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Computerized evaluation of the articular loads on the
normal dynamic human hip: a study of biomechanics

A. SURACE, AM. PREVITERA, C. MICALE, G. MINEO

Department of Orthopaedics and Traumatology, University of Milano, Milano - Italy

ABSTRACT: Since the beginning of this century hip biomechanics has been widely studied. This subject
is of great interest to the orthopaedic surgeon, especially regarding dismorphic and degenerative
pathology, and trauma. Biomechanical evaluation is one of the key points in the setting-up of various
surgical methodologies (osteotomies, arthroplasties, osteosyntheses, etc). Calculations referring to this
subject are complex and almost impossible to do manually, as so hip operations orthopaedics base
themselves on theoretical notions, empirically applied to individual cases and to personal experience.
To obviate such inconveniences a computerized procedure has been realized to effect a biomechanical
evaluation of the hip for each single subject. The Authors describe their own computerized procedure for
a biomechanical analysis of normal hip. (HIP International, 1991, 1: 45-58)
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INTRODUCTION

A personal computer Apple Macintosch Il CX and a
spreadsheet Excel of Microsoft C were employed. The
choice of this software was based on both its power and
compatibility in Macintosh and MS-DQOS fields, which make
this method applicable to most personal computers present-
ly in use.

Simply collected data are requested and neither the aid
of a peculiar technigue, nor the presence of a specialized
staff are necessary; itis sufficient to know the patients weight
and to have a standard radiography of the pelvis.

This study regards all the 12 phases of the single-
support period of gait (according to Braune and Fischer).

The computer output is expressed numerically and it is
represented in each phase by:

a) Force K, its components its angles of inclination.

b) Force M, its components its angles of inclination.

c) Force R, its components its angles of inclination.

d) Lever arm of M.

e) Per cent variation between load (R) and its vertical
component (k_z). B

f) Per centvariation between partial body weight (P) and

total load (I_().

This programme may turn out to be useful to point out
cases of still asymptomatic joint hypersolicitations, but the
Authors think that such a procedure may represent a referen-
ce for analogous studies on the pathological and prosthesi-
zed hip.

Essentials of normal hip biomechanics

In orthostatism, with the support of both feet, hips can
bear the load of the head, trunk and upper limbs (62% of
human body weight). The centre of gravity of the body lies on
acoronal plane perpendicular to the middle, the point of the
segment linking the two centres of the femur heads in upper
position, in comparison with the segment itself.

If the fulcrum is symmetric, the load each hip has to bear
corresponds to 31% of human body weight. When a subject
stands on one leg, the loaded hip supports the head, trunk,
upper limbs and the other leg (81% of human body
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Computerized evaluation of the hip's loads

bpxP=bmxM

I

Fig. 1 - Balanced coxo-femoral system.

Fig. 2 - Resultant of the forces acting on head of femur.

K4

weight) (T) (4).

The centre of gravity of the body lies on the perpendicu-
lar through the supporting foot on the ground, while the
partial centre of gravity (S5), referring to the body with the
exception of the lower limb in support, referring to the real
load exerted on hip joint, departs towards the opposite side,
going beyond the axis of pubis, so that P acts eccentrically
on the hip and tends to fold up the pelvis, pushing it towards
the femur.

This above described fall of the pelvis is counter-balan-
ced by the action of the abductor muscles, belonging to the
loaded hip engendering M force.

Aleveris moved, the fulcrum of which is the centre of the
loaded femur head, P is resistant force, and motive power is
M. In order to balance the system, it is necessary that the
moment of the forces are equal, that is bpP=bmM (Fig. 1).
Under static conditions the resulting force (R), acting on
loaded hip corresponds to the vectorial addition of P and M.

According to Pawels (1), bp is about three times longer
thanbm, soin orderto keepthe systembalanced, M mustbe
about three times greater than P. During gait each hip has to
bear, transitorily, E’; but also 5 force of inertia, due the
acceleration of S5.

Thus, to keep balance, the action abductor muscles
have to counter-balance the load represented by the addi-
tion (IZ) of P and D; in other words the moment of M has to
equal the moment of K (Fig. 2).

With reference to Fick's data (1860, 1879), Pawels
noticed that in normal hip, M acts a lever arm with an angle
of21°, while R forms an angle of 16” and, during gaitit varies
from 1,5 to about 5 times the body weight.

Lastly, we have to remember one element that plays an
important role in the determination of the loads the joint has
to bear, that is almost no friction (0.007 according to Barnett
and Cobol (1962); 0.002 according to Radim et al (1970).
The absence of friction presents, as an immediate conse-
guence, the uninfluence of cephalic ray and of the entity and
distribution of joint stresses.

MATERIAL AND METHODS

With our procedure it is possible to calculate the total
load (R) of normal hip in a subject deambulating harmo-
nically.
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Fig. 3 - Points to be identified in pelvis radiogram:

pl =S.IAS.

p2 = Cotyloid cilium

p13 = Great trochanter apex

p19 = Lateral limit of the head of femur

p20 = Medial limit of the head of femur

p21 = Any other point in the profile of the head of femur.

Radiological-technique

A pelvis teleradiography in orthostatic position is perfor-
med, in order to reproduce the situation of the loaded hip as
exactly as possible. It is preferable that the distance focus-
film is the greatest possible (in any case almost 2 m).

The control x-ray has to be characterized by horizontal
direction, point of incidence corresponding to the middie
point of the line linking pubis with bisiliac line, emergency
pointin correspondence with the third sacral vertebra.

Data collecting

A bidimensional system of Cartesian axes, is inscribed
on pelvis radiogram where the "X” axis corresponds to a line
tangent the lower border of the tuberosities of the ischium,

and the "Y” axis crosses the pubis. With acommon ruler, the
co-ordinates of six points (in cm) are taken down.

Technical notes

Some Authors have tackied this problem basing them-
selves on the data of the subject studies by Braune and
Fischer at the end of the past century and on a fixed length
for the lever arm of M force (4 cm). In contrast to realize a
procedure that would give the evaluation of the joint stresses
for the hip in every phase of gait, and which could be
utilizable in every subject: there were however some ap-
proximations which were taken into account as follows:

a) application point of M on the hip bone itis a point with
an abscissa belonging to cotyloid cilium and an ordinate
belonging to SIAS;

b) application point of Mon greater trochanter: the apex
of greater trochanter;

c) acceleration of $5: the one Braune and Fischer calcu-
lated (our subject is able to deambulate harmonically) (1,4).

As far as lever arm M is concerned a very important
element in the calculation of R, its theoretical length has
been calculatedi.e.,the one necessary forthe balance ofthe
system, supposing that this corresponds to the real one,
according to the original hypothesis assuming that the sub-
ject deambulates without limping and that the system is
therefore, balanced.

The study regarded all twelve phases of the right single-
support period of gait (according to Braune and Fischer).

Method description

Radiographical enlargement

The co-ordinates of the points on the radiogram are
subject to an increase, because of radiographical enlarge-
ment; so it is necessary to correct them: if not corrected,
substantial errors in calculation will possibly occur.

Inorder to know the value of radiographical enlargement
and the real dimensions of the radiographed object, it is
necessary to know: focus/film distance, object/film distance
and the evident dimensions of the object (Fig. 4).

Generally, among these three elements the only one
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R ++— focus—— *

object—

Fig. 4 - Radiological enlargement.

known is the evident dimension of the object. In fact, even if
it is theoretically possible to calculate the focus/film distance,
this measurement can, through the use of some radiographi-
cal tubes, either turn out to be inconvenient or only a rough
estimate.

It is even more difficult, if not impossible, to make a
precise measurement of the focus film distance: for two
reasons:

a) the object discussed (hip joint) is tridimensional;

b)in vivo the interested anatomical structures are, ob-
viously, unapproachable for the usual instruments of measu-
rement.

The problem regarding radiographical enlargement has
been solved by employing the following: during the radiogra-
phy a reference radio-opaque element is located at aknown
distance from the film; the dimensions of this element are
known; on the radiogram the evident dimension of the refe-
rence element is measured, and the theoretical distance of
the focus from the film by:

distF=(dma-dsr)/{dma-dmr)

(dma=evident dimension; dmr=real dimension; dsr=film
reference distance).

The greatest and shortest distance object film is approxi-
mately stated. This distance should comprehend the whole
hip joint.

The highest, lowest and probable factors of reduction
are calculated by:

frmn=(distFP-dmx)/distFP|; (dmx=greatest distance);

frmxv=(distFP-dmn)/distFP|; (dmn=shortest distance);

fr=(frmn+frmx)/2

; (fr=probable factor pf reduction).

The maximun error range for such procedure is calcula-
ted: .

I range%=((frmx-fr)/fr) -100 | .

Per cent enlargement is:

fi=((1-fr)/fr) 100 |; (fi = probable per cent enlargement).

The co-ordinates pointed out in the radiography for the
factor of reduction are multiplied. Some values, which do not
quite correspond to reality assure a percent unsubstantial
error or, anyway, a known one.

Cephalic centre co-ordinates calculation

The centre of the femur head represents the centre of ro-
tation of the normal whole hip joint system and also the
fulerum of the lever keeping the balance of the pelvis during
gait.

The data we possess are the co-ordinates of the three
points of the femur head radioclogical profile (p19, p20, p21).

On aCartesian plane, the equation referring to a circum-
ference is

X2+y2+o4Py +y=0

where the co-ordinates of the centre are:

C(a;b)|, with;

=(o/2) |and | b=-(B/2)

r='\’az+b2-y ;| r=(1/2) /\fon2+[32+4y

If a circumference links 3 points:| A(x1;y1) |, {B(x2;y2) |,

and the radius is:
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'C(x3;y3)| ; the value of the coefficients o, B, v, is
obtained through the solving of the following system:

x12+y12 1 ax1 + Pyt +y=0
x22 +y22 + ox2 + By2 +y=0
x32 +y32+ ax3 +Py3 +y=0

We identify the three points with p19, p20 and p21
(Fig.3) and proceed as follows:

PD={((0D?)+(t1)-{(aa)+(da)) +22) | ;

rr=bb-aa+zz |;

ss=((cc?)+(gg?))-((aa®) +(dd?))+zz

'

yy={{pp-cc)-(aa-p)-(rr-ss)+rr)/({cc-tt)+{cc-dd)+(gg-rr)+(aa-tt)-(aa-dd)-(dd-rr)) | |
|

{yy=((pp-cc)-(aa-p)-(rr-ss)+rr)/((cc-tt)+(cc-dd)+(gg-rr)+(aa-tt)-(aa-dd)—(dd-rr)) ’

lyy=pl ;

xx = ((yy-(dd-tt))-pp)/rr [xx = a]  |;

z=-(aaxx)-(ddyy)-((aa?)(dd?) [z=1] |;

!

tx=- (xx/2)1i; { ty=-(yy/2ﬂ; (ra:’\[ (tx2+ty?-z) .I

where tx and ty are the co-ordinates of the cephalic centre
and the cephalic radius (which, normal hip being frictionless,
is not important in our calculations )(1).

Computation of M angle of elevation on OYZ
plane

The co-ordinates pointed out in the radiography refe to a
bidimensional Cartesian system; in order to spread this
procedure to a three-dimensional space, we identify X-axis
with Y-axis (belonging to the new system, positive on the
right) and Y-axis with Z-axis (positive, below):the new X-axis
will mark gait.

Let us compute the angle of inclination, or elevation, of
M, or better of M projection on OYZ plane.

Consider right-angled triangie ABC, where A(p2x; p1y)
and B (p13x; p13y) each represent the points of application
of M on the wing of ilium and on the greater trochanter, while
C is the apex of right angle (Fig. 5):

Then:

a = ABS(p13x-p2x+zz) |; (a = BC cathetus length)

(") - In the effectuation of the calculation of cephalic centre
co-ordinate, we verified that on employing mm/measures, cal-
culations were exact, while on using cm, a quite unacceptable
error came up,which was apparently unjustified. The explana-
tion of such a phenomenon is that the computer is able to
represent only a finite quantity of numbers: if a real number x
is comprised between two engine consecutive numbers, A and
B it will be represented as A or as B.

The process of appoximation of a real number to the
nearest engine number, is called "rounding” and the error so

included is named “cutting-off error”.

If the computer rounds x to engine number A, will have an
“absolute error” of A -X ; a more significant valutation of this
error is given by ‘“relative error” (A-x)/x)-100 , that is, the
rounding error expressed percentually.

A particulary great numerical mistake appears when two
near numbers, are subtracted, for example:

0.991012312-0.991009987=0.000002325;

Ifthe computer is able to make a calculation with 6 figures,
it will cut results up to 0.000002, with an absolute error of
0.000000325, but with a "relative error” of 14%:

0.0000000325/0.000002325 -100=13.97849462.

Obviously, ifcalculations of this kind are to be repeated, the
error can increase so much as to make the result completely
insignificant. Such a kind of mistake appears when high num-
bers are summed up with law numbers, and this addition is
likely to cause the loss of many significant figures.

In our case, though Excel precision is composed by 14
figures, the passing from one decimal to another (from cm to
mm) is enough to cause the numerical error.

Inorder to solve this problem a device has been employed,
i.e. the values of the co-ordinates (in cm) are multiplied by
1000, then the calculations are made and the results connected
by dividing by 1000.
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Fig. 5 - Angle of inclination of Mon plane OYZ (o) with reference to Z axis.

b = ABS(p1y-p13y+zz) { ; (b = AC cathetus length)

B= ATAN (b/a | ;

—

(B= angle opposite to b in radians)

arad = (m/2) -B | ; (arad = angle opposite to a, or M

angle of elevation in radians)

[ o =corad (1 80/n)] ; (o=angle opposite to a, orM angle
of elevation in degres).

Computation of the length of M lever arm
projection on OYZ plane

Analyze ABC triangle, where (Fig. 6):
A(xA; YA) = centre of the femur head;

B(xB; yB) = M point of application on the wing of ilium;
C(xC; yC) = greater trochanter apex.

Fig. 6 - Calculation of bm.

The result is: [ xA=tX | yA=ty }; ‘ xB=x, yB=ﬂ;

xC=p13X, yC=p13y/|.

The 3 sides of ABC are:

AB =~/ (xA-xB)+(yA-yB)?

3

BC =/\/ (xB-xC)2+(yB—yC)2J ;

AC =«\/ (xA-xC)2+(yA-yC)2~\;

We employ Briggs's formulas which allow us to calcula-
te the amplitude of the angles of a triangle when we know

its sides:| p=(AB+BC+AC)/2 | ;

(p = ABC halfperimeter)
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|

| o=atan \/ (p-BC)(p-AC)/2p(p-AB)

(w=angle apposite to AB side).

We draw ABC triangle height, with reference to BC side
and verify that (AD) corresponds to bM or, better, to the
projection of bM on OYZ plane, in the right-angle rectangle
ACD, bM represents the cathetus apposite acute angle, to:

| bM = AC sinw | .
L ]

Computation of (f)) force of inertia and of ms
components

A very important factor contributing to the determination
of balance of the system given by the joint of stressed hip, is
D force of inertia, due to the translation of the partial centre of
gravity of the body (S5).

| D =ma |, where: m is body mass and a acceleration.
We obtain:

fp = 0.8136286201 x weith |; (fp = body weight, not

included stressed limb)

mass = (fp/gi) |; (gi = 9,80665 m / sec 2 = gravity

acceleration).

In order to calculate D, it is necessary to know the
acceleration of S5 during the various phases of gait. As
anticipated above, in our calculation we have supposed that
the acceleration of the partial baricentre the subject studied
is subjected to, coincide with those studied by Braune and
Fischer (Tab. I).

As acceleration can also be considered a vector quantity
(it has in fact one point of application (S5) one direction and
one intensity or modulus), it can be dividedinto three compo-
nents, according to X, Y, Z axes.

In the course of this study we could verify that the
components of inertia, according to gait direction, and to
orthogonal gait direction (X and Y axes) are not very
meaningful, while vertical inertia has an important value.

TABLEi-ACCELERATION COMPONENTS INTHE PHASES
OF RIGHT HEMIPACE (m/SEC?), ACCORDING
TO BRAUNE AND FISCHER

ACCX ACCY ACCZ
12 - 0,03 -1,08 -5,08
13 - 0,82 -0,88 -3,99
14 - 1,91 -0,71 -1,88
15 - 1,12 -0,54 0,8
16 - 0,42 -0,4 3,44
17 - 03 -0,28 5,04
18 - 0,24 -0,18 4,08
19 - 0,18 -0,23 2,5
20 0,06 -0,5 0,56
21 0,29 -0,89 -1,53
22 0,46 -1,4 -2,07
23 0,5 -1,97 -0,13

It is the last that will be balanced by abductor force.

The force of inertiais the reaction of acceleration andis
therefore oriented in the opposite direction: if acceleration is
oriented upwards, the force of inertia will be coriented down-
wards, inertia will tend upward and will evade the stress.

dx = massa x accx | ; dy = massa x accy| ;

dz = massa x accz | ;

where dx, dy, and dx are the components of the force of
inertia and accx, accy and accz are the components of ac-
celeration.

Total load calculation (K) and its components

The total load (IZ) should be balanced by abductor force.
It is a vector which can be divided into 3 components,
according to the co-ordinate axes.

kx=dx, ky=dy, kz=fp+dz

Knowing the 3 componenfs of avector (\7) itis possibile
to calculate their module through:
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|V|= /\,vx2+vy2+v22 , which applied to the particular

case, is

| K|= A ’ kx2+ky?+kz? |.

The per-cent variation between K and KZ, has alsobeen
calculated verifying that this (ratiokkz) is slight (1%) so, in a
calculation where great accuracy is not requested, the 2
vector can be assimilated.

On the contrary, the per-cent variation between K and P
(ratiofpk) can be substantial, overpassing some phases of
the pace (as the twelfth) 50%. This is a confirmation of the
fact that in our calculation of hip joint stress, a statical
valuation not considering the existence of the force of inertia,
may lead to intolerable errors.

Lever arm calculation of K and its
components
In a first kind lever, in order to mantain the balance, the
moment of power and the moment of resistance must clash.
The moment (m) of aforce (F) is given by the product of
F multiplied by its lever arm (b):

m =bFsen® |, where O is the angle formed by the

direction of the force and the force of the lever arm:

PbP = RbR |.

In our case:

- the fulcrum is represented by the centre of the head of
femur; B

- resistance corresponds to the weight, or, better, to K:

- power is I\W,

- bR is the distance between fulcrum and baricentre,

-bPisthe distance between point of application of Mand
fulcrum.

We calculated the two lever arms and their moments,
considering that bP and bR are not scalar quantities, but
vectorial ones (in fact they present a point of application, a
direction, a module, represented by their length), and that,
therefore, the moments of the load and of the muscular force
are vectorial products:

QP=bP AP |; QM =bMAM |.

TABLE Il - COORDINATES (CM) OF S5 (XS, YS, ZS) AND
OF THE CENTRE OF HEAD OF FEMUR (XH,
YH, ZH) ACCORDING TO BRAUNE AND

FISCHER
Phases | XS YS ZS XH YH ZH
12 102,4 -1,47 | 98,28 | 107,7 8,35 82,27
13 109,7 | -1,12 | 98,67 | 113,9 9,19 82,83
14 116,4 -0,89 | 99,58 | 119,9 9,78 83,97
15 123,4 -0,75 101 1254 | 10,16 85,28
16 1294 | -0,71 102,1 130,4 | 10,28 85,95
17 136,2 -0,72 | 102,8 | 1354 10,2 86,32
18 142,3 -0,82 | 102,8 | 1404 | 10,01 86,16
19 148,9 | -0,88 102,2 | 1459 9,92 85,42
20 155,2 -1 1012 | 1513 9,78 84,31
21 161,5 | -1,17 100,1 156,9 9,63 83,3
22 167,8 -1,5 99,25 | 162,9 9,25 82,78
23 174,3 -2 98,64 | 169,4 8,7 82,56

Asfaras Klever arm calculation is concerned, we should
know S5 and the centre of the head of femur movements.
Through the data in our possession such movements
could not be calculated, so we were forced to operate some
approximations. .
- Braune and Fischer calculated, for the subject they ana-
lyzed, the co-ordinate of S5 and of the centre of the head of
femur during different pace phases (Tab. 1l).

It was supposed that in the subject studied through such
a procedure, the co-ordinates were proportionally corre-
spondent to those calculated by Braune and Fischer:

a) A translation of the cartesian axes on a new reference
systemis effected with parallel axestothe previous ones and
origin in correspondence to centre of femoral head.

The co-ordinates of S5 in the new system will be:

L§§n=xs-HY : ‘YSn:YS-\LH_’;

F ZSn:-(ZS-ZY)‘.

Co-ordinates on Z axis present inverted sign; this is due
to the fact that in the new system the positive side of Z axis
is directed below while ZS and ZY co-ordinates partake of a
system in which Z axis (as usual) positive upwards;
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b) The existence of a directed proportionality between
half the distance between the centres of the heads of femur
and K Y co-ordinate: knowing that in Braune and Fischer’s
subject intercephalic distance is about 170 cm we calculate
the coefficient of proportionality (percy) (Tab. ll1):

X8n=XS-HY!;| YSn=YS-YH |;

| ZSn = -(ZS - ZY)

We notice that hemicephalic distance corresponds to
the abscissa of the centre of femur head in our first bidimen-
sional Cartesian system and that such distance is tx, so that
the previous formula can be written as follows:

percy = (yH/tx) |.

c) So: |percx =xH/yH |, where percy corresponds to the
tangentofthe angle formed by direction and by a straight line
linking S5 and the centre of the head of femur.

d) Consequently | percz=zH/yH|, where perczis the

target of the angle formed by K direction and a straight line
linking S5 and the centre of the head of femur.

Now, supposing that our subject is moving as harmoni-
cally as Braune and Fischer’s, we calculate the components
of K lever arm.

bky = tx - percy |;[Y component];

bkx = bky - percx | [X component];

bkz = bky - percz | [Z component],

soK leverarmis: | bk= ’\/bkx2 + bky 2+ bkz?

K and its components moment calculation

_The moment of the stress or load, is the vectorial product
of K and its lever arm (bk) therefore in a space with three

TABLE lil - S5 COORDINATES IN A CARTESIAN SYSTEM
WITH ITS ORIGIN IN CORRESPONDENCE TO
THE CENTRE OF THE HEAD OF FEMUR IN
BRAUNE AND FISHER'S SUBJECT, AND FAC-
TORS USED FOR THE CALCULATION OF SUCH
COORDINATES IN ANY SUBJECT

Phases | XSn YSn ZSn | PERCX|PERCY | PERCZ
12 -5,29 -9,82 -16 0,539 -1,16 1,63
13 -4,23 -10,3 -15,8 0,41 -1,21 1,536
14 -3,49 -10,7 -15,6 0,327 -1,26 1,463
15 -2,03 -10,9 -15,8 0,186 -1,28 1,444
16 -0,97 -1 -16,1 0,088 -1,29 1,469
17 0,78 -10,9 -16,5 -0,07 -1,28 1,51
18 1,93 -10,8 -16,6 -0,18 -1,27 1,533
19 3,02 -10,8 -16,8 -0,28 -1,27 1,552
20 3,89 -10,8 -16,9 -0,36 -1,27 1,566
21 455 -10,8 -16,8 -0,42 -1,27 1,555
22 4,92 -10,8 -16,5 -0,46 -1,26 1,532
23 4,86 -10,7 -16,1 -0,45 -1,26 1,503

dimensions it can be identified by its components on X, Y, Z
axes, that is: gx, qy, gqz.
A vectorial product can be expressed through the com-

1

ponents of the factors, as follows: | c=zaAb|.

cx = aybz - azby cy = azbx - axbz

cz = axby - aybx

which in our case becomes:

gx = bky - kz -bkz - Ky |; | qy =bkz - kx -bkx - kz |;

gz = bkx - ky - bky - kx

Q =V gx+qy?+qz?

so moment (q) of the load is:

Directional cosines of moment of M
calculation

Intridimesional space, direction of a vectoris individuali-
zed by the angles that the vector makes with the three
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=i
Il
j=

=g

j= 1

Fig. 7 - Graphic representation of vectorial product.

Fig. 8 - Graphig representation of M and Q.

Cartesian axis; cosines of these angles are said directional
cosines of the vector.

P = vertex of the vector;

m, n, p = co-ordinates of P, proportional to directional
cosines, and that is:

m = acosa, N = acosP, p = acosy|; where a, e y are the

angles that the vector individualizes with X, Y, Z axes and a
is the modulus of the vector:

a =/\f m2+n2+ p?

In our case, the directional cosines of moment of K are:

px = qx/q, py =qy/q, pz = qz/q

Directional cosines of M force calculation

Here we recall some principles of vectorial geometry:
1) The vectorial product between vector a and vector b

is vector c, forming with them a dextrorse tern ,

/c/=/a/l-b/-sen® |,

*b ving as a modulus: where ©

is the angle, not wider than 180", formed by a and b.

The vectorial product is a vector presenting direction
orthogonal to the phase where we find vectors a and b, and
verso observer standing in its direction, can see a, belonging
to © angle wheeling counter clockwise in order to superim-
pose itself to b (Fig.7).

2) We name versor (v) of avector (V) avector having the
same direction and versor of V, as the unitary modulus.

Directional cosines are, practically, the componentes of
its versor.

With such preliminary statements, we analyse our pecu-
liar case (Fig. 8).

For definition M and its projection on OYZ plane are
complanar, so are bM and its projection on OYZ (bMp) plane
(Fig. 9).

As bm orthogonal to M as they belong also to the same
plane, bmp is orthogonal to M. Furthermore, also Q is
orthogonal to M, and at the same time placed on the same
plane as bm so, Q lies on the same plane as bm and bmp
(Fig.10). B

This means that the vectorial product of versor of Q by
bmp is a vector having the same direction of M, and its
directional cosines clash with directional cosines of M (Fig.10).

The components of a vectorial product can be calculated
beginning with the components of the two vectors, as fol-

lows:| c=aAb

cx = aybz - azby cy = azbx - axbz

cz = axby - aybx
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Fig. 9 - Graphic representation of M and Q.
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Fig. 10 - Graphic representation of M and Q.
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Fig. 11 - Graphic representation of the angle formed by bmp and coor-
dinates axes.

The components of versor of Q are: PX, py, pz.

The components of versor of bmp are the cosines of
the angles bmp forms with co-ordinates axes (Fig.11), that
is:

- for X axis: cos 0" = 0

- for Y axis: cos o

- for Z axis: cos 90" +a= sena.

Applying the above mentioned formula, we calculate the
components of a vector presenting direction equal to M:

mx=-py-sin{arad)-pz-cos{arad)| ;

l
my=px-sin(arad) | ;

mz=px-cos(arad)

The modulus of such vector is:
mt = "\ mx2+my2+my2|

And respective directional cosines:

mmx = mx/mt : ; lmmy = my/mt | ;

mmz =mz/mt | ;

of M.

these are in fact, directional cosines

M lever arm real length calculation

We analyze the right-angled triangle AOC, where a is
the point of intersection of M direction and Y axis, O is the
centre of the head of femur and OC corresponds to bM, that
is, tothe projection of abductor force lever arm on OYZ plane
(Fig.12).

OA side: named fmctf, is: | fmctf=bm/TANarad.

We analyze a second right-angled triangle, AOD where
OD cathetus, is M (bmc) lever arm (Fig.12).

It appears that: \bme=fmctf- TAN(ACOS(mmz))

s

where ACOS(mmz) is the angle formed by M and Z axis;
The angle of elevation of muscular force, considering the
three co-ordinates axes, is:

aifmx:ACOS(mmx)-180/:| ;
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\\o
|
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Fig. 12 - Graphic representation of bm (OD) .

aifmy=ACOS(mmy)-180/r

aifmz=ACOS(mmz)-180/n

M and its component calculation

As the system is, by assumption, balanced, the moment
of the load and that of muscular force are equivalent.

Therefore:

ebductor force I\_/I named fmuscinthe programme is therefore:

M=Q/bme | ; and each respective component:

fmuscx=fmusc-mmx

; | fmuscy=fmuscmmy | ;

fmuscz=fmusc-mmz

Resultant load R and its components
calculation

Total load exerted on the head of femur, R (which inthe
programme is named risult, is the vectorial addition of K and
M.

R components are, therefore, represented by the ad-
dition of K and M components, according to the co-ordinate
axes.

So: | rx = kx + fmuscx

; ' ry = ky + fmuscyw;

rz = kz + fmuscz| ;

risult = A / rx2+ry2+rx2J

Also R projection on OYZ plane has been calculated
(risoyz):

\.risoyz: \I ry2+rz?

R and risoyz (rtioris): (rtioris = 100 - (risoyz/risult) - 100)

as the percentvariation between

A substantial difference between R and its projection on
OYZ plan does not exist, as per cent relative variation is
about 1%.
So, the two forces can be assimilated in not particularly
complex ‘calculations.

Directional cosines calculation

A vector directional cosine, according to one of co-
ordinate axes is the ratio between the components modulus
of the vector itself. Thus:

Crx = rx/risﬂ iloery = ry/risuItJ ;

crz = rz/risult J .

Knowing directional cosines itis possible to calculate the
angles of elevation of R, with reference to the three Cartesian
axes:

gradorx = ACOS(crx) - 180/ﬂ ,

gradory = ACOS(cry) - 180/x | ,

gradorz = ACOS(crz) - 180/n

The angle of the elevation of R projection on OYZ plane
(risoyz), with reference to (gradoyz) is:

gradoyz = ACOS(rz/risoyz) - 180/n

This angle is about 16°, according to Pawels.

Every calculation has been applied to each phase of right
single-support period of gait, according to Braune and Fi-
scher.
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IMPUT DATA

dmr=—-> 10 reference object real dimensions in cm

dma=——-> 10,4 reference object apparent dimensions in cm

dsr=——> 8 reference distance from film in cm

dmx=——> 15 minimum distance object/film

dmn=——- 5 maximum distance object film

input rectific.

cxpl=——> 14,4 13707,6923 SIAS abscissa in cm

cypl=——> 16,22 15440,1923 SIAS ordinate in cm

CXp=—-—> 9,89 9414,51923 cotyloid cilium abscissa

cype=——-> 9,02 8586,34615 cotyloid cilium ordinate in cm

cxp13=—-> 13,44 12793,8462 greater trochanter apex abscissa in cm

cyp13=——> 7 6663,46154 greater trochanter apex ordinate in cm

cxp19 (cc)—> 10,13 9642,98077 abscissa head of femur side limit

cyp19 (gg)--> 6.8 6473.07692 ordinate head of femur side limit

cxp20 (aa)--> 8,4 7996,15385 abscissa head of femur medial limit

cyp20 (dd)--> 52 4950 ordinate head of femur medial limit

cxp21 (bb)--> 7.2 6853,84615 every point of femur profile abscissa in cm

cyp21 (tt)--> 8 7615,38462 every point of femur profile ordinate in cm

weight=—> 70 subject’s body weight in kg

ca= > 0,08 friction «coefficient»

ff= > 0,07982999 ! friction angle in radians

4,57392126 | friction angle in degrees
2z= > 0 rectification factor avoiding errors of division for 0
gi= > 9,80665 m/sec”2 acceleration of gravity
OUTPUT NORMAL HIP
FASES load fmusc result bme bk aifmz gradorz

12 86,684478 166,011212 249,379941 4,99660748 18,4689433 23,2746958 16,6224749
13 80,4306331 152,657571 230,42751 4,90347361 18,3315902 22,8859181 16,649251
14 68,8964599 126,715971 193,570026 5,01215011 18,1993177 23,3393577 17,8810384
15 52,8039452 105,595851 156,761852 4,70844825 18,2364561 22,0645691 16,6746076
16 37,1286586 77,2146761 113,18571 453188555 18,5049016 21,3126421 15,7995139
17 27,7856354 59,4181871 86,2710625 4,47274848 18,7347559 21,059049 15,501257
18 33,3042253 74,3784347 106,302454 4,50743096 18,8491489 21,2078808 15,1669035
19 42,4625045 94,0732666 134,725004 4,61066738 19,0872954 21,6491196 15,4249527
20 53,7812782 113,490003 165,243317 4,7329967 19,3116707 22,1684898 16,0499313
21 66,0638268 133,175481 197,088254 4,83798438 19,3804791 22,6111978 16,6967937
22 69,5048551 130,980584 198,76868 4,88259622 19,1896207 22,7984597 17,3513778
23 58,9038316 97,153679 155,371209 4,80439029 18,8515775 22,4698463 18,3311336

load = total load in kg

bme = real lever arm of muscular force in cm

aifmz = angle of elevation of muscular force with reference to Z axis

fmusc = muscular force

result = resultant force in kg

gradorz = angle of elevation of the resultant, with reference to Z axis
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CONCLUSION

The present study focuses on normal hip.

All formulas described above have been elaborated by
Excel and, in synthesis, the output from the computer,
numerically expressed, is represented for each single phase
pf pace, by:

a) K force, its components and respective angles of
elevation.

b) M force, its components and respective angles of
elevation.

¢) R force, its components and respective angles of
elevation.

d) M lever arm.

e) Per cent variation between partial weight of (P) body
and total load (K) (see enclosure 1 computer output synthe-
sis).

Particular relevance has been attributed to the determi-
nation of the total load exerted on normal hip in gait, as this
is considered to be an element of some importance in the
evaluation of hip joint geometrical and functional situation.
Also the data collected through the use of this method have
pointed out that the main stress on hip joint is exerted during
the monopodalic phase in gait.

This is gradually reduced, down to its minimum, during

the phase of intermediate oscillation.

Thenitrises again during controlateral limb thrust phase
according to what has been described in scientific literature.

The advantage of this procedure is that it is possible to
apply these calculations to any subject, simply and without
the support of asophisticated apparatus and of aspecialized
staff.

In fact, after the input of a few requested data for the
computer, all calculations are made automatically, without
the intervention of the operator.

In clinical practice this programme can turn out to be
useful in the individuation of still asymptomatic hypersolicita-
tion-situations, making it possible to elaborate a therapeutic
plan, studied in order to avoid such over loads evident in
arthritis, and in order to limit possible damage.

Wejudge, however, that, apart from this clinical applica-
tion, our procedure can be useful as a reference basis for
analogous studies on pathological and prosthesized hip,
studies already under discussion in our department.
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