/2

Taking ns = n, = ng it results that, especially for highly excited states (we studied up to

the VI level) with ng, = n, = ng = 20 we have
Ntot = 630

Although it is possible to diagonalize matrices of this dimension, we investigated if it is

possible to use smaller matrices for shells P and D, accelerating the computations.

We reconfirm that our aim is not the study of Helium itself, but the applicability of our
method to more complex cases. Therefore it is mandatory to check if it is necessary to

use high dimension matrices or not.

Singlet level III S-P

We studied in detail only some cases to estimate the general behaviour.

We chose two cases, ny; = 10 and ny; = 15 and studied the convergence vs. n, < ng in

both cases.
Singlet, level 11I n, = 10

Energy: we note a slight improvement increasing n,, but not enough to justify high

values.
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nddp energy von Neumann linear
2 855 0.99875 0.49868

3 851 0.99871 0.49867

4 839 0.99883 0.49866

5 828 0.99905 0.49867

6 820 0.99923 0.49868

7 816 0.99934 0.49869

8 815 0.99939 0.49869

9 814 0.99941 0.49869

10 814 0.99942 0.49869

Table 6.33 — Singlet, level 11l S-P, dimension for S Shell=10

von Neumann entropy: it must be noted that the significant digits are those ”beyond”

the initial 9’s.

Therefore we need at least n, =8

This, with respect to n, = n,, reduces the dimension from 110 to 91, with a small gain.

Linear entropy

From table A we note that linear entropy is pratically constant starting with n, = 2.

Therefore, if one seeks only linear entropy, the matrix dimension can be reduced from 110

to 55+3=58.
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Del t aE ppm

Energy level 3, Singlet, S-P ndds=10

850+

o)
.[;
o

[o0]
w
o

820+

3 4 5 6 7 8 9 10
nddp

Figure 6.43 — Energy error, level 3, singlet, dimension for S Shell=10 and dimension for P
Shell from 2 to 10

vN Ent ropy

vN Entropy level 3, Singlet, S-P ndds=10

0.9994 ;
0. 9993
0.9992
0.9991+

0.999¢
0.9989 ¢

0.9988

0.9987 =

Figure 6.44 — von Neumann entropy, level 3, singlet, dimension for S Shell=10 and dimension
for P Shell from 2 to 10
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Li near Entropy level 3, Singlet, S-P ndds=10

0.4987¢

0. 498695

0. 49869 |

0. 498685 ¢

Ent r opy

0. 49868 |

I near

0. 498675

L

0. 49867 |

0. 498665

3 4 5 6 7 8 9 10
nddp

Figure 6.45 — Linear entropy, level 3, singlet, dimension for S Shell=10 and dimension for P
Shell from 2 to 10
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nddp energy von Neumann linear
2 52.2 0.998969 0.498903
3 48.8 0.998932 0.498889
4 39.0 0.999037 0.498884
5 29.9 0.999214 0.498889
6 23.8 0.999361 0.498898
7 20.6 0.999453 0.498904
8 19.1 0.999498 0.498908
9 18.6 0.999517 0.498910
10 18.5 0.999522 0.498910
11 18.5 0.999522 0.498910
12 18.5 0.999522 0.498910
13 184 0.999522 0.498910
14 18.3 0.999524 0.498910
15 18.1 0.999526 0.498910

Table 6.34 — Singlet, level 11l S-P, dimension for S Shell=15

Singlet, level III n, = 15
Energy: the improvement with n, saturates starting from n, ~ 7.

von Neumann entropy: with the same criterium as above, it suffices n, = 9. Then

we can decrease the dimension from 240 to 120-45=165, with a significan gain.

Linear entropy: with the same criterium as above, one can use n, ~ 4 lowering the

dimension from 240 to 120+6=126, significantly less.
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Energy level 3, Singlet, S-P ndds=15

Del t aE ppm
N w w SN
ol o 6] o

N
o

4 6 8 10 12 14
nddp

Figure 6.46 — Energy error, level 3, singlet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15

vN Entropy level 3, Singlet, S-P ndds=15

0.9995;

0.9994;

0. 9993

0.9992;

vN Entropy

0.9991;

0.999;

4 6 8 10 12 14
nddp

Figure 6.47 — von Neumann entropy, level 3, singlet, dimension for S Shell=15 and dimension
for P Shell from 2 to 15
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Li near Entropy level 3, Singlet, S-P ndds=15

0. 49891

0. 498905¢

0.4989;

Ent r opy

0. 498895+

Li near

0. 49889

0. 498885

4 6 8 10 12 14
nddp

Figure 6.48 — Linear entropy, level 3, singlet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15
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nddp energy von Neumann linear
2 13980 0.998511 0.498339

3 13973 0.998465 0.498318

4 13957 0.998657 0.498316

5 13941 0.998960 0.498331

6 13930 0.999220 0.498349

7 13924 0.999382 0.498363

8 13922 0.999455 0.498370

9 13922 0.999476 0.498372

10 13922 0.999477 0.498372

Table 6.35 — Singlet, level V S-P, dimension for S Shell=10

Singlet level V S-P

Saturation n, values: energy ~ 7, von Neumann entropy ~ 6, linear entropy ~ 2.

13980t

13970+

Del t aE ppm

13940

13930

Energy level 5, Singlet, S-P ndds=10

13960

13950

3 4 5 6 7 8 9 10
nddp

Figure 6.49 — Energy, level 5, singlet, dimension for S Shell=10 and dimension for P Shell
from 2 to 10



6.6 Sensitivity of the Configurations Interaction results to the Fock space dimension215

vN Entropy level 5, Singlet, S-P ndds=10

0.9994 -
0.9992"
>
o
o
= 0.999/
[
LLl
4
> 0.9988
0. 9986 -
3 4 5 6 7 8 9 10
nddp

Figure 6.50 — von Neumann entropy, level 5, singlet, dimension for S Shell=10 and dimension
for P Shell from 2 to 10

Li near Entropy level 5, Singlet, S-P ndds=10

0. 49837 ¢
0. 49836

0. 49835+

Ent r opy

0. 49834

Li near

0. 49833+

0.49832¢

9 10

nddp

Figure 6.51 — Linear entropy, level 5, singlet, dimension for S Shell=10 and dimension for P
Shell from 2 to 10
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nddp energy von Neumann linear
2 626.1 0.999623 0.499567
3 624.5 0.999607 0.499562
4 620.5 0.999657 0.499560
5 617.0 0.999734 0.499563
6 614.6 0.999798 0.499567
7 613.3 0.999837 0.499569
8 612.8 0.999856 0.499571
9 612.7 0.999863 0.499572
10 612.6 0.999864 0.499572
11 612.6 0.999864 0.499572
12 612.6 0.999864 0.499572
13 612.5 0.999865 0.499572
14 612.5 0.999866 0.499572
15 612.4 0.999867 0.499572

Table 6.36 — Singlet, level V S-P, dimension for S Shell=15

Singlet, level V dimension for S Shell = 15

Saturation n, values: energy ~ 7, von Neumann entropy ~ 7, linear entropy ~ 2.

626

624 -

622+

Del t aE ppm

Energy level 5, Singlet, S-P ndds=15

»
N
o

4 6 8 10 12 14
nddp

Figure 6.52 — Energy error, level 5, singlet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15
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vN Ent ropy

Ent r opy

Li near

VN Entropy level 5, Singlet, S-P ndds=15

0.99985+

0.9998+

0.99975+

0.9997

0. 99965+

4 6 8 10 12 14
nddp

Figure 6.53 — von Neumann entropy, level 5, singlet, dimension for S Shell=15 and dimension
for P Shell from 2 to 15

Li near Entropy level 5, Singlet, S-P ndds=15

0. 499572+

0. 49957 ¢

0. 499568

0. 499566 ¢

0. 499564 +

0. 499562 ¢

nddp

Figure 6.54 — Linear entropy, level 5, singlet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15



energy
12.263927261
11.950255372
11.904629492
11.610134410
11.129510955
10.628428324
10.207898520
9.898319062
9.689921770

von Neumann

0.999556687
0.999560301
0.999559510
0.999558376
0.999559026
0.999561356
0.999564508
0.999567644
0.999570269

linear
0.498919317
0.498920621
0.498920367
0.498919640
0.498919018
0.498918670
0.498918558
0.498918584
0.498918668

Table 6.37 — Singlet, level Il S-P-D, dimension for S Shell=15, dimension for P Shell=10

Singlet level III S-P-D
dimension for S Shell = 15, dimension for P Shell = 10

Saturation n, values: energy ~ 9, von Neumann entropy ~ 2, linear entropy ~ 2.

Energy level 3, Singlet, S-P-D ndds=15 nddp=10

Del t aE ppm
= —
o =
¢ - f -
(&)} - (6} N

=
o

nddd

Figure 6.55 — Energy error, level 3, singlet, dimension for S Shell=15 dimension for P Shell=10
and dimension for D Shell from 2 to 10
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VN Entropy level 3, Singlet, S-P-D ndds=15 nddp=10
0.99957} | | | | | | | 1

0. 999568}
> 0. 999566
0. 999564
0. 999562

vN Entrop

0. 99956
0. 999558

nddd

Figure 6.56 — von Neumann entropy, level 3, singlet, dimension for S Shell=15 dimension for
P Shell=10 and dimension for D Shell from 2 to 10

Li near Entropy level 3, Singlet, S-P-D ndds=15 nddp=10

0. 498921

0. 49892

Ent r opy

0. 49892

I near

0. 498919

L

Figure 6.57 — Linear entropy, level 3, singlet, dimension for S Shell=15 dimension for P
Shell=10 and dimension for D Shell from 2 to 10
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nddd energy von Neumann linear
2 13.0 0.999550 0.498918
3 12.7 0.999553 0.498919
4 12.7 0.999553 0.498919
5 12.4 0.999551 0.498918
6 11.9 0.999552 0.498918
7 11.4 0.999554 0.498917

Table 6.38 — Singlet, level Il S-P-D, dimension for S Shell=15, dimension for P Shell=7

Singlet level III S-P-D, dimension for S Shell=15, dimension for P Shell=7

Saturation ng values: energy > 7, von Neumann entropy ~ 2, linear entropy ~ 2.

13+

12. 75¢

Del t aE ppm

11. 75+

11.5¢

Energy level 3, Singlet, S-P-D ndds=15 nddp=7

12.5¢

12. 25}

12

nddd

Figure 6.58 — Energy error, level 3, singlet, dimension for S Shell=15 dimension for P Shell=7
and dimension for D Shell from 2 to 7
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vN Entropy level 3, Singlet, S-P-D ndds=15 nddp=7

0. 999554

0. 999553}

0. 999552

vN Entropy

0. 999551}

3 4 5 6 7
nddd

Figure 6.59 — von Neumann entropy, level 3, singlet, dimension for S Shell=15 dimension for
P Shell=7 and dimension for D Shell from 2 to 7

Li near Entropy level 3, Singlet, S-P-D ndds=15 nddp=7

0.49892¢

0. 498919

Ent r opy

0. 498919

Li near

0. 498918

3 4 5 6 7
nddd

Figure 6.60 — Linear entropy, level 3, singlet, dimension for S Shell=15 dimension for P
Shell=7 and dimension for D Shell from 2 to 7
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nddd energy von Neumann linear
2 612.6 0.999798 0.499570

3 612.5 0.999800 0.499570

4 612.4 0.999799 0.499570

5 612.3 0.999799 0.499570

6 612.1 0.999799 0.499569

7 611.9 0.999801 0.499569

8 611.7 0.999802 0.499569

9 611.6 0.999804 0.499569

10 611.5 0.999805 0.499570

Table 6.39 — Singlet, level V S-P-D, dimension for S Shell=15, dimension for P Shell=10

dimension for S Shell = 15, dimension for P Shell = 10

Singlet level V S-P-D

Saturation n, values: energy ~ 7, von Neumann entropy ~ 2, linear entropy ~ 2.

Energy level 5, Singlet, S-P-D ndds=15 nddp=10

612.6

612. 4

612. 2

612

Del t aE ppm

611. 8¢

611.6¢

nddd

Figure 6.61 — Energy error, level 5, singlet, dimension for S Shell=15 dimension for P Shell=10

and dimension for D Shell from 2 to 10
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vN Entropy level 5, Singlet, S-P-D ndds=15 nddp=10
. 999806 ‘ ‘ ‘ ‘ ‘ ‘ ‘

. 999805}
. 999804
. 999803}
. 999802¢
. 999801}

0. 9998}
0. 999799¢

o O O O O o

vN Entr opy

nddd

Figure 6.62 — von Neumann entropy, level 5, singlet,dimension for S Shell=15 dimension for
P Shell=10 and dimension for D Shell from 2 to 10

Li near Entropy level 5, Singlet, S-P-D ndds=15 nddp=10
0. 499571

0. 499571
0. 49957
0. 49957
0. 49957
0. 49957
0. 49957
0. 49957

Ent r opy

Li near

Figure 6.63 — Linear entropy, level 5, singlet, dimension for S Shell=15 dimension for P
Shell=10 and dimension for D Shell from 2 to 10
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nddd energy von Neumann linear
2 610.4 0.999871 0.499575
3 610.3 0.999873 0.499575
4 610.3 0.999872 0.499575
5 610.1 0.999872 0.499575
6 609.9 0.999872 0.499575
7 609.8 0.999873 0.499574

Table 6.40 — Singlet, level V S-P-D, dimension for S Shell=15, dimension for P Shell=7

Singlet level V S-P-D, dimension for S Shell = 15, dimension for P Shell = 7

Saturation ng values: energy ~ 6, von Neumann entropy ~ 2, linear entropy ~ 2.

Energy level 5, Singlet, S-P-D ndds=15 nddp=7

610. 4¢
610. 3¢

2 610. 21

E

® 610. 1}

Del t

610

609. 9¢

609. 8t

nddd

Figure 6.64 — Energy error, level 5, singlet, dimension for S Shell=15 dimension for P Shell=7
and dimension for D Shell from 2 to 7
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vN Entropy level 5, Singlet, S-P-D ndds=15 nddp=7

. 999874
. 999873}
. 999873}
. 999873}
. 999873}
. 999872
.999872¢
. 999872

VN Entropy
o O O O o o o o

nddd

Figure 6.65 — von Neumann entropy, level 5, singlet, dimension for S Shell=15 dimension for
P Shell=7 and dimension for D Shell from 2 to 7

Li near Entropy level 5, Singlet, S-P-D ndds=15 nddp=7
0. 499576

0. 499576¢
0. 499575¢
0. 499575¢
0. 499575}
0. 499575
0
0

Ent r opy

Li near

. 499575}
. 499575}

Figure 6.66 — Linear entropy, level 5, singlet, dimension for S Shell=15 dimension for P
Shell=7 and dimension for D Shell from 2 to 7
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568.572747101
564.328634484
563.914055196
563.496019459
562.968913882
562.926050640
562.882999140
562.644119204
562.615142611
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Table 6.41 — Triplet, level Ill S-P, dimension for S Shell=10

energy von Neumann

1.007959855
1.000484467
1.000478124
1.000483267
1.000487109
1.000487660
1.000491090
1.000493406
1.000493940

6.6.2 States S; shell S-P

dimension for S Shell = 10

linear
0.500023220
0.500029153
0.500028734
0.500029052
0.500029301
0.500029334
0.500029563
0.500029714
0.500029748

Triplet level 111 S-P

Saturation n, values: energy ~ 6, von Neumann entropy ~ 8, linear entropy =~ b.

565

Energy level 3, Triplet, S-P ndds=10

564.5¢

564

563.5¢

Del t aE ppm

563

562.5¢

nddp

Figure 6.67 — Energy error, level 3, triplet, dimension for S Shell=10 and dimension for P

Shell from 2 to 10
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vN Entropy level 3, Triplet, S-P ndds=10

1. 00049+

1. 00048+

vN Ent r opy

1. 00047+

100046 4 5 6 7 8 9 10
nddp
Figure 6.68 — von Neumann entropy, level 3, triplet, dimension for S Shell=10 and dimension

for P Shell from 2 to 10

Li near Entropy level 3, Triplet, S-P ndds=10

0. 50003
0. 50003
0. 50003+

0. 500029

Ent r opy

0. 500029

0. 500029+

Li near

0. 500029

0. 500029+

4 5 6 7 8 9 10
nddp

Figure 6.69 — Linear entropy, level 3, triplet, dimension for S Shell=10 and dimension for D
Shellp from 2 to 10



RESULTS

energy
9.563422923
5.903560481
5.523042986
5.108841265
4.639425836
4.599970850
4.562856613
4.354091466
4.330197861
4.261079719
4.245679793
4.227933033
4.219120360
4.213216506

Table 6.42 — Triplet, level 1l S-P, dimension for S Shell=15

von Neumann

1.007045879
1.000431918
1.000425600
1.000430572
1.000434100
1.000434439
1.000434711
1.000439601
1.000440033
1.000440619
1.000440853
1.000440977
1.000440950
1.000441020

linear
0.500020554
0.500025697
0.500025286
0.500025590
0.500025816
0.500025836
0.500025851
0.500026174
0.500026201
0.500026238
0.500026253
0.500026260
0.500026258
0.500026262

Triplet level III, dimension for S Shell = 15

Saturation n, values: energy ~ 11, von Neumann entropy ~ 10, linear entropy ~ 9.

Del t aE ppm

4.5}

4.25¢

ol
@)
) h
ol ol (6]

4.75¢

Energy level 3, Triplet, S-P ndds=15

8 10

nddp

12 14

Figure 6.70 — Energy error, level 3, triplet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15
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VN Entropy level 3, Triplet, S-P ndds=15

1. 00048}
>
S 1.00046}
<
L
prd 1.00044}\\\$///*///*"4“*///*"44~’r4—*4——¢ra
>

1. 00042 ]

100044 6 8 10 12 14
nddp

Figure 6.71 — von Neumann entropy, level 3, triplet, dimension for S Shell=15 and dimension
for P Shell from 2 to 15

Li near Entropy level 3, Triplet, S-P ndds=15

. 500027
. 500027 |
. 500026t

. 500026t

Ent r opy

. 500026t
. 500026 ¢

Li near
o o o o o o o o

. 500026 |

. 500025 ¢

4 6 8 10 12 14
nddp

Figure 6.72 — Linear entropy, level 3, triplet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15
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dimension for S Shell = 10

energy
12139.707185585
12133.977101698
12133.187434831
12132.747465800
12132.367250557
12132.168511050
12132.068679865
12131.911622786
12131.867183800
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Table 6.43 — Triplet, level V S-P, dimension for S Shell=10

von Neumann

1.034694508
1.000583953
1.000573945
1.000573517
1.000576948
1.000582632
1.000583266
1.000584035
1.000584412

linear
0.500021087
0.500035328
0.500034651
0.500034593
0.500034814
0.500035193
0.500035230
0.500035276
0.500035295

Triplet level V S-P

Saturation n, values: energy ~ 9, von Neumann entropy ~ 7, linear entropy ~ 7.

Del t aE ppm

12134

Energy level 5, Triplet, S-P ndds=10

12133.5+¢

12133

12132. 5+

12132 +

12131.5¢

6
nddp

7

10

Figure 6.73 — Energy error, level 5, triplet, dimension for S Shell=10 and dimension for P

Shell from 2 to 10
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VN Entropy level 5, Triplet, S-P ndds=10

1. 00059

1. 00059+

1. 00058 ¢

vN Entropy

1. 00058+

1. 7 ‘ ‘ ‘ ‘ ‘ ‘
0005 4 5 6 7 8 9 10

nddp
Figure 6.74 — von Neumann entropy, level 5, triplet, dimension for S Shell=10 and dimension
for P Shell from 2 to 10

Li near Entropy level 5, Triplet, S-P ndds=10
0. 500036 ‘ ‘ ; ‘ : :

0. 500036

Ent r opy

0. 500035 -

Li near

0. 500034 ¢

4 5 6 7 8 9 10
nddp

Figure 6.75 — Linear entropy, level 5, triplet, dimension for S Shell=10 and dimension for P
Shell from 2 to 10



RESULTS

energy
462.269061039
460.930394019
460.722953666
460.606920576
460.465042301
460.440574411
460.426545631
460.365903652
460.355347219
460.348046482
460.342967217
460.337579623
460.329788819
460.325595959

von Neumann
1.013385214
1.000160444
1.000157298
1.000158111
1.000159193
1.000160427
1.000160577
1.000160900
1.000161161
1.000161156
1.000161532
1.000161465
1.000161550
1.000161616

linear
0.500006251
0.500008736
0.500008550
0.500008591
0.500008653
0.500008727
0.500008735
0.500008753
0.500008769
0.500008768
0.500008791
0.500008786
0.500008791
0.500008795

Table 6.44 — Triplet, level V S-P, dimension for S Shell=15

Triplet level V S-P, dimension for S Shell = 15

Saturation n, values: energy ~ 9, von Neumann entropy ~ 7, linear entropy =~ 7.

461

460. 8

Del t aE ppm

460. 2 ¢

460. 6 -

460. 4

Energy level 5, Triplet, S-P ndds=15

nddp

10 12

14

Figure 6.76 — Energy error, level 5, triplet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15
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vN Entropy level 5, Triplet, S-P ndds=15

1.00017

1. 00017 ¢

1.00017 ¢}

1. 00016 -

. 00016

VN Entropy
H

1.00016+

1. 00016 -

1. 00015+

4 6 8 10 12 14
nddp

Figure 6.77 — von Neumann entropy, level 5, triplet, dimension for S Shell=15 and dimension
for P Shell from 2 to 15

Li near Entropy level 5, Triplet, S-P ndds=15
0. 500009 ; ; ‘ ‘ ; ‘

0. 500009

0. 500009

Ent r opy

0. 500008

Li near

0. 500008

4 6 8 10 12 14
nddp

Figure 6.78 — Linear entropy, level 5, triplet, dimension for S Shell=15 and dimension for P
Shell from 2 to 15



RESULTS

energy
3.983177845
3.262074663
2.766340961
2.521121331
2.405131702
2.346603451

von Neumann

1.000573719
1.000455329
1.000458587
1.000459480
1.000459705
1.000470979

linear
0.500026812
0.500027055
0.500027208
0.500027251
0.500027262
0.500027817

Table 6.45 — Triplet, level Il S-P-D, dimension for S Shell=15, dimension for P Shell=7

dimension for S Shell = 15, dimension for P Shell = 7

Triplet level 111 S-P-D

Saturation ng values: energy > 7, von Neumann entropy > 7, linear entropy > 7.

Del t aE ppm

Energy level 3, Triplet, S-P-D ndds=15 nddp=7

nddd

Figure 6.79 — Energy error, level 3, triplet, dimension for S Shell=15 dimension for P Shell=7
and dimension for D Shell from 2 to 7
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VN Entropy level 3, Triplet, S-P-D ndds=15 nddp=7
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1. 00052

vN Ent r opy
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1. 00046

nddd

Figure 6.80 — von Neumann entropy, level 3, triplet, dimension for S Shell=15 dimension for
P Shell=7 and dimension for D Shell from 2 to 7
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Figure 6.81 — Linear entropy, level 3, triplet, dimension for S Shell=15 dimension for P
Shell=7 and dimension for D Shell from 2 to 7
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CHAPTER 7

From the Helium atom to the Hydrogen

molecule

7.1 Entanglement and the Slater Type Orbitals-n Gaus-

sians basis

In this final section of the thesis, we will study the entanglement using the STO-nG

functions, instead of the STOs used up to now.

STO-nG expansions are approximations of the STO with linear combinations of n Gaus-

sian Type Orbitals (GTO), of the form:

7k Z a; exp(—b;r?) (7.1)

where k is the same as in the STO being approximated, and the coefficients a; and b; are
found minimizing the error made using the GTOs instead of the STOs (see e.g. (Stewart
, 1969)).

These STO-nG expansions are very important, as it is not possible to use STO functions

exclusively. Although their use in quantum chemistry is spreading, the available results

237
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are not yet sufficient to be able to use them in the most complex problems.

Then, as we stated in the introduction, we aim to compare the entanglement computa-
tions of the preceding chapters to computations performed using the STO-nG, with the
well-known techniques of the quantum chemistry. We will evaluate with the greates pre-
cision the error in the entanglement computation for several values of n in the STO-nG

expansions.

Moreover, we note that the Hy molecules reduces exactly to the Helium atoms if one
reduces to 0 the distance R between the nuclei. We performed some tests, and realized
that the H, molecule computations is not more difficult than the Helium’s, so we will

proceed to compute the entanglement in the Hy molecule.
The computations are performed in a similar manner, the differences will be described.

The outline of the chapter is the following: in section 7.1.1 we compute the H,  molecule,
using a single STO. The superposition, coulombian and resonance integrals are computed
using the STO first, and then replacing the Gaussian expansions, and their numerical
values are compared. Then we compute the single particle operators exploiting the sym-
metries, use them to compute the energy and entropy and we compare the results obtained
with 1 STO to those obtained approximating it with an expansions in n Gaussians, n=1,

2, ...6.

In section 7.2 we describe the one and two body operators for the Hy; molecule, starting

again with a single STO and its approximation with up to 6 GTOs.

In section 7.3 we describe the operators for the Hs molecule, shell S, in the general case
of several STOs, each approximated by up to 6 GTOs. It is shown how the superposition,

potential and kinetik energy matrix elements are computed exploiting the symmetries.

In section 7.4 we report our results for the Hs molecule. To check the software, we start
in section 7.4.1 comparing the results obtained setting the internuclear distance = 0 in

the H, programs with those obtained with the Helium program and the same dimension

for the S Shell.
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Then, in section 7.4.2 we report the computation of the fundamental, I, II and III level

of Hy, singlet, obtained with 5 STOs approximated by 6 GTOs.

7.1.1 H, molecule computation

We will compare the results of the simplest case, using a single STO, with the STO-nG

method for some values of n.

Case of a single Slater Type Orbital

The variational method with a single STO in LCAO is well known, we will limit ourselves

to some quick considerations to describe our notation.

We start with a single normalized atomic STO-1S orbital:

(r], 15) = @exp{—f -r} (7.2)

where ¢ is the variational parameter.

In the case of the H, , molecule we obtain at once the ”gerade” molecular orbital (the

only ones in which we are presently interested).

i) = N [Femni-€lr-al} + Eea(-¢Iral] -

= N-(e|[I1) +12)] (7.3)
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Imposing the normalization we get:

with

S =[1+€R + 5 (R cop{~€ R)

Superposition integral

S =[1+ &R+ 3& R exp[—£ R in the expansion in Gaussians we get

™ Q5
Sy = [—— 3% eap{——2
J [Oéi + Oéj] p{ a; + Q;

R*}

The results for some values of n are reported in the table 7.1.

Coulombian integral

Using the STO-1S we have:

3 2 1
7= -5 [ar S capl-2ra) = ~¢l-gg + 1+ Fplenpl-2 R

(7.4)

(7.5)
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R
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
2.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

STO
0.88457
0.71400
0.57566
0.46311
0.37405
0.29775
0.23263
0.17509
0.13202
0.09658

STO
-1.36255
-0.88326
-0.63240
-0.48780
-0.39507
-0.33128
-0.28486
-0.24966
-0.22208
-0.19995

n=1
0.89825
0.72521
0.56905
0.43465
0.32635
0.23489
0.16047
0.10030
0.06090
0.03381

n=1
-1.29167
-0.89112
-0.64421
-0.49509
-0.39890
-0.33311
-0.28568
-0.25000
-0.22222
-0.20000

n=2
0.88584
0.71338
0.57488
0.46306
0.37398
0.29626
0.22840
0.16724
0.12110
0.08345

n=3
0.88460
0.71415
0.57565
0.46278
0.37366
0.29756
0.23264
0.17503
0.13153
0.09533

n=4
0.88459
0.71399
0.57566
0.46314
0.37403
0.29766
0.23251
0.17503
0.13204
0.09661

n=>s
0.88457
0.71401
0.57566
0.46310
0.37406
0.29776
0.23262
0.17505
0.13198
0.09657

n=~6
0.88457
0.71400
0.57567
0.46311
0.37405
0.29775
0.23263
0.17509
0.13201
0.09656

Table 7.1 — S integral values

n=>2
-1.36592
-0.88266
-0.63128
-0.48761
-0.39536
-0.33166
-0.28516
-0.24985
-0.22218
-0.19999

n=3
-1.36213
-0.88332
-0.63263
-0.48779
-0.39499
-0.33123
-0.28486
-0.24969
-0.22211
-0.19996

n=4
-1.36243
-0.88324
-0.63236
-0.48783
-0.39509
-0.33128
-0.28485
-0.24966
-0.22208
-0.19995

Table 7.2 — J integral values

from the expansion in Gaussians we get:

1

Resonance integral

bj(r)dr =

n=>s
-1.36260
-0.88328
-0.63241
-0.48779
-0.39507
-0.33128
-0.28486
-0.24966
-0.22208
-0.19994

n=>6
-1.36253
-0.88326
-0.63240
-0.48780
-0.39507
-0.33128
-0.28486
-0.24966
-0.22208
-0.19995

1
_Sij . —| R _ R’| €T’f[\/041' -+ Oéj‘ Rij — R/H (78)
ij
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R STO n=1 n=>2 n=3 n=4 n=>s n=>6
0.5 | -1.38153 | -1.28209 | -1.37074 | -1.37667 | -1.38029 | -1.38119 | -1.38138
1.0 | -0.83857 | -0.83722 | -0.82827 | -0.83728 | -0.83789 | -0.83845 | -0.83849
1.5 | -0.53759 | -0.54000 | -0.53086 | -0.53711 | -0.53724 | -0.53749 | -0.53757
2.0 | -0.36137 | -0.34914 | -0.36017 | -0.36022 | -0.36140 | -0.36126 | -0.36136
2.5 | -0.25140 | -0.22596 | -0.25303 | -0.25032 | -0.25139 | -0.25139 | -0.25138
3.0 | -0.17689 | -0.14270 | -0.17863 | -0.17644 | -0.17671 | -0.17693 | -0.17688
3.5 | -0.12443 | -0.08658 | -0.12446 | -0.12466 | -0.12420 | -0.12443 | -0.12444
4.0 | -0.08567 | -0.04855 | -0.08316 | -0.08621 | -0.08557 | -0.08561 | -0.08568
4.5 | -0.05948 | -0.02658 | -0.05497 | -0.05985 | -0.05955 | -0.05942 | -0.05947
5.0 | -0.04043 | -0.01340 | -0.03466 | -0.04031 | -0.04059 | -0.04041 | -0.04041

Table 7.3 — K integral values

K == [drvaa)

2

f_A VYp(rg) = —E[1+€R)] - exp|—£ R]

(7.9)
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H; computation

The computation is very simple. We compute the single particle operators.

w

wol

Figure 7.1 — H; sketch
We need the integrals:

SS = superposition; CC = coulombian integral; aa = resonance integral.

Set

ra=|r—al; rg =|r+al; a=— (7.10)

We take as the first orbital wave function a simple STO-1S

Ya(ra) = \/§€$P[—§TA] (7.11)

where ¢ is a variational parameter.

All the following expression are given both in terms of STO and of STO-nG, to evaluate

the precision that is obtained for several values of n.

The energy expectation value is:

1 1 n 1
r—a| lr+al |R]

<¢9|H|¢g>:<¢g|T_ ’¢g>:
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1 1 .
lr—a| |r+a|

I 1
STE S A1+ QIHT - ’R‘}{u) + [2)} (7.12)

We have a total of 16 terms, that reduce to 8 in force of evident symmetries.

(g | H ) = < L 1) + (1] H[2)) (7.13)

Then we need 8 integrals:

(AITIY) = 1) = +5¢ (7.14)
(1IT12) = [2) = -5 €5 - €K (7.15)
(U =gy 11 = ] = ¢ (7.16)
(U= |2 = W = K (717)
A1) = [5] = J (7.18)

[r+a|
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0|2 = 6 = K (7.19)
|r+a| o '
1 1
(1| —==|1) =17 = = 7.20
R’ R’ 720
1 1
(1] —12) = [8] = S— 7.21
R’ R’ 2
We recall:
£ £
i) =[S eapf-¢lr-all, (]2 = /S eap(-¢lrral}  (72)
The integral [1] is immediate, and doesn’t need any comment.
1
2] = (1]|T]2) = —55%9——§K,whm%: K = —¢[1 + £R] - exp[—¢ R) (7.23)

Integral [3]
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1) = —¢ (7.24)

Integral [4] = K

-1

4= (U

12) = <¢A\;—Al|w3> =K (7.25)

Beware: K is negative. (fig 7.2).

-
W

N
i N

o
7

Figure 7.2 — Integral [4]: the circles represent the orbitals 14, ¥5, the thick line the vector
r-a

Integral [5] = J

-1
|r+a|

5 = (U gy |1 = Wl [oa) = (7.20

Beware: J is negative.

J = +¢- [—i + (1 + —) exp[—2¢ R]] (7.27)
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AT

- +
a 0 a

e

Figure 7.3 — Integral [5]: the circles represent the orbital 14, considered twice, the thick line
the vector r+a

Integral [6]

T +al

6] = (1] ) = (Wal = ) =

3 -1
- 5[ dremt-gir-aly o enl-eirray = k129

NS

Figure 7.4 — Integral [6]: the circles represent the orbitals 14, 15, the thick line the vector
r+a

Comparison [4] ; [6]

9= =12 16 = (]2 12) (7.29

Clearly they are identical.
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o N TS

Figure 7.5 — Comparison of integrals [4] and [6]

Check
It is useful to check that when R — 0 one gets H” — He™"

The limits of the integrals [1] ... [6] are:

Then we have:

1 1 1
Eyy = H—S{§§2(1—S) — (K +1)+J +2K + }—%(1+S)} (7.30)

When R — 0 we obviously drop the interactions of the nuclei and obtain:

1
Eys — Excium+ = 5{52 — 4¢} (7.31)

The minimum is attained for £ = 2 and we have Fygiym+ = —% -4 as it must be.
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n Electronic energy error Binding energy error
1 1270.12 15951.91
2 699.49 8785.11
3 554.02 6958.46
4 -30.87 -387.68
) 57.55 722.86
6 9.20 115.59

Table 7.4 — Errors 1S-nG at R=2 a.u.

HY 1S-nG

Note: in all the plots we use

* ST0

# STO -

Abscissae and ordinates are in atomic units.

We compare the 1S analytic solution to the 1S-nG, to evaluate how many Gaussians are

needed to obtain an assigned error level.

In table 7.4 we report the error in ppm for the value R = 2a.u. and several values of the

number of gaussians n. Tables 7.5 and 7.6 report the errors for some values of R.
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R n=1 n=2 n=3 n=4 n=>s n=>6
0.5 28421.95 -306.05 456.83 120.77 6.28 17.32
1 -2928.52 2165.16 218.65 136.14 16.46 20.82
1.5 -6865.02 2796.26 41.13 13591 29.80 8.11
2 1270.12 699.49 554.02 -30.87 57.55 9.20
2.5 13231.16 -1246.49 740.08 -4.38 9.34 20.43
3 25128.93 -1681.95 388.49 144.23 -29.89 11.14
3.5 34116.74 -311.13 -207.12 219.63 -3.28 0.00
4 38560.70 2425.92 -597.53 112.79 56.80 -12.70
4.5 38234.15 5151.27 -464.86 -78.64 T71.85 13.35
5 34190.76 7244.16 131.30 -214.24 24.06 27.81

Table 7.5 — Electronic energy errors 1S5-nG

R n=1 n=2 n=3 n=4 n=>s n=~6
0.5  -64068.52 689.89  -1029.78  -272.23  -14.17  -39.05
1 71525.42  -52881.36  -5339.81 -3324.79 -401.96 -508.47
1.5 -126191.89 51251.49 756.06  2498.19  547.80 0.00
2 15951.91 8785.11 6958.46  -387.68 722.86 115.59
2.5  164444.44 -15492.06 9198.21 -54.45  116.03  253.97
3 350147.44 -23591.49 5412.84  2009.64 -416.50  155.21
3.5  570684.82  -5406.49 -3465.51 3674.94  -54.92 -200.24
4 813286.90 51165.28 -12601.69 2378.75 1197.89 -267.88
4.5 1056805.61 142382.88 -12850.84 -2174.10 1986.33  368.87
5 1280729.17 271354.17 4917.63 -8023.68  901.28 1041.67

Table 7.6 — Binding energy errors 15-nG
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Comparison plots STO - STOnG

El ectronic Energy 1-STO, STO-1G

i

R

30000

20000

ppm

10000

El ectronic Energy 1-STO vs STO-1G

R

Figure 7.6 — Electronic energy STO / STO-1G and errors in ppm

Bi ndi ng Energy 1-STO, STO-1G

1.2-10°
1-10°
800000
E 600000
o
400000
200000

0

Bi ndi ng Energy STO vs 1-STO-1G

[9)]

Figure 7.7 — Binding energy STO / STO-1G and errors in ppm
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ener gy

El ectronic Energy 1-STO, STO-2G

R

El ectronic Energy 1-STO vs STO-2G

6000+

4000+

ppm

2000

R

Figure 7.8 — Electronic energy STO / STO-2G and errors in ppm

Bi ndi ng Energy 1-STO STO-2G

Bi ndi ng Energy 1-STO vs STO-2G
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£
g 100000

50000
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-50000

Figure 7.9 — Binding energy STO / STO-2G and errors in ppm
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El ectronic Energy 1-STO, STO-3G El ectronic Energy 1-STO vs STO-3G
-0.8 600
1 400}
3 e 200t
- -12
2 & o
[}
-1.4 -2001
1.6 -400+
-600¢
1 2 3 4 5 1 2 3 4 5
R R
Figure 7.10 — Electronic energy STO / STO-3G and errors in ppm
Bi ndi ng Energy 1-STO STO-3G Bi ndi ng Energy 1-STO vs STO-3G
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Figure 7.11 — Binding energy STO / STO-3G and errors in ppm
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El ectronic Energy 1-STO, STO-4G El ectronic Energy 1-STO vs STO-4G
0.8 200+
-1 100+
2 £
E’ -1.2 % 0
()
1.4
-100
1.6
-200
2 3 4 5 1 2 3 4 5
R R
Figure 7.12 — Electronic energy STO / STO-4G and errors in ppm
Bi ndi ng Energy 1-STO STO-4G Bi ndi ng Energy 1-STO vs STO-4G
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Figure 7.13 — Binding energy STO / STO-4G and errors in ppm




7.1 Entanglement and the Slater Type Orbitals-n Gaussians basis 255

El ectronic Energy 1-STO, STO-5G

El ectroni ¢ Energy STO vs STO-5G

R

Bi ndi ng Energy 1-STO vs STO-5G
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-1 40
&) £
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5 S 20
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-1.4 0
1.6 -20
2 3 4 5
R
Figure 7.14 — Electronic energy STO / STO-5G and errors in ppm
Bi ndi ng Energy 1-STO STO-5G
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Figure 7.15 — Binding energy STO / STO-5G and errors in ppm
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El ectronic Energy 1-STO, STO-6G El ectronic Energy 1-STO vs STO-6G
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Figure 7.16 — Electronic energy STO / STO-6G and errors in ppm
Bi ndi ng Energy 1-STO, STO-6G Bi ndi ng Energy STO vs STO-6G
1000
0.6 7501
500
0.4 c
& S 250
[
0.2 of
250
0
-500¢
1 2 3 4 5 1 2 3 4
R R

Figure 7.17 — Binding energy STO / STO-6G and errors in ppm
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7.2 H,; molecule with a single Slater Type Orbital

Starting with the simplest case, from the atomic orbital basis we have:

a(r;) = \/Ejexp{—f\ri —al}, b(ry) = @emp{—ﬂri + al} (7.32)

ra = a; rg = —a
o o &
-a a
k v
R

Figure 7.18 — H> settings

Using these, we take as test function for the Hs molecule:

|y = N [a(ry) - b(ry) £ b(ry) - a(ry) ] (7.33)

We obtain at once the normalization:

N= (7.34)
2[1 + 57

Set:
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Vi(r1) + Vi(ra) (7.35)

7.2.1 One body operators

We have:

1

(| Vi + Vo) = Mz 9

{a(ry) - b(ra) £ b(r1) - a(r2) } [ Vi + Va| - {a(r) - b(r2) + b(r1) - a(rz) } (7.36)

We have 8 terms, that can be reduced because of the symmetry for the coulombian
interaction:

—1 —1 —1 —1
+ + +
r—al Intal  Ir-al |t al

WV + Velv) = (] + |¥) =

1

—1 —1
— g laln) ) £ 000 et} (T )

+ ( - + ! )} ~{a(ry) - b(ry) £ b(ry) -a(r) } = (7.37)

|ry — a] |ry + a

= 16 terms which reduce to 8 =

1 -1 —1
= m{a(ﬁ)'b(rz) + b(r1) - a(ra) } - {|r1 —a + I+ a’}‘

{a(ry) - b(re) £ b(ry) - a(ry) } (7.38)
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= 4 terms for symmetry =

2
= T3 g talVila) £L{a[Vi|b) -5 + (a[V2|b) -5 £ {a]V2]a)} (7.39)

We need 4 integrals that we already computed, see 7.16, 7.17, 7.18.

(alVila) = [3] = +& (a|Vi|b) = [4] = + K (7.40)

(a|Valb) = [4] = + K; (a|Va|a) = [5] = +J (7.41)
Then we have:

<¢|‘71+‘72|¢>:F82{—5i2f(5+(]} (7.42)

We must now add the kinetic energy:

W) | T + Ts | Qﬁ) = (fOr Simmetry) —

2

= S g7y Lalr) - b02) £ b - afr) }-
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(=5 VD {alr) - br2) + b(r1) -a(r2) } = (7.43)

= (recalling that V2 = V3 = V?) =

2 2
:—{[1]i[2]'5}:m

1, 1,
(1 + 5?%) &+ -3¢ 5 -C K]S (T44)

Then the energy of the one body part of the H is:

<¢|E1W)> =

g EE2KS T+

+ﬁ{%§2i[_%§2.g_g.[(]s} (7.45)

considering the + sign and taking S=1; R=0, we have:

(WIEY|Y) = & — 4¢ (7.46)

We have a minimum for £ = 2 and then EY = —4 as it must be.

We must now add the energy of the two bodies interaction.
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7.2.2 Two bodies operators
1
(1= 19) =

1

= Tz 7y Lalr) - 00) £ b(r) -afra) }

L {a(ry) - b(ry) £ b(ry) -a(r) } = (7.47)

12

= for the symmetries =

1 1 1
= —2 ( 1+ 52) {<a(7’1) . b(’/’z) | — | CL(Tl) b(T2)> + <a(7’1) ~b(r2) ’ — ‘ b(Tl) 'CL(TQ)>} (748)

12 12



262 FroM THE HELIUM ATOM TO THE HYDROGEN MOLECULE

7.3 H; molecule in Configurations Interaction S shell

only

rl r2

Figure 7.19 — H,: definitions
Define the following single particle basis functions:

¢i(r) = weli, 1, ki]-STO (v, ki), {i=1,2,..,n} (7.49)

ki=1

For the sake of simplicity we will assume that they are real.

Using these, we build two sets of single particle orbitals, that are orthonormal within

each set but not mutually:

a;(r) = ¢i(r — a); bi(r) = ¢i(r + a) (7.50)

We stress that we build the single particle orbitals using the ¢;(r), that are orthonormal

by construction, and are centered at the points A = aand B = —a.



7.3 Hy molecule in Configurations Interaction S shell only 263

Their superposition is given by the integral that we will shortly define; it reduces to d;; if

a = 0, as the ¢;(r) are orthonormal by construction.

7.3.1 Example: superposition computation

Define:

85 (i,5) = [ drai(x) - b(r) =

= [droi(|r — al)-¢i([r +al) =

= D ket oy e iy 1, kil el 1, kj-

- [der STO(|r — al,ki)-STO(|r + al|,kj) =

= > > weli, 1, ki) -ucj. 1, kj] - SK(ki, kj) (7.51)

ki=1kj=1

It is necessary to distinguish the SS(i, j) and the SK(ki, kj).

In the program SS(i,j) = ssij(i,j).

The SK (ki, kj) depend on £ and ng and are computed using the gaussian expansion..
Now we must build the Fock space for two particles.

In what follows, we will not write the summations in (i,j) and we will indicate just the
kernels of the gaussian expansions for the explicit expressions of the SK(ki, kj) and the

potential and kinetic energy.
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We will consider separately the case in which both particles use the basis in A, that is
either the a;(r) or b;(r) orbitals, and the case in which one particle uses the a;(r) orbitals

and the other the b;(r) orbitals.

The first case is identical with the Fock basis used for Helium (with the only difference

that now the atom is H~), both if only the a;(r) or only the b;(r) are used.
We denote I and II these two sets of states.

We are now interested in the case III, when one particle is described by the a;(r) orbital
and the other by the b;(r). Of course it is required that the total wave function must be

symmetrical or antisymmetrical.

Then the Fock space is given by (we will consider only the singlet case):

Symmetrical case (singlet)

In order to avoid too many cases, we will concentrate on the singlet.

The Slater permanents used to build the Fock space can be written: !

(ri, 124, j) = Ny =

= Nij[ai(r1) - bj(ra) + bj(r1) - ai(ra)] (7.52)

'In the program N;; = anij(i, 5)
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Imposing the normalization, the factor Aj; can be computed:
(i, jli, j) =
= NG [ dry [ dro{ai(ri) bj(r2) + bj(ri)ai(rs)}-

Hai(r1) bj(ra) + bj(r1)ai(r2)} =

= NZ2{1 4+ 55(i,5)*} =1 (7.53)

then:

(7.54)

In the program SS(i, j) = ssij(i, j).
Now we compute 2
(i, j 1k, 1) =

= Nij - N [ dry [ dra{ai(r1) bj(re) + bj(ri)ai(re)} - {ax(r:) bi(ra) + bi(r1)ar(rs)} =

= 2N - N {0 - 650 + SS(i,1) - SS(j, k) } (7.55)

Because the SS(i, j) matrix is symmetrical.

The same computation is immediate for the antisymmetrical case and for the cases I+I1I,

TT4ITT, T+11.

%In the program (i, j | k,1) = sovr(k1,k2)
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Now we come to an important point.

In the simplest case one can use a set of non orthonormal functions, but then one has to

solve a generalized eigenvalue problem.

We will orthonormalize the basis functions of the Fock space, greatly simplifying the

problem of computing the eigenvalues of the Hamiltonian.
This can be achieved in a relatively simple way.

We note that sometimes in Quantum Chemistry the approximation of setting everywhere

SS(i,5) = 6; (7.56)

is used, that is of neglecting all the superpositions.

As all that we have seen up to this point indicates that the entanglement computation is
easier than the energy’s because fewer significant digits are required, it is interesting to

evaluate how much this approximation is valid for the entanglement.

7.3.2 Potential matrix elements

Define:
b= 6 (r+a) a=¢ (a)
i | I
-a 0 a

Figure 7.20 — Definitions

We will now compute the matrix elements for the single particle potential. We have:
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(i, j|V Ik 1) =

= Ny - Nu [ dry [ dryfa;(r1) bj(ra) + bj(r1)as(r2)] -

-1 —1 —1 —1

: - - - :
vty —a|  |ri+al  [rp—al |r;+al

“lak(r1) bi(r2) + bir1)ak(r2)] (7.57)

To simplify the formulas, we will not write the factor N, - Ny until the final result.
We have 16 terms, which reduce to 8 for symmetry.

Writing symbolically:

(,j|VIk1) =(A+ Bla+ 8+~ +6|C+ D) (7.58)

we have:

(Ala|C) = [1] faz()| __1a|ak(r)dr 551
—1

ngbi(r—a)‘r ‘cbk(r—a)dr-djl_

= [ ) = ou(p)dp-5 = VV (i, k) -6y (7.59)

ag(r)dr-d; = [1] (7.60)
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Figure 7.21 — [1]=[2] VV(i,k): the circles represent the orbitals ¢;(r — a), ¢x(r — a), the
thick line the vector r-a

(A1816) = [7] = [0,0)

y by(r)dr - §;

_ /@.(r +a) |r_+1&‘ Gu(r + a)dr- 0y — VV(i 1) 0 (7.61)

(B181D) = 18] = [ 4,0) gy ey e -0 = [7) (7.62)

r+ a|

Figure 7.22 - [7]=[8] VV(j,I): the circles represent the orbitals ¢;(r+a), ¢;(r+a), the thick
line the vector r+a

The kernel of the gaussian expansion can be written:
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1] = [2] = [7] = [8] = VG(m,n) = NN, amQI - (7.63)
S —1
(A181C) = [3] = [ai(r) T T a|ak(r)dr-5ﬂ =
= /@(r — a) ’r:rla| or(r — a)dr-6; = JJ(i, k) -, (7.64)
- - -1 B
<B\5\D>=[4]—/ z()| +a|ak(r)dr-5ﬂ=[3] (7.65)

Figure 7.23 — [3]=[4] JJ(i,k): the circles represent the orbitals ¢;(r —a), ¢i(r —a), the thick
line the vector r+a

—1

’I‘ — a’bl(r)dr-éik =

(Al7]C) = [5] = [b(r)

_ /qu(r + a) ‘r__la‘ b + a)dr - = JI(j, 1) O (7.66)

——b(r)dr- 6y = [5] (7.67)
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Figure 7.24 — [5]=[6] JJ(j,I): the circles represent the orbitals ¢;(r +a), ¢;(r +a), the thick

line the vector r-a

The kernel of the gaussian expansion can be written:

NN —2 Byl (am + an)r?]

Oy + Qi

(A|7|D) = [13] = fbj<r>ﬁak<r>dr- SS(i,1) =

_ /¢j(r + a)_—lagbk(r ~a)dr- SS(,1) = KEK2(E, j)-SS(i, 1)

(Bla|C) = [14] = /bj(r)_—l W(x)dr - SSG1) = [13]

a
v — a

-1
v — a|

bi(r)dr- SS(j,k) =

_ /@(r — a) |r__1&| ¢i(r + a)dr- SS(j, k) = KK1(i, 1)-SS(j, k)

(7.68)

(7.69)

(7.70)

(7.71)



7.3 Hy molecule in Configurations Interaction S shell only 271

o
w, ' C
1 k

Figure 7.25 — [13]=[14] KK1(k,j: the circles represent the orbitals ¢;(r + a), ¢i(r — a), the
thick line the vector r-a

—1
T - al

(B|~|C) = [10] = /ai(r) b(r)dr- SSG,k) = [9] (7.72)

—— .
S A

Figure 7.26 — [9]=[10] KK1(i,l): the circles represent the orbitals ¢;(r — a), ¢;(r + a), the
thick line the vector r-a

The kernel of the gaussian expansion can be written:

9] = [10] = KG1(m,n) =

o Oy + o?
— NN, — = YOy Y e 7.73
o exp| Oém_l_an?ﬂ] ol am+anr} (7.73)
—1

(A|6] D) = [15] = [b;(r)

T T al ag(r)dr- SS(i,l) =
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_ /gbj(r +a) ’rfa’ ou(r — a)dr- SS(i,1) = KK2(j, k)-SS(i,1)  (7.74)

—1
r + a

(B|5|C) = [16] = /bj(r) ax(r)dr- SSG,0) = [15]  (7.75)

7,
| Yy L
i k
Figure 7.27 — [15]=[16] KK2(j,k): the circles represent the orbitals ¢;(r +a), ¢5(r — a), the
thick line the vector r+a

—1

(B|§|C) = [11] = Jai) T

bi(r)dr- SS(j,k) =

_ /gzﬁi(r _ a) |r_+1a’ it + a)dr- SSG, k) = KK2(L,i)-SS(j, k) (7.76)

—1

mbl(r) dr - SS(],k) =

(A|8|D) = [12] = [ai(r)

- /aﬁi(r ~a) |r‘+1a| Gi(x + a)dr- SS(j,k) = [11) (7.77)

The kernel of the gaussian expansion can be written:

[11] = [12] = KG2(m,n) =
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| A
' Sy L/
0 ;
1 i
Figure 7.28 — [11]=[12] KK2(l,i): the circles represent the orbitals ¢;(r — a), ¢;(r + a), the
thick line the vector r+a
NN, —2T (o OmOn oy g O (7.78)
= NN,y ——— - exp|— re] - -0 :
Oy + oy, p QO + 0 Oy, + Qi
Now we must compare the integrals KK1 and KK2 for the same indexes.
We have:
KKI1(i, j) = [ ¢u(r ¢;(r + a)dr
Vi A (7.79)
KK2( ; —a)d
(2, J) f¢ ]r—l—a\%( a)dr
Changing variables we have:
KK1(i, j) = [ ¢i(p) —i(p + 2a)dp
{ (7.80)
KK2(i, j) = [ ¢i(p) p — 2a)dp
As in the S shell the ¢; have a spherical symmetry, we have
KKI1(i,j) = KK2(4, j) (7.81)
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Inserting again the normalization factor, the 16 terms, reduced to 8 thanks to the sym-

metry, can be written
{[1}[16]} = ./V;]./\/’MQ{VV(’L, ]C)(Sjl + VV(], l)észr

F[KK1(i, 1) + KK1(L, i)] - SS(j, k) +

+KK2(k, j) + KK2(j, k)] -SS(i, 1)} (7.82)

In the program we have:

VV(i, j) = aij3(i, j)

JI(1, J) = ajjij(i, j)

KKI1(i, j) = KK2(i, j) = aaij(i, j)
S5(1, J) = ssij(i, j)

Ny = anij(i, j)

7.3.3 Case i=j=k=I1=1
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{[1]...[16]} = N1 - Ny -2-{2VV(1,1) + 2JJ(1,1) + 4KK(1,1)} =

:N11'N11'4'{VV+JJ+2KK-SS} (783)

that agrees with the computations for a single STO.

Inserting again the normalization factor for the one body electronic energy, we have:

2
14 92

E {(VV + JJ + 2KK - S5} (7.84)

7.3.4 Kinetic Energy

<Z7.]‘T1 +T2|k7 l> =

= Njj - Ny [ dry [ drofai(ry) bj(ra) + bj(r1)a;(rs)] -

: [—%Vf — %V%] +an(ry) bi(re) + bi(ri)ag(rs)] = (7.85)

We hawe 8 terms which reduce to 4 for symmetry
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(1) = [ drr [ vty (- 5 T astrbe)

2) = [ [ draae) b - Vb))

3] = /dr1/drgbj(rl)ai(rg)[—%V%]ak(rl)bl(rg)

(4] = [ ey [ byt (- 5 Vb))

51 = [ drr [ st by(rs) [ 5 V) aslrobi(e)

(6] = [ drr [ sty (- 5 V3 blran(e)

1) = [ [ drabe) aien) - Vi) antre)

(7.86)

(7.87)

(7.88)

(7.89)

(7.90)

(7.91)

(7.92)

(7.93)
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[8] = / dI‘l / dI‘2 bj(I‘l) ai(rg) [— % vg] bl(rl)ak(rg) (794)

These are pairwise identical

[3] = [6]; [4] = [5];
] = / dr, ai(rl)[—%vf]ak(rl)@ (7.95)
2] = /dr1 ai(rl)[—%vf]blm)ssg,k) (7.96)
3] = / dr, bjm)[—%vf]ak(rl)ssu,n (7.97)
4] = / dry bj(rl)[—%Vf]bl(rl)éik (7.98)

Inserting again the normalization factor, we have:
<Z>j‘T1 =+ TQ‘ka l> =

1
= Nij - Nu2{ [ dria;(ri)[— évf] ap(ry)d; +
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+ [ dryau(r) [~ 5 Vi (n)SS G k) +

[ dryby(ry) [~ % V2] ap(r1)SS(i, 1) +

+ / dry bj(ry) [— % Vi bu(r1)din }

We must compute the four integrals:

4] = [ dribytr) (= 5 92 0t

We report just the kernels of the gaussian expansions

(7.99)

(7.100)

(7.101)

(7.102)

(7.103)

(7.104)
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3/2
2] = [3] = Ta(m, n) = Nol [:2]
Gm O emp{—am ~Gn -7"2} : [3 g Gm %n 2 (7.105)

Oy + Oy

Then we have:

(4,71 Ty + To| k1) = Nij - Ny - 2-{TT1(i, k) - 6, + TT1(j, 1) - o +

TT2(i, 1) - SS(, k) + TT2(j, k) - SS(i, 1) }

(7.106)
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7.4 H; molecule: preliminary results

In fig. 7.29 we report some preliminary results of the Hs computation, using 1 STO

approximated by 6 gaussians, compared to standard data from (Sharp , 1971).

Total Energy H2 standard, STO-6G

-0.95
l
-1.05!
> |
m .
o I

[y

£ ,
110
-1.15

1 2 3 4 5 6 7

R

Figure 7.29 — Hy standard energy (continous line) and energy of 1S-6G

7.4.1 Comparison of Hs; to Helium computations

It is important to compare the results obtained for Helium using a small Hilbert space

dimension with those for the Hs molecule, because we will perform only computations
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Tk W N = B

aals Energy A E EvN Elin
1.687 -2.847656 19309 - -
1.700 -2.860467 14897 0.0344702 0.007189
1.900 -2.878305 8754 0.041507 0.008793
2.000 -2.878598 8653 0.041210 0.008729
2.155 -2.878886  85H4 0.041314 0.008741

Table 7.7 — He, Singlet, fundamental level, small n

with small n values at the beginning.

It is of paramount importance to evaluate the speed of convergence for several values of

n, and to compare the energy and entropy convergence rates.

From the table inspection, we note energy converges to an approximate value by increaing

n for a fixed number of shells and at the same time entropy converges to an approximate

value,

0.041
0.04
0.039

2 0.038
0.037
0.036

0. 035

too.
Energy, Fundanental level, Singlet, S
1 2 3 4 5
ndds
Figure 7.30 — He small n, Energy errors Singlet fundamental level
Evn, Fundamental level, Singlet, S Elin, Fundanental level, Singlet, S
0. 00875
0. 0085
0. 00825
E 0.008
w

0.00775

0.0075

0.00725

2 2.5 3 3.5 4 4.5 5 2 2.5 3 3.5 4 4.5 5

Figure 7.31 — He small n, vN and linear Entropy Singlet fundamental level

In table 7.8, 7.10, 7.12 we compare the results obtained with the Helium computations

with those obtained for the H,; molecule using 1 to 6 gaussian functions and setting the

nuclei separation R=0.
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n of gaussian functions Helium
nnzz 1 2 3 4 ) 6
11-2.300738 | -2.701896 | -2.807592 | -2.835561 | -2.843615 | -2.846140 | -2.847656
2 | -2.506908 | -2.770979 | -2.826518 | -2.848755 | -2.856683 | -2.859137 | -2.860467
31 -2.703910 | -2.805933 | -2.851666 | -2.869493 | -2.875258 | -2.877178 | -2.878305
4| -2.778315 | -2.832704 | -2.861129 | -2.870708 | -2.876416 | -2.877704 | -2.878598
5) - | -2.861246 | -2.865119 | -2.872408 | -2.877225 | -2.878190 | -2.878886
Table 7.8 — Fundamental level, comparison He vs. Hy with R=0
n aals Energy A E EvN Elin
3 1.000 -2.068352 36171 0.963958 0.474128
4 1.000 -2.131621 6688 0.981350 0.485558
) 1.021 -2.140920 2355 0.982247 0.486323
6 1.024 -2.143794 1015 0.983651 0.487367
7 1.014 -2.144031 905 0.983769 0.487452
Table 7.9 — He, Singlet, level |, small n
é 15000
Figure 7.32 — He small n, Energy errors Singlet level |
Figure 7.33 — He small n, vN and linear Entropy Singlet level |
n of gaussian functions Helium
nnzz 1 2 3 4 ) 6
3| -1.616379 | -1.833382 | -1.987778 | -2.049313 | -2.057556 | -2.065176 | -2.068352
4| -1.811976 | -1.988719 | -2.048273 | -2.114224 | -2.119848 | -2.128268 | -2.131621
) - [ -1.997665 | -2.073578 | -2.123437 | -2.128179 | -2.136767 | -2.140920

Table 7.10 — Level |, comparison He vs. Hy with R=0
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n aals Energy A E EvN Elin
4 0.800 -1.927450 64922 0.971522 0.479204
) 0.786 -2.024148 18009 0.991662 0.493014
6 0.771 -2.047362 6748 0.993328 0.494585
7 0.76 -2.057126 2011 0.995553 0.496292

Table 7.11 — He, Singlet, level Il, small n
n of gaussian functions Helium
nnzz 1 2 3 4 ) 6
4| -1.451170 | -1.609448 | -1.779578 | -1.897773 | -1.907056 | -1.921834 | -1.927450
) sballa | -1.637995 | -1.864085 | -1.996167 | -1.997864 | -2.017370 | -2.024148

Table 7.12 — Level I, comparison He vs. Hy with R=0

Energy, Level 2, Singlet, S

60000
50000
£
g 40000
E
£ 30000
&
20000
10000
4 2.5 5 5.5 6 6.5 7
ndds
Figure 7.34 — He small n, Energy errors Singlet level I
Evn, Level 2, Singlet, S Elin, Level 2, Singlet, S
0. 995
0. 495
0. 99 0. 4925
0. 49
- 0.985 c
z =
z 5 0.4875
0. 98 0. 485
0. 4825
0.975
0. 48
4 2.5 5 5.5 6 6.5 7 4 4.5 5 5.5 6 6.5 7
ndds ndds

Figure 7.35 — He small n, vN and linear Entropy Singlet level Il
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Figures 7.36 and 7.37 demonstrate the convergence rate of energy for R=0, fundamental

to III level singlet, for several values of the number n of STOs and the number m of

gaussians used.

H2 Fundanental Level R-0

H2 | Level R-0

S

Figure 7.36 — Fundamental and | level nS-mG energy R=0

H2 11 Level R-0

H2 111 Level R-0

n=3

- n=4

n=5

- n=4

ng

Figure 7.37 — Il and Ill levels nS-mG energy R=0
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n aals Energy AE EvN Elin
4 1.100 -2.071159 -47843 1.0000909 0.5000047
5 1.080 -2.173060 -997 1.0000505 0.5000025
6 1.060 -2.174120 -510 1.0000500 0.5000025
7 1.060 -2.174241 -454 1.0000554 0.5000028
Table 7.13 — He, Triplet, level I, small n
Energy, Level 1, Triplet, S
0
-10000
£
g - 20000
é -30000
- 40000
4 4.5 5 5.5 6 6.5 7
ndds
Figure 7.38 — He small n, Energy errors Triplet level |
Evn, Level 1, Triplet, S Elin, Level 1, Triplet, S
1. 00008 0. 500005
100008 0. 500004
E 1.00007 5 0. 500004
1.00006 0. 500003
1. 00005 0. 500003
4 4.5 5 5.5 6 6.5 7 4 4.5 5 5.5 6 6.5 7
ndds ndds

Figure 7.39 — He small n, vN and linear Entropy Triplet level |
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n aals Energy AE EvN Elin
4 0.810 -1.971489 -46986 1.000231 0.5000131
5 0.820 -2.041132 -13321 1.000132 0.5000716
6 0.800 -2.059775 -4309 1.000045 0.5000022
7 0.790 -2.066119 -1242 1.000030 0.5000014
Table 7.14 — He, Triplet, level I, small n
Energy, Level 2, Triplet, S
- 10000
g
a -20000
é -30000
- 40000
4 4.5 5 5.5 6 6.5 7
ndds
Figure 7.40 — He small n, Energy errors Triplet level |
Evn, Level 2, Triplet, S Elin, Level 2, Triplet, S
0. 50007
1. 0002 0. 50006
0. 50005
_ 1. 00015 e 0.50004
g w 0. 50003
1.0001
0. 50002
1.00005 0. 50001
4 4.5 5 55 6 6.5 7 0-5 4 4.5 5 5.5 6 6.5 7
ndds ndds

Figure 7.41 — He small n, vN and linear Entropy Triplet level I
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n aals Energy AE EvN Elin
5 0.600 -1.906729 -63728 1.0003313 0.5000193
6 0.650 -1.985385 -25105 1.0001759 0.5000097
7 0.650 -2.015153 -10488 1.0000523 0.5000026
Table 7.15 — He, Triplet, level Ill, small n
Energy, Level 3, Triplet, S
-10000
-20000
§ -30000
% - 40000
E
-50000
- 60000
5 5.5 6 6.5 7
ndds
Figure 7.42 — He small n, Energy errors Triplet level ]
Evn, Level 3, Triplet, S Elin, Level 3, Triplet, S
1. 0003 0.500018
1. 00025 0.500015
0.500013
Z  1.0002 £
i T 0.50001
1. 00015
0. 500008
1.0001 0. 500005
1. 00005 0. 500003
5 5.5 6 6.5 7 5 5.5 6 6.5 7
ndds ndds

Figure 7.43 — He small n, vN and linear Entropy Triplet level I
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7.4.2 Results of 5 Slater Type Orbitals - 6 Gaussians computa-

tions

In the following tables and plots we report the results of the H, singlet computations for

the fundamental level and the I, II and III excited.
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R
1.0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

-1.02¢

Ener gy

£
1.283

1.140
1.053
1.010
0.993
0.990
0.997
1.000
1.000
1.000
1.000
1.000

energy
-1.09738081
-1.14377383
-1.11135164
-1.07240158
-1.04218424
-1.01116346
-1.00221375
-1.00016738
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Figure 7.44 — Energy H2, fundamental level, 55-6G
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R ¢ energy evN elin
1.0 0.703 -0.53336949 1.02186975 0.48690400
1.5 0.610 -0.64464992 1.06377277 0.49258071
2.0 0.560 -0.65385125 1.12052856 0.50550538
2.5 0.550 -0.64139314 1.17260638 0.52422605
3.0 0.623 -0.63245461 1.08993997 0.50337984
4.0 0.800 -0.63906354 0.83803672 0.38852346
5.0 0.857 -0.64079976 0.81873483 0.37889547
6.0 0.860 -0.63707710 0.85709599 0.40312751
7.0 0.847 -0.63255071 0.90481629 0.43341737
8.0 0.840 -0.62894859 0.94485466 0.45949994
9.0 0.837 -0.62658401 0.97314071 0.47828898
10.0 0.837 -0.62523711 0.98987822 0.48967345

1.15

1.05

VN Entropy
-

<
©
5

Table 7.17 — H> level |, 55-6G energy vs.R
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Figure 7.46 — Energy H2, level |, 55-6G
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R
1.0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

Ener gy
o
%)

§
0.517

0.450
0.413
0.427
0.500
0.560
0.563
0.557
0.553
0.557
0.560
0.560

energy
-0.43098384
-0.54968782
-0.56376622
-0.55504519
-0.55040950
-0.55124005
-0.55018107
-0.54887240
-0.54843031
-0.54903190
-0.55014916
-0.55107273

evN
1.08450450
1.10966039
1.13436702
1.13035155
1.05323225
1.00885402
1.02811864
1.05325025
1.07349451
1.07950733
1.07164262
1.06020765

elin
0.50423375
0.50835134
0.51418622
0.51646035
0.49708390
0.48685360
0.49567290
0.50385549
0.50790827
0.50520237
0.49766366
0.49066709

Table 7.18 — H> level I, 55-6G energy vs.R
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Figure 7.48 — Energy H2, level Il, 55-6G
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R ¢ energy evN elin
1.0 0.437 -0.34383755 1.10965653 0.50994204
1.5 0.387 -0.48130015 1.14308556 0.51632784
2.0 0.360 -0.51007898 1.16449460 0.52095780
2.5 0.353 -0.51277621 1.16892940 0.52093608
3.0 0.370 -0.51181525 1.14513854 0.49708390
4.0 0.387 -0.50947921 1.18069990 0.51432464
5.0 0.403 -0.50457966 1.22045210 0.52744604
6.0 0.413 -0.50284826 1.21563545 0.52826062
7.0 0.417 -0.50420825 1.20154210 0.51840368
8.0 0.420 -0.50617050 1.17154637 0.50392449
9.0 0.417 -0.50718792 1.16187212 0.49795206
10.0 0.417 -0.50703031 1.16167097 0.50020814

Table 7.19 — H> level Ill, 55-6G energy vs.R
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Figure 7.50 — Energy H2, level Ill, 55-6G
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CHAPTER 8§

Conclusions and outlook

The problem of entanglement computation in atoms and molecules is indeed still open,

even if the interest in this topic has recently boomed.
For this reason we studied the simplest available case, the Helium problem.

Using an orthonormal basis we have been able to highlight the problems related to the
very definition of entanglement for identical particles. The use of an orthonormal basis
is not at all a new idea in atomic structure computations, we want to stress the fact that

it is a convenient choice to perform entanglement related computations.

An important result is the comparison between states 1S and 3S of Helium. We verified

that they need a different treatment.
When an entanglement measurement is sought, such a simplification is no longer valid.

In the case of Helium, classifying the spin states as singlet and triplet one is able to
discriminate in quite a simple manner the different situations, that are only two in this

case.

This situation holds if one measures entanglement using both the von Neumann and the

linear entropy.

With our method we were able to compute the entanglement for several states of Helium.
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We list here some specificities of our work:

1) Previous papers evaluated the entanglement using simplified analytical models, e.g.
(Yanez, Plastino et al. , 2010), (Coe, Sudbery et al. , 2008), or with some approximations,
like (Osenda, Serra , 2007), (Osenda, Serra , 2008) and (Ferron, Osenda et al. , 2009).
Our method considers the exact, complete interactions between the two electrons without
simplifying assumptions. Moreover, when computing entanglement we take into account

the Pauli exclusion principle and its influence on the entropy values.

2) More appropriately, this work can be considered an extension of (Dehesa, Koga et al.
, 2012), whose linear entropy results agree with ours where a comparison is applicable. A
difference in the methods employed is that (Dehesa, Koga et al. , 2012) used Montecarlo

integrations, implying some statistical errors, while our algebraic method does not.

3) Another difference is that with our method we were able to compute the reduced matrix

eigenvectors and hence both the linear and the von Neumann entropies.

4) We extended the number of states for which we computed the entanglement, so that
we could propose an empirical law for the dependence of entanglement on the principal

quantum numbers.

5) An important characteristic of our method is that it seems to be possible to extend
it without much effort in order to compute more interesting cases. Our preliminary
computation for the Hs molecule is, at our knowledge, the first "ab initio” evaluation of

the entropy of this system.

First of all, we found that shells S, P and D are sufficient for good entanglement com-
putations, both in the singlet and triplet case. In the second place, one can use lower

dimensions for the P and D shells, as we discussed in detail for several specific cases.

Moreover we found that the optimization of the variational parameters can be done sep-
arately for each shell, that is one has to perform just 3 optimizations one after the other

even in the most complex situation that we considered, that of the S, P and D shells.
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For all these reasons the method can be applied to more complex systems like the H,

molecule.

When more than two electrons are involved, the situation is much more complex, but a
large spectroscopic literature is available, at least for simple atoms and molecules, that

can be used to extend the present work.

As we have already shown, a natural extension is the study of the Hydrogen molecule, for

which many good computations of energies are available.

One of the interesting points in the Hy molecule is that one can vary the proton distance,

and study the entanglement behaviour.
When the distance is 0, the system reduces to the Helium atom.

When the distance is large, we have two possibilities: either two Hydrogen atoms or the

system {(H~ + p); (p + H~)} where two electrons are bound to a proton, in the H~ ion.

This ion is the Z=1 component of the Helium isoelectronic series. So a first direction for
future work is the computation of entanglement in the atoms of this series, with Z=1,3.4,

ete.

During the present work, we performed some computations of the isoelectronic Helium
series, and we observed that the computation of H~ is more difficult than the other

elements withz > 3.

A second direction for future work is the computation of entanglement approximating the

STO with gaussians.

As we have shown, using gaussian expansions, we have been able to find again some results

obtained for Helium.

Moreover, we have been able to compute the Hs molecule, although considering the S

shell and the "gerade” orbitals only.
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The work will continue, completing the study of H, considering other shells and the

"ungerade” orbitals too.

A third direction is the comparison of our algorithm with the quantum ones that have

been proposed to compute atoms and molecules.

As noted in section 5.2.5, it would be very interesting to describe the complexity of the
single phases of the computation and to evaluate if and how quantum algorithms could

actually enhance the overall efficiency of the computation.



CHAPTER 9

Appendices

9.1 Description of the main sections of the program

for H

9.1.1 ¢ matrix

1
do i =1,50
do j =1,50

ddd(i,j) = 0..16
end do

end do
doi=1,50
ddd(i,i) = 1..16

end do
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9.1.2 UC matrix

r = 1.500_.16 ! test R value

csil = 1.26.16 ! test value, actually it is used to find the minimum
' Computes the uc[ i, 1, ik] for the wave functions

! using the generalized Laguerre polynomials

do i=1,30

do j = 1,10

do kk = 1,20

nnr(i,j,kk) = kk + (j - 1)
nnl(i,j,kk) = j - 1

uc(i,j,kk) = 0._16

I
o
I
[
[©]

coe(i,j,kk)

csi(i,j,kk) csil

end do

end do

end do

do iswl = 1,5

isw2 = 1 ! for S states
do i =1,iswl
csi(iswl,isw2,i) = csil
end do

56 format(bx,a8,f20.6)

[2]

call calcxnew(iswl,isw?2)

call arn(iswl,1) ! to check orthonormality 1 = S states

end do
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9.1.3 One body matrices

! one body matrix computation

nnzz = 3 ! test value

[3]

do mmz = 1,nnzz

do nnz 1,nnzz
call clssmn(mmz,nnz,csil,aaal,aaa2,ak3,aab,abb5,aa6,ng)
sskm(mmz ,nnz) = aaal

ajjkm(mmz,nnz) = aaa2

aakm(mmz,nnz) = ak3
amz1 (mmz,nnz) = amnl
amz2 (mmz ,nnz) = amn?2
amz3 (mmz,nnz) = amn3

end do

end do
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9.1.4 Matrices of the gaussian expansions used by clssij

(9]

do mu = 1,nnzz

do nu = 1,nnzz

call clssij(mu,nu,csil,aaa,asz,aaal,ng)

ssij(mu,nu) = aaa ! sovrapposizione a_i b.i
ajjij(mu,nu) = asz ! JJ

aaij(mu,nu) = aaal ! KK

aijl(mu,nu) = abcd ! T1

aij2(mu,nu) = abch ! T2

aij3(mu,nu) = abc6 ! VV

end do

end do

9.1.5 Matrix sssz(i,j) i,j=1,...,2*n

(4]

do i = 1,nnzz

do j = 1,nnzz

sssz(i,j) = ddd(i,j)

sssz(i + nnzz,j + nnzz) = ddd(i,j)

sssz(i + nnzz,j) = ssij(i,j)

sssz(i,j + nnzz) ssij(d,3)
end do

end do
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The ssij(i,j) is defined by the superposition
ssijli, ) = /ai(r)bj(r) dr (9.1)

It doesn’t have a physical meaning, it is just a part of the computation of the Fock space

superposition.

We recall that the 2n single particle basis functions of the set {a;(r), b;(r)}, are not

orthogonal, so we can define the matrix

a;(r) b;(r)
a;(r) 1 ssij
sssz(k, 1) = (9.2)
b;(r) ssij 1

{(k,1=1,2 ..2n}
because the a;(r) e b;(r) are orthogonal within each set.

Now we compute eigenvalues and eigenvectors of this matrix. In the order they are:



302 APPENDICES

1 1.9126176

2 1.5870954

3 1.0011449
4 0.9988550
) 0.4129046

6 0.0873824

= 20 2.0 2.0

That is they are in pairs ot the form (1 £ «)

Manually writing the equations for small dimensions, it can be seen that the secular
equation is a polynomial in (1 — A)?, so that the solutions are of the indicated form, in

pairs.

Now we build the ooz matrix to diagonalize the sssz.

9.1.6 Computation of the matrix N

1
V2 (1 + ssij(i, §)?)

Nij = = anij(i, j) (9.3)

[5]

do i

1,nnzz

do j = 1,nnzz

abc = 2..16 * (1..16 + ssij(i,j)**2._16)
anij(i,j) = 1..16/sqrt(abc)

end do
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end do

9.1.7 Special settings for 1 Slater Type Orbital only

For the orbital 1-STO only we use the special values:

I to test 1-STO

sskk = ssij(1,1) ! matrix ssij(i,j)
cckk = ajjij(1,1) ! matrix ajjij(i,j)
aakk = aaij(1,1) ! matrix aakij(i,j)

azzl = aij1(1,1) ! matrix aiji1(i,j)
azz2 = aij2(1,1) ! matrix aij2(i,j)

azz3 = aij3(1,1) ! matrix aij3(i,j)

9.1.8 Matrix sovr( , ) = (i, j| k, ) for Fock L

[6]
ki1 =0
do il = 1,nstop

do i2

il,nstop
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k1 =kl +1

k2 =0

do j1 = 1,nstop

do j2 = jl,nstop

k2 =k2 +1

abc = 2..16 * anij(i1,i2) * anij(j1,j2)

abl

ddd(i1l,j1) * ddd(i2,j2) + ssij(il,j2) * ssij(i2,j1)
sovr(kl,k2) = abc * abl

end do

end do

end do

end do

9.1.9 Diagonalization of sssz to orthonormalize {a;(r), b;(r)}

(7]

do ix = 1,2*nstop

do jx = 1,2*nstop
za(ix, jx) = sssz(ix,jx)
end do

end do

nrot = 0

call jacobd(2*nstop,nrot)

call eigsrd(2*nstop)
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9.1.10 oort, ooz matrices

[8]

do ii = 1,2*nstop
do jj = 1,2*nstop
abc = 0._16

do kk = 1,2*nstop

abc = abc + zv(ii,kk) * zv(jj,kk)
end do

oort(ii,jj) = abc

end do

end do

do ii = 1,2*nstop

do jj = 1,2*nstop

abc = 0._.16

do kk = 1,2*nstop

abc = abc + sssz(ii,kk) * zv(kk,jj)
end do

obuf (ii,jj) = abc

end do

end do

do ii = 1,2*nstop

do jj 1,2*nstop
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abc = 0._16

do kk = 1,2*nstop

abc = abc + zv(kk,ii) * obuf (kk,jj)
end do

oort(ii,jj) = abc

end do

end do

call clxnn

[A]

List of the matrices that we computed up to this point:

matrix UC = ucli, 1, ik]

3

Computes 6 "standard” matrices

4

Computes
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1 ssij

5882 = (9.4)

ssij 1

superposition of the space {a;(r, b;(r)}

5

omputes anij(i, j) = N;

6

computes sovr(kl, k2) = (i, j |k, [)

Finally, we have the superposition in the Fock space:

(i, 7|k, ) = sovr(kl, k2) = 2N N {0 651 + ssij(i, 1) ssij(j, k) } (9.5)

From this we see that the Fock space we have defined is not orthogonal (if R # 0), but
it is for R = 0.

7

za = buffer to diagonalize the sssz matrix of the {a;(r, b;(r)} superposition.

8

computes the oort matrix, to diagonalize the sssz matrix.
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9.1.11 Computation of the other matrix needed for the Hamil-

tonian

Now we write the espressions for the other matrices that we need:

aij3 atj ajjij ajjij
J . J3 . JJi] ‘ JJi] ‘
a1 a2
aaij aaij aaij aaij
+[KK1(, 1) + KK1(1,1)] - ssij(j, k) + [ KK2(k, j) + KK2(j, k)] - ssij(i, 1)] (9.6)
a3 al
aijl aij2 anij aijl aijl
(i 31 T+ T |k D) = Ny - Nig -2 - {TTIG, k) - 6, + TTI(, 1) - 6 +
a5
aij2 aij2
P =
+ T2, 1) - ssij(j, k) + TT2(j, k) - ssij(i, 1) } (9.7)
a5

9.1.12 Matrices names

SSIJ = ssij

JJ = ajjij

KK1 = aaij
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KK2 = aaij
VV = aij3
TT1 = aijl
TT2 = aij2
N;j = anij
See | 9

To compute the matrix am0116(k1, k2) we need the usual quadruple loop, see | 6

Quadruple loop | 6 | computation of am0116(k1, k2) see computation sovr( , )

9.1.13 Energy

al = 2..16/(1..16 + sskk * sskk)
ab = (azzl + azz2 * sskk) * al
a6 = - azz3 * al + cckk * al

a8 = 2..16 * aakk * sskk x al
emm(k) = ab + a6 + a8

emml (k) = emm(k) + twb + 1._16/rr(k)
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9.1.14 Subroutine clssij

Important check: for R=0 the H; molecule reduces to the Helium atom, then the super-

position matrix must reduce to the unity matrix.

From the ssij(i,j) matrix one computes

Nij = anij(i, j) = /2(1 + ss5j(i, 7)?) (9.8)

Finally, we have the Fock space superposition:

(i, 71k, 1) = sovr(kl, k2) = 2- N - Ny - { i 051 + ssij(i, ) - ssij(y, k)} (9.9)

This means that such space is non orthogonal, (for R # 0), but it is for R = 0.
We report other useful matrices:

[ kkL1(i, 1) + kEL(L, §)] - ssij(j, k) + [kk2(k, ) + kk2(j, k)] - ssij(i, 1)} (9.10)

(4,71 Ty + To |k, 1) = Nij - N - 2-

{10, k)S; + 10, D)du + 20, D)ssii(j, k) + t2(j, k)ssij(i, ) } (9.11)
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sub

aaa
asz
aaa
awm
awm
AW,

do

do

al

a2

bl

b2

b3

cl

c2

c3

al
a2
mmm

nnn

abc

abc

abc

amn

amn

amn

routine clssij(mmu,nnu,csil,aaa,asz,aaal,ng)

= 0..16
= 0..16
1

0..16

1 =0..16

2 =0..16

3

0..16

I
—_
=]
o

iu
ju=1,nu

= uc(mu,1,iu) ! for NON normalized STOs
= uc(nu,1,ju) ! for NON normalized STOs
= (2..16 * csil)**dfloat(2*iu + 1)

= gamma (2*iu + 1)

= sqrt(b2/b1)

= (2..16 * csil)=**dfloat(2xju + 1)

= gamma(2*ju + 1)

= sqrt(c2/cl)

= alxb3

= a2%*c3

= iu

= ju

1 = sskm(mmm,nnn)

2 = ajjkm(mmm,nnn)

3 = aakm(mmm,nnn)

1 = amz1 (mmm,nnn)

2 = amz2(mmm,nnn)

3 = amz3(mmm,nnn)
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aaa = aaa + abcl * al * a2 ! S sskm(mmm,nnn,csil,ng)
asz = asz + abc2 * al * a2 ! J ajjkm(mmm,nnn,csil.ng)
aaal = aaal + abc3 * al * a2 ! K aakm(mmm,nnn,csil,ng)
awml = awml + amnl * al * a2 !

awm2 = awm2 + amn2 * al * a2 !

awm3 = awm3 + amn3 * al * a2 !

end do ! ju

end do ! iu

aaa = aaa ! matrix element of ssij = superposition
asz = - asz ! matrix element of aijij = JJ

aaal = aaal ! matrix element of aaij = KK

abc4 = awml ! kinetic energy 1

abcb = awm2 ! kinetic energy 2

abc6 = awm3 ! VV

return

end

9.1.15 Subroutine clssmn

subroutine clssmn(mmz,nnz,csil,aaal,aaa2,ak3,aab,abb,aa6,nng)

pig = 3.141592654 16
mmm = mmz
nnn = nnz

ng = nng
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go to (101,102,103,104,105) ,mmm

101 call sisq(exxl,csl,ng)

go to 106

102 call s2sq(exxl,csl,ng)

go to 106

103 call s3sq(exxl,csl,ng)

go to 106

104 call s4sq(exxl,csl,ng)

go to 106

105 call sbsq(exxl,csl,ng)

106 continue

do jj = 1,ng
exxIm(jj) = exx1(jj)
csim(jj) = cs1(jj)

end do

go to (111,112,113,114,115) ,nnn

111 call sisq(exxl,csl,ng)

go to 107

112 call s2sq(exxl,csl,ng)

go to 107

113 call s3sq(exxl,csl,ng)

go to 107

114 call s4sq(exxl,csl,ng)

go to 107

115 call sbsq(exxl,csl,ng)

107 continue
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do jj = 1,ng
exx1n(jj) = exx1(jj)
csin(jj) = cs1(jj)
end do
do 1l =1,ng
eim(l) = exx1m(1l)*(csil*csil)
cim(1) = csim(1) * (2..16 * eim(1l)/pig) ** 0.75_16
end do ! 1loop 1
do 1 = 1,ng
ein(1l) = exxln(1l)*(csil*csil)
cin(l) = csin(l) * (2..16 * ein(1l)/pig) ** 0.75.16
end do ! loop 1
ss = 0..16
ssj = 0..16
szk = 0._16
amnl = 0._16
amn2 = 0._16
amn3 = 0._16
do ni = 1,ng
do nj = 1,ng
r----——-——————————————————"—"— superposition
bbb = pig/(eim(ni) + ein(nj))
aaa = sqrt(bbb*bbb*bbb)
ctot = cim(ni) * cin(nj) * aaa
etot = eim(ni) * ein(nj)/(eim(ni) + ein(nj))
Ss = ss + ctot * exp( - etot * r*r )
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| J
aaz = sqrt(eim(ni) + ein(nj)) * r ! erf argument
call errf(aaz,erf,100)

aaw = cim(ni) * cin(nj) * aaa

ssj = ssj + (aaw/r) * erf ! integral J
e K
aa = eim(ni) * ein(nj)/(eim(ni) + ein(nj))

az = exp( - aa * r * r)

b = ( (eim(ni) - ein(nj)) * r/2..16 ) /(eim(ni) + ein(nj))
b=b+ r/2..16

w = (eim(ni) + ein(nj)) * b *x b

z = sqrt(w)

call errf(z,erf,100)

fff = (sqrt(pig) / (2..16 * z)) * erf

akkij = 2..16 * az * pig * fff/(eim(ni) + ein(nj))

szk = szk + cim(ni) * cin(nj) * akkij

e TK1
abce = 3..16 * eim(ni) * ein(nj)/(eim(ni) + ein(nj))
amnl = amnl + cim(ni) * cin(nj) * aaa * abce
T TK2
abce = eim(ni) * ein(nj)/(eim(ni) + ein(nj))

abcf = exp( - abce * r * 1)

abcg = 3..16 - 2..16 * abce * r * r

agg = aaa * abce * abcf * abcg

amn2 = amn2 + cim(ni) * cin(nj) * agg
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abcd = 2..16 * pig/(eim(ni) + ein(nj))
amn3 = amn3 + cim(ni) * cin(nj) * abcd
end do ! 1loop nj
end do ! loop ni
aaal = ss ! superposition
aaa2 = ssj ! J
ak3 = - szk ! K
return
end

Subroutines slsq, s2sq etc. return the gaussian coefficients for the expansions of the STOs,

see (Stewart , 1969)

9.1.16 Subroutine diagl - entropy computation

subroutine diagl(nstop)

do ix = 1,2*nstop

do jx = 1,2*nstop

za(ix, jx) = sssz(ix, jx)
end do

end do

nrot = 0

call jacobd(2*nstop,nrot) !
call eigsrd(2*nstop) !

do i = 1,2*nstop

do j = 1,2*nstop

computes the sssz matrix eigenvalues

and sorts them




9.1 Description of the main sections of the program for H,

317

ali(i,j) = 0..16

end do

end do

do i = 1,2*nstop

ali(i,i) = 1..16 / sqrt(zd(i)) = [1/V/\]
end do

do ii = 1,2*nstop

do jj = 1,2*nstop

abc = 0._.16

do kk

1,2*nstop

abc = abc + ali(ii,kk) * zv(jj,kk)
end do

oort(ii,jj) = abc

end do

end do

oort = [1/\/A\j] - 207

do i = 1,2*nstop

do j = 1,2*nstop
ali(i,j) = 0..16

end do

end do

do i = 1,2*nstop
ali(i,i) = sqrt(zd(i))
end do

do ii = 1,2*nstop

do jj = 1,2*nstop

abc = 0._.16
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do kk = 1,2*nstop

abc = abc + zv(ii,kk) * ali(jj,kk)
end do

ooinv(ii,jj) = abc

end do

end do

00inv = zv - [V

do ii = 1,2*nstop

do jj = 1,2*nstop

abc = 0._16

do kk = 1,2*nstop

abc = abc + ooinv(ii,kk) * oort(kk,jj)
end do

obuf(ii,jj) = abc

end do

end do

do ii 1,nstop
do jj = 1,nstop
do ihh = 1,2*nstop

do kk = 1,2*nstop

aa = ooinv(ii,ihh) * ooinv(jj + nstop,kk)

bb

ooinv(ii,kk) * ooinv(jj + nstop,ihh)
ww(ii,jj,ihh,kk) = aa + bb

end do

end do

end do

end do
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ndz =

nstop*(nstop+1)/2 ! Fock space dimension

do irep = 1,3

nnt =

do ihf

do ihf

ault =

ndz =

ndz - irep + 1
= 1,2*nstop
p = 1,2*xnstop

0..16

nstop*(nstop+1)/2

don =1, ndz

do np =

do nk

do nkp

ifz

jfz

ifp

jfp

nnt

affl

aff2

aff3

do ikf

aff4d

ault

end do

end do

end do

end do

1, ndz

1,n
= 1,np
ind1 (nk)
ind2 (nk)
ind1 (nkp)
ind2 (nkp)
ndz - irep + 1
ttza(n,nnt) * ttza(np,nnt)
uf(n,1,nk) * uf(ap,1,nkp)
anij(ifz,jfz) * anij(ifp,jfp) ! N;; = anij(i,j)
= 1,2*nstop
ww(ifz, jfz,ihf,ikf) * ww(ifp,jfp,ihfp,ikf)
ault + afflxaff2xaff3xaff4d
I' loop k
I loop nkp
' loop nk

' loop np
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end do ! loop n
rhorid(ihf,ihfp) = ault
end do ! 1ihp

end do ! ih

ttrr = 0..16

do i = 1,2%nstop

ttrr = ttrr + rhorid(i,i) ! rhorid trace
end do

do ii = 1,2*nstop

do jj = 1,2*nstop

rrr(ii,jj) = rhorid(ii,jj)
end do

end do

trr = 0._16

do i = 1,2*nstop

trr = trr + rrr(i,i)

end do

do ix = 1,2*nstop

do jx 1,2*nstop

za(ix, jx) = rrr(ix,jx)
end do

end do

nrot = 0

call jacobd(2*nstop,nrot)
call eigsrd(2*nstop)

! density matrix eigenvalues in zd

abc = 0._.16




9.1 Description of the main sections of the program for H,

321

do jx = 1,2*nstop

abz = logl0(zd(jx) + 0.000000000001_16 )/logl0(2._16)
abc = abc - zd(jx) * abz
end do

' abc = von Neumann entropy

do ii = 1,2*nstop

do jj = 1,2*nstop
aaa = 0..16
do kk = 1,2*nstop

aaa = aaa + rrr(ii,kk) * rrr(kk,jj)
end do

rrq(ii,jj) = aaa

end do

end do

trrq = 0._16

do i = 1,2*nstop

trrq = trrq + rrq(i,i)
end do

' trrq = squared rho trace
end do ! irep

1000 continue

return

end

n=12345
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a;(r) = ¢;(r — a); bi(r) = ¢;(r + a) (9.12)
¢i(r) = i ucli, 1, ik] - STO(r, ik, &) (9.13)
ik=1
STO(r, ik, &) = v 1 . exp{—&r} (9.14)
We set:

cx(r) = a;i(r) {i,k=1,2,...,n} (9.15)
ce(r) = bi(r) {i=1,2,...n; k=n+1,n+2,..,2n} (9.16)

Example: n=1
ssij(l,1) = S (9.17)

s§Sz = |: ! S] (9.18)
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Aig =1+ 8 (9.19)
() = ————{alr) + )}
N T ) R ’
(9.20)
HO) = ) — b))
) = [T 22wt + [T )
(9.21)
0r) = ) - )
1 TL, qri L
1 _ 2 . \{5 21 [ a(r) ] (9.22)
3 " 51l % 5 b(r)
A2 =148 (9.23)
anij = Ny = ! (9.24)

2(1 + ssij?)



324 APPENDICES

9.1.17 Two-body interaction

Recall the states definition:

13, §) = Nij [ai(r1)bj(ra) + bj(r1)ai(ra)] (9.25)

The two bodies interaction reads:
|
<Z7.]|r_|k7 l> = Mj'Nkl : fdl'ldr2'
12
1
“[ai(r1)bj(r2) + bj(r1)a(ra)] - . [a(r1)bi(ra) + bi(r1)ag(ra)] (9.26)
12

We have 4 terms, that reduce to 2 for the usual simmetries:

CL»L'(I') = (;Sl(r — a), bl(r) = gzﬁl(r + a) (927)
(z’,j\r—l\k, D) = Ny - N - 2 [ dry drs-

{ gi(r1 — a)pj(ry + a) Pre(r1 — a)gy(ry + a)+

ry — ra

+¢i(r1 — a)g;(ry + a) Gi(r1 + a)gp(rs — a) } (9.28)

[r1 — 1o

Recalling the expansions:

¢i(r) = > ucli, 1, ik] - STO(r, ik) (9.29)

ik=1

we have:
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A B C D
1 3! 2 T2
+a +a -a -a
ik kk ik 1k
a(ik) | B(kk) | v(jk) | 0(1k)

o1 ; .
(i, 7| o [k 1) = Nig - N - 23 5 Z;kﬂ Zik:l Z§k=1 [ dridrs-

Table 9.1 — Direct integral

~ucliy 1, ik ucly, 1, jk|uclk, 1, kk|uc[l, 1, Ik] -

A{STO(ry — a, ik) - STO(ry + a, jk)

+STO(r, — a, ik) - STO(xs + a, jk)—

r1 — 12|

r1 — 1o

= DIRECT + EXCHANGE

Ignoring the coefficients and the sum, we have:

Direct integral

DD = [drydry - STO(ry — a, ik) - STO(r2 + a, jk) - |V |-

-STO(ry — a, kk) - STO(ry + a, lk) =

= fdr1 dI'2 . STO(I‘l — a, Zk) . STO(rl — a, kk) ' |V|

and the table 9.1

-STO(ry + a, jk) - STO(ry + a, lk)

STO(ry — a, kk) - STO(ry + a, lk)+

STO(ry + a, lk) - STO(ry — a, kk) } =

(9.30)

(9.31)
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A B C D
1 1 ) T2
+a -a -a +a
ik 1k jk kk
a(ik) | BAK) | A(Gk) | 5GkR)
Table 9.2 — Exchange integral
Exchange integral
SC = [dridry - STO(ry — a, ik) - STO(ry + a, jk) - |V |-
-STO(r; + a, lk) - STO(ry — a, kk) =
= [dridry - STO(ry — a, ik) - STO(ry + a, lk) - |V |-
-STO(ry + a, jk) - STO(ry — a, kk) (9.32)
and table 9.2
akl = k1 = exp{— —" | AB ) (9.33)
a+ 0
oA + /B
=pP=—_"" 9.34
p o (9.34)
aabb = |AB|* = |B — AJ? (9.35)
ak2 = k2 = exp{— 0 |CD?} (9.36)
Y+ 0
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~ 7C + 4D

9.37
v+ 6 ( )

qq = Q

cedd = |CD|* = |D — C|? (9.38)

2-akl-ak2 - w°/?
aal = L are (9.39)

(a + B)(v + 6) /(. + B)(y + 0)

ppqg = |P — QJ? (9.40)

(a + B)(y + 6)

5= S|P - QJ 9.41
Sy o B (941)

call efff(aab, aa6, 80) ! efff = \/7/2 erf(z)/z
aaa = aal - aab (9.42)

Gaussians’ centers

ABCD

T1:

rp=r; — A (9.43)
rp =1, — B
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Ta:
rc =ry — C
rg =19 — D
We have the product of 4 gaussians.
exp{—ari} - exp{—Br}} = Kyexp{—&irp}

exp{—ra} - exp{—orpH} = Kyexp{— 521%2}

G=a+f &L=9+90

af
a+ 3

kl = exp{— | AB|*}

Y0 72
k2 = ——|CD
exp { 5 5] I“}

Galo, A) Gp(3, B) Gely, €) Gp(d, D)

(&1 1 ) T2
oA + (B
— ot j
C + /D
q- €+

v+ 6

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)
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rp =1 — P; rg =13 — Q; (9.53)

rid=rl-A

Figure 9.1 — Sketch of the gaussians centers

1 1 [
=== [ enl-rhon)
0

12 m

% dp (9.54)

We get for the electronic repulsion integral:
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A B C D
1 3! 2 T2
+a +a -a -a
ik kk ik 1k
a(ik) | B(kk) | v(jk) | 0(1k)

Table 9.3 — Direct integral summary

NaNeNeNp o g, URURUR (9.55)

= o P

UF = [ dhy [ dhg %5 Bl hEs» By -

cexp|—plhy — hi)?]exp[—er(h1 — Py)*|exp[—ex(hy — Qn)?] (9.56)

Subroutine twdir, direct integral
subroutine twdir(abc,ik,jk kk,lk,ng)

[dridry - STO(ry — a, ik) - STO(ry — a, kk) - |V |-

.STO(ry + a, jk) - STO(ry + a, lk) (9.57)

I switch n. 1

go to (111,112,113,114,115),ik

111 call sisq(exxl,csl,ng)
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go to 107

112 call s2sq(exxl,csl,ng)

go to 107

113 call s3sq(exxl,csl,ng)

go to 107

114 call s4sq(exxl,csl,ng)

go to 107

115 call sbsq(exxl,csl,ng)

107 continue

do jj = 1,ng
exxIm(jj) = exx1(jj)
csim(jj) = cs1(jj)
end do

I switch n. 3

go to (311,312,313,314,315), jk

311 call sisq(exxl,csl,ng)

go to 307

312 call s2sq(exxl,csl,ng)

go to 307

313 call s3sq(exxl,csl,ng)

go to 307

314 call s4sq(exxl,csl,ng)

go to 307

315 call sbsq(exxl,csl,ng)

307 continue

do jj = 1,ng
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exxlo(jj) = exx1(jj)
cslo(jj) = cs1(jj)

end do

' switch n. 2

go to (211,212,213,214,215) ,kk
211 call slsq(exxl,csl,ng)
go to 207

212 call s2sq(exxl,csl,ng)
go to 207

213 call s3sq(exxl,csl,ng)
go to 207

214 call s4sq(exxl,csl,ng)
go to 207

215 call sbsq(exxl,csl,ng)
207 continue

do jj = 1,ng

exx1n(jj) = exx1(jj)
csin(jj) = cs1(jj)

end do

! switch n. 4

go to (411,412,413,414,415),1k
411 call sisq(exxl,csl,ng)
go to 407

412 call s2sq(exxl,csl,ng)
go to 407

413 call s3sq(exxl,csl,ng)
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go to 407
414 call s4sq(exxl,csl,ng)
go to 407

415 call sbsq(exxl,csl,ng)
407 continue

do jj = 1,ng

exxlp(jj) = exx1(jj)

cslp(jj) = cs1(jj)

end do
do 1 =1,ii ! 1ii = number of gaussian functions
eil(l) = exx1m(1l)*(cszl*cszl)

cil(1l) = csim(1l) * (2..16 * eil(1l)/pig) ** 0.75.16

ei2(1l) = exx1n(l)*(csz2*csz2)

ci2(1) = csin(l) * (2..16 * ei2(1)/pig) ** 0.75.16
ei3 (1) = exxlo(1l)*(csz3*csz3)
ci3(1) = cslo(1l) * (2..16 * ei3(1)/pig) ** 0.75.16

eid (1) = exxlp(1l)*(cszéd*cszd)
cid(1l) = csip(l) * (2..16 * eid(1l)/pig) ** 0.75.16

end do

alpha = eil(il)

beta ei2(i2)

gamm = ei3(i3)

delta = ei4d(i4)
abc = 0._16

do i1 = 1,11
do 12 = 1,11
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do i3 = 1,ii

do i4 = 1,ii

aa = r/2..16

zz1l = aa

zz2 = aa

zz3 = - aa

zz4 = - aa

pp = (alpha*zzl + beta *zz2)/(alpha + beta )
qq = (gamm *zz3 + deltaxzz4)/(gamm + delta)
epsl = alpha + beta

eps2 = gamm + delta

eel = alpha * beta /(alpha + beta)

ee2 = gamm * delta/(gamm + delta)

aabb = (zz2 - zzl)*x(zz2 - zzl)

ccdd = (zz4 - zz3)*(zz4 - zz3)

akl = exp(1._16)**( - eel * aabb)

ak2 = exp(1l._16)**x( - ee2 * ccdd)

aal = 2..16 * akl * ak2 * pig**x2.5.16

aal = aal/( epsl * eps2 * sqrt(epsl + eps2))

ppaq = (pp - q@)*(pp - qq)

aab = (epsl * eps2/(epsl + eps2)) * ppqq
37 format(3x,a41,f20.15)

call efff(aa5,aa6,80) !

aaa = aal * aab

aa2 cil(il) * ci2(i2) * ci3(i3) * cid(i4d)

abc abc + aa2 *x aaa
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A B C D
1 r1 T )
+a -a -a +a
ik 1k jk kk
a(ik) | BUK) | 7 (k) | 5(kF)
Table 9.4 — Exchange integral summary
end do
end do
end do
end do
return
end

Subroutine twscc, exchange integral

subroutine twscc(abd,ik,jk,kk 1k ,ng)

We must compute

[drydry - STO(ry — a, ik) - STO(ry + a, lk) - |V |-

-STO(ry + a, jk) - STO(ry — a, kk) (9.58)
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ii = ng

' switch n. 1

go to (111,112,113,114,115),ik
111 call sisq(exxl,csl,ng)
go to 107

112 call s2sq(exxl,csl,ng)
go to 107

113 call s3sq(exxl,csl,ng)
go to 107

114 call s4sq(exxl,csl,ng)
go to 107

115 call sbsq(exxl,csl,ng)
107 continue

do jj = 1,ng

exxIm(jj) = exx1(jj)
csim(jj) = cs1(jj)

end do

' switch n. 2

go to (211,212,213,214,215),1k
211 call slsq(exxl,csl,ng)
go to 207

212 call s2sq(exxl,csl,ng)
go to 207

213 call s3sq(exxl,csl,ng)
go to 207

214 call s4sq(exxl,csl,ng)
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go to 207

215 call sbsq(exxl,csl,ng)
207 continue

do jj = 1,ng

exx1n(jj) = exx1(jj)
csin(jj) = cs1(jj)

end do

' switchn. 3

go to (311,312,313,314,315), jk
311 call slsq(exxl,csl,ng)
go to 307

312 call s2sq(exxl,csl,ng)
go to 307

313 call s3sq(exxl,csl,ng)
go to 307

314 call s4sq(exxl,csl,ng)
go to 307

315 call sbsq(exxl,csl,ng)
307 continue

do jj = 1,ng

exxlo(jj) = exx1(jj)
cslo(jj) = cs1(jj)

end do

I switch n. 4

go to (411,412,413,414,415) ,kk

411 call sisq(exxl,csl,ng)
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go to 407

412 call s2sq(exxl,csl,ng)
go to 407

413 call s3sq(exxl,csl,ng)
go to 407

414 call s4sq(exxl,csl,ng)
go to 407

415 call sbsq(exxl,csl,ng)
407 continue

do jj = 1,ng

exxlp(jj) = exx1(jj)

csip(jj) = cs1(jj)

end do
do 1l =1,ii ! 1ii = number of gaussian functions
eil(1) = exx1m(1l)*(cszl*cszl)

cil(l) = csim(l) * (2..16 * eil(1l)/pig)
ei2(1) = exx1n(1l)*(csz2*csz2)

ci2(1) = csin(l) * (2..16 * ei2(1)/pig)
ei3(1) = exxlo(1l)*(csz3*csz3)

ci3(1) = cslo(l) * (2..16 * ei3(1)/pig)
ei4 (1) = exxlp(1l)*(cszd*csz4)

cid(1) = csip(l) * (2..16 * eid(1l)/pig)
end do

alpha = eil(il)

ei2(i2)

beta

gamm = ei3(i3)

*
*

*
*

0.75_16

0.75.16

0.75.16

0.75.16
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delta = eid(i4)
abc = 0._16
do il = 1,ii
do i2 = 1,ii
do i3 = 1,ii
do i4 = 1,ii
aa = r/2..16
zz1l = aa

zz2 = - aa
zz3 = - aa
zz4 = aa

pp = (alpha*zzl + beta *zz2)/(alpha + beta )
qq = (gamm *zz3 + deltaxzz4)/(gamm + delta)
epsl = alpha + beta

eps2 = gamm + delta

eel = alpha * beta /(alpha + beta)

ee2 = gamm * delta/(gamm + delta)

aabb = (zz2 - zzl)*(zz2 - zzl)

ccdd = (zz4 - zz3)*(zz4 - zz3)

akl = exp(1._16)**( - eel * aabb)

ak2 = exp(1l._16)**x( - ee2 * ccdd)

aal = 2..16 * akl * ak2 * pig**x2.5.16

aal = aal/( epsl * eps2 * sqrt(epsl + eps2))

ppaq = (pp - q@)*(pp - qq)
aab = (epsl * eps2/(epsl + eps2)) * ppqq

37 format(3x,a4l1,f20.15)
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call efff(aab,aa6,80) !

aal *x aab

aaa

aa2 cil(il) * ci2(i2) * ci3(i3) * cid(i4d)

abd abd + aa2 * aaa

end do
end do
end do

end do
return

end




9.2 Pekeris coeflicients 341

1 m n w k
0 0 0 0 1.
0 0 1 1 2.
0 0 2 2 4.
0 1 2 3 9.
0 1 3 4 15.
0 2 0 2 6.
0 2 1 3 10.
0 2 2 4 16.
0 2 3 5 25.
1 0 0 1 4.
1 0 1 2 6.
1 0 2 3 10.

Table 9.5 — Schema for triples for some values of I, m, n - singlet case

| m n w k
0 0 0 0 1.
0 0 1 1 2.
0 0 2 2 4.
0 1 2 3 9.
0 1 3 4 15.
0 2 0 2 6.
0 2 1 3 10.
0 2 2 4 16.
0 2 3 5 25.
1 0 0 1 4.
1 0 1 2 6.
1 0 2 3 10.

Table 9.6 — Schema for triples for some values of I, m, n - triplet case

9.2 Pekeris coefficients

The triples (I,mn) are obtained with the schema of table 9.5 for the singlet and of table
9.6 for the triplet.
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Here we report the a;, and by, of order 13 for the singlet and triplet.

ai1—ay7

ai,8 — a13,13

Singlet
(5162 4442 —6+282 1 24z 8> 2 4z
444z 15-24z 24z 12482 —10436z 0 0
64282 24z 2% — 1122 0 124162 —124+882 —14 + 44z
1 12482 0 31-32: 4-8> 0 0
29 4z 104362 —12+162 4—8z 54— 144z 482 2 4z
8> 0 124882 0 482 3492242 8162
24z 0 14+ 442 0 2 4z 8162 25— 104z
(9.59)
[0 0 0 0 0 0 ]
3 482 .y 924z 0 0
0 P 482 2 4z 924 8 — 242
9244122 —14+44z 0 0 0 0
0 ~32432: —20+1042 —18+52z 0 0
0 0 ~16+242 0 18+ 1802 —22 + 602
0 0 0 8412z 0 ~28 41202 |
(9.60)
as) — aizy = (a18 — aiz3)” (9.61)
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53+40z 6-122 0 0 0 0
612z 94—1762 8—16z 4 —8z 0 0
0 8—16z 70—272z 8—16z 6—122 2—4z
s s 0 4—8z §—162  43—128z 0 4—8z (5:62)
0 0 6-12z 0 46 — 392z 12 — 242
0 0 2 — 4z 4— 8z 12— 24z 94 — 392z
16 -4 -28 0. 4 8 4]
—4 48 -8 —16 —60 8 0
—28 -8 144 4 —16 —104 -T2
bip—brz| 0. —16 4 96 —20 0 0 (9.63)
4 —60 —16 —20 336 —32 —4
8 8 —104 0  —32 320 24
4 0  -72 0 -4 24 208 |
[0 0 0 0 0 0 |
0 12 16 4 0 0
o 0 8 8 24 40
bis —briz | =36 —96 16 0 0 0 (9.64)
12 —64 —216 —112 24 0
0 8 —16 0 —228 —132
0 4 0 -20 0 —240 |
b1 — b1z = (big — bras)” (9.65)
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160 —-36 0 0 0 0
=36 592 —-72 —-12 0 0
-72 720 24 =72 O
—12 24 384 O —24
0 —-72 0 o584 48

0 0 —24 48 920

bgs — bi313 (9.66)

o o o O
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Triplet
(948  —6+8: —6+44z 1 24z 122 4-12z
—6+8z 23 —064z 2—4z —16+ 16z —10+52z 0 0
—6+44z 2 —4z 17—112z 0 84122 —-9490z —11+ 30z
ari—ary7 | 1 —16+4+ 16z O 43 — 80z 4 — 8z 0 0
2—4z —10+452z —8+12z 4-8z 35—136z 3 —62 1—-2z
—12z 0 -9490z O 3 — 6z 23 — 196z 6 — 12z
i 4—12z 0 —11+30z O 1—-2z2 6— 12z 47 — 1962
(9.67)
0 0 0 0 0 ]
3 4 — 8z —12z 0 4 —4z 0
0 1 3—62 —24z 1—-2z 6— 12z
a8 —ar13 | —30—24z —14460z 0 0 0 0
0 —20+ 24z —-15+4+102z O —13+4+34z 0
0 0 —10+ 16z —124152z 0 —15 4 382
0 0 0 0 —10+ 162z —21+4 114z |
(9.68)

ag1 — a137 = (a18 — CL7,13)T

(9.69)
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[ 69962 6-122 0 0 0 0
6—12z 59—160z 6—12z 0 2 — 4z 0
0 6—12z  45—228z 4—8z 6—12z 1—2z
s s 0 0 4—8z 29 — 304z 0 8 — 162 (570)
0 2— 4z 6—12z 0 58 — 196z 3 — 6z
0 0 1—22 8—16z 3 —62 53 — 280z
(64 -8 52 0. 4 12 20 |
-8 160 —16 —32 —108 12 0
—52 —16 160 4 -8 —114 —66
big—br7 | 0 -32 4 288 —36 O 0 (9.71)
4 —108 -8 =36 360 —36 0
12 12 ~114 0 —36 292 24
20 0 —66 0 0 24 460 |
[0 0 0 0 o 0 |
0 12 24 0 0 0
0 0 6 24 6 24
big—briz | —72 —168 24 0 0 0 (9.72)
12 —40 —234 24 =90 0
0 6 —4 =200 0  —104
02 0 0 —28 —252 |

bg.1 — big,7 = (big — br13

)T

(9.73)
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448 —60 O 0 0 0

—60 608 —78 0 -2 0
—78 636 —64 24 2
bgs — b13,13 (9.74)
0 —64 464 O 40

-2 24 0 692 —30
0 2 40 =30 728

o o o O
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For easy of reference, we report here the first 10 Laguerre polynomials and some graphs of the

autofunctions of the basis.

n
0 1
1 1—=x

4 1 — 4o + 327 - 2 4 o
5 1— bz + ba? — 220 4 5zt _ o

1522 1023 5a4 x® 8
6 1-6r+5 -F +% ~wtm

2122 3523 3524 72 728 x7
Tl=Tet S -5t % G0 T sm

_ 2 28z8 352* _ Tab 78 27 x8
8§ 1 — 8z + l4x 3 T 12 15t 180 — 630 T 20320

_ 2 g3 4 22t 2165 | 7aS  a” A
9 1 -9z + 182° — 14z° + =] 20 T 60 — 140 T 1480 — 362880

exp(-1/2 x) = Laguerre polyn. order 0 %x%(fl/z Xx) « Laguerre polyn. order 1
0.8 0.6
0.6 0.4
.2
0.4 0
0
> 02 \/
0 -0.4

0 20 40 60 80 100 0 20 40 60 80 100
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exp(-1/2 x) order 3

ST
N

+« Laguerre polyn

exp(-1/2 x) = Laguerre polyn. order 2
0.6
0.4
0.2 ///’\\\\\\\\\\\‘___‘
0
-0.2
"0-4% 200 40 60 80 100
exp(-1/2 x) = Laguerre polyn. order 4
0.4
0.2 /\ /\
0
el \J/
0462640 60 80 100
exp(-1/2 x) = Laguerre polyn. order 6
0.3
0.2
SAA
0
-0.1 \\\////
-0.2
-0.3
0 20 40 60 80 100
exp(-1/2 x) = Laguerre polyn. order 8
0.2
0
-0.1 \\// \\\\_////
-0.2
-0.3

0 20

40 60 80 100

-0.2
-0-44 20 40 60 80 100
exp(-1/2 x) = Laguerre polyn. order 5
0.4
0
-0.2 \\//

0 20 40 60 80 100
exp(-1/2 x) = Laguerre polyn. order 7
0.2

0
o \/
-0.2
-0.3

0 20 40 60 80 100
exp(-1/2 x) = Laguerre polyn. order 9
0.2
ol [\ N\

0
o \/ 4
-0.2
-0.3
20 40 60 80 100
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9.3 Orthonormalization in the Fock space: program

details (clxnn)

Referring to section 5.7.1.3, recall the definitions:
sovr(i, j) = initial superposition

axx(i, j) = unknown matrix to be recursively computed

We impose that the |7) must be normalized:

)iy = 1 (9.75)

But in general

sour(i, §) = (i, j) # 0y (9.76)

kmax = 15 !(presently)
do k = 2, kmax
do j = 1,k-1

do ih = 1,k-1
abc = 0._.16
do i =1,ih

abc = abc + axx(ih,i) * sovr(i,j)
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end do ! 1loop i
alf(ih,j) = abc
end do ! 1loop ih
end do ! loop j
do ih = 1,k-1

abc = 0._16

do i =1,ih

abc = abc + axx(ih,i) * sovr(i,k)
end do ! 1loop i
vvk(ih,1) = - abc
end do ! 1loop ih

call gauss(alf,k-1,50,vvk,1,50)

do i= 1, k-1
axx(k,i) = vvk(i,1)
end do

axx(k,k) =1

anl = 0._16

nnl =k

nn2 = k

do kz = 1,nnl

do 1z = 1,nn2

al = axx(k,kz) * axx(k,1z)
anl = anl + al * sovr(kz,lz)
end do

end do

anl = sqrt(ani)

do kz = 1,nnl
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axx(k,kz) = axx(k,kz)/anl
end do

end do

Here gauss() is a standard routine to find solutions of linear equations with the Gauss-

Jordan method.
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9.4 Useful expressions: (Gaunt formulas

Jy sin 6.do fO% do Y. (0,0) Yiu (0, ¢) Yim(0, 0) =

= [ Y} (0,0) Y (0,0) Yin(0,9)dQ =

= (I'm' | Yoar | Im) = (=1)™ \/(2l/+1)(24L:1)(21+1) o

U L [ ! L l
« (9.77)
—m/ M m 0 0 0

—-m' +M +m=0

' + L 4+ | even

l!'+L—-1>0
I'—L+1>0 (9.78)
~'"+L+1>0

Yiu(0, ¢) = (=)' =M\ 2L +1% ( ! g L ) X

m m/ M

Yim (0, @) Yir (6, 6) = S, 0 \/(21+1)(21;1)(2L+1) y
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[ I L l ! L
(8 (0 e e
m m M 0 0 0

Yl:n(e’ gb) Yl’m'(g, ¢> _ ZLM (_l)m/ \/(2l+1) (2l:;1) (2L+1) >

[ I L [ ! L
x ( ) ( ) Yo (0, ¢) (9.81)
m —m/ M 0 0 0
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ndds aals energy A E(ppm) vN entr lin entr
5 2.1553 -2.878885258 8554.22 0.041314400 0.008741626

6 2.3579 -2.878969795 8525.11 0.041330427 0.008741803

7 2.5237 -2.878997343 8515.62 0.041332628 0.008741389

8 2.6974 -2.879012160 8510.52 0.041336318 0.008741842

9 2.8868 -2.879018943 8508.18 0.041337172 0.008741818

10 3.0684 -2.879022692 8506.89 0.041337828 0.008741866
11 3.2474 -2.879024823 8506.16 0.041338194 0.008741892
12 3.4105 -2.879026110 8505.72 0.041338479 0.008741928
13 3.6211 -2.879026917 8505.44 0.041338463 0.008741902
14 3.7789 -2.879027448 8505.26 0.041338603 0.008741924
15 3.9368 -2.879027803 8505.13 0.041338679 0.008741935
16 4.0947 -2.879028048 8505.05 0.041338720 0.008741940
17 4.2918 -2.879028222 8504.99 0.041338707 0.008741933
18 4.4640 -2.879028347 8504.95 0.041338731 0.008741937
19 4.6312 -2.879028439 8504.91 0.041338735 0.008741936
20 4.8065 -2.879028507 8504.89 0.041338734 0.008741935

Table 9.7 — Fundamental level S shell only

9.5 Detailed results of computations

In this section we report the results of computations of levels fundamental to VI, shells S,

S-P and S-P-D of singlet; levels I to VI, shells S, S-P of triplets, computed using several

Hilbert space dimensions.

The aim is to show the dependence of energy and of the entropies on these parameters.

9.5.1

Singlet states - S shell only

Fundamental level

In the table 9.7 we report our results for the S shell only, fundamental state, starting with

ns = O.

We note that the asymptotical values of the energy and of the von Neumann and linear



356 APPENDICES

entropies are obtained very quickly, increasing the radial quantum number n.

In particular, values of ng of the order of 10 suffice to obtain a value of the energy within

~ 1 ppm of the asymptotical values for the S shell.

The linear entropy varies only in its fifth digit for 5 < ny; < 20 and the von Neumann
entropy in its fourth digit for 5 < ng < 10.

This indicates that the von Neumann entropy computation is slightly more complex than

the linear entropy computation.

We recall that we are not interested in the energy computation, that is reported here
just as a comparation item. Of course, it must always be computed, as one must find its

minimum to determine the correct value of the parameter (aals).

It is noteworthy that for this shell, and also for others, a single varational parameter for

each shell has been sufficient.

In the first versions of the programs we had the possibility of varying the STO parameter
also within the shells.

After a large number of computations, we concluded that a small increase of the radial

quantum number n can compensate for the use of these extra degrees of freedom.

So we decided to avoid them, greatly simplifying the variational problem, that, in the S

shell case, is limited to a single variational parameter.
Of course there are no variational theorems available for entropies.

In the figures 9.2, 9.3 e 9.4 we reported AE, evN, elin vs the parameter aals for ny =7
and ng = 15.

We note that, as expected, a greater value for ng implies a lower sensitivity for the aals

parameter.

We note also that, in general, the minimum in the energy plot, that corresponds to the
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"true” value of energy, falls in regions of the von Neumann and linear entropies that are

almost flat.
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Figure 9.2 — Singlet Fundam. level, S only ,Energy error for n=7 and n=15
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Figure 9.3 — Singlet Fundam. level, S only, von Neumann entropy for n=7 and n=15
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Figure 9.4 — Singlet Fundam. level, S only, Linear entropy for n=7 and n=15
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ndds aals energy A E(ppm) vN entr lin entr
5 1.0218 -2.140920080 2355.09 0.982247976 0.486323422

6 1.0242 -2.143794459 1015.66 0.983651299 0.487367848

7 1.0136 -2.144031778 905.07 0.983769064 0.487452071

8 1.0427 -2.144162784 844.03 0.983872476 0.487523056

9 1.0731 -2.144173674 838.95 0.983889978 0.487529911

10 1.1301 -2.144185289 833.54 0.983900083 0.487536886
11 1.1999 -2.144189950 831.37 0.983903989 0.487539348
12 1.2501 -2.144192457 830.20 0.983905883 0.487540828
13 1.3186 -2.144194267 829.36 0.983907335 0.487541828
14 1.3734 -2.144195144 828.95 0.983908128 0.487542344
15 1.4357 -2.144195823 828.63 0.983908699 0.487542741
16 1.4945 -2.144196216 828.45 0.983909064 0.487542975
17 1.5544 -2.144196504 828.31 0.983909312 0.487543145
18 1.6139 -2.144196695 828.23 0.983909484 0.487543257
19 1.6755 -2.144196834 828.16 0.983909607 0.487543341
20 1.7297 -2.144196933 828.11 0.983909696 0.487543401

Table 9.8 — Level I, S shell only

Level 1

In the table 9.8 we report our results for the S shell only, I excited state, starting with

ng = .

Also in this case the asymptotic values are achieved very quickly.

We note that, from this level, we get von Neumann entropy values near 1, and linear

entropy values near 0.5, as expected.
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Figure 9.7 — Singlet level I, S only, Linear entropy forn=7 and n=15
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ndds aals energy A E(ppm) vN entr lin entr
5 0.7861 -2.024148520 18009.98 0.991662720 0.493014343

6 0.7706 -2.047362403 6748.06 0.993328234 0.494585451

7 0.7628 -2.057126101 2011.33 0.995553707 0.496292723

8 0.7515 -2.059504122 857.66 0.995921683 0.496617396

9 0.7504 -2.060495486 376.71 0.996227022 0.496862704

10 0.7459 -2.060682014 286.22 0.996278223 0.496902107
11 0.7525 -2.060768408 244.31 0.996315230 0.496931460
12 0.7549 -2.060780326 238.52 0.996322731 0.496935261
13 0.7726 -2.060788280 234.67 0.996327848 0.496938881
14 0.7974 -2.060789933 233.86 0.996329675 0.496939691
15 0.8278 -2.060791381 233.16 0.996330559 0.496940432
16 0.8660 -2.060792198 232.76 0.996331148 0.496940833
17 0.8951 -2.060792689 232.53 0.996331449 0.496941089
18 0.9333 -2.060793093 232.33 0.996331728 0.496941292
19 0.9626 -2.060793312 232.22 0.996331900 0.496941411
20 1.0019 -2.060793505 232.13 0.996332035 0.496941509

Table 9.9 — Level II, S shell only

Level 11

In the table 9.9 we report our results for the S shell only, I excited state, starting with

ng = .

Also in this case the asymptotic values are achieved very quickly, but with variabilities

that are slightly greater than in the preceding cases (fifth significant digit for energy,

fourth for the von Neumann entropy and fifth for the linear).



362 APPENDICES
5000
4000
—6— n=8
w 3000
f - ——n=8 nin
& 2000 .
—— n=15 mn
1000 s
0.25 0.5 0.75 1 1.25 1.5 1.75 2
Singlet Level 2 aals
Figure 9.8 — Singlet level Il, S only, Energy error for n=8 and n=15
1
0. 998
—o— n=8
2
S 0.996
= - —— n=8 mn
& ol
— 0.994 | _
< | —+— n=15 nin
0. 992 |I s
I
0.25 0.5 0.75 1 1.25 1.5 1.75 2
Singl et Level 2 aals
Figure 9.9 — Singlet level Il, S only, von Neumann entropy for n=8 and n=15
0.5
0. 499
>
2 0. 498 —6— n=8
50'497 -— n=8 mn
= 0.496
o —+— n=15
£ 0.495
-
0. 494 —— n=15 nin

0.25 0.5 0.75 1 1.25 1.5 1.75 2
Singlet Level 2 aals

Figure 9.10 — Singlet level I, S only, Linear entropy for n=8 and n=15
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ndds aals energy A E(ppm) vN entr lin entr
) 0.6061 -1.863523588 83627.18 0.979589433 0.485268083
6 0.6339 -1.971356819 30601.05 0.993800794 0.494604834
7 0.6255 -2.005480133 13821.19 0.994780185 0.495717987
8 0.6187 -2.022668984 5368.71 0.997326940 0.497669306
9 0.6084 -2.028734554 2386.01 0.997793228 0.498114785
10 0.6032 -2.031728327 913.85 0.998330154 0.498551589
11 0.5978 -2.032709260 431.48 0.998458964 0.498665720
12 0.5973 -2.033175865 202.03 0.998566145 0.498756067
13 0.5957 -2.033304518 138.77 0.998592364 0.498776938
14 0.5989 -2.033366861 108.11 0.998610696 0.498792563
15 0.5997 -2.033380810 101.25 0.998615537 0.498795558
16 0.6068 -2.033388527 97.46 0.998618580 0.498798031
17 0.6124 -2.033390112 96.68 0.998619696 0.498798544
18 0.6262 -2.033391261 96.11 0.998620311 0.498799031
19 0.6456 -2.033391675 95.91 0.998620664 0.498799221
20 0.6638 -2.033392002 95.75 0.998620824 0.498799381

Table 9.10 — Level Ill, S shell only

Level 111

In the table 9.10 we report our results for the S shell only, III excited state, starting with

ng = D.

Now the changes in the entropy from dimension for S Shell=10 to dimension for S Shell=20
regard the fourth decimal digit.
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Figure 9.13 — Singlet level Ill, S only, Linear entropy for n=12 and n=18
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ndds aals energy A E(ppm) vN entr lin entr
5 0.4442 -1.610326948 203272.61 0.996318952 0.496992753

6 0.5059 -1.824953333 97083.79 0.981950571 0.486977635

7 0.5352 -1.938536716 40887.14 0.994800204 0.495364914

8 0.5318 -1.978864285 20934.62 0.995241802 0.496085578

9 0.5266 -2.001473878 9748.27 0.997767539 0.498000460

10 0.5168 -2.011074730 4998.14 0.998157877 0.498413099
11 0.5106 -2.016543611 2292.35 0.998831046 0.498957687
12 0.5040 -2.018876908 1137.92 0.999008185 0.499124746
13 0.5007 -2.020151922 507.10 0.999199442 0.499286513
14 0.4977 -2.020653611 258.88 0.999257922 0.499338357
15 0.4980 -2.020915818 129.15 0.999306142 0.499380450
16 0.4975 -2.021006601 84.23 0.999321402 0.499392876
17 0.4997 -2.021053565 61.00 0.999332062 0.499402378
18 0.5006 -2.021067603 54.05 0.999335549 0.499404774
19 0.5048 -2.021075239 50.27 0.999337674 0.499406658
20 0.5072 -2.021077265 49.27 0.999338540 0.499407114

Table 9.11 — Level IV, S shell only

Level IV

In the table 9.11 we report our results for the S shell only, IV excited state, starting with

da ng = 5.

Now the changes in the entropy from n=10 to n=20 regard the third decimal digit.
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9.5 Detailed results of computations 367

ndds aals energy A E(ppm) vN entr lin entr
5 0.6576 -0.719812470 642695.50 0.083919929 0.018064581

6 0.3765 -1.588385334 211548.48 0.997060101 0.497495940

7 0.4351 -1.800581960 106217.14 0.983392313 0.488019168

8 0.4653 -1.916479755 48687.15 0.995406351 0.495835404

9 0.4653 -1.960238369 26966.01 0.995516644 0.496304939

10 0.4624 -1.986242501 14057.94 0.997987074 0.498163487
11 0.4540 -1.998420023 8013.19 0.998269750 0.498505835
12 0.4472 -2.006033298 4234.07 0.998971433 0.499065935
13 0.4399 -2.009812093 2358.33 0.999139998 0.499236289
14 0.4351 -2.012139339 1203.12 0.999389895 0.499446104
15 0.4309 -2.013260960 646.36 0.999470985 0.499521921
16 0.4290 -2.013919508 319.47 0.999555737 0.499595767
17 0.4275 -2.014213665 173.45 0.999586869 0.499623410
18 0.4277 -2.014378729 91.52 0.999612370 0.499646294
19 0.4278 -2.014445387 58.43 0.999621934 0.499654215
20 0.4297 -2.014482001 40.26 0.999628689 0.499660431

Table 9.12 — Level V, S shell only

Level V

In the table 9.12 we report our results for the S shell only, V excited state, starting with

ng = D.

Now the changes in the entropy from n=10 to n=20 regard the third decimal digit.
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ndds aals energy A E(ppm) entr vIN e lin
5 0.6205 -0.569991855 716510.22 0.968067950 0.471797062

6 0.5621 -0.719478775 642161.77 0.088610675 0.019105710

7 0.3271 -1.574340456 216989.82 0.997493189 0.497792473

8 0.3825 -1.784162982 112632.99 0.984370635 0.488726531

9 0.4124 -1.900912492 54566.74 0.995788091 0.496131844

10 0.4153 -1.946634357 31826.62 0.995734631 0.496481091
11 0.4142 -1.974768133 17834.07 0.998141172 0.498280309
12 0.4075 -1.988694982 10907.45 0.998325391 0.498551769
13 0.4015 -1.997878848 6339.78 0.999043803 0.499119777
14 0.3943 -2.002848271 3868.20 0.999176288 0.499267078
15 0.3886 -2.006172242 2215.00 0.999447569 0.499491975
16 0.3834 -2.007992271 1309.79 0.999529751 0.499572975
17 0.3800 -2.009176097 721.01 0.999642060 0.499670003
18 0.3770 -2.009798555 411.42 0.999684337 0.499709324
19 0.3757 -2.010184455 219.49 0.999728139 0.499748437
20 0.3750 -2.010373825 125.31 0.999746151 0.499764460

Table 9.13 — Level VI, S shell only

Level VI

In the table 9.13 we report our results for the S shell only, VI excited state, starting with

ng = .

Now the changes in the entropy from n=10 to n=20 regard the third decimal digit.
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n aals
5 2.155
6 2.358
7 2.524
8 2.607
9 2.887
10 3.068
11 3.247
12 3.411
13 3.621
14 3.779
15 3.937

aalp
3.800
4.000
4.300
4.600
4.900
5.200
5.400
5.700
6.000
6.100
6.400

A E(ppm)
1159.10
1128.57
1117.61
1111.97
1109.05
1107.49
1106.59
1106.03
1105.68
1105.44
1105.28

lin ent r
0.016158
0.016162
0.016162
0.016163
0.016163
0.016163
0.016163
0.016163
0.016163
0.016163
0.016163

vN entr
0.077721
0.077758
0.077763
0.077770
0.077770
0.077773
0.077773
0.077774
0.077774
0.077774
0.077774

Table 9.14 — Fundamental Level, S-P shell only

9.5.2 Singlet states - S-P shells only

In all the computation, we have used ns = np.

Fundamental level

In the table 9.14 we report our results for the S-P shells only, fundamental state, starting

with n, = 5.

The von Neumann entropy changes passing from dimension for S Shell=10 to dimension

for S Shell=15 involve the fifht significant digit, those of the linear entropy the sixth.
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n aals aalp A E(ppm) lin entr vN entr
5) 1.0218 1.900 1565.29 0.487567 0.989644
6 1.0242 2.000 281.62 0.488480 0.990607
7 1.0136 2.100 173.29 0.488552 0.990674
8 1.0427 2.200 113.40 0.488618 0.990767
9 1.0731 2.300 108.18 0.488624 0.990783
10 1.1301 2.423 102.46 0.488631 0.990795
11 1.1999 2.524 100.30 0.488633 0.990800
12 1.2501 2.626 99.04 0.488635 0.990801
13 1.319 2.700 98.18 0.488636 0.990803
14 1.373 2.800 97.74 0.488636 0.990804
15 1.436 2.900 97.40 0.488637 0.990804

Table 9.15 — Level I, S-P shell only

Level 1

In the table 9.15 we report our results for the S-P shells only, level I, starting with n, = 5.

The von Neumann entropy changes passing from dimension for S Shell=10 to dimension

for S Shell=15 involve the fifht significant digit, those of the linear entropy the sixth.

We have an enhancement of about an order of magnitude in the energy precision for
dimension for S Shell=dimension for P Shell=15, comparing these figures to the results
obtained using the S shell only. The changes of the von Neumann entropy are reduced to

1/100, those of the linear entropy to 1,/1000.
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n aals
5 0.786
6 0.771
7 0.763
8 0.751
9 0.750
10 0.746
11 0.752
12 0.755
13 0.773
14 0.797
15 0.828

aalp
2.400
2.600
1.600
1.600
1.600
1.700
1.700
1.700
1.800
1.800
1.900

A E(ppm)
17533.91
6390.81
1768.84
635.38
168.89
80.87
40.07
34.46
30.57
29.78
29.04

lin entr
0.493807
0.495178
0.496663
0.496943
0.497159
0.497191
0.497218
0.497221
0.497224
0.497225
0.497225

vN entr
0.996401
0.996773
0.998075
0.998196
0.998381
0.998396
0.998425
0.998430
0.998435
0.998437
0.998437

Table 9.16 — Level I, S-P shell only

Level 11

In the table 9.16 we report our results for the S-P shells only, level II, starting with n, = 5.

The von Neumann and linear entropy changes passing from dimension for S Shell=10 to

dimension for S Shell=15 involve the fourth significant digit.

We have an enhancement of about an order of magnitude in the energy precision for

ns=np=15, comparing these figures to the results obtained using the S shell only. The

changes of the von Neumann and linear entropy are reduced to 1/1000.
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n aals
5 0.606
6 0.634
7 0.625
8 0.619
9 0.608
10 0.603
11 0.598
12 0.597
13 0.596
14 0.599
15 0.600
16 0.607

aalp
2.700
1.700
1.700
1.800
1.900
1.900
2.000
2.100
2.200
1.500
1.500
1.500

A E(ppm)
82274.70
30184.41
13517.44

5206.28
2255.69
813.28
339.16
115.43
53.79
23.97
17.35
13.60

lin entr
0.487653
0.495256
0.496223
0.497926
0.498315
0.498701
0.498799
0.498878
0.498896
0.498909
0.498912
0.498914

vN entr
0.991266
0.998041
0.997738
0.999088
0.999170
0.999443
0.999469
0.999524
0.999530
0.999542
0.999544
0.999547

Table 9.17 — Level Ill, S-P shell only

Level IT1

In the table 9.17 we report our results for the S-P shells only, level III, starting with

n, = .

The von Neumann and linear entropy changes passing from dimension for S Shell=10 to

dimension for S Shell=15 involve the fourth significant digit.

We have an enhancement of about 5 times in the energy precision for ns=np=15, com-

paring these figures to the results obtained using the S shell only. The changes of the von

Neumann and linear entropy are reduced to 1/1000.
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n aals
5 0.444
6 0.506
7 0.535
8 0.532
9 0.527
10 0.517
11 0.511
12 0.504
13 0.501
14 0.498
15 0.498
16 0.497
17 0.500
18 0.501
19 0.505
20 sballa

aalp
2.100
1.900
1.900
1.800
2.000
2.100
2.100
2.200
2.400
2.500
2.500
1.900
1.800
1.800
1.800

A E(ppm)
200042.36
95795.63
40496.73
20643.35
9604.56
4885.21
2218.17
1076.13
456.37
212.07
85.05
41.10
18.40
11.60

7.95

lin entr
0.500696
0.489176
0.495947
0.496561
0.498227
0.498590
0.499072
0.499218
0.499361
0.499405
0.499443
0.499453
0.499462
0.499464
0.499465

vN entr
1.028408
0.993279
0.998793
0.998062
0.999362
0.999353
0.999679
0.999702
0.999789
0.999798
0.999820
0.999823
0.999829
0.999830
0.999831

Table 9.18 — Level IV, S-P shell only

Level IV

In the table 9.18 we report our results for the S-P shells only, fundamental state, starting

with n, = 5.

The von Neumann and linear entropy changes passing from dimension for S Shell=10 to

dimension for S Shell=15 involve the fourth significant digit.

We have an enhancement of about 1.5 times in the energy precision for ns=np=15, com-

paring these figures to the results obtained using the S shell only. The changes of the von

Neumann and linear entropy are reduced to 1/10000.
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n aals aalp A E(ppm) lin entr vN entr

7 0.435 2.100 104975.81 0.490104 0.994417

8 0.465 2.100 58312.76 0.496364 0.999243

9 0.465 2.000 26683.62 0.496778 0.998266
10 0.462 2.200 13920.27 0.498374 0.999505
11 0.454 2.300 7904.01 0.498668 0.999411
12 0.447 2.300 4166.53 0.499172 0.999755
13 0.440 2.400 2303.48 0.499321 0.999756
14 0.425 2.600 1163.26 0.499506 0.999865
15 0.431 2.700 612.23 0.499573 0.999873
16 0.429 2.500 290.37 0.499638 0.999908
17 0.427 2.400 146.46 0.499663 0.999911
18 0.428 2.100 66.00 0.499682 0.999922
19 0.428 2.000 33.56 0.499689 0.999924
20 sballa

Table 9.19 — Level V, S-P shell only

Level V

In the table 9.19 we report our results for the S-P shells only, level V, starting with n, = 5.

The von Neumann and linear entropy changes passing from dimension for S Shell=10 to

dimension for S Shell=15 involve the fourth significant digit.

We have only a slight enhancement in the energy precision for ns=np=15, comparing these
figures to the results obtained using the S shell only. The changes of the von Neumann

and linear entropy are reduced to 1/10000 and 1/100000 respectivley.

For this reason we used values of n, up to 19.
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n
10
11
12
13
14
15
16
17
18
19

aals
0.415
0.414
0.407
0.401
0.394
0.389
0.383
0.380
0.377
0.376

aalp
2.200
2.400
2.400
1.700
1.700
1.700
1.800
1.800
1.700
1.600

A E(ppm)
31550.84
17701.48
10800.51

6274.89
3815.08
2178.04
1279.03
697.02
390.51
201.24

lin entr
0.496927
0.498476
0.498717
0.499217
0.499347
0.499548
0.499619
0.499705
0.499740
0.499775

vN entr
0.998406
0.999603
0.999449
0.999798
0.999773
0.999894
0.999893
0.999938
0.999941
0.999957

Table 9.20 — Level VI, S-P shell only

Level VI

In the table 9.20 we report our results for the S-P shells only, level VI, starting with

n, = .

The von Neumann and linear entropy changes passing from dimension for S Shell=10 to

dimension for S Shell=15 involve the third significant digit.

We have only a 8% enhancement in the energy precision, of 1/10000 in the von Neumann

entropy and of 1/100000 in the linear entropy even for ns=np=19.
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n aals aalp aald A E(ppm) lin entr vN entr
5) 2.16 3.80 5.20 387.79 0.016053 0.078444
6 2.36 4.00 5.60 355.81 0.016056 0.078479
7 2.52 4.40 5.90 343.97 0.016056 0.078485
8 2.52 4.40 6.20 337.82 0.016057 0.078493
9 2.52 4.40 6.60 334.61 0.016056 0.078492
10 2.52 4.40 7.00 332.86 0.016056 0.078494

Table 9.21 — Fundamental Level, S-P-D shell

9.5.3 Singlet states - S-P-D shells

Fundamental level

In all the computation, if not stated otherwise, ns = np = nd.

In the table 9.21 we report our results for the S-P-D shells, fundamental state, starting

with ng = 9.

We get an error reduction of the energy of about 14% passing from ng = n, = ng =5 to
ns = n, = ng = 10. The von Neumann entropy changes involve the fifth significant digit,

those of the linear entropy the sixth.

Comparing these figures with the results obtained considering the S shell only and ny, = 15,
we find an ehancement of about 20 times; comparing with the results considering the S

and P shells and ny; = 10 the enhancement is about 3 times.



386 APPENDICES

600 T
I
550 |
' | —6— n=5
500 |
4 | -
= 450 | - —— n=5 mn.
&
400 —— n=10
350, | —— n=10 nmin
I

3 4 5 6 7 8 9
Si ngl et Fundanental Level aa3s

Figure 9.44 — Singlet Energy error for n=>5 and n=10, fundamental level, S-P-D

0.0787 : :
|
0.0786 | |
0. 0785 ¢ —o— n=5
>
5
= 0.0784 . | - —— n=5 mn.
[
& 0. 0783 I
E ‘ —+— n=10
0.0782 I
I .
0.0781 ‘ | —— n=10 nmin
I
3 4 5 6 7 8 9
Si ngl et Fundanental Level aa3s
Figure 9.45 — Singlet von Neumann entropy for n=5 and n=10, fundamental level, S-P-D
0.0161 .
| I
|
2 0. 01608 . I o n.5
= | | L
I 0.01606 s n=5mn.
]
Q | —+— n=10
5 0.01604 I
| | —— n=10 mn
0. 01602 |

3 4 5 6 7 8 9
Si ngl et Fundanental Level aa3s

Figure 9.46 — Singlet Linear entropy forn=5 and n=10, fundamental level, S-P-D



9.5 Detailed results of computations

387

aals
1.02
1.02
1.01
1.01
1.01
1.01
1.01

— O © oo o UtB

[EGY

aalp
1.90
2.00
2.10
2.10
2.10
2.10
2.10

aald
3.10
3.30
3.40
3.50
3.70
3.80
3.90

A E(ppm)
1491.10
212.96
104.61
44.70
39.38
33.58
31.40

lin entr
0.487653
0.488554
0.488626
0.488692
0.488698
0.488705
0.488707

Table 9.22 — Level |, S-P-D shell

Level 1

vN entr
0.989965
0.990906
0.990972
0.991066
0.991083
0.991095
0.991099

In the table 9.22 we report our results for the S-P-D shells, level I, starting with ng = 5.

Passing from ng = n, = ng = 5 to ng = n, = ng = 10 we have an enhancement in the

energy precision of about 40 times. The von Neumann entropy changes involve the second

significant digit, those of the linear entropy the third.

Comparing these figures with the results obtained considering the S shell only and ng = 15

we find an ehancement of about 20 times; comparing with the results considering the S

and P shells and ngy = 10, the enhancement is about 3 times.
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n aals aalp aald
5 3.20
6 3.50
7 3.80
8 4.00
9 4.20
10 4.50
11 4.70
12 4.90

A E(ppm)
17489.99
6355.23
1745.24
613.55
148.67
60.92
20.27
14.69

lin entr
0.493860
0.495220
0.496687
0.496964
0.497178
0.497210
0.497236
0.497239

Table 9.23 — Level II, S-P-D shell

Level 11

vN entr
0.996584
0.996920
0.998176
0.998287
0.998466
0.998480
0.998508
0.998513

In the table 9.23 we report our results for the S-P-D shells, level II, starting with ng = 5.

Passing from ng = n, = ng = 5 to ng = n, = ng = 10 we have an enhancement in the

energy precision of about 30 times. The von Neumann and linear entropy changes involve

the third significant digit.

Comparing these figures with the results obtained considering the S shell only and ng = 15

we find an ehancement of about 4 times; comparing these figures to the results obtained

using S and P shells and ny = n, = 15, it is necessary to take a minimum of ngy = 11 a to

get a better result.
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n aals
5) 0.61
6 0.63
7 0.63
8 0.63
9 0.63
10 0.63
11 0.63
12 0.63
13 0.63
14 0.63

aalp
2.70
1.70
1.70
1.70
1.70
1.70
1.70
1.70
1.70
1.70

aald
3.70
3.50
3.90
4.30
4.40
4.60
5.00
5.20
5.40
5.40

A E(ppm)
82145.40
30145.50
13486.80

5190.66
2242.78
803.56
330.09
107.00
45.49
(15)

lin entr
0.487812
0.495298
0.496259
0.497943
0.498329
0.498711
0.498807
0.498886
0.498903
0.498917

Table 9.24 — Level Ill, S-P-D shell

Level 11T

vN entr
0.991716
0.998193
0.997861
0.999155
0.999224
0.999485
0.999507
0.999560
0.999565
0.999577

In the table 9.24 we report our results for the S-P-D shells, level III, starting with ngy = 5.

Passing from ny, = n, = ng = 5 to ny = n, = ng = 10 we have an enhancement in the

energy precision of about 10 times. The von Neumann and linear entropy changes involve

the third significant digit.

Comparing these figures to the results obtained using S shells and n; = 15, the errors are

of the same order of magnitude, using ny; = 12. A minimum of ny; = 14 is required to

obtain a result similar to the computations using the S and P shell and n, = n, = 15.
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n aald A E(ppm) lin entr
6 4.0 95672.66 0.489319
7 3.8 40460.19 0.495983
8 4.2 20613.88 0.496595
9 4.6 9589.10 0.498242
10 4.8 4873.78 0.498601
11 5.0 2210.92 0.499077
12 5.2 1070.0 0.499244
13 5.6 451.4 0.499365
14 6.0 207.5 0.499409
15 6.5 80.7 0.499447
16 6.5 36.9 0.499457
17 5.0 15.1 0.499465

Table 9.25 — Level IV, S-P-D shell

vN entr
0.993696
0.998927
0.998179
0.999420
0.999399
0.999710
0.999728
0.999810
0.999817
0.999838
0.999841
0.999838

Level IV

In the table 9.25 we report our results for the S-P-D shells, level IV, starting with ng = 6.

Passing from ng, = n, = ng = 6 to ng = n, = ng = 11 we have an enhancement in the

energy precision of about 40 times. The von Neumann entropy changes involve the third

significant digit, those of the linear entropy the second.

The error using ns = n, = ng = 15 is of the same order of magnitude of the computations

made using only the S and n, = 15, or S and P shells and n, = n, = 15.
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n

10
11
12
13
14
15
16
17

aald
4.0
4.5
5.0
5.0
5.5
5.5
6.0
6.0
6.5
6.5

A E(ppm)
48278.7
26656
13907
7893
4160
2298.3
1190
608.8
287.5
143.9

lin entr
0.496405
0.496816
0.498392
0.498679
0.499180
0.499326
0.499540
0.499576
0.499641
0.499665

vN entr
0.999371
0.998379
0.999562
0.999455
0.999784
0.999778
0.999893
0.999887
0.999920
0.999923

Table 9.26 — Level V, S-P-D shell

Level V

In the table 9.26 we report our results for the S-P-D shells, level V| starting with ngy = 8.

Passing from ny, = n, = ng = 8 to ny = n, = ng = 13 we have an enhancement in the

energy precision of about 20 times. The von Neumann and linear entropy changes involve

the third significant digit.

The error using ny = n, = ng = 15 is of the same order of magnitude of the computations

made using only the S or S and P shells. The same situation holds also increasing n up

to 17, so that it seems that taking into account the D shell is not useful for this level.
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n
10
11
12
13
14
15
16
17
18
19

aald
5.0
5.0
5.0
6.0
6.0
6.5
6.5
7.0
7.5
7.5

A E(ppm) lin entr
31523 0.496964
17689 0.498491
10790 0.498773

6269 0.499226
3810 0.499354
2174 0.499550
1276.1 0.499623
694.7 0.499708
389 0.499743
348 0.499777

Table 9.27 — Level VI, S-P-D shell

vN entr
0.998516
0.999656
0.999494
0.999826
0.999795
0.999909
0.999906
0.999948
0.999945
0.999961

Level VI

Remark: dimension for S Shell=18, dimension for P Shell=18, dimension for D Shell=3;

dimension for S Shell=19, dimension for P Shell=19, dimension for D Shell=3

In the table 9.27 we report our results for the S-P-D shells, level VI, starting with ng = 10.

Passing from ny = n, = ng = 10 to ny = n, = ng = 15 we have an enhancement in the

energy precision of about 15 times. The von Neumann and linear entropy changes involve

the third significant digit.

The error using ns = n, = ng = 15 is of the same order of magnitude of the computations

made using only the S or S and P shells. The same situation holds also increasing n up

to 17, so that it seems that taking into account the D shell is not useful for this level.
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ndds aals
5 1.080

6 1.060

7 1.060

8 1.060

9 1.080

10 1.100
11 1.180
12 1.220
13 1.300

9.5.4

A E(ppm)
-997.31
~510.799
-454.018
-445.203
~443.899
~443.692
-443.538
-443.495
-443.459

lin.entr.1
0.500002522
0.500002492
0.500002782
0.500002933
0.500002988
0.500002995
0.500003003
0.500003008
0.500003011

lin.entr.2
0.000005045
0.000004985
0.000005565
0.000005865
0.000005976
0.000005990
0.000006006
0.000006016
0.000006022

Table 9.28 — 35 Level |, S shell

Triplet states - S shell only

Level 1

vN entr
1.000050548
1.000050047
1.000055428
1.000058219
1.000059264
1.000059423
1.000059612
1.000059726
1.000059794

In the table 9.28 we report our results for the S shell only of triplet, level I, starting with

ng = .

We report the first and second linear entropies, that are related by the formula Ej;,o =

(Elinl — 05) X 2.

We note that, in contrast with what holds for the singlet states, both the entropies are

greater than their referral values 1 and 0.5 and that the energy differences are negative.

Passing from ng = 5 to ny, = 10 we have an enhancement in the energy precision of about

2 times. The von Neumann and linear entropy changes involve the second significant

digit.



400 APPENDICES

5000 ——
‘ |
4000 |
' I —o— n=5
. |
© 3000 I . — 5 min.
8 |
2000 | —+— n-10
1000 I\ i —— n=10 nin
0.6 0.8 1 1.2 1.4 1.6 1.8
Triplet Level 1 aals
Figure 9.65 — Triplet Energy error for n=5 and n=10, level I, S
1. 0002 .
1. 00018 | I
1. 00015 | —60— n=5
& 1.00013 ‘ I
= - —— n=5 nin.
= 1.0001 |
w
z 1.00008 I n-10
1. 00005
1. 00003 ‘ | —— n=10 mn
I
0.6 0.8 1 1.2 1.4 1.6 1.8
Triplet Level 1 aals
Figure 9.66 — Triplet von Neumann entropy for n=>5 and n=10, level |, S
0. 50001
0. 500008
2 —6— n-5
o
= 0.500006
5 . —— n=5 mn.
& 0.500004
2 —+— n=10
=
0. 500002
| | —— n=10 nin
I

0.6 0.8 1 1.2 1.4 1.6 1.8
Triplet Level 1 aals

Figure 9.67 — Triplet Linear entropy forn=>5 and n=10, level I, S



9.5 Detailed results of computations

401

ndds

00 31 O Ot i~

11
12
13
14

aals
0.810
0.820
0.800
0.790
0.780
0.780
0.780
0.780
0.780
0.780
0.790

A E(ppm)
~46986.191
~13321.130
-4309.404
-1242.234
_421.065
~173.879
~115.707
-100.633
-97.218
-96.481
-96.266

lin.entr.1
0.500013135
0.50007164
0.500002218
0.500001419
0.500001193
0.500001214
0.500001279
0.500001302
0.500001317
0.500001320
0.500001321

lin.entr.2
0.000026271
0.00014327
0.000004436
0.000002838
0.000002385
0.000002428
0.000002558
0.000002603
0.000002634
0.000002639
0.000002642

Table 9.29 — 35 Level II, S shell

Level IT

vN entr
1.000231957
1.000132769
1.000044905
1.000029730
1.000025258
1.000025662
1.000026927
1.000027372
1.000027683
1.000027734
1.000027773

In the table 9.29 we report our results for the S shell only of triplet, level 11, starting with

ne, = 4.

Passing from ns = 5 to ny = 10 we have an enhancement in the energy precision of about

100 times. The von Neumann and linear entropy changes involve the first significant digit.

The dependence of the entropies on n stabilizes starting with n=8.
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ndds aals
6 0.650
7 0.650
8 0.640
9 0.630
10 0.620
11 0.620
12 0.615
13 0.615
14 0.615
15 0.620
16 0.620
17 0.620

A E(ppm)
-25105.814
~10488.830
~4051.515
-1618.851
-600.939
-238.847
-101.888
-57.631
~42.686
-38.099
-36.720
-36.283

lin.entr.1
0.500009714
0.500002606
0.500001360
0.500000703
0.500000570
0.500000540
0.500000533
0.500000551
0.500000555
0.500000562
0.500000563
0.500000564

lin.entr.2
0.000019428
0.000005213
0.000002720
0.000001412
0.000001141
0.000001081
0.000001066
0.000001102
0.000001110
0.000001125
0.000001126
0.000001128

Table 9.30 — 2S Level IlI, S shell

Level 111

vN entr
1.000175957
1.000052268
1.000028628
1.000015551
1.000012717
1.000012063
1.000011902
1.000012271
1.000012359
1.000012511
1.000012523
1.000012547

In the table 9.30 we report our results for the S shell only of triplet, level III, starting

with n, = 6.

Passing from ng = 6 to ny, = 11 we have an enhancement in the energy precision of about

100 times. The von Neumann and linear entropy changes involve the first significant digit.

The dependence of the entropies on n stabilizes starting with n=10.
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Figure 9.72 — Triplet von Neumann entropy for n=10 and n=13, level IlI, S
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Figure 9.73 — Triplet Linear entropy forn=10 and n=13, level Ill, S



9.5 Detailed results of computations

405

ndds aals
6 0.530
7 0.550
8 0.545
9 0.535
10 0.530
11 0.520
12 0.515
13 0.515
14 0.510
15 0.510
16 0.510
17 0.515
18 0.515

A E(ppm)
-82023.067
-35275.899
-17203.226
-8040.148
-3876.736
-1761.535
-804.878
-349.062
-155.789
71.438
-38.408
-25.173
-20.238

lin.entr.1
0.500020217
0.500011264
0.500003314
0.500001752
0.500000699
0.500000473
0.500000331
0.500000291
0.500000280
0.500000275
0.500000281
0.500000281
0.500000284

lin.entr.2
0.000040433
0.000022529
0.000006628
0.000003505
0.000001397
0.000000946
0.000000662
0.000000583
0.000000560
0.000000549
0.000000561
0.000000561
0.000000568

Table 9.31 — 35 Level IV, S shell

Level IV

vN entr
1.000344433
1.000201759
1.000065365
1.000036262
1.000015433
1.000010710
1.000007651
1.000006774
1.000006518
1.000006393
1.000006524
1.000006539
1.000006601

In the table 9.31 we report our results for the S shell only of triplet, level IV, starting

with ng, = 6.

Passing from n, = 6 to ny = 11 we have an enhancement in the energy precision of about

50 times. The von Neumann and linear entropy changes involve the first significant digit.

The dependence of the entropies on n stabilizes starting with n=13.
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Figure 9.76 — Triplet Linear entropy forn=13 and n=15, level IV, S



9.5 Detailed results of computations 407

ndds aals A E(ppm) lin.entr.1 lin.entr.2 vN entr
6 0.395 -190243.7 0.500001346 0.000002692 1.000028235

7 0.455 -91816.456 0.500021683 0.000043367 1.000367265

8 0.475 -43164.944 0.500012330 0.000024659 1.000219333

9 0.475 -23138.142 0.500003809 0.0000076187 1.000074401

10 0.470 -12176.99 0.500002086 0.000004171 1.000042638
11 0.470 -6713.209 0.500000787 0.000001573 1.000017251
12 0.455 -3516.72 0.500000532 0.000001064 1.000011963
13 0.450 -1836.333 0.500000301 0.000000601 1.000007009
14 0.445 -940.359 0.500000232 0.000000464 1.000005482
15 0.440 -472.007 0.500000188 0.000000376 1.000004495
16 0.440 -227.817 0.500000169 0.000000338 1.000004066
17 0.435 -111.314 0.500000163 0.000000326 1.000003923
18 0.435 -54.743 0.500000158 0.000000317 1.000003817
19 0.440 -29.400 0.500000162 0.000000324 1.000003897
20 0.440 -17.995 0.500000161 0.000000321 1.000003864

Table 9.32 — 35 Level V, S shell

Level V

In the table 9.32 we report our results for the S shell only of triplet, level V, starting with

ns = 0.

Passing from n, = 6 to ny; = 11 we have an enhancement in the energy precision of about

30 times. The von Neumann and linear entropy changes involve the first significant digit.

The dependence of the entropies on n stabilizes starting with n=15.
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Figure 9.77 — Triplet Energy error for n=13 and n=15, level V, S
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0. 500004
= |
§ 0. 500003 i 13
c
W 0.500002
5 | - — n=13-15 n|
£ 0.500001
- —— n=15

0.3 0.4 0.5 0.6
Triplet Level V aals

Figure 9.79 — Triplet Linear entropy forn=13 and n=15, level V, S



9.5 Detailed results of computations

409

ndds
10
11
12
13
14
15
16
17
18
19
20

aals
0.420
0.420
0.410
0.405
0.400
0.395
0.390
0.385
0.385
0.385
0.385

A E(ppm)
-28026.560
~15897.326
~9478.708
-5517.729
-3253.610
-1853.745
-1050.184
-572.067
-308.483
~161.240
-84.505

lin.entr.1
0.500004228
0.500002347
0.500000938
0.500000621
0.500000318
0.500000237
0.500000165
0.500000134
0.500000119
0.500000107
0.500000105

lin.entr.2
0.000008457
0.000004694
0.000001876
0.000001243
0.000000636
0.000000475
0.000000330
0.000000267
0.000000237
0.000000215
0.000000211

Table 9.33 — 25 Level VI, S shell

Level VI

vN entr
1.000081983
1.000047584
1.000020334
1.000013843
1.000007405
1.000005619
1.000003984
1.000003266
1.000002911
1.000002650
1.000002600

In the table 9.33 we report our results for the S shell only of triplet, level VI, starting
with n, = 10.

Passing from ng = 10 to ny = 15 we have an enhancement in the energy precision of about

15 times. The von Neumann and linear entropy changes involve the first significant digit.

The dependence of the entropies on n stabilizes starting with n=16.
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Figure 9.81 — Triplet von Neumann entropy for n=13 and n=15, level VI, S
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9.5 Detailed results of computations

ndds aalp A E(ppm) lin.entr.1 lin.entr.2 vN entr
) 1.700 -572.214 0.500376828 0.000753656 1.004853436

6 1.800 -92.824 0.500371684 0.000743368 1.004793766

7 1.800 -36.886 0.500370939 0.000741878 1.004786999

8 1.900 -28.096 0.500370918 0.000741836 1.004787760

9 2.000 -26.867 0.500370901 0.000741803 1.004788009

10 2.100 -26.658 0.500370901 0.000741803 1.004788091

Table 9.34 - 35 Level |, S-P shell
9.5.5 Triplet states - S-P shells

We used dimension for P Shell=dimension for S Shell in all the computations

Level 1

In the table 9.34 we report our results for the S-P shells of triplet, level I, starting with

ne = .

Passing from ny = 5 to ny = 10 we have an enhancement in the energy precision of about
20 times. The von Neumann entropy changes involve the second significant digit, those

of the linear entropy the third.
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9.5 Detailed results of computations

ndds aalp A E(ppm) lin.entr.1 lin.entr.2 vN entr
7 1.200 -1141.230 0.500081373 0.000162745 1.001232509

8 1.200 -327.356 0.500074985 0.000149969 1.001143783

9 1.300 -82.485 0.500073268 0.000146535 1.001120117

10 1.300 -25.145 0.500072634 0.000145267 1.001111757
11 1.300 -10.226 0.500072513 0.000145026 1.001110214
12 1.400 -6.894 0.500072457 0.000144914 1.001109546

Table 9.35 — 25 Level I, S-P shell

Level 1T

In the table 9.35 we report our results for the S-P shells of triplet, level II, starting with

ne=~71.

Passing from ng = 7 to ny, = 12 we have an enhancement in the energy precision of about
200 times. The von Neumann entropy changes involve the second significant digit, those

of the linear entropy the first.
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Figure 9.88 — Triplet Linear entropy forn=7 and n=10, level I, S-P



9.5 Detailed results of computations

ndds aalp A E(ppm) lin.entr.1 lin.entr.2 vN entr
9 1.000 -1573.404 0.500034846 0.000069691 1.000571016

10 1.000 -562.615 0.500029748 0.000059496 1.000493940
11 1.000 -203.097 0.500027641 0.000055282 1.000461900
12 1.000 -67.339 0.500026763 0.000053526 1.000448475
13 1.000 -23.555 0.500026413 0.000052814 1.000443155
14 1.100 -8.736 0.500026300 0.000052600 1.000441551
15 1.100 -4.213 0.500026262 0.000052525 1.000441020
16 1.100 -2.844 0.500026252 0.000052503 1.000440861

Table 9.36 — 35 Level IlI, S-P shell

Level IT1

In the table 9.36 we report our results for the S-P shells of triplet, level 111, starting with

ne =9.

Passing from n, = 9 to ny = 14 we have an enhancement in the energy precision of about

200 times. The von Neumann and linear entropy changes involve the first significant digit.
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9.5 Detailed results of computations

417

ndds
10
11
12
13
14
15
16
17
18

aalp
1.200
1.200
1.300
1.300
1.300
1.200
1.100
0.900
0.900

A E(ppm)
-3841.291
-1736.025

-783.783
-330.326
-138.483
-54.682
-21.940
-8.773
-3.904

lin.entr.1
0.500026520
0.500019589
0.500015949
0.500014284
0.500013166
0.500012765
0.500012560
0.500012517
0.500012474

lin.entr.2
0.000053040
0.000039178
0.000031899
0.000028568
0.000026332
0.000025530
0.000025119
0.000025034
0.000024948

Table 9.37 — 35 Level IV, S-P shell

Level IV

vN entr
1.000446034
1.000337719
1.000279373
1.000252377
1.000234220
1.000227647
1.000224336
1.000223639
1.000222956

In the table 9.37 we report our results for the S-P shells of triplet, level IV, starting with

ns, = 10.

Passing from ny, = 10 to ngy = 15 we have an enhancement in the energy precision of about

60 times. The von Neumann and linear entropy changes involve the first significant digit.
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9.5 Detailed results of computations

419

ndds
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

aalp
1.900
1.300
1.300
1.300
1.300
1.300
1.300
1.000
1.000
1.000
1.000
1.000
0.800
0.800
0.800

A E(ppm)
-189513.879
-91460.688
~43044.779
-23057.634
-12131.867
-6678.656
-3494.095
-1845.707
-926.47
-460.3
-217.3
~101.590
-45.336
-20.151
-8.829

lin.entr.1
0.500497036
0.500290997
0.500097340
0.500060259
0.500035295
0.500025540
0.500017353
0.500013169
0.500010553
0.500008795
0.500007986
0.500007352
0.500007121
0.500007007
0.500006942

lin.entr.2
0.000994072
0.000581993
0.000194680
0.000120517
0.000070589
0.000051080
0.000034706
0.000026338
0.000021105
0.000017590
0.000015972
0.000014705
0.000014242
0.000014014
0.000013883

Table 9.38 — 35 Level V, S-P shell

Level V

vN entr
1.006208767
1.003951434
1.001491520
1.000952161
1.000584412
1.000431590
1.000302848
1.000234523
1.000191190
1.000161616
1.000147809
1.000137010
1.000133020
1.000131083
1.000129951

In the table 9.38 we report our results for the S-P shells of triplet, level V| starting with

ns = 0.

Passing from n; = 6 to ny; = 11 we have an enhancement in the energy precision of about

30 times. The von Neumann and linear entropy changes involve the first significant digit.
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9.5 Detailed results of computations

Table 9.39 — 35 Level VI, S-P shell

ndds aalp A E(ppm) lin.entr.1 lin.entr.2 vN entr
11 1.000 -15854.349 0.500033758 0.000067516 1.000562701
12 1.000 -9447.677 0.500022971 0.000045941 1.000392883
13 1.000 -5496.577 0.500016276 0.000032551 1.000286205
14 1.000 -3237.132 0.500012219 0.000024438 1.000219187
15 1.000 -1841.285 0.500009469 0.000018938 1.000173231
16 1.000 -1040.203 0.500007450 0.000014899 1.000138745
17 0.800 -563.915 0.500006159 0.000012349 1.000116358
18 0.900 -301.315 0.500005381 0.000010762 1.000102703
19 0.900 -154.709 0.500004920 0.000009840 1.000094528
20 0.700 -78.4 0.500004592 0.000009185 1.000088710

Level VI

In the table 9.39 we report our results for the S-P shells of triplet, level VI, starting with
ne = 11.

Passing from ng = 11 to ny = 16 we have an enhancement in the energy precision of about

15 times. The von Neumann and linear entropy changes involve the first significant digit.
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9.6 Some results for the Helium isoelectronic series

We tried our programs to compute some other elements of the Helium isoelectronic series.
We found that this extensions do not present difficulties, and decided to postpone this

study to the Hydrogen molecule treatment, that is indeed more interesting.

As an example, we report here the von Neumann and linear entropy plots for Z=3 (Li™)

singlets, computed for the S shell only.
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Figure 9.101 — 1 - EvN vs levels, singlet S, Z=3

Moreover, table 9.40 contains the computation of energy and entropies for the fundamental
level, singlet, shell S only. The energy is compared to the value -7.279913412 found in
(Koga , 1996).

As a further example, a run with n=10 and considering the S and P shells gave: AEnergy
= 553, von Neumann Entropy = 0.03562975, Linear entropy = 0.00652547.
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ndds aals AEnergy elin evN
5 3.700 3789 0.002995833 0.016476391
6 3.700 3775 0.002999688 0.016498473
7 4.200 3771 0.002998959 0.016496971
8 4.200 3769 0.002999324 0.016499281
9 4.700 3768 0.002999199 0.016499169
10 5.200 3767 0.002999120 0.016498996
11 5.200 3767 0.002999214 0.016499523
12 5.700 3767 0.002999184 0.016499449
13 5.700 3767 0.002999209 0.016499592
14 6.200 3767 0.002999196 0.016499557
15 5.700 3767 0.002999210 0.016499622
16 6.700 3767 0.002999198 0.016499583
17 6.200 3767 0.002999203 0.016499611
18 5.700 3767 0.002999204 0.016499614
19 8.200 3767 0.002999182 0.016499517
20 5.200 3767 0.002999204 0.016499612

Table 9.40 — 1S Level I, S shell, Z=3
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9.7 A comparison to (Osenda, Serra , 2007) results

The aim of this section is to check if the results of (Osenda, Serra , 2007), that were
obtained with a simplified Hamiltonian, are consistent with the same computations made

with the complete Hamiltonian that we used.

In order to compare our results with those of (Osenda, Serra , 2007), we run our programs
varying the coupling strength of the electrons. The results are plotted in fig. 9.103 left
for shells S only and S-P. The figure should be compared to 9.103 right, taken from the

quoted work.
The behaviour is quite similar.

We plotted also the behaviour of the two first eigenvalues, in fig. 9.104 left, where we
used the S shell only. It should be compared to the analogous figure in 9.104 right taken

from the original work. Again the behaviour is very similar.

He singlet fundanental |evel n=10
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0 2 021
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fattore

Figure 9.103 — von Neumann entropy singlet fundamental level, S and S-P, varying the
coupling strength, our computation and the plot from (Osenda, Serra , 2007)
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Figure 9.104 — The two first eigenvalues singlet fundamental level, S shell, varying the
coupling strength, our data and the plot from (Osenda, Serra , 2007)
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