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Abstract. The interaction induced by the exchange of low-lying surface vibrations between
pairs of orbitals close to the Fermi surface provides an important contribution to pairing
correlations in superfluid nuclei. We study the spatial dependence of the pairing field obtained
adding the bare and induced interaction in 120Sn.

1. Introduction

The superfluid properties of nuclear systems are strongly influenced by polarization phenomena.
In particular, the exchange of low-lying surface vibrations between pairs of nucleons close to
the Fermi surface gives rise to an attractive induced interaction, that accounts for about one
half of the value of the pairing gap derived from the experimental odd-even mass differences in
superfluid nuclei [1]. If one wants to obtain a consistent calculation of the gap, one must add
the effects of the nucleon-nucleon interaction, and take into account the self-energy and vertex
processes that renormalize the quasiparticle strength and increase the level density around the
Fermi energy. It has been shown that this procedure leads to gaps in reasonable agreement with
experiment, if one starts from a single-particle spectrum associated with a k−effective mass
mk ∼ 0.7, like that obtained in a Hartree-Fock calculation with the SLy4 force [2].

In this paper we study the pairing gap in coordinate space. Because our study aims at
determining the basic features of the spatial dependence of the gap, rather than its precise
magnitude, use is made of approximations to deal with some of these effects, in particular with
self-energy effects, so as to gain in transparency in the presentation of the results. In order to
make contact with other, more phenomenological approaches available in the current literature,
we shall parametrize our results in terms of a density dependent, zero-range interaction.

2. The pairing induced interaction

We start by performing a Hartree-Fock calculation with the two-body interaction SLy4,
obtaining a set of single-particle energy levels enlj . We then use this basis to solve the Hartree-
Fock-Bogoliubov (HFB) equations in the pairing channel. The calculations are performed in a
spherical box of radius Rbox = 15 fm. For more details we refer to [3].



The matrix elements of the interaction induced by the exchange of a vibration will be
calculated using the formalism already employed in Ref. [4]:
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The index i labels the exchanged vibrational modes, having angular momentum and parity
JπM and energy h̄ωJπi. The modes have been calculated in the Quasiparticle Random Phase
Approximation (QRPA), using the same interaction already employed to calculate the mean-
field, with the exception of the spin-orbit and of the Coulomb part [5]. E0 is the pairing
correlation energy of a Cooper pair, a quantity which is of the order of −2∆F , where ∆F is
the average value of the gap close to the Fermi energy. In Eq. (1) f and g denote the particle-
vibration coupling vertices associated with the spin-independent and spin-dependent parts of
the residual interaction:

vph(~r,~r′) = δ(~r − ~r′) ×
{[

F0(r) + F ′
0(r)~τ · ~τ ′] +

[(

G0(r) + G′
0(r)~τ · ~τ ′)~σ · ~σ′]} , (2)

where F0, F
′
0 (G0, G

′
0) are the generalized Landau-Migdal parameters associated with the SLy4

force controlling the isoscalar and isovector spin-independent (spin-dependent) channels. In the
calculation of the particle-vibration coupling we neglected the momentum-dependent part of the
interaction (this part is instead taken into account in the QRPA calculation). The vertex f is
given by
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The quantities δρi
Jπn and δρi

Jπp are the neutron and proton contributions to the transition
densities and are given by
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where uν1
and vν1

are the quasiparticle amplitudes and Xν1,ν2
and Yν1,ν2

denote the forward
and backward amplitudes of the QRPA modes. The vertex g is given by a similar expression,
substituting F0, F

′
0 with G0, G

′
0 [4].

3. Pairing gap in coordinate space

Solving the HFB equations in the pairing channel with the induced interaction (1) we obtain the
matrix elements of the state-dependent pairing gap ∆nn′lj : the diagonal ones are shown below
in figure 4(a). We can then derive the pairing field in position space ∆(~r,~r′) [3]. This is shown
in figure 1(a) as a function of the center of mass Rc.m. and of the relative distance r12 of the pair,

after averaging over the angle between ~Rc.m. and ~r12. For a given value of r12 the pairing field
has a maximum close to the surface of the nucleus (Rc.m. ∼ 6 fm), while it becomes negative in
the interior, essentially due to the repulsive interaction induced by the exchange of spin modes,
associated with the G0, G

′
0 terms of the residual interaction (2). Taking the Fourier transform

with respect to the relative distance ~r12, we can define the pairing field in momentum space

∆(~Rc.m., ~k) =

∫

d3r12∆(~r,~r′) exp−i~k·~r12, (5)



which is shown in figure 1(b) after averaging over the angle between ~Rc.m. and ~k. We now
consider the pairing gap obtained adding the matrix elements of the bare Argonne v14 nucleon-
nucleon interaction vArg. We can also take into account self-energy effects in a simplified way,
multiplying the total interaction vArg + vind by a factor Z = 0.7, which is the typical value of
the quasiparticle strength calculated for levels around the Fermi energy [6]:

vArg+ind = Z(vArg + vind). (6)

While the pairing matrix elements are reduced by a factor Z2, they are also enhanced by a factor
1/Z due to the increase in the density of levels; hence the overall multiplying factor Z [7].

0 1 2 3 4 5 6
r
12 

 [fm]
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

∆(
R

c.
m

.,r
12

) 
  [

M
eV

/f
m

3 ]

R
c.m.

=1 fm
R

c.m.
=2 fm

R
c.m.

=4 fm
R

c.m.
=5 fm

R
c.m.

=6 fm
R

c.m.
=7 fm

(a)

0 2 4 6 8 10
R

c.m.
  [fm]

-4

-3

-2

-1

0

1

2

3

∆(
R

c.
m

.,k
) 

 [
M

eV
]

(b)

k=0.25 fm
-1

 k=0.75 fm
-1

 k=1.25 fm
-1

 k=1.75 fm
-1

Figure 1. Pairing field in position space (a), and in momentum space (b) obtained with the
induced interaction vind.

The diagonal matrix elements of the pairing gap ∆nnlj obtained with the interaction vArg+ind

are shown below in figure 4(b) and 5(b). They correspond to a value ∆F = 1.32 MeV, obtained
averaging over the single-particle levels located within an interval of ±2 MeV around the Fermi
energy (note that the value reported in [3] is about 10% larger, due to a numerical error in the
calculation of some matrix elements of the induced interaction). This value is in good agreement
with that derived from the empirical odd-even mass difference, but one should keep in mind that
the magnitude of the gap is sensitive both to the adopted value of Z and to the effective mass of
the mean field. To better assess the spatial structure of the pairing field, we prefer to introduce
a local approximation [8, 9]. We define ∆loc(Rc.m.) ≡ ∆(Rc.m., kF (Rc.m.)), where kF (Rc.m.)
is the local Fermi momentum. In figure 2(a) we compare the results obtained using the bare
interaction and the bare plus induced interaction (6). The bare interaction leads to a peak at the
surface, which is reinforced by the induced interaction. The induced interaction also produces
a negative gap in the interior of the nucleus, in keeping with the results shown in figure 1.

The local approximation introduced above, based on the results obtained in the microscopic
HFB calculation, leads to pairing gaps which are rather different from those obtained from
the simplest Local Density Approximation, which does not take into account proximity effects
associated with the nuclear surface and the fact that the nuclear radius is smaller than the
coherence length in uniform matter. This can be seen in figure 2(b), where we compare
the local pairing gap ∆loc associated with the Argonne interaction only, with the function
∆LDA(Rc.m.) = ∆n.m.

F (ρn(Rc.m.)), where ∆n.m.
F is the pairing gap calculated with the Argonne

interaction at the Fermi energy in uniform neutron matter, for a density equal to the neutron
density at a distance Rc.m. from the center of the nucleus, and using the local value of the
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Figure 2. (a) Local pairing gaps calculated in 120Sn with the interactions vArg (dashed line)
and vArg+ind (solid line). (b) The local pairing gap calculated with vArg, already shown in (a),
is compared to the gap obtaining using the simple LDA approximation based on the pairing gap
calculated with the Argonne interaction in uniform matter (solid line).

effective mass. The LDA overestimates the difference between the pairing gap on the surface
and in the interior of the nucleus.

4. Parametrization of the pairing interaction

4.1. Finite range parametrization

We now introduce a parametrization of the induced interaction, vind, based on the surface or
volume character of the interaction associated with the spin-independent or the spin-dependent
part of the matrix elements (1). We try to determine a Gaussian function vG

ind(Rc.m., r12) so as
to fulfill approximately the relation

∆(Rc.m., r12) = −vG
ind(Rc.m., r12)Φ

S=0(Rc.m., r12), (7)

where ΦS=0(Rc.m., r12) is the abnormal density in the S = 0 channel, the dominant one.
We consider separately the contributions from the attractive. spin-independent and from the
repulsive, spin-dependent parts of the interaction writing vG

ind(Rc.m., r12) = vG
attr(Rc.m., r12) +

vG
rep(Rc.m., r12). We shall first fit the pairing gap obtained including only the spin-independent

part of vind (that is, putting G = G′ = 0 in Eq.(2)), using the function

vG
attr(Rc.m., r12) = −battr · exp

(

−[(r12 − c)/aattr ]
2
)

(8)

where aattr, battr , c are parameters to be determined. We fix c so as to constrain the Gaussian
function to be maximum when at least one of the neutrons is on the surface of the nucleus.
This implies c = |Rnucl − Rc.m.|, where Rnucl is the maximum of the first derivative of the self-
consistent single-particle potential. The parameter aattr turns out to be close to aattr ≈ 2 fm,
so in practice to simplify the fitting method we used the fixed value aattr = 2 fm. The resulting
values of the parameter battr obtained as a function of Rc.m. are peaked on the nuclear surface
and are plotted in figure 3(a).

The repulsive part of the induced interaction is active only in the interior of the nucleus,
say for Rc.m. ≤ 4.5 fm (cf. figure 1(a)), so we multiply the Gaussian by a Heaviside function
centered at R0 = 4.5 fm

vG
rep(Rc.m., r12) = brepexp

(

−[r12/arep]
2
)

Θ(Rc.m. − R0). (9)
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Figure 3. (a) The values of the parameter battr, obtained fitting the Gaussian interaction
(cf. Eq.(8)) for 120Sn, are shown as a function of the center of mass Rc.m. (filled dots), and are
compared with the function dU(Rc.m.)/dRc.m. (solid line). (b) The values of the parameter brep,
obtained fitting the Gaussian interaction Eq. (10), are also shown as a function of the center of
mass Rc.m. (filled squares).

Table 1. Average gaps and pairing energies (in MeV) obtained with the full expression (1) of
the induced interaction and with the Gaussian parametrization vG

ind.

Nucleus ∆full
F ∆G

F Efull
pair EG

pair

108Sn 1.02 1.07 -4.02 -5.77
112Sn 1.87 1.65 -9.67 -11.20
116Sn 1.34 1.18 -6.74 -7.72
120Sn 0.88 0.96 -5.98 -5.85

We then determine the parameters of the repulsive Gaussian, fitting the values of arep, brep so
that the resulting interaction

vG
ind(Rc.m., r12) = vG

attr(Rc.m., r12) + vG
rep(Rc.m., r12) (10)

satisfies Eq.(7) for values of r12 in the interval [0,2] fm, where we used in this case the gaps
∆(Rc.m., r12) and the abnormal density ΦS=0(Rc.m., r12) obtained from the full calculation of
the induced interaction considering both spin modes and density modes. The parameter arep

turns out to be very close to arep ≈ 3.5 fm, so in practice we used a fixed value arep = 3.5 fm.
In figure 3(b) we show the resulting values of brep as a function of Rc.m..

We found that it is possible to parametrize battr as battr ∼ βattrRnucl
dU(Rc.m.)

dRc.m.

. The resulting
values of βattr for A = 108,112,116 and 120 are βattr= 0.157, 0.172, 0.163 and 0.154 respectively.

The Gaussian parametrization gives pairing gaps and pairing energies in good agreement
with the original induced interaction (1), as shown in table 1. We can then insert it in Eq. (6)
in place of vind, and calculate the pairing gap associated with the bare plus induced interaction.
For the case of 120Sn we obtain ∆G

F = 1.47 MeV and EG
pair = −17.52 MeV to be compared with

∆F = 1.32 MeV and Epair = −13.98 MeV obtained with the original induced interaction (cf.
table 2).
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Figure 4. (a) The diagonal matrix elements of the pairing gap in 120Sn, associated with
the induced interaction vind (triangles), are compared with those associated with the Gaussian
parametrization (circles, cf. Eq. (10)). The spatial dependence of the semiclassical pairing gap
associated with the induced interaction (solid line) and with the Gaussian interaction (dashed
line) are shown in the inset. (b) The same, but for the Argonne plus induced interaction.

4.2. DDDI parametrization

The local pairing fields discussed in Section 3 can be compared to those obtained by several
authors, who employed a density-dependent pairing interaction (DDDI) of the form [10]-[14]:

vδ(~r1, ~r2) = v0



1 − η





ρ
(

~r1+~r2

2

)

ρ0





α

 δ(~r1 − ~r2), (11)

where ρ0 is the nuclear saturation density and v0, η, α are three parameters to be determined,
together with the value of a cutoff energy in the single-particle energies Ecut, needed to solve
the HFB equations with a zero-range interaction. The parameter v0 together with Ecut defines
the strength of the pairing interaction, while the other two parameters determine the shape of
the pairing field. For a given value of Ecut, the strength can be fixed at zero density so as to
reproduce the neutron scattering length. We shall use the single-particle levels which lie up to
60 MeV above the Fermi energy, following Ref. [15], and we shall put v0 = −458.4 MeV fm3

accordingly.
The parameters α and η have been determined in previous works either to reproduce

experimental gaps or to reproduce the pairing gap at the Fermi energy obtained with a finite
range interaction like Gogny or Argonne in uniform neutron matter. In this section we want
instead to determine the parameters of the DDDI from the condition that the spatial dependence
of the associated gaps reproduces the spatial dependence of the local pairing fields determined
in the previous section. We fit the parameters η and α, minimizing the deviation between the
form of the pairing gap obtained with the DDDI of Eq. (11) and the form of the gap obtained
with the local potentials. We note that if an interaction has positive values for Rc.m. = 0 the
parametrization (cf. Eq.(11)) implies that η > 1. For a given value of η, the larger the value
of α, the more attractive the interaction is on the surface, leading to larger values of the gap.
Imposing a given value ∆F for the average pairing gap, one obtains a relation between α and η,
shown in the inset of figure 6(a) for various values of ∆F : the spatial dependence of the pairing
gaps obtained for various values of α when ∆F = 1.3 MeV is also shown in figure 6(a).
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Figure 5. (a) The diagonal matrix elements of the pairing gap associated with the Argonne
interaction vArg (diamonds) are compared with those associated with the DDD, zero-range
interaction with the parameters α = 0.66, η = 0.84 (circles). The local pairing gaps associated
with the Argonne interaction (solid line) and with the zero-range interaction (dashed line) are
shown in the inset. (b) The same, for the Argonne+induced interaction vArg+ind compared with
the DDDI with the parameters α = 1.5, η = 1.15 (circles, cf. table 2).

The values of the parameters for vδ
Arg and vδ

Arg+ind, calculated for 120Sn, are reported in table

2, while the resulting fits are shown in the insets of figures 5(a) and 5(b). While the spatial
dependence of the local gaps is quite well reproduced, the diagonal matrix elements of the
pairing gaps, shown in figure 5 and the pairing energy (reported in table 2) are underestimated,
especially in the case of the total interaction vδ

Arg+ind. The values of the parameters for the
Argonne interaction are very close to those obtained by Matsuo for the bare interaction in
uniform neutron matter [15]. We extended the analysis for the bare interaction to the nuclei
102−130Sn and 36−46Ca, finding ᾱ = 0.67 ± 0.04, η̄ = 0.82 ± 0.05, showing that the parameters
given in table 2 are quite stable.
In figure 6(b) we compare the spatial dependence of the three DDD interactions listed in table
2. By construction, all interactions tend to the value v0 = -458.4 MeV fm−3 for large values
of Rc.m.. The bare+induced interaction vδ

ind+Arg is considerably more attractive than the bare

Table 2. Parameters of the DDDI, Eq. (11), producing pairing gaps which fit the local
semiclassical pairing fields obtained with the various interactions. In the last four columns we
compare the pairing gap at the Fermi energy and the pairing energies (in MeV) obtained with

the full calculation, ∆full
F and Efull

pair, with the values obtained using the corresponding density

dependent interaction, ∆δ
F and Eδ

pair.

Interaction α η ∆full
F ∆δ

F Efull
pair Eδ

pair

vδ
Arg 0.66 0.84 1.04 1.03 -13.2 -8.9

vδ
Arg+ind 1.5 1.15 1.32 1.09 -13.98 -11.78

vδ
Arg+ind(G0 = G′

0 = 0) 1.38 0.91 2.12 1.85 -24.45 -25.68
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Figure 6. (a) We show in the inset the linear relation between the parameters α and η in
Eq.(11) obtained requiring that ∆F = 1.3 MeV, and in the main figure the resulting pairing
gaps associated with specific values of α. (b) The three pairing interactions associated with the
values of the parameters α and η given in table 2.

Argonne interaction in the surface region (Rc.m. ∼ 6 fm). On the other hand, vδ
ind+Arg has a

repulsive character in the interior of the nucleus, which is caused by the exchange of spin modes,
as can be seen setting G0, G

′
0 to zero.

5. Conclusions

We have presented a microscopic approach to the calculation of pairing correlations in superfluid
nuclei, adding a bare nucleon-nucleon interaction and an induced interaction which takes into
account the exchange of RPA vibrational modes, including self-energy effects in a simplified way.
The resulting interaction is surface peaked, in keeping with the fact that the bare interaction
is mostly attractive for low values of relative momentum, and that the exchange of collective
surface modes gives the largest contribution to the induced interaction at the nuclear surface.
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