
Dynamic Reasoning on XML Updates

Federico Cavalieri
University of Genova, Italy
cavalieri@disi.unige.it

Giovanna Guerrini
University of Genova, Italy
guerrini@disi.unige.it

Marco Mesiti
University of Milano, Italy
mesiti@dico.unimi.it

ABSTRACT
In many emerging XML application contexts and distributed exe-
cution environments (like disconnected and cloud computing, col-
laborative editing and document versioning) the server that deter-
mines the updates to be performed on a document, by evaluating
an XQuery Update expression, is not always the same that actually
makes such updates -represented as Pending Update Lists (PULs)-
effective. The process of generating the PUL is thus decoupled
from that of making its effect persistent on the document. The PUL
executor needs to manage several PULs, that, depending on the ap-
plication context, are to be executed as sequential or parallel update
requests, possibly relying on application-specific policies. This re-
quires some capabilities of dynamic reasoning on updates. In the
paper, we state the most relevant properties to reason on, develop
the corresponding algorithms and present a PUL handling system,
providing an experimental evaluation of this system.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages; H.2.4 [Database Man-
agement]: Systems — Query Processing

General Terms
Algorithms, Languages, Measurement, Performance

1. INTRODUCTION
Most of the work on XML updates and current implementations

of the XQuery Update Facility [22] rely on the assumption that
updates are executed right after and on the same server where the
expression requesting them is evaluated. In many distributed envi-
ronments, however, several application contexts require the process
of expressing and requesting updates to be decoupled from that of
making them effective on documents. The ability to handle update
requests, expressed as Pending Update Lists (PULs) resulting from
the evaluation of updating expressions, and to reason about them is
thus needed. PULs can be exchanged among nodes and algorithms
to handle them as parallel (i.e., to be integrated as a single transfor-
mation from the current document to a new one) or sequential (i.e.,
to be applied one after the other) update requests are required.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

In the context of collaborative editing [1, 17], for instance, a
node, handling the authoritative version of a document, may share
it with the collaborating nodes, and then recollect back from them
the PULs expressing updates they would like to perform on such a
document. After integrating and reconciling such update requests,
that are to be interpreted as parallel, a new authoritative version
is generated. This relies on an appropriate definition of conflicts
and of check-in/check-out approaches à la SVN to integrate updates
from different nodes.

In disconnected execution, a node may work for a while on a doc-
ument, thus producing different PULs resulting in different sequen-
tially updated documents. When it later reconnects to the server
holding the document, it sends the sequence of PULs to be ap-
plied to align the local and remote versions of the document. To
avoid going through all the intermediate documents, the ability to
aggregate the sequential PULs in a single one is needed. In case
of big documents, it is more convenient to exchange deltas (i.e.,
the updates -expressed as PULs- that the documents have under-
gone) rather than the documents themselves. A similar operation
is needed in document versioning and temporal XML [8, 10, 11],
where we may want to get rid of some intermediate document ver-
sions (expressed as deltas over an original version) and only keep
the most relevant ones.

In the context of the cloud [20], finally, updates travel on the net-
work, and arrive at the node holding the document they refer to,
where they are collected, and only subsequently actually applied.
This requires the ability both to integrate and reconcile updates
specified on the same document state and to aggregate updates in-
tended to be applied sequentially. In most of the devised contexts,
the node in charge of executing the updates cannot rely on inter-
actions with the nodes requesting them in case conflicts among re-
quests originated by different nodes arise.

In all the above mentioned contexts, the ability of manipulating
PULs and to reason on their effects is required. A PUL is an un-
ordered list of primitive tree update operations, each one targeted
at a single node. Even if the list is unordered, in the language se-
mantics a precedence among operations is specified (e.g., deletion
follows all the other operations). The insertion position of some
insert operations is left open to implementation leading to a de-
gree of non-determinism in update execution. Moreover, some op-
erations (such as two renames) on the same node would result in
an unclear semantics, thus they are defined as incompatible opera-
tions. A PUL containing incompatible operations is not applicable,
in that its execution produces a dynamic error. The current W3C
specification defines a merge operation that merges two different
PULs in a single one, provided that the set of operations resulting
from their union contains no incompatible operations.

Decoupling PUL production (through the evaluation of XQuery

165

Update expressions on a document) from PUL execution introduces
additional costs in serializing and exchanging PULs on the network
if compared to a scenario where PULs are executed locally and
right after being produced. However, the PUL executor may take
advantage of the knowledge of the exact nodes targets of the up-
dates to execute PULs in streaming, without the need to access and
load in main memory the whole document.

Reasoning on XML updates has mostly been intended as static
analysis of update expressions [6]. Dynamic update analysis is cer-
tainly easier, since more concrete information about data is avail-
able in PULs than in update expressions, but it also raises new inter-
esting issues. A first one is node identification: since PULs have to
be exchanged we cannot rely on the local main-memory representa-
tion of a document anymore. Another important issue is document
independence: our operations on PULs do not require accessing
the document, rather they benefit from structural information on
the document that is incorporated in the PULs themselves through
a labeling scheme. This labeling allows us to assess the structural
relationships among target nodes that are needed by the reasoning.
Since it is intended to be applied in a document update framework,
the labeling scheme used to represent these relationships must ac-
commodate updates. The only approach to dynamic reasoning on
XML updates we are aware of is [11], and it does not cope with
these issues, since the proposed PUL composition operator com-
poses the effects of a sequence of locally executed PULs.

The specific PUL operations we consider are: PUL reduction,
integration and aggregation. The reduction operation transforms a
PUL with the aim of collapsing similar operations and removing
useless operations (i.e., operations whose effects are overridden by
others). In addition, deterministic reduction produces a PUL whose
semantics is deterministic, and a canonical form is proposed so that
each PUL has a single canonical reduction. The integration of two
PULs produces a single PUL containing their operations that do
not conflict and a set of conflicting operations representing clashes
among operations in the PULs, i.e., points in which their intentions
in updating the document seem different. Integration is useful in
parallel execution of PULs, and corresponds to merge in case no
conflicts arise (it is however stronger than merge since incompati-
bilities are only one among the five types of conflicts detected by in-
tegration). For solving conflicts, we propose the use of application-
specific policies. Each producer can specify its own desiderata on
the PULs it sends for execution (e.g., order matters, deletion means
“I do not need it any more” rather than “It must be deleted”) and the
executor may rely on these policies, on its own policies (e.g., pro-
ducers reputation) to reconcile conflicting updates. The aggrega-
tion of two PULs, by contrast, refers to their sequential execution,
and produces a single PUL cumulating their effects.

The paper thus brings several contributions: (i) definition of a
mechanism for exchanging PULs in a distributed environment, and
modification of Qizx [18] to produce PULs and accept PULs (rep-
resented as XML documents) as input; (ii) characterization of PUL
equivalence, reduction, integration, and aggregation in terms of
PUL semantics as prescribed by [22] and formalized by [5]; (iii) de-
velopment of efficient algorithms for reduction, integration, and ag-
gregation possibly relying on application-specific policies for solv-
ing conflicts; (iv) implementation of such algorithms in the PUL
handling system and their experimental evaluation.

The remainder of the paper is organized as follows. Section 2 in-
troduces the notions our framework relies on, Section 3 presents the
PUL operations and related algorithms, while Section 4 describes
how they are implemented in a PUL handling system and evalu-
ates its performance. Finally, Section 5 discusses related work and
Section 6 concludes the paper.

Figure 1: Tree representation of an XML document

2. PRELIMINARIES
In this section we introduce the adopted tree representation of

XML documents, then define PULs of operations according to [22],
present their semantics and introduce the notions of PUL equiva-
lence and substitutability.

2.1 XML Document Representation
An XML document is represented relying on the notion of la-

beled tree. A document D is described by (V, γ, λ, ν) where: V
is a set of nodes representing elements, attributes or the value of
elements (text nodes)1; γ is a function associating with each node
its children; λ and ν are labeling functions associating with each
element and attribute node a name in a set N and with each text
and attribute node a value in a set V , respectively. Auxiliary func-
tions V and R2 denote the nodes and the root of a document D,
respectively, and τ assigns to each node v in V a value in the set
{e, a, t} denoting its type. Coherently with the XDM model, the
attribute value is seen as a property of the attribute node, whereas
the textual contents of an element are modeled by separate nodes.
A unique identifier, preserved upon modification, is associated with
each node in V , so that identifiers of nodes removed from the docu-
ment are not reused. In what follows, wherever no confusion arises,
we do not distinguish nodes from their identifiers. Figure 1 reports
a fragment of the SigmodRecord document that needs to be up-
dated. Dotted lines are used to represent edges leading to attribute
nodes and to point out that their relative order is not relevant.

In handling PULs, we avoid to directly access and navigate the
document. Rather, we simply need to consider some structural re-
lationships among nodes targets of updates. The required structural
information includes the ability to check: whether the parent-child
(P-C), element-attribute (E-A), left sibling, first/last child, ancestor-
descendant (A-D) and preceder-follower (P-F) relationships hold
among two nodes. This information can be obtained through a
labeling scheme associated with document nodes. In Section 4
we will detail different labeling schemes that we have adopted in
our prototype. Table 1 reports the predicates that can be assessed
through the labeling scheme.

2.2 Update Operations and PULs
We consider the update primitives defined in [22] and reported

in Table 2, where v ∈ V is a node, P = [T1, . . . , Tn], n ≥ 0, is a
list (possibly empty in case of the repN or repC operation) of trees,
l is a name inN , s is a value in V .

1For simplicity, we consider only these types among those in [22].
2FunctionR generalizes to a list of trees returning their roots.

166

Predicate Description
v1 � v2 v1 precedes v2 in document order
v1 �s v2 v1 is left sibling of v2

v1 /c v2 v1 is a child of v2

v1 /a v2 v1 is an attribute of v2

v1 /
←
c v2 v1 is the first child of v2

v1 /
→
c v2 v1 is the last child of v2

v1 //d v2 v1 is a descendant of v2

v1 //
¬a
d v2 v1 is a descendant of v2 but not an attribute of v1

Table 1: Structural relationships

The first parameter of each primitive specifies the affected node,
that is, the operation target. Given an operation op, t(op) ∈ V
denotes its target, o(op) denotes its name, and p(op) denotes its
second parameter (undefined if o(op) = del). The update oper-
ations can be categorized in three main classes: insertions (all the
variants of ins), deletions (operation del), replacements (all the
variants of rep and ren). c(op) ∈ {i, d, r} denotes the class of
operation op. For each operation, some applicability conditions are
given, stating the conditions that the parameters must satisfy for the
operation to be applicable.

DEFINITION 1 (APPLICABLE OPERATION). An update oper-
ation op is applicable on a document D if t(op) ∈ V (D) and op
matches the applicability conditions in D. 2

The semantics of each operation can be expressed through the
judgement D |= op D′. The semantics we refer to has been
obtained by adapting the one given in [5] to our tree representation
of XML documents and is not presented here for space constraints
(it can be found in [7]). The semantics of operation ins↓ is non-
deterministic because the actual position of the inserted nodes in
a document is not univocally specified. Therefore, because of this
operation, the application of an operation to a document produces
a document in a set of possible outcomes, we refer to as set of
obtainable documents. Specifically, this set is always a singleton,
except for the ins↓ operation, for which it is a set of documents that
differ only for the position of the inserted children among sibling
nodes. The semantics of an operation on a document produces one
of the documents in the obtainable set.

DEFINITION 2 (OPERATION SEMANTICS). Let op be an up-
date operation applicable on a document D. The set O(op,D)
= {D′|D |= op D′} denotes the documents obtainable by the
application of op on D. The application of op on D produces any
of the documents in the set O(op,D). 2

EXAMPLE 1. LetD be the document in Figure 1. op1 = del(14)

involves no non-determinism and thus O(op1, D) is a singleton.
op2 = {ins↓(16, <author>G.Guerrini</author>) , by contrast, may
lead to inserting the element as first, second, or last author of
the second paper, thusO(op2, D) contains the three corresponding
documents.

A pending update list (PUL) [22] is an unordered list of oper-
ations among those in Table 2. Since the order of operations is
irrelevant, some pairs of operations cannot occur in the same PUL.

DEFINITION 3 (OPERATION COMPATIBILITY). Let op1 and
op2 be two operations. They are compatible unless t(op1) = t(op2),
o(op1) = o(op2) and c(op1) = r. 2

EXAMPLE 2. Consider the operations: op1 = ren(1, dblp), op2

= ren(1, myDblp), op3 = repC(1, ’nopapers’). Operations op1 and op3

are compatible, and so are op2 and op3, whereas op1 and op2 are
incompatible.

Operation Description Conditions
ins←(v, P)
ins→(v, P)

Insert the trees in P before/after
node v

τ(v) 6= a, ∀r ∈ R(P)
τ(r) 6=a

ins↙(v, P)

ins↘(v, P)

Insert the trees in P as first/last
children of node v

τ(v) = e, ∀r ∈ R(P)
τ(r) 6=a

ins↓(v, P) Inserts the trees in P as children
of node v, in an implementation
defined position

τ(v) = e, ∀r ∈ R(P)
τ(r) 6=a

insA(v, P) Inserts the trees in P as at-
tributes of node v

τ(v) = e, ∀r ∈ R(P)
τ(r) = a

del(v) Deletes node v
repN(v, P) Replaces node v with the trees

in P (possibly none)
∀r ∈R(P) (τ(r) = τ(v)
= a)∨(τ(v) 6=a∧τ(r) 6=a)

repV(v, s) Replaces the value of node v
with s∈V

τ(v)∈{t, a}

repC(v, t) Replaces the children of node v
with text node t or with nothing

τ(v) = e, t = []∨τ(t) = t

ren(v, l) Renames the label of node v
with l∈N

τ(v)∈{e, a}

Table 2: Update operations

For a PUL to be applicable on a document (cf. function ap-
plyUpdates in [22]) it must contain no incompatible operations
and all its operations must be applicable on the document.

DEFINITION 4 (APPLICABLE PUL). Let D be a document
and ∆ = {op1, . . . , opn}, with n ≥ 0, be a PUL. ∆ is appli-
cable on D if ∀op ∈ ∆ op is applicable on D and ∀op, op′ ∈ ∆
op and op′ are compatible. 2

The merge operation (cf. function mergeUpdates) is the only
operation considered in [22] for handling PULs .

DEFINITION 5 (PUL MERGE). Let ∆1 and ∆2 be PULs ap-
plicable on a document D. Their merge, denoted by ∆1◦∆2, is
defined as ∆1 ∪∆2 provided that it is applicable on D. 2

The semantics of a PUL ∆ on a document D can be easily
specified by extending the judgement |= and the obtainable set O
from a single operation to a set of operations. The specification of
D |= ∆ D′ is obtained by applying the operations in ∆ in five
stages (the full specification can be found in [7]). At each stage a
subset of the operations are applied in order to guarantee the prece-
dence on the type of operations specified in [22]. The operations
in each stage are the following: (1) ins↓, insA, repV, ren; (2)
ins←, ins→, ins↙, ins↘; (3) repN; (4) repC; (5) del.

The order of application of operations within each stage is not
prescribed by [22]. Thus, when multiple insertion operations of the
same type with the same target appear in the same PUL, the rela-
tive order of their inserted groups of children is not fixed as well.
Therefore, the cardinality of O(∆, D) is greater than one when
ins↓ occurs in ∆ or ∆ contains more than one insertion operation
of the same type and on the same target.

EXAMPLE 3. Let ∆ = {ins↓(16, <author>G.Guerrini</author>),

ins↘(4, <initP>132</initP>), ins↘(4, <lastP>134</lastP>)} be a
PUL on the document D in Figure 1. |O(∆, D)| = 6.

The notion of obtainable documents set can be extended to a set
of documents S in the intuitive way asO(∆, S) =

⋃
D∈S O(∆, D),

and to a sequence of consecutive PULs as follows: O(∆1; ∆2, D) =
O(∆2,O(∆1, D)).

2.3 PULs Equivalence and Substitutability
To reason about PULs, it is important to determine whether two

PULs have the same effects, that is, they are equivalent, or the set of
obtainable documents by the application of a PUL ∆1 is contained
in that of another PUL ∆2 on the same document, that is, the first
PUL is substitutable to the second one.

167

O1)
op1 =op(v, _) op2 =op′(v, _)

op1, op2O1 op2

op ∈ {ren, repV, repC, del} ∪
{ins↙, ins↘, ins↓, insA}

op′∈ {repN, del}

O3)
op1 =op(v, _) op2 =op′(v′, _)

op1, op2O1 op2

op′ ∈ {repN, del}, v //d v′

I5)
op1 =op(v, L1) op2 =op(v, L2)

op1, op2O1 op(v, [L1, L2])
c(op)=i

I7)
op1 =ins↓(v, L1) op2 =ins↘(v, L2)

op1, op2O3 ins↘(v, [L1, L2])

IR9)
op1 =repN(v, L1) op2 =ins→(v, L2)

op1, op2O4 repN(v, [L1, L2])

I11)
op1 =ins↓(v, L1) op2 =ins→(v′, L2)

op1, op2O6 ins→(v, [L2, L1])
v′ /c v

IR13)
op1 =repN(v, L1) op2 =insA(v′, L2)

op1, op2O8 repN(v, [L1, L2])
v /a v

′

I15)
op1 =ins→(v, L1) op2 =ins↘(v′, L2)

op1, op2O8 ins→(v, [L1, L2]),
v /→c v′

IR17)
op1 =repN(v, L1) op2 =ins↘(v′, L2)

op1, op2O8 repN(v, [L1, L2])
v /→c v′

IR19)
op1 =repN(v, L1) op2 =ins→(v′, L2)

op1, op2O9 repN(v, [L1, L2])
v′ �s v

O2)
op1 =op(v, _) op2 =repC(v, _)

op1, op2O1 op2

op ∈ {ins↙, ins↓, ins↘}

O4)
op1 =op(v, _) op2 =repC(v′, L)

op1, op2O1 op2

v //¬ad v′

I6)
op1 =ins↓(v, L1) op2 =ins↙(v, L2)

op1, op2O2 ins↙(v, [L2, L1])

IR8)
op1 =repN(v, L1) op2 =ins←(v, L2)

op1, op2O4 repN(v, [L2, L1])

I10)
op1 =ins↓(v, L1) op2 =ins←(v′, L2)

op1, op2O5 ins←(v, [L1, L2])
v′ /c v

IR12)
op1 =repN(v, L1) op2 =ins↓(v′, L2)

op1, op2O7 repN(v, [L1, L2])
v /c v

′

I14)
op1 =ins←(v, L1) op2 =ins↙(v′, L2)

op1, op2O8 ins←(v, [L2, L1])
v /←c v′

IR16)
op1 =repN(v, L1) op2 =ins↙(v′, L2)

op1, op2O8 repN(v, [L2, L1])
v /←c v′

I18)
op1 =ins←(v, L1) op2 =ins→(v′, L2)

op1, op2O9 ins←(v, [L2, L1])
v′ �s v

IR20)
op1 =repN(v, L1) op2 =ins←(v′, L2)

op1, op2O9 repN(v, [L2, L1])
v �s v

′

Figure 2: Reduction rules

DEFINITION 6 (EQUIVALENCE AND SUBSTITUTABILITY).
Let ∆1 and ∆2 two PULs applicable on a document D. ∆1 is
equivalent to ∆2 on D, denoted ∆1'D ∆2, if and only if O(∆1,
D)=O(∆2, D). ∆1 is substitutable to ∆2 on D, denoted ∆1�D

∆2, if and only if O(∆1, D)⊆O(∆2, D). 2

EXAMPLE 4. Consider PULs ∆1 = {ins→(19, <author>M.Mesiti

</author>), repV(15, ’Report on . . .’)} and ∆2 = {ins↘(16, <author>

M.Mesiti</author>), repC(14, ’Report on . . .’)}. ∆1 is equivalent to ∆2.
Consider now PULs ∆1 = {ins↘(4, <initP>132</initP>), ins↘(4,

<lastP>134</lastP>)}, and ∆2 = {ins↘(4, <initP>132</initP>,

<lastP>134</lastP>)}. ∆2 is substitutable to ∆1.

3. HANDLING PULS
In this section we present three operators for reasoning on PULs.

For each operator we provide the definition, state some properties
and present the algorithms for its evaluation, discussing their com-
plexity. The algorithms rely on the use of rules on pairs of opera-
tions that are organized in stages. When rules in a stage cannot be
applied any more, rules of the next stage are considered.

3.1 PUL Reduction
According to its definition [22], a PUL may contain interacting

operations: they may have the same target and one may even de-
stroy (i.e., override) the effects of others. Reducing the operations
in a PUL, by collapsing similar operations and removing opera-
tions whose effects are overridden aims at obtaining a more com-
pact PUL with the same effect of the original one. For this purpose,
a set of reduction rules reported in Figure 2 has been devised. Each
rule considers a pair of operations that can be reduced obtaining a
single operation. Rules are organized in the following three cate-
gories, and are evaluated through the O operator in 9 stages.

O Rules for eliminating overridden operations when a repC,
repN, or del operation is targeted at the same node or at an
ancestor node.

I Rules for collapsing insertion operations targeted at the same
node, or at sibling or parent-child nodes.

IR Rules for collapsing insertion and replacement operations
(specified by means of repN operations) targeted at the same
node, or at sibling, parent-child, parent-attribute nodes.

DEFINITION 7 (PUL REDUCTION). Let ∆ be a PUL, ∆O de-
notes the PUL obtained by applying the reduction rules in Figure 2
in stages 1 to 9. 2

A reduced PUL may have a non-deterministic semantics, since
it may contain some ins↓ that have not been reduced with other
operations. Since a deterministic semantics may be desiderable, a
stronger form of reduction, named deterministic reduction, result-
ing in a PUL with deterministic semantics, is introduced. This is
realized through the introduction of a new stage 10, in which the
ins↓ operations, that still occur in the PUL (because not reduced
by the previous stages), are transformed in ins↙ operations.

DEFINITION 8 (DETERMINISTIC PUL REDUCTION). Let ∆
be a PUL, ∆H denotes the PUL obtained by applying the reduction
rules in stages 1 to 10 described above. 2

Given a PUL, however, it may not have a unique determininis-
tic reduction. The same rule may be applied more than once in
the same stage and, in general, different application orders may
lead to different reduced PULs. However, a canonical form, that
is, a “standardized” reduced representation, may be useful for rea-
soning on PULs. To determine such a unique reduction, all the
allowed rule application sequences must be guaranteed to produce
the same result. An approach to enforce this property is to im-
pose a specific order on reduction rules application. Any arbi-
trary order can be selected, we choose the order dictated by doc-
ument order of operation targets and lexicographic order of param-
eters, mainly because it can be efficiently computed. An order re-
lation <o between operations is thus defined, s.t. op1 <o op2 ⇔
t(op1) � t(op2) ∨ (t(op1) = t(op2) ∧ p(op1) <lex p(op2)),
where <lex denotes the lexicographic ordering of the serialization
of parameters. This order relation can then be extended to pairs
of operations as follows: 〈op1, op2〉 <p 〈op3, op4〉 ⇔ (op1 <o

op3 ∨ (op1 = op3 ∧ op2 <o op4)).

168

stage rule op1 op2 reduced
1 O1 ren(5, title) repN(5, <a>M M) repN(5, <a>M M)
1 I5 ins→(7, <a>A C) ins→(7, <a>G G) ins→(7, <a>A C,<a>G G)
1 I5 ins→(7, <a>A C,<a>G G) ins→(7, <a>F C) ins→(7, <a>A C,<a>G G,<a>F C)
4 IR8 repN(5, <a>M M) ins←(5, <t>R</t>) repN(5, <t>R</t>,<a>M M))

8 I15 ins→(7, <a>A C,<a>G G,
<a>F C)

ins↘(7, <m>M</m>) ins→(7, <a>A C,<a>G G,
<a>F C,<m>M</m>)

8 IR16 repN(5, <t>R</t>,<a>M M)) ins↙(4, <y>2004</y>) repN(5, <y>2004</y>,<t>R</t>,<a>M M)

Table 3: Reduction steps of Example 5

DEFINITION 9 (CANONICAL FORM). Let ∆ be a PUL, ∆H̄

denotes its canonical form obtained by applying rules in stages 1
to 10 and so that a rule r can be applied on a pair 〈op3, op4〉 ∈ ∆
only if no pair of operations 〈op1, op2〉 exists such that r applies
on 〈op1, op2〉 and 〈op1, op2〉 <p 〈op3, op4〉. 2

PROPOSITION 1 (PUL REDUCTIONS). Let ∆ be a PUL ap-
plicable on a document D, and ∆O, ∆H, and ∆H̄ be a reduction, a
deterministic reduction and the canonical form of ∆, respectively.

• ∆O,∆H,∆H̄ are substitutable to ∆ on D.

• |O(∆, D)|≥ |O(∆O, D)|≥|O(∆H, D)|= |O(∆H̄, D)|=1.

• ∆H̄ is unique for ∆.

• (∆r)r = ∆r , r ∈ {O,H, H̄}. 4

The proposed definitions of reduction, deterministic reduction,
and canonical form suggest a straight-forward algorithm for their
computations. An optimized algorithm can be obtained relying
on the following considerations: (i) reduction rules O3 and O4
only apply to pairs of operations whose targets are bound by the
A-D relationship; (ii) stage 10 (useful only for the deterministic
and canonical reduction) requires a simple translation of opera-
tions; (iii) all other reduction rules only apply on pairs of opera-
tions whose targets are the same, sibling or bound by the P-C/E-A
relationship. The optimized algorithm, whose complexity is O(k ·
log(k)), where k is the size of the PUL, can be found in [7].

EXAMPLE 5. Let ∆ be the PUL specified on the document in
Figure 1 consisting of the following operations:
ins↙(4, <year>2004</year>),

ins↘(4, <month>March</month>),

ren(5, title),

ins→(7, <author>A.Chaudhri</author>),

ins←(5, <title>Report on EDBT04 ...</title>),

ins→(7, <author>G.Guerrini</author>),

ins→(7, <author>F.Cavalieri</author>),

repN(5, <author>M.Mesiti</author>),

ins↓(16, <author>P.Gardner</author>).

In Table 3 each row reports a stage of the reduction process along
with the applied rule, the reduced operations, and the obtained re-
sult (only initials of tags and values are reported for the sake of con-
ciseness). The reduced PUL is ∆O ={repN(5, <y>2004</y>,<t>R</t>,
<a>M M), ins→(7, <a>A C,<a>G G,<a>F C,<m>M</m>),

ins↓(16, <t>P G</t>)} . This reduction is not deterministic because
it contains a ins↓ operation. The deterministic reduction is ob-
tained by transforming this operation in a ins↙. The obtained
deterministic reduction is not a canonical form. Indeed, rule I5
in stage 1 has been applied without taking into account the lexico-
graphic order of operation parameters. The canonical form is ∆H̄ =

{repN(5, <y>2004</y>,<t>R</t>,<a>M M), ins→ (7, <a>A C,

<a>F C,<a>G G,<m>M</m>), ins↙(16, <t>P G</t>)}.

3.2 Handling Parallel PULs: PUL Integration
Given two PULs referring to the same document we aim at in-

tegrating them, that is, at obtaining a single PUL that combines
their effects. Integrating two PULs in a single PUL, however, is not
always possible, due to different kinds of conflicts among the oper-
ations in the PULs, that do not allow to simply “put them together"
through a union. Intuitively, conflicts characterize the situations in
which both PULs modify the same document nodes and cause a
clash. Specifically, the following situations can be distinguished:
(i) incompatibility between operations in the PULs, according to
Definition 3, that would prevent the set of operations resulting from
the union to be a PUL; (ii) repetitions: two operations of the same
type, like, e.g., two insertions of the same attribute into an element,
that would result in an error when the PUL is executed; (iii) order-
dependence: operations whose effects are different depending on
the order in which they are executed, e.g., two insertions of a first
child into the same element; (iv) overriding of an operation by an-
other, so that the first operation has no effect on the document due
to the presence of the second one. For instance, the deletion of a
node overrides a rename of that node.

We aim at identifying conflicting operations by inspecting the
PULs, without computing their effects on the document. This leads
us to identify the following types of conflicts, that can be detected
between an operation of the first PUL and one of the second PUL:

1. repeated modification: repeated modifications with the same
target, that results in incompatible operations;

2. repeated attribute insertion: repeated attribute insertions with
the same target, that results in a repetition error;

3. element insertion order: insertion operations of the same
kind (except ins↓) with the same target;

4. local override: overriding between operations with the same
target, specifically, any operation is overridden by a deletion
or a node replacement, while insertions of new children by a
children replacement;

5. non-local override: overriding between operations with dif-
ferent targets, that is, operations overridden by a deletion or
a replacement targeted at an ancestor of their targets.

Conflict types 1–3 are symmetric, whereas 4 and 5 are not (there
is an overriding operation and an overridden one). To capture this
difference, we represent conflicts as symmetric relations ct←→ (ct ∈
[1..3]) and asymmetric relations

ct
� (ct ∈ [4, 5]) as defined by

rules in Figure 33. These conflicts need to be handled appropriately
when solving conflicts and reconciling PULs. For handling them,
we model a conflict as a triple, as stated by the following definition.

3For the sake of conciseness, in the rules we have not explicitly
considered operation repN(v, []) because it is equivalent to del(v).

169

Repeated modification:
t(op1) = t(op2) o(op1) = o(op2) o(op1) ∈ {ren, repN, repC, repV}

op1
1←→ op2

Repeated insertion:
t(op1) = t(op2) o(op1) = o(op2) = insA

∃v1 ∈ R(p(op1)), v2 ∈ R(p(op2)) s.t. λ(v1) = λ(v2)

op1
2←→ op2

Insertion order:
t(op1) = t(op2) o(op1) = o(op2) ∈ {ins←, ins→, ins↙, ins↘}

op1
3←→ op2

Local overriding:
t(op1) = t(op2) o(op1) ∈ {repN, del}

o(op2) ∈ {ren, repV, repC, ins↙, ins↘, insA, ins↓, del}
¬(o(op1) = o(op2) = del)

op1
4
� op2

t(op1) = t(op2) o(op1) = repC o(op2) ∈ {ins↙, ins↓, ins↘}

op1
4
� op2

Non-local overriding:
t(op2) //d t(op1) o(op1) ∈ {repN, del} o(op2) 6= del

op1
5
� op2

t(op2) //¬ad t(op1) o(op1) ∈ {repC} o(op2) 6= del

op1
5
� op2

Figure 3: Conflicts

DEFINITION 10 (CONFLICT). A conflict is a triple 〈op,OS, ct〉
where op is either unspecified (denoted by Λ) or an operation, OS
is a set of operations, ct ∈ [1..5] is the conflict type, and:

• if ct ∈ [1..3], op = Λ and OS is a (maximal) set of opera-
tions among which relation ct←→ holds;

• if ct ∈ [4, 5], op 6= Λ and OS is the (maximal) set of opera-

tions op′ such that op
ct
� op′. 2

DEFINITION 11 (INTEGRATION). Let ∆1, ∆2 be two PULs.
Their integration ∆1�∆2 is defined as a pair 〈∆,Γ〉where Γ is the
set of conflicts among operations in ∆1 and ∆2 and ∆ = {op|op∈
∆1∪∆2 ∧ op /∈

⋃
c∈Γ{Π1(c)}∪Π2(c)}4 is a PUL. 2

Note that the PUL obtained as integration of two PULs ∆1 and
∆2 coincides to their merge (according to Definition 5) ∆1◦∆2

when no conflict arises.

PROPOSITION 2 (INTEGRATION WITHOUT CONFLICTS). Let
∆1, ∆2 be the deterministic reductions of two PULs on a document
D, if the Γ component of their integration ∆1�∆2 is empty, then
the ∆ component is ∆1◦∆2 and it is equivalent to ∆1; ∆2 and to
∆2; ∆1 on D. 4

The proof the proposition relies on the following lemma.

LEMMA 1. Given PULs ∆1 and ∆2 applicable on the same
document D, if two operations op1 ∈ ∆1 and op2 ∈ ∆2 are non-
conflicting then:

• they are compatible according to Definition 3, thus {op1, op2}
is an applicable PUL;

• op1 is applicable on any document in O(op2, D) and op2 is
applicable on any document in O(op1, D). 4

4Given a tuple t, Πi(t) denotes the i-th component of the tuple.

Algorithm 1 Conflict detection
Require: ∆1, ... ∆n

1: C = ∅;
2: (∆v1 , ...,∆vk) is the partition of ∆1 ... ∆n according to the

target node, sorted in preorder traversal;
3: for k = 1 to k do
4: C = C ∪ Conflicts1..4(∆vi);
5: end for
6: Create a tree T = (V,E) s.t.:
V = {v1, . . . , vk};
E = {(v1, v2)|(v2 /c v1∨v2 //d v1)∧@v′.(v′ //d v1∧v2 //d v

′)};
7: C = C ∪ Conflict5(T);
8: ∆ = {op|op ∈ ∆1 ∪ ... ∪∆n, op 6∈ {Π1(C)} ∪Π2(C)};

Ensure: return 〈∆, C〉;

EXAMPLE 6. Let ∆1 = {insA(4, initPage = "132"), repV(8, ’MM’),
repN(7, <authors/>)} and ∆2 = {insA(4, lastPage = "134"), ren(5,

title)} be two PULs specified by two producers. No conflicts
arise in their integration. Therefore, it is possible to merge the two
PULs. Its deterministic reduction ∆H is {insA(4, initPage = "132",

lastPage = "134"), ren(5, title), repN(7, <authors/>)} .

An efficient algorithm for detecting conflicts among a list of
PULs ∆1, . . . ,∆n can be obtained by looking at the operations
in groups according to their target node. Specifically, conflicts of
types 1–3 arise between operations of the same type with the same
target, conflicts of type 4 between operations of different types but
with the same target. Only conflicts of type 5 require to compare
operations targeted at different nodes, bound by the //d relation-
ship, and are thus more costly to determine.

Algorithm 1 first sorts the operations in the PULs according to
their target nodes preorder traversal and tags each operation with
the PUL it belongs to (because conflicts should be checked among
operations belonging to different PULs), thus grouping operations
with the same target. For each group, local conflicts (types 1-4)
are detected in four stages. Each operation involved in at least a
conflict is marked as conflicted. Then, non-local conflicts (type 5)
are detected exploiting a tree structure whose nodes are the targets
of the operations in the PULs and edges represent the P-C, or A-
D relationships existing among the nodes in the original document
(if a forest is obtained a dummy root node is introduced). Nodes
are associated with the corresponding group of operations. Finally,
through a postorder visit of the tree, the non-local conflicts are de-
termined. The operations in each node v are compared with those
recursively collected from the children of v in order to identify con-
flicts of type 5. When all groups have been processed, the PUL of
non-conflicting operations and the identified conflicts are returned.

EXAMPLE 7. Let ∆1 = {op1
1 = insA(7, email = "catania@disi"),

op2
1 = ins→(5, <author>G G</author>), op3

1 = repV(9, ’34’) , ∆2 =
{op1

2 = insA(7, email ="catania@gmail"), op2
2 = ins→(5, <author>A C

</author>), op3
2 = repV(9, ’35’), op4

2 = repV(8, ’F C’), op5
2 = ins←(7,

<author>F C </author>)} and ∆3 = {op1
3 = repC(7, ’G G’)} be three

PULs to be integrated. Operations are first ordered and partitioned
according to their target node and the following partitioning is ob-
tained: [{op2

1, op
2
2}5, {op1

1, op
1
2, op

1
3, op

5
2}7, {op4

2}8, {op3
1, op

3
2}9].

Conflicts of type 1-4 are detected on operations with the same tar-
get node. By applying the rules in Figure 3 the following conflicts
are identified: cf1 = 〈Λ, {op2

1, op
2
2}, 3〉, cf2 = 〈Λ, {op1

1, op
1
2}, 2〉,

cf3 = 〈Λ, {op3
1, op

3
2}, 1〉. Then, operations are organized in the

tree structure in Figure 4 for detecting conflicts among operations
whose targets are bound by the A-D relationship. Through a visit of
this tree, the non-local conflict cf4 = 〈op1

3, {op4
2}, 5〉 is identified.

170

Figure 4: Tree structure for detecting non-local conflicts

PROPOSITION 3 (COMPLEXITY OF ALGORITHM 1). Let ∆1

. . .∆n be a list of PULs to be integrated. The complexity of Algo-
rithm 1 is O(k2 + a) where k =

∑n
i=1 |∆i| and a is the number

of attributes inserted through insA operations in ∆1 . . .∆n. 4

The presence of conflicts may prevent PUL integration to main-
tain a semantics substitutable to that of a sequential application of
the PULs. Therefore, this can lead to discard the PULs and asking
the PUL producers to devise different modifications of the docu-
ment. However, in some of the application contexts we have con-
sidered, it could be better to solve the conflicts even if this causes
some operations to be discarded (think for example the data cloud
context in which the PUL producers might not be available any-
more). A simple solution would be to force, whenever possible,
a sequential application of the PULs (i.e., PUL aggregation, dis-
cussed in next section), but this blurs the semantics of parallel exe-
cution of PULs (by forcing a specific, arbitrary, application order)
and may not be desiderable in many contexts.

For this reason, we devise an architecture in which PUL produc-
ers can specify policies that give the possibility to the PUL executor
to relax (or strictly enforce) some constraints specified in its PULs
to guarantee that the different PULs on the same document can be
reconciled. Moreover, PUL executors are equipped with a reconcil-
iation algorithm, named conflict resolution algorithm, that, given a
set of conflicts, relies on the policies of the involved PUL producers
to find a solution to the identified conflicts that meets such policies
(even if this means that some operations contained in the PULs may
be discarded), if any.

DEFINITION 12 (PUL RECONCILIATION). Let ∆1, ∆2 be
PULs, Ξ1,Ξ2 their policies, Υ a conflict resolution algorithm,
∆1�∆2 = 〈∆,Γ〉 be their integration (with Γ 6= ∅). The reconcil-
iation of ∆1 and ∆2 according to Ξ1,Ξ2,Υ, denoted as ∆1}Π∆2

is ∆∪Υ(Ξ1,Ξ2,∆,Γ), if Υ(Ξ1,Ξ2,∆,Γ) returns a set of opera-
tions, it is undefined in case it fails. 2

The algorithm for reconciling PULs depends on the specific con-
flict resolution policies adopted by the executor, and on the pro-
ducer policies associated with the PULs, and both of them are
application-dependent. Thus, we provide an instantiation of a con-
flict resolution algorithm, producer policies and the corresponding
reduction algorithm in Section 4, when describing our prototype
PUL handling system.

3.3 Handling Sequential PULs: PUL Aggre-
gation

Given two PULs ∆1 and ∆2 we aim at aggregating them, that is,
at obtaining a single PUL ∆ which cumulates the effects of their
sequential executions ∆1; ∆2 in the specified order. Differently
from integration where the two PULs refer to the original docu-
ment, in aggregation ∆2 can refer to the document updated through
∆1. Moreover, there is no need of recurring to policies to recon-
cile conflicts, since the net result of the sequential application of

A1)
op1 =op(v, L1) op2 =op(v, L2)

∆′1∪{op1, op2},∆′2
A
(1 ∆′1∪{op(v, [L1, L2])},∆′2

c(op)=i

A2)
op1 =op(v, L1) op2 =op(v, L2)

∆′1,∆
′
2∪{op1, op2}

A
(1 ∆′1,∆

′
2∪{op(v, [L1, L2])}

c(op)=i

B3)
op1 = op(v, _) op2 = op(v, _)

∆′1∪{op1},∆′2∪{op2}
A
(2∆′1,∆

′
2∪{op2}

op ∈ {ren, repV, repC}

C4)
op1 = insr(v, L1) op2 = insr(v, L2)

∆′1∪{op1},∆′2∪{op2}
A
(3∆′1,∆

′
2∪{op(v, [L1, L2])}

r ∈ {←,↘}

C5)
op1 = insr(v, L1) op2 = insr(v, L2)

∆′1∪{op1},∆′2∪{op2}
A
(3∆′1,∆

′
2∪{op(v, [L2, L1])}

r ∈ {→,↙}

D6)
op1 =op(v, T1...Ti...Tn) ∆v′ ={o∈∆2 | t(o)=v′}

∆′1∪{op1},∆2

A
(4∆′1∪{op(v, P)},∆2 \∆v′

v′ ∈ V (Ti),
Ti |= ∆v′ T ′i
P = T1...T

′
i ...Tn

Figure 5: Aggregation rules

two PULs is always well defined. The aggregation of two PULs
consists of their merge, provided that the operations in the second
PULs do not depend on the operations specified in the first one.
Otherwise, dependencies must be removed before merging the two
PULs. Specifically, we identify the following dependencies and de-
fine the rules in Figure 5 for their removal. The position of nodes
inserted by operations in ∆2 depends on the position of a node in-
serted by an insert operation of the same type on the same node in
∆1. Rules A1, A2, C4, and C5 cumulate the effect of insert opera-
tions of the same type on the same node, so that the order of inserted
nodes in the aggregated PUL is one of those obtainable by the se-
quential execution of ∆1 and ∆2. Rule B3 deals with overriding
operations in ∆2 by eliminating the overridden operation specified
in ∆1. Rule C6, finally, handles the situation in which a set of oper-
ations in ∆2 refers to nodes of a tree Ti which is a parameter of an
operation op in ∆1. In this case, the modifications specified for Ti

in ∆2 are applied and removed from the operations of ∆2. Note,
however, that in case the first PUL specifies a repC operation on a
node v and the second PUL an ins↙, ins↓ or ins↘ operation on
v a more complex treatment is required. For the sake of concise-
ness, we omit the discussion of this situation. The interested reader
may refer to the extended version [7] of this paper.

DEFINITION 13 (AGGREGATION). Let ∆1,∆2 be two PULs.
Their aggregation ∆1(∆2 denotes the PUL obtained through the

application of operator
A
(in Figure 5 according to stages 1 to

4. Specifically, let ∆f
1 ,∆f

2 be the result of 〈∆1,∆2〉
A
(〈∆f

1 ,∆
f
2 〉.

Then ∆1(∆2 = ∆f
1 ∪∆f

2 . 2

PROPOSITION 4 (AGGREGATION). Let ∆1 be a PUL appli-
cable on a document D and ∆2 be a PUL applicable on any docu-
ment in O(∆1, D). Their aggregation ∆1(∆2 is substitutable to
∆1; ∆2 on D. 4

Algorithm 2 for efficiently aggregating a list ∆1,. . . ,∆n of PULs,
with the property that ∆k (1 ≤ k ≤ n) is applied on the original
document D modified according to ∆1, . . . ,∆k−1, has been de-
fined. The algorithm relies on the use of an hash tableH indexed on
target nodes of the operations in the PULs and on nodes of the trees
inserted by means of ins or rep operations. The value of H(v) is
a pair 〈state, ops〉 representing whether v belongs to the original
document (old) or is being inserted by the considered PULs (new)
and ops is the list of operations whose target is v.

The hash table is populated as follows. If the target v of an op-
eration op(v, P) in a PUL ∆k (1 ≤ k ≤ n) has been already

171

included in H , op(v, P) is appended to the operations associated
with v, otherwise, it means that v belongs to the original document
and no operations have been already specified for it. Therefore,
H(v) is associated with 〈old, {op(v, P)}〉. Then, each node vn,
contained in the parameter of op, is new with respect to the orig-
inal document. Therefore, H(vn) can be defined and the value
〈new, {}〉 associated with it. Once the hash table has been popu-
lated with the operations in a PUL ∆k, it contains an entry for each
node v belonging to the original document (and target of an oper-
ation) or being inserted through an operation of a PUL ∆i, i ≤ k,
and the update operations specified on it. The aggregation rules in
Figure 5 can be applied5 on the operations in H(v).ops for each
v in the original document D, where op1 ∈ H(v).ops \ ∆k and
op2 ∈ H(v).ops ∩ ∆k. Instead, the operations whose target v is
not a node of D can be directly applied on the tree containing v
(note that this corresponds to the application of rule D6 in Figure
5). Finally, the algorithm collects and returns all the operations in
the hash table.

EXAMPLE 8. Consider the following PULs to be aggregated.
For the sake of conciseness, the node identifier is reported as super-
script of the node. ∆1 ={ins↘(3, <article24><title25>XML26</title>

</article>), repV(10, ’13’)}, ∆2 ={ins↘(24, <author27>G G28</author>,

<author29>M M30</author>), ren(5, title)}, ∆3 = {repN(29, <author31>

F C32</author>), ren(5, name), repV(26, ’On XML’)}. Aggregation ∆1(∆2

is {ins↘(3, <article24> <title25>XML26 </title><author27> G G28

</author><author29>M M30</author></article>), repV(10, ’13’), ren(5,
title)} in which ins↘ of ∆2 has been executed on the parame-
ter of the ins↘ of ∆1. Moreover, aggregation ∆1(∆2(∆3 is
{ins↘(3, <article24><title25>On XML26 </title><author27> G G28

</author><author31>F C32</author></article>), repN(10, special =

"2bis"33), ren(5, name)}. The last author of article24 and text node
26 have been changed by applying aggregation rule D6, and ren

in ∆1(∆2 has been removed because it is overridden by the same
operation on the same node in ∆3 (aggregation rule B3).

PROPOSITION 5 (COMPLEXITY OF ALGORITHM 2). Let ∆1

. . .∆n be a list of PULs to be aggregated. The complexity of Algo-
rithm 2 is O(k + p) where k =

∑n
i=1 |∆i| and p is the number of

nodes inserted through insert operations in ∆1 . . .∆n . 4

4. THE PUL HANDLER SYSTEM
In our reference architecture, PUL execution is decoupled from

PUL production. PUL production is performed by evaluating an
XQuery Update expression on a document, whereas PUL execu-
tion makes the updates in a PUL effective on a document. We refer
to the node collecting PULs and making them effective on the doc-
ument as PUL executor, while all the other nodes are referred to as
PUL producers. We assume a single PUL executor per document,
representing the node handling the master or authoritative version
of a document, to avoid dealing with synchronization problems be-
tween different replicas of the same document, but our approach
can be generalized to multiple executors as well. To decouple PUL
production from their execution, we have modified the Qizx library
to produce PULs and to accept PULs as input. PULs are repre-
sented as XML documents containing the serialization of each PUL
operation along with the identifiers and labels of the target nodes.
Decoupling PUL production from PUL execution introduces addi-
tional costs in serializing and exchanging PULs on the network if
compared to a scenario where PULs are executed locally and right
5Given O and O′ sets of operations, applyRules(O,O′) denotes
the application of the aggregation rules for op1∈O and op2∈O′.

Algorithm 2 Aggregation
Require: ∆1, ... ∆n

1: H is a new hash table;
2: for k = 1 to n do
3: for each op(v, P) ∈ ∆k do
4: if H(v) is not defined then
5: H(v) = 〈old, {op(v, P)}〉;
6: else
7: H(v).ops = H(v).ops ∪ {op(v, P)};
8: end if
9: for each vn ∈ V (P) do

10: H(vn) = 〈new, ∅〉;
11: end for
12: end for
13: for each v ∈ Dom(H) do
14: if H(v).state = old then
15: applyRules(H(v).ops \∆k, H(v).ops ∩∆k);
16: else
17: applyRules(∪v′∈Dom(H)H(v′).ops,H(v).ops);
18: end if
19: end for
20: end for
Ensure: return ∪v∈Dom(H)H(v).ops;

after being produced. However, the PUL executor may take advan-
tage of the knowledge of the exact nodes subjected to modification
to execute PULs in streaming, without the need to access and load
the whole document in main memory.

Our reasoning algorithms are made available both to the executor
and to the producers. Thus, for instance, a producer may decide
to aggregate its PULs before sending them to the executor or it
can send disaggregated PULs that may be then aggregated by the
executor before executing them.

In the remainder of this section, we discuss the most relevant
problems we have to cope with in developing the system, that is,
node identification and structural information, then present conflict
resolution policies and, finally, provide an experimental evaluation
of the developed system.

4.1 Node Identification and Structural Infor-
mation

In the previous sections we have denoted document nodes through
the node itself, since no need for explicit node identifiers arises. If
PULs are produced and executed locally in the same process, as
in current XQuery Update implementations, nodes are identified
by means of the in-memory document representation. When PULs
have to be serialized and exchanged across the network, explicit
identifiers need to be assigned to document nodes. Such identifiers
need to be unique in the document, immutable, not reusable (that
is, identifiers of deleted nodes are not re-assigned to other nodes).
Given a document, identifiers are assigned to nodes by means of
an appropriate algorithm which is agreed upon and employed by
all the PUL producers that manipulate that document. In this way,
identifiers of document nodes belonging to the master document
stored at the executor can be uniformly assigned by the producers
and PULs containing operations targeted at them exchanged and
later executed. We need however to decide when identifiers are
assigned to new nodes inserted by the execution of the PUL itself.
Specifically, in the aggregation context, a producer may execute se-
quential PULs on its local copy of the document, and these PULs

172

may need to refer to nodes inserted during previous PULs. Iden-
tifiers are thus assigned to nodes when PULs are applied (either
locally by a producer or on the master document by the executor).
The producer relies on these identifiers for its local reasoning (if
any). To ensure that the identifiers simultaneously assigned by dif-
ferent producers do not clash two alternative approaches can be
adopted: either each producer has an assigned identification space
and assigns identifiers in this space, or local identifiers assigned by
producers are replaced by “global" ones assigned by the executor
when updating the authoritative copy of the document.

For what concerns the structural information, as we discussed in
Section 2, our reasoning does not require accessing the document.
Rather, to check whether one of the structural relationships of Ta-
ble 1 holds among two nodes (targets of operations in the PUL)
a labeling scheme is used. Labels are associated with nodes in
the document tree and attached to the target nodes of the opera-
tions specified in a PUL. During reasoning, structural information
is only needed for the portion of the document already present be-
fore the start of the first PUL, thus the labeling is only modified
when updates are applied by the executor on the authoritative copy
of the document. Different labeling schemes can be adopted in our
context with the property to be tolerant to updates, that it, docu-
ment updates should not lead to relabeling of nodes. The one we
have adopted is the Zhang containment, encoded by means of the
CDQS[15], or alternatively the CDBS[14], encoder. This labeling
scheme allows us to evaluate all the relationships in Table 1 with
the exception of left sibling (�s) and the possibility to distinguish
between attributes/children of a given element (/c and /a). For
this purpose, we extended the labeling scheme to include the node
type and the identifier of the left sibling node (if any). The obtained
labeling scheme allows to determine all the relationships in Table 1
in constant time.

4.2 Conflict Resolution Policies
Different conflict resolution policies can be specified by the PUL

producers in order to characterize the approach to solve conflicts
during PUL integration. Consequently, the conflict resolution al-
gorithm relies on the specified policies. Its behaviour may be very
diverse depending on the context in which our system is used, but it
should at least guarantee the strict observation of the policies spec-
ified by the PUL producers. Specifically, the algorithm must fail
whenever it cannot identify a valid reconciliation: a conflict-free
PUL that satisfies all the policies of the involved PUL producers.

In our system we have adopted the following policies that may
be eventually specified by the PUL producers.

• Preservation of insertion order. The specified order for in-
serted nodes must not be altered by operations of other PULs.

• Preservation of inserted data. Inserted data (through repN,
repC, repV or ins) must occur in the final document.

• Preservation of removed data. Removed data (through repN,
repC, repV or del) must not occur in the final document.

Given a set of conflicts, dependencies among conflicts can be
identified. Thus, by solving a specific conflict other dependent con-
flicts may be solved as well or become unsolvable according to the
specified policies. Therefore, different resulting PULs may be ob-
tained depending on the order in which conflicts are processed and
solved. Moreover, the order of conflict processing may influence
the number of discarded operations and thus the gap between the
semantics of the original PUL and that of the reconciliated PUL.

Algorithm 3 Best-effort conflict resolution
Require: conflicts,∆, policies
1: E = ∅; ∆g = ∅;
2: let (〈op1, OS1, ct1〉, ..., 〈opn, OSn, ctn〉) be the list
conflicts ordered as defined;

3: for i = 1 to n do
4: opi = opi if opi /∈ E,Λ otherwise;
5: OSi = OSi \ E;
6: 〈solved, gen, excl〉 = solve(〈opi, OSi, cti〉, policies);
7: if (solved = true) then
8: ∆g = ∆g ∪ gen;
9: E = E ∪ excl;

10: else
11: abort; – conflicts not solvable
12: end if
13: end for
Ensure: return (∆g ∪

⋃
i=1..n(OSi ∪ {opi})) \ E;

Determining the best ordering of conflicts, for a given sets of poli-
cies, easily become computationally prohibitive, especially when a
large number of conflicts must be processed. Thus, the algorithm
needs to balance different requirements: maximizing the probabil-
ity of finding a valid reconciliation, minimizing execution time, and
the number of discarded operations.

Algorithm 3 for conflict resolution aims to solve as many con-
flicts as possible, with a very low computational cost, by excluding
operations involved in a conflict unless forbidden by the specified
policies. The algorithm works as follows: it first orders the con-
flicts according to a given criterion and then processes a conflict at
a time aiming at solving it. The resolution of a conflict may exclude
one or more operations from the PUL making unnecessary to fur-
ther consider them in the other conflicts they eventually belong to.
Some of the conflicts that still need to be processed may thus be au-
tomatically solved. Specifically, a conflict is automatically solved
when it is symmetric and it involves at most one operation, or it is
asymmetric and either the overrider operation does not belong to
the PUL anymore or the overridden operation set is empty.

Conflicts are ordered by identifying the focus node of a conflict.
The focus node is the common target for symmetric conflicts while
it is the overrider operation target for asymmetric ones. A conflict
c1 precedes another conflict c2 if the focus node of c1 precedes the
focus node of c2 according to document order (�). When the fo-
cuses of the conflicts coincide, their ordering is determined by the
conflict type and the operations contained in the conflicts exploit-
ing the following precedence: (i) conflicts of type 1 among repN

operations, (ii) conflicts of type 4 with a repN overriding operation,
(iii) conflicts of type 1 among dels, (iv) conflicts of type 4 with a
del overriding operation, (v) conflicts of type 1 among repCs, (vi)
conflicts of type 4 with a repC overriding operation, (vii) remain-
ing conflicts of type 1 and type 2 , (viii) conflicts of type 3 and,
finally, (ix) conflicts of type 5. Ordering the conflicts relying on
the focus node allows us to consider a conflict on a focus node v
only when we are sure that v will be present in the final document,
that is, when all the operations that remove v have been excluded.
Moreover, this ordering criterion avoids inconsistencies in resolu-
tion, as a conflict is processed only when any involved operation
cannot be later excluded by a subsequent conflict resolution.

A conflict is processed through the solve function. Two are the
possible outcomes: (i) the conflict cannot be solved according to
the specified policies and the entire reconciliation is aborted; (ii)
the conflict is solved and the sets of operations excl and gen are
generated. excl is the set of operations excluded from the final PUL

173

(and thus also from the conflicts still to be processed); and gen is
(possibly empty) set of operations generated when solving an order
(type 3) conflict. The specific behaviour of this function depends
on the conflict type, as follows:

• Asymmetric conflicts. Either the overriding or overridden op-
erations are excluded. To increase the number of automati-
cally solved conflicts, and thus the probability of finding a
valid reconciliation, the overridden operations are excluded.

• Order conflicts. All the involved insertion operations are ex-
cluded and a new insertion operation of the same type having
as parameter the concatenation of the operation parameters in
a certain order is generated.

• Non-order symmetric conflicts. All but one of the involved
operations are excluded.

When all conflicts have been processed a valid reconciliation is
identified, which is composed of (i) the conflicted operations which
have not been excluded, (ii) the original PUL operations not in-
volved in any conflict and (iii) the set of operations generated when
solving order conflicts.

EXAMPLE 9. Consider the conflicts detected in Example 7. The
algorithm identifies the focuses of these conflicts and orders them
according to the specified criteria. The resulting list, where the fo-
cus node is reported as a superscript, is [cf

[5]
1 , cf

[7]
2 , cf

[7]
4 , cf

[9]
3].

Suppose that the first producer specifies that insertion order and
inserted data must be preserved, the second producer does not pose
any constraint, and the last producer specifies a constraint on in-
serted data only. The algorithm processes the conflicts in the spec-
ified order according to these policies. The first conflict is solved
by excluding both the involved operations and introducing the new
operation ins→(5, <author>G G</author>,<author>A C</author>) that
adheres to the “preservation of insertion order” policy of the first
producer. The second conflict is solved by excluding operation op1

2

to adhere to the “preservation of inserted data” policy of the first
producer. Other conflicts are solved analogously by excluding op-
erations op4

2 and op3
2, respectively. The resulting PUL is {ins→

(5, <author>G G</author>,<author>A C</author>), op1
1, op

3
1, op

1
3, op

5
2}.

If, by contrast, all the three producers required the preservation
of insertion order, when processing the first conflict no ordering of
the inserted data would satisfy the producers policies. Thus, the
reconciliation would fail.

PROPOSITION 6 (COMPLEXITY OF ALGORITHM 3). Let c1,
. . . , cn be a list of conflicts to be solved. The complexity of Al-
gorithm 3 is O(n logn + cop) where cop is the total number of
operations in c1, . . . , cn. 4

4.3 Experimental Results
To assess the computational costs and advantages of our algo-

rithms we exploit synthetic XQuery Update expressions and their
corresponding PULs generated by means of the modified Qizx li-
brary. Documents of various sizes, ranging from 1MB to 256MB,
have been produced by means of the XMark data generator. Syn-
thetic PULs have been generated as well, with a varying number
operations, equally distributed among the operation types, speci-
fied on these documents. In these experiments, the node identifiers
and labeling, fundamental for the application of our algorithms,
have been stored within the related documents. Our test machine
employs an Intel I5 760 processor, coupled with 16GB of RAM,
and runs the 64bit version of the Sun Java JDK v.1.6.20.

Two approaches have been implemented for the evaluation of a
PUL on a given document: an adaptation of the Qizx library for di-
rectly handling PULs and a novel streaming evaluation algorithm.
The former loads the entire document in memory, applies the PUL
and finally serializes the document back to disk. The latter, in-
stead, is based on a specialized SAX parser and writer. The original
document is parsed generating a sequence of SAX events, that are
transformed on-the-fly applying the operations specified in the PUL
and immediately serialized to disk. In both algorithms, the entire
source document is processed and, while operations are applied,
new labels and identifiers are generated. A noteworthy advantage
of the streamed evaluation is that no in-memory representation of
the document is needed, effectively decoupling the main memory
requirements from the document size. Note that the amount of in-
formation required to compute new labels depends on the number
of operations rather than on the document size.

We first investigated the correlation between the number of op-
erations in a PUL and its evaluation time on a document of the
considered sizes. The experiment pointed out that the number of
operations in the PUL has a negligible effect on the evaluation
time, which is instead largely affected by the number of nodes to
be read/written and thus by the input and output document sizes.
Then, the actual performance benefit of using streaming evaluation
over the extended Qizx in-memory algorithm has been analyzed by
comparing the execution time for evaluating a PUL with a thou-
sand operations. Figure 6.a) shows that streaming evaluation is
significantly more efficient and its advantage with respect to the
in-memory evaluation increases with document size. Specifically,
on the considered documents, streaming evaluation is about 3 times
faster and this speed up is directly proportional to document size.

PUL reduction. PUL reduction complexity has been experimen-
tally evaluated by analyzing the execution time to deserialize, re-
duce and then reserialize PULs whose sizes ranges from 5000 to
100,000 operations, with approximatively a successful rule appli-
cation every 10 operations. The trend of execution times reported
in Figure 6.b) of the algorithm is compliant with the presented com-
plexity and the time spent for the actual reduction is smaller than
PUL serialization and deserialization. In the current settings, the
number of operations in a PUL does not significantly affect its exe-
cution time. Therefore, this operation does not produce benefits in
terms of performance. However, it is still important for reasoning
on equivalence/substitutability of PULs.

PUL aggregation. Applying the aggregation of a list of PULs,
rather than a sequential application of each PUL in the list, may
lead to a noteworthy advantage in terms of execution time as the
document has to be processed only once. Thus, we analyzed under
varying circumstances whether the aggregation cost may outbal-
ance any gained advantage. We first analyzed the execution time
for the deserialization, aggregation and reserialization of a vary-
ing number of PULs, with a different ratio of operations on nodes
not present in the original document and different number of op-
erations. We observed that the ratio of operations on nodes in the
original document has a negligible effect on execution time, while
there is an almost linear dependency between the aggregation time
and both the number of operations in each PUL and the number
of PULs. We report in Figure 6.c) the cost of aggregating an in-
creasing number of PULs each containing 1000 operations, half
of them specified on original document nodes. As the graph shows,
the deserialization/serialization cost dominates the aggregation cost
which is under 5 msec. even for the aggregation of 15000 opera-
tions equally divided in 15 PULs. Figure 6.d) compares the execu-

174

a) Streaming vs in memory PUL evaluation b) Reduction algorithm c) Aggregation algorithm

d) Aggregation vs sequential evaluation e) Integration algorithm

Figure 6: Experiments

tion time for the aggregation and (streaming) evaluation of a list of
PULs contrasting it to the cost of their sequential (streaming) eval-
uation. Results show that in contexts where direct access to a given
node in a document is not possible, the advantage of aggregating a
list of PULs and then applying the resulting PULs respect to the se-
quential application of the PULs is significant and increases rapidly
with the number of PULs in the list. The cost of aggregating the
PULs is not even noticeable on the graph.

PUL integration and conflict resolution. The cost of the integra-
tion algorithm depends on the number of PULs, operations, con-
flicts, operations involved in a conflict, conflict type and on how
a conflict resolution affects other conflicts. As for aggregation, we
first analyzed how the integration/evaluation time varies in function
of these variables, discovering that given a certain number of oper-
ations involved in a conflict, the number of PULs and the conflict
type have a marginal impact on execution time. Figure 6.e) reports
the results of integrating 10 PULs, containing a varying number of
operations, from 4K to 80K each. Half of them are involved in
conflicts, which contain an average of 5 operations. We also en-
sured that only 1/5 of the conflicts are solved thanks to the removal
of operations in other conflicts and that the remaining conflicts are
unaffected and equally distributed with respect to their type. Re-
sults show that integration is a cost effective operation.

5. RELATED WORK
The notions of PUL, function mergeUpdates for merging two

PULs, and PUL semantics in terms of function applyUpdates
are defined in W3C XQuery Update Facility [22]. XQuery Script-
ing Extension [21] is a further W3C XQuery extension that sup-
ports control constructs and allows to apply update operations not
only with XQuery Update snapshot semantics (i.e., update applica-
tion is delayed to the end of the query), but also with an iterative

one: immediate update application and explicit left-to-right evalu-
ation order. A semantics for XQuery Updates has been defined by
Benedikt and Cheney in [5].

Most of the approaches to update reasoning are static. An early
approach in the relational and object setting is [13] where the notion
of potential conflict is employed to determine whether set-oriented
update sequences have deterministic semantics (which may not be
the case because of sharing). In the XML context, static analysis
has been proposed for various properties and various languages [6].
Most of the proposals focus on non-interference (also referred to
as independence) between updates and queries, or between two up-
dates (finalized to update optimization). Exact approaches for static
analysis of independence require to consider restricted languages
(e.g., navigational subsets) [2, 3, 19] while the alternative is de-
veloping approximate approaches [4]. An approximate approach is
taken for analyzing update commutativity in [12] for updates with
iterative as well as snapshot semantics.

For what concerns dynamic handling of updates, relevant related
work are in the contexts of versioning, of distributed execution and
of collaborative editing. In the context of versioning, some ap-
proaches focus on delta management, where a delta represents the
transformation between two versions of the same document [9].
Completed deltas [16] are deltas that contain additional informa-
tion about operations and can be inverted and composed. PULs
do not include such additional information. Moreover, deltas can
be deduced by comparing different versions, and most research ef-
fort has been devoted to develop efficient algorithms for obtaining
compact deltas. Our approach is instead closer to [11], addressing
PUL composition for modeling the changes made by an XQuery
Scripting Extension [21] program as a single PUL rather than as
a sequence of PULs. Composition allows to summarize the ef-
fect of several, possibly interdependent, PULs as a single (local)
PUL. Thus, it has the same goal as our aggregation. However,
it is performed when applying a PUL and relies on backpointers

175

from nodes in the document to the corresponding nodes in the lo-
cal PUL. By contrast, in our framework we work on PULs with
no accesses to relative documents. Composition work on normal-
ized PULs (i.e., PULs containing at most one update primitive of
each type for each target, and replacing ins↓ with an another in-
sert primitive). Reduced deterministic PULs of our approach are
normalized, while the converse does not hold. Local PULs are kept
normalized during the composition process in [11].

In the distributed context, a union operation is considered in
XRPC [23] for cumulating the PULs a peer has handled in dif-
ferent XRPC calls for a given update query guaranteeing isolation
of transactions. The definition of this operation is given in [24]
as concatenation, but it is bound to the deterministic update seman-
tics used in MonetDB/XQuery. In the same context, [25] deals with
the problems of respecting node identities and preserving structural
properties in decomposing update expressions for distributed exe-
cution through a dynamic XML projection technique.

Collaborative editing, finally, denotes the process by which sep-
arate users are allowed to work concurrently on the same data.
Operation-based approaches [1, 17] have been proposed for main-
taining consistency of the copies of the shared document. They
allow local operations to be executed immediately after their gen-
eration while remote operations need to be transformed against
the other operations, guaranteeing their eventual consistency. The
transformations are performed so that the intentions of the users are
preserved and, at the end, the copies of the documents converge.
This shows some similarity with our integration operation.

6. CONCLUSIONS
In the paper we have investigated three relevant operations on

PULs, namely PUL reduction, integration and aggregation, and
we have developed and experimentally evaluated algorithms imple-
menting them. The operations can be combined, that is, it would
be useful to apply reduction after integration/aggregation, to get a
more compact (and deterministic, if desired) PUL. Note that apply-
ing reduction before integrating/aggregating would lead to a differ-
ent result and is less preferable because it may introduce additional
conflicts involving operations not appearing in the original PULs.
An experimental evaluation of combined use of PULs operations
on real PULs would be interesting, but not many data on real PULs
are available. Our experimental evaluation could be extended in
other directions as well, explicitly taking distribution issues into
account, as well as considering documents that are stored, and pos-
sibly shredded, inside a DBMS.

An important property of our approach is that the reasoning on
PULs does not require to access the document they refer to, pro-
vided that some structural relationships among nodes of the docu-
ment can be determined through labeling. Another interesting topic
we will consider as future work is the study of PUL inversion, but
this requires either the extension of the PUL production algorithm
or the access to the document the PUL refers to.

In the current version of our system, node identifiers and labeling
have been stored within the document. This solution significantly
affects the size of the original documents (which becomes approxi-
matively 3 times bigger) and PUL application time. As future work
we plan to consider the possibility to use external data structures
to store this information and to check the advantages in terms of
performances.

Acknowledgments. We wish to thank Dana Florescu for a use-
ful discussion allowing us to present our work in a more general
setting.

7. REFERENCES
[1] A. H. Davis, C. Sun, and J. Lu. Collaborative Editing of

XML Documents. An Operational Transformation
Approach. In ACM GROUP, 2001.

[2] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Adding
Updates to XQuery: Semantics, Optimization, and Static
Analysis. In XIME-P, 2005.

[3] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas.
Verification of Tree Updates for Optimization. In CAV,
LNCS(3576), pp 379–393. 2005.

[4] M. Benedikt and J. Cheney. Schema-Based Independence
Analysis for XML Updates. PVLDB, 2(1):61–72, 2009.

[5] M. Benedikt and J. Cheney. Semantics, Types and Effects for
XML Updates. In DBPL, LNCS(5708), pp 1–17. 2009.

[6] M. Benedikt and J. Cheney. Static Analysis of Declarative
Updates. In EDBT/ICDT Workshops. ACM, 2010.

[7] F. Cavalieri, G. Guerrini, and M. Mesiti. Dynamic Reasoning
on XML Updates. TR, U. of Genova, September 2010
ftp.disi.unige.it/person/GuerriniG/reports/

pulprocTR.pdf.
[8] S.-Y. Chien, V. J. Tsotras, and C. Zaniolo. XML Document

Versioning. SIGMOD Record, 30(3):46–53, 2001.
[9] G. Cobena, S. Abiteboul, and A. Marian. Detecting Changes

in XML Documents. In ICDE, pp 41–52, 2002.
[10] C. E. Dyreson and F. Grandi. Temporal XML. In

Encyclopedia of Database Systems, pp 3032–3035. 2009.
[11] G. Fourny, D. Florescu, D. Kossmann, and

M. Zacharioudakis. A Time Machine for XML: PUL
Composition. In XML Prague, 2010.

[12] G. Ghelli, K. H. Rose, and J. Siméon. Commutativity
Analysis for XML Updates. ACM TODS, 33(4), 2008.

[13] C. Laasch and M. H. Scholl. Deterministic Semantics of
Set-Oriented Update Sequences. In ICDE, pp 4–13, 1993.

[14] C. Li, T. Ling, and M. Hu. Efficient Processing of Updates in
Dynamic XML Sata. In ICDE, pp 13, 2006.

[15] C. Li, T. Ling, and M. Hu. Efficient Updates in Dynamic
XML Data: from Binary String to Quaternary String. VLDB
Journal, 17(3):573–601, 2008.

[16] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet.
Change-Centric Management of Versions in an XML
Warehouse. In VLDB, pp 581–590, 2001.

[17] G. Oster, P. Urso, P. Molli, and A. Imine. Data Consistency
for P2P Collaborative Editing. In CSCW, pp 259–268, 2006.

[18] PIXwere. QIZX. An Open-source XQuery Processor, 2010.
[19] M. Raghavachari and O. Shmueli. Conflicting XML

Updates. In EDBT, LNCS(3896), pp 552–569. 2006.
[20] W. Vogel. Eventually Consistent. Communications of the

ACM, 52(1), 2009.
[21] W3C. XQuery Scripting Extension 1.0, April 2010.
[22] W3C. XQuery Update Facility 1.0, June 2009.
[23] Y. Zhang and P. A. Boncz. XRPC: Interoperable and

Efficient Distributed XQuery. In VLDB, pp 99–110, 2007.
[24] Y. Zhang and P. A. Boncz. Loop-Lifted XQuery RPC with

Deterministic Updates. Technical Report INS-E0607, CWI,
Amsterdam, The Netherlands, November 2006.

[25] Y. Zhang, N. Tang, P. A. Boncz. Projective Distribution of
XQuery with Updates. IEEE TKDE, 22(8):1059–1076, 2010.

176

