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We address the problem of complementing higher-order patterns without repetitions of existential
variables. Differently from the first-order case, the complement of a pattern cannot, in general, be
described by a pattern, or even by a finite set of patterns. We therefore generalize the simply-typed
λ-calculus to include an internal notion of strict function so that we can directly express that a
term must depend on a given variable. We show that, in this more expressive calculus, finite sets of
patterns without repeated variables are closed under complement and intersection. Our principal
application is the transformational approach to negation in higher-order logic programs.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and
Features; D.1.6 [Programming Techniques]: Logic Programming; F.4.1 [Mathematical Logic
and Formal Language]: Mathematical Logic—Lambda calculus and related systems
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1. INTRODUCTION

In most functional and logic programming languages the notion of a pattern, to-
gether with the requisite algorithms for matching or unification, play an impor-
tant role in the operational semantics. Besides unification, other problems such
as generalization or complement also arise frequently. In this article we are con-
cerned with the problem of pattern complement in a setting where patterns may
contain binding operators, so-called higher-order patterns [Miller 1991; Nipkow
1991]. Higher-order patterns have found applications in logic programming
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[Miller 1991; Pfenning 1991a], logical frameworks [Schürmann et al. 2001],
term rewriting [Nipkow 1993], and functional logic programming [Hanus and
Prehofer 1996]. Higher-order patterns inherit many pleasant properties from
the first-order case. In particular, most general unifiers [Miller 1991] and least
general generalizations [Pfenning 1991b] exist, even for complex type theories.

Unfortunately, the complement operation does not generalize as smoothly.
Lugiez [1995] has studied the more general problem of higher-order disunifi-
cation and had to go outside the language of patterns and terms to describe
complex constraints on sets of solutions. We can isolate one basic difficulty: a
pattern such as λx. E x for an existential variable E matches any term of ap-
propriate type, while λx. E matches precisely those terms λx. M where M does
not depend on x. The complement then consists of all terms λx. M such that M
does depend on x. However, this set cannot be described by a pattern, or even
a finite set of patterns.

This formulation of the problem suggests that we should consider a λ-calculus
with an internal notion of strictness so that we can directly express that a term
must depend on a given variable. For reasons of symmetry and elegance we
also add the dual concept of invariance expressing that a given term does not
depend on a given variable. As in the first-order case, it is useful to single out
the case of linear patterns, namely those where no existential variable occurs
more than once.1 We further limit attention to simple patterns, that is, those
where constructors must be strict in their arguments—a condition naturally
satisfied in our intended application domains of (strict) functional and logic
programming. Simple linear patterns in our λ-calculus of strict and invariant
function spaces then have the following properties:

(1) The complement of a pattern is a finite set of patterns.
(2) Unification of two patterns is decidable and finitary.

Consequently, finite sets of simple linear patterns in the strict λ-calculus are
closed under complement and unification. If we think of finite sets of linear
patterns as representing the set of all their ground instances, then they form a
boolean algebra under set-theoretic union, intersection (implemented via uni-
fication) and the complement operation.

The article is organized as follows: Section 2 briefly reviews related work
and introduces some preliminary definitions. In Section 3 we introduce a strict
λ-calculus and prove some basic properties culminating in the proof of the ex-
istence of canonical forms in Section 4. Section 5 introduces simple terms, fol-
lowed by the algorithm for complementation in Section 6. In Section 7 we give
a corresponding unification algorithm. Section 8 observes how the set of those
patterns can be arranged in a boolean algebra. We conclude in Section 9 with
some applications and speculations on future research.

1This notion of linearity should not be confused with the eponymous concept in linear logic and
λ-calculus.
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2. PRELIMINARIES AND RELATED WORK

A pattern t with free variables can be seen as a representation of the set of
its ground instances, denoted by ‖t‖. According to this interpretation, the com-
plement of t is the set of ground terms that are not instances of t, that is, the
terms are in the set-theoretic complement of ‖t‖. It is natural to generalize this
to finite sets of terms, where ‖t1, . . . , tn‖ = ‖t1‖ ∪ · · · ∪ ‖tn‖. If we take this one
step further we obtain the important problem of relative complement; this cor-
responds to computing a suitable representation of all the ground instances of
a given (finite) set of terms that are not instances of another given one, written
as ‖t1, . . . , tn‖ − ‖u1, . . . , um‖.

Complement problems have a number of applications in theoretical com-
puter science (see Comon [1991] for a list of references). For example, they are
used in functional programming to produce unambiguous function definitions
by patterns and to improve their compilation. In rewriting systems they are
used to check whether an algebraic specification is sufficiently complete. They
can also be employed to analyze communicating processes expressed by infinite
transition systems. Other applications lie in the areas of machine learning and
inductive theorem proving. In logic programming, Kunen [1987] used term com-
plement to represent infinite sets of answers to negative queries. Our main mo-
tivation has been the explicit synthesis of the negation of higher-order logic pro-
grams [Momigliano 2000]; indeed, term complement is a necessary component
in any algorithm to synthesize the negation of a given program. This synthesis
includes two basic operations: negation to compute the complements of heads
of clauses in the definition of a predicate, and intersection to combine results of
negating individual clause heads. A simple example is discussed in Section 9.

Lassez and Marriot [1987] proposed the seminal uncover algorithm for com-
puting first-order relative complements and introduced the now familiar re-
striction to linear terms. We quote the definition of the “Not” algorithm for the
(singleton) complement problem given in Barbuti et al. [1990] which we gen-
eralize in Definition 6.1. Given a finite signature 6 and a linear term t they
define:

Not6(x) = ∅
Not6( f (t1, . . . , tn)) = {g (x1, . . . , xm) | g ∈ 6 and g 6= f }

∪ { f (z1, . . . , zi−1, s, zi+1, . . . , zn) | s ∈ Not6(ti), 1 ≤ i ≤ n}
The relative complement problem is then solved by composing the above comple-
ment operation with term intersection implemented via first-order unification.

An alternative solution to the relative complement problem is disunifica-
tion (see Comon [1991] for a survey and Lugiez [1995] for an extension to the
simply-typed λ-calculus). Here, operations on sets of terms are translated into
conjunctions or disjunctions of equations and dis-equations under explicit quan-
tification. Non-deterministic application of a few dozen rules eventually turns
a given problem into a solved form. Though a reduction to a significant subset
of the disunification rules is likely to be attainable for complement problems,
control is a major problem. We argue that using disunification for this purpose
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is unnecessarily general. Moreover, the higher-order case results in additional
complications, such as restrictions on the occurrences of bound variables, which
fall outside an otherwise clean framework. As we show in this article, this does
not necessarily have to be the case. We believe that our techniques can also
be applied to analyze disunification, although we have not investigated this
possibility at present.

We now introduce some preliminary definitions and examples that guide
our development. We begin with the simply-typed λ-calculus. We write a
for atomic types, c for term-level constants, and x for term-level variables.
Note that variables x should be seen as parameters and not subject to
instantiation.

Simple Types A ::= a | A1 → A2
Terms M ::= c | x | λx:A. M | M1 M2

Signatures 6 ::= · | 6, a:type | 6, c:A
Contexts 0 ::= · | 0, x:A

We require that signatures and contexts declare each constant or variable at
most once. Furthermore, we identify contexts that differ only in their order and
promote ‘,’ to denote disjoint set union. As usual we identify terms that differ
only in the names of their bound variables. We restrict attention to well-typed
terms, omitting the standard typing rules. We write the main typing judgment
as 0 ` M : A, assuming a fixed signature 6.

In applications such as logic programming or logical frameworks, λ-
abstraction is used to represent binding operators in some object language.
In such a situation the most appropriate notion of normal form is the long βη-
normal form (which we call canonical form), since canonical forms are almost
always the terms in bijective correspondence with the objects we are trying to
represent. Every well-typed term in the simply-typed λ-calculus has a unique
canonical form—a property that persists in the strict λ-calculus introduced in
Section 3.

We denote existential variables of type A (also called logical variables, meta-
variables, or pattern variables) by EA, although we mostly omit the type A when
it is clear from the context. We think of existential variables as syntactically
distinct from bound variables or free variables declared in a context. Instantia-
tion of existential variables is assumed to be capture-avoiding, in analogy with
β-reduction and their use in higher-order logic programming. A term possibly
containing some existential variables is called a pattern if each occurrence of
an existential variable appears in a subterm of the form E x1 . . . xn, where the
arguments xi are distinct occurrences of free or bound variables (but not exis-
tential variables). We call a term ground if it contains no existential variables.
Note that it may still contain parameters.

Semantically, an existential variable EA stands for all canonical terms M of
type A in the empty context with respect to a given signature. We extend this
to arbitrary well-typed patterns in the usual way, and write 0 ` M ∈ ‖N‖ : A
when a term M is an instance of a pattern N at type A containing only the
parameters in 0 and no existential variables. In this setting, unification of two
patterns without shared existential variables corresponds to an intersection of
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the set of terms they denote [Miller 1991; Pfenning 1991b]. This set is always
either empty, or can be expressed again as the set of instances of a single pattern.
That is, patterns admit most general unifiers.

The class of higher-order patterns inherits many properties from first-order
terms. However, as we will see, it is not closed under complement, but a special
subclass is. We call a canonical pattern 0 ` M : A fully applied if each occur-
rence of an existential variable E under binders y1, . . . , ym is applied to some
permutation of the variables in 0 and y1, . . . , ym. Fully applied patterns play
an important role in functional logic programming and rewriting [Hanus and
Prehofer 1996], because any fully applied existential variable 0 ` E x1 . . . xn : a
denotes all canonical terms of type a with parameters from 0. It is this property
that makes complementation particularly simple.

Example 2.1. Consider the untyped λ-calculus2:

e ::= x | 3x. e | e1 @ e2

We encode these expressions using the usual technique of higher-order abstract
syntax as canonical forms over the following signature.

6 = exp : type, lam : (exp→ exp)→ exp, app : exp→ exp→ exp

The representation function p q is defined as follows:

pxq = x : exp
p3x. eq = lam (λx:exp. peq)
pe1 @ e2q = app pe1q pe2q

The representation of an object-language β-redex then has the form

p(3x. e) @ f q = app (lam (λx:exp. peq)) p f q,
where peq may have free occurrences of x. When written as a pattern with
existential variables Eexp→exp and Fexp this is expressed as

app (lam (λx:exp. E x) F ).

Note that in the empty context this pattern is fully applied. Its complement
with respect to the empty context contains every top-level abstraction plus
every application where the first argument is not an abstraction.

Not(app (lam (λx:exp. E x) F )) = {lam (λx:exp. H x), app (app H1 H2) H3}
Here H, H1, H2, H3 are fresh existential variables of appropriate type, namely
H : exp→ exp and Hi : exp.

For patterns that are not fully applied, the complement cannot be expressed
as a finite set of patterns, as the following example illustrates.

Example 2.2. The encoding of an η-redex takes the form:

p3x. (e @ x)q = lam (λx:exp. app peq x)

2We use 3 and @ to avoid confusion with λ and application in the language of patterns.
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where peq may contain no free occurrence of x. The side condition is expressed
in a pattern by introducing an existential variable Eexp, which does not depend
on x, that is

lam (λx:exp. app E x).

Hence, its complement with respect to the empty context should contain, among
others, also all terms

lam (λx:exp. app (F x) (H x))

where F : exp→ exp must depend on its argument x while H : exp→ exp may
or may not depend on x.

As the example above shows, the complement of patterns that are not fully
applied cannot be represented as a finite set of patterns. Indeed, there is no
finite set of patterns that has as its ground instances exactly those terms M that
depend on a given variable x. This failure of closure under complementation
cannot be avoided similarly to the way in which left-linearization bypasses the
limitation to linear patterns and it needs to be addressed directly.

One approach is taken by Lugiez [1995]: he modifies the language of terms
to permit occurrence constraints. For example λxyz. M {1, 3} would denote a
function that depends on its first and third argument. The technical handling
of those objects then becomes awkward as they require specialized rules that
are foreign to the issues of complementation.

Since our underlying λ-calculus is typed, we use typing to express that a
function must depend on a variable x. Following standard terminology, we call
such terms strict in x and the corresponding function λx:A. M a strict func-
tion. In the next section we develop such a λ-calculus and then generalize the
complement algorithm to work on such terms.

3. STRICT TYPES

As we have seen in the preceding section, the complement of a partially applied
pattern in the simply-typed λ-calculus cannot be expressed in a finitary man-
ner within the same calculus. We thus generalize our language to include strict
functions of type A

1→ B (which are guaranteed to depend on their argument)
and invariant functions of type A

0→ B (which are guaranteed not to depend
on their argument). Of course, any concretely given function either will or will
not depend on its argument, but in the presence of higher-order functions and
existential variables we still need the ability to remain uncommitted. Therefore
our calculus also contains the full function space A

u→ B. We first concentrate
on a version without existential variables. A similar calculus has been indepen-
dently investigated by Wright [1992] and Baker-Finch [1993]; for a comparison
see the end of Section 4.

Labels k ::= 1 | 0 | u
Types A ::= a | A1

k→ A2

Terms M ::= c | x | λxk :A. M | M1 M k
2

ACM Transactions on Computational Logic, Vol. 4, No. 4, October 2003.



Higher Order Pattern Complement • 499

c:A ∈ 6
Con

0;Ä; · ` c : A

Idu

(0, x:A);Ä; · ` x : A no Id0 rule
Id1

0;Ä; x:A ` x : A

(0, x:A);Ä;1 ` M : B
u→ I

0;Ä;1 ` λxu:A. M : A
u→ B

0; (Ä, x:A);1 ` M : B
0→ I

0;Ä;1 ` λx0:A. M : A
0→ B

0;Ä; (1, x:A) ` M : B
1→ I

0;Ä;1 ` λx1:A. M : A
1→ B

0;Ä;1 ` M : A
u→ B (0,1);Ä; · ` N : A

u→ E
0;Ä;1 ` M Nu : B

0;Ä;1 ` M : A
0→ B (0,Ä,1); ·; · ` N : A

0→ E
0;Ä;1 ` M N0 : B

(0,1N );Ä;1M ` M : A
1→ B (0,1M );Ä;1N ` N : A

1→ E
0;Ä; (1M ,1N ) ` M N1 : B

Fig. 1. Typing rules for 0;Ä;1 ` M : A.

Note that there are three different forms of abstractions and applications,
where the latter are distinguished by different labels on the argument. It is not
really necessary to distinguish three forms of application syntactically, since the
type of a function determines the status of its argument, but it is convenient
for our purposes. A label u is called undetermined, otherwise it is determined
and denoted by d .

We use a formulation of the typing judgment

0;Ä;1 ` M : A

with three zones: 0 containing unrestricted hypotheses,Ä containing the irrele-
vant hypotheses, and 1 containing the strict hypotheses. We implicitly assume
a fixed signature6, which would otherwise clutter the presentation. Recall that
01, 02 is the union of two contexts that do not declare any common variables.
Recall also that we consider contexts as sets, that is, exchange is left implicit.
The typing rules are given in Figure 1.

Our system is biased towards a bottom-up reading of the rules in that vari-
ables never disappear—they are always propagated from the conclusion to the
premises, although their status might be changed.

Let us go through the typing rules in detail. The requirement for the strict
context 1 to be empty in the Idu and Id1 rules expresses that strict variables
must be used, while undetermined variables in 0 or irrelevant variables in
Ä can be ignored. Note that there is no rule for irrelevant variables, which
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Id1

y ; ·; x ` x : A
1→ A

1→ B
Id1

x; ·; y ` y : A
1→E

·; ·; (x, y) ` x y1 : A
1→ B

Idu

(x, y); ·; · ` y : A
1→E

·; ·; (x:A 1→ A
1→ B, y :A) ` (x y1) y1 : B

Fig. 2. First derivation of ·; ·; (x:A 1→ A
1→ B, y :A) ` (x y1) y1 : B.

expresses that they cannot be used. The introduction rules for undetermined,
invariant, and strict functions simply add a variable to the appropriate context
and check the body of the function. The difficult rules are the three elimination
rules. First, the unrestricted context 0 is always propagated to both premises.
This reflects that we place no restriction on the use of these variables.

Next we consider the strict context 1: recall that this contains the variables
that should occur strictly in a term. An undetermined function M : A

u→ B may
or may not use its argument. An occurrence of a variable in the argument to such
a function can therefore not be guaranteed to be used. Hence we must require in
the rule u→ E for an application M Nu that all variables in1 occur strictly in M .
This ensures at least one strict occurrence in M and no further restrictions on
occurrences of strict variables in the argument are necessary. This is reflected
in the rule by adding1 to the unrestricted context while checking the argument
N . The treatment of the strict variables in the vacuous application M N0 is
similar.

In the case of a strict application M N 1 each strict variable should occur
strictly in either M or N . We therefore split the context into 1M and 1N guar-
anteeing that each variable has at least one strict occurrence in M or N , re-
spectively. However, strict variables can occur more than once, so variables from
1N can be used freely in M , and variables from 1M can occur freely in N . As
before, we reflect this by adding these variables to the unrestricted context.

Finally we consider the irrelevant context Ä. Variables declared in Ä can-
not be used except in the argument to an invariant function (which is guar-
anteed to ignore its argument). We therefore add the irrelevant context Ä to
the unrestricted context when checking the argument of a vacuous application
M N0.

We now illustrate how the strict application rule non-deterministically splits
contexts. Consider the typing problem ·; ·; (x:A 1→ A

1→ B, y :A) ` (x y1) y1 :
B, related to the contraction principle. There are four ways to split the strict
context for the outer application.

1M = x:A 1→ A
1→ B, y :A 1N = ·

1M = x:A 1→ A
1→ B 1N = y :A

1M = y :A 1N = x:A 1→ A
1→ B

1M = · 1N = x:A 1→ A
1→ B, y :A

Only the first two yield a valid derivation as depicted in Figures 2 and 3. Here
we have dropped the types in the context.

Our strict λ-calculus satisfies the expected properties, culminating in the ex-
istence of canonical forms which is critical for the intended applications. First
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Id1

y ; ·; x ` x : A
1→ A

1→ B
Idu

(x, y); ·; · ` y : A
1→E

y ; ·; x ` x y1 : A
1→ B

Id1

x; ·; y ` y : A
1→E

·; ·; (x:A 1→ A
1→ B, y :A) ` (x y1) y1 : B

Fig. 3. Second derivation of ·; ·; (x:A 1→ A
1→ B, y :A) ` (x y1) y1 : B.

we remark that types are unique, although typing derivations may not be as
shown by the examples in Figures 2 and 3. Furthermore, even if two contexts
declare the same variables, their status may not be uniquely determined. Re-
turning to the example above, the term (x y1) y1 is well-typed in contexts
·; ·; (x:A 1→ A

1→ B, y :A) and (x:A 1→ A
1→ B, y :A); ·; ·.

THEOREM 3.1 (UNIQUENESS OF TYPING). Assume (0,Ä,1) = (0′,Ä′,1′). If
0;Ä;1 ` M : A and 0′;Ä′;1′ ` M : A′, then A = A′.

PROOF. By induction on the structure of the given derivation, exploiting
uniqueness for declarations of variables and constants.

We start addressing the structural properties of the contexts. Exchange is
directly built into the formulation and will not be repeated. Note that our calcu-
lus is formulated entirely without structural rules, which now have to be shown
to be admissible.

LEMMA 3.2 (WEAKENING)

(1) (Weakeningu) If 0;Ä;1 ` M : A, then (0, x:C);Ä;1 ` M : A.
(2) (Weakening0) If 0;Ä;1 ` M : A, then 0; (Ä, x:C);1 ` M : A.

PROOF. By induction on the structure of the given derivations.

The following properties allow us to lose track of strict and vacuous occur-
rences, if we are so inclined.

LEMMA 3.3 (LOOSENING)

(1) (Loosening0) If 0; (Ä, x:C);1 ` M : A, then (0, x:C);Ä;1 ` M : A.
(2) (Loosening1) If 0;Ä; (1, x:C) ` M : A, then (0, x:C);Ä;1 ` M : A.

PROOF. By induction on the structure of the given derivations.

Next we come to the critical substitution properties. They verify the intended
meaning of the hypothetical judgments and directly entail subject reduction
(Theorem 3.5). To be consistent with the design of our typing rules, we formu-
late the substitution properties so that each of the given derivations depends
on the same variables, although their status might be different (unrestricted,
irrelevant, or strict). Note that this is possible only because we have included
irrelevant hypotheses in our judgment.
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LEMMA 3.4 (SUBSTITUTION)

(1) (Substitutionu) If (0, x:A);Ä;1 ` M : C and (0,1);Ä; · ` N : A, then
0;Ä;1 ` [N/x]M : C.

(2) (Substitution0) If 0; (Ä, x:A);1 ` M : C and (0,1,Ä); ·; · ` N : A, then
0;Ä;1 ` [N/x]M : C.

(3) (Substitution1) If (0,1N );Ä; (1M , x:A) ` M : C and (0,1M );Ä;1N ` N : A,
then 0;Ä; (1M ,1N ) ` [N/x]M : C.

PROOF. We proceed by mutual induction on the structure of the derivation
D of M : C, using weakening and loosening as needed to match the form of the
induction hypothesis. Each case is otherwise entirely straightforward. We show
only one case in the proof of strict substitution (part 3). Here and in subsequent
proofs we sometimes write D :: J if D is a derivation of judgment J instead of
the two-dimensional notation D

J .

Case. D ends in 1→E. There are two sub-cases, depending on whether the
declaration x:A is strict in the left premise or right premise. We show the former.

D1

(0,1N ,1Q );Ä; (1P , x:A) ` P : B
1→ C

D2
(0,1N ,1P , x:A);Ä;1Q ` Q : B

1→ E
(0,1N );Ä; (1P , x:A,1Q ) ` P Q1 : C

D1 :: (0,1N ,1Q );Ä; (1P , x:A) ` P : B
1→ C Subderivation

E :: (0,1P ,1Q );Ä;1N ` N : A Assumption
(0,1Q );Ä; (1P ,1N ) ` [N/x]P : B

1→ C By i.h. (3) on D1, E
(0,1Q ,1N );Ä;1P ` [N/x]P : B

1→ C By Loosening1 1N
D2 :: (0,1N ,1P , x:A);Ä;1Q ` Q : B Subderivation
E ′ :: (0,1P ,1Q ,1N );Ä; · ` N : A By Loosening1 1N in E
(0,1N ,1P );Ä;1Q ` [N/x]Q : B By i.h. (1) on D2, E ′
0;Ä; (1P ,1Q ,1N ) ` [N/x](P Q1) : C By rule 1→E

Weakening, loosening, and substitution directly imply the contraction prop-
erty for all three kinds of hypotheses. Since we do not use contraction in this
paper, we elide the formal statement and proof of this property.

The notions of reduction and expansion derive directly from the ordinary β
and η rules.

(λxk :A. M ) Nk β−→ [N/x]M

(M : A
k→ B)

η̄−→ λxk :A. M xk

An application of η-expansion rules requires the term M to have the indi-
cated type. The subject reduction and expansion theorems are an immediate
consequence of the structural and substitution properties.

THEOREM 3.5 (SUBJECT REDUCTION). If 0;Ä;1 ` M : A and M
β−→ M ′ then

0;Ä;1 ` M ′ : A.
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PROOF. We proceed by cases and inversion followed by an appeal to the
substitution property. We show only one case. Let M = (λx1:B. P ) Q1 : A and
M ′ = [Q/x]P .

0;Ä;1 ` (λx1:B. P ) Q1 : A Assumption
1 = (1P ,1Q ), E :: (0,1P );Ä;1Q ` Q : B, and
(0,1Q );Ä;1P ` λx1:B. P : B

1→ A By inversion
D :: (0,1Q );Ä; (1P , x:B) ` P : A By further inversion
0;Ä; (1P ,1Q ) ` [Q/x]P : A By substitution1 on D, E

Subject reduction continues to hold if we allow the reduction of an arbitrary
subterm occurrence. We omit the obvious statement and formal proof of this fact.

THEOREM 3.6 (SUBJECT EXPANSION). If 0;Ä;1 ` (M : A
k→ B) and (M : A

k→
B)

η̄−→ M ′ then 0;Ä;1 ` M ′ : A
k→ B.

PROOF. Direct. We consider only the strict case (k = 1).

0;Ä;1 ` M : A
1→ B Assumption

(0, x:A);Ä;1 ` M : A
1→ B By weakeningu

(0,1);Ä; x:A ` x : A By rule Id1

0;Ä; (1, x:A) ` M x1 : B By rule 1→E
0;Ä;1 ` λx1:A. M x1 : A

1→ B By rule 1→ I

The following lemma establishes a sort of consistency property of the type
system, showing that a term M cannot be both strict and vacuous in a given
variable. This will be central in the proof of disjointness of pattern complemen-
tation (Lemma 6.4).

LEMMA 3.7 (EXCLUSIVITY). It is not the case that both 01;Ä1; (11, x:C) ` M :
A and 02; (Ä2, x:C);12 ` M : A.

PROOF. By induction on the structure of the derivation of 01;Ä1; (11, x:C) `
M : A, applying inversion on the derivation of 02; (Ä2, x:C);12 ` M : A in each
case.

4. THE CANONICAL FORM THEOREM

In this section we establish the existence of canonical forms for the strict λ-
calculus, that is, β-normal η-long forms, which is crucial for our intended ap-
plication. We prove this by Tait’s method of logical relations; we essentially
follow the account in Pfenning [1997], with a surprisingly small generalization
from simple to strict types, thanks to a simplified account of substitutions. The
canonical form theorem cannot be established easily by an interpretation into
the simply-typed λ-calculus because we have to account for both β-reductions
and η-expansions.

We start by presenting the inductive definition of canonical forms. It is real-
ized by the two mutually recursive judgments depicted in Figure 4:

0;Ä;1 ` M ↓ A M is atomic of type A.
0;Ä;1 ` M ⇑ A M is canonical of type A.
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c:A ∈ 6
cIdc

0;Ä; · ` c ↓ A

cIdu

(0, x:A);Ä; · ` x ↓ A no cId0 rule
cId1

0;Ä; x:A ` x ↓ A

0;Ä;1 ` M ↓ a
cAt

0;Ä;1 ` M ⇑ a

(0, x:A);Ä;1 ` M ⇑ B
c

u→ I
0;Ä;1 ` (λxu:A. M ) ⇑ A

u→ B

0;Ä; (1, x:A) ` M ⇑ B
c

1→ I
0;Ä;1 ` (λx1:A. M ) ⇑ A

1→ B

0; (Ä, x:A);1 ` M ⇑ B
c

0→ I
0;Ä;1 ` (λx0:A. M ) ⇑ A

0→ B

0;Ä;1 ` M ↓ A
u→ B (0,1);Ä; · ` N ⇑ A

c
u→ E

0;Ä;1 ` M Nu ↓ B

0;Ä;1 ` M ↓ A
0→ B (0,Ä,1); ·; · ` N ⇑ A

c
0→ E

0;Ä;1 ` M N0 ↓ B

(0,1N );Ä;1M ` M ↓ A
1→ B (0,1M );Ä;1N ` N ⇑ A

c
1→ E

0;Ä; (1M ,1N ) ` M N1 ↓ B

Fig. 4. Canonical forms: 0;Ä;1 ` M ⇑↓ A.

Informally, M is atomic (written M ↓ A for some A) if M consists of a variable
applied to a sequence of arguments, where each of the arguments is canonical
at appropriate type. A term M is canonical if M consists of a sequence of λ-
abstractions followed by an atomic term of atomic type. We shall abbreviate
judgments involving ⇑ and ↓ as ⇑↓.

LEMMA 4.1 (SOUNDNESS OF CANONICAL TERMS). If 0;Ä;1 ` M ⇑↓ A, then
0;Ä;1 ` M : A.

PROOF. By induction on the structure of the derivation of 0;Ä;1 ` M ⇑↓
A.

We describe an algorithm for conversion to canonical form in Figure 5. This
algorithm is presented as a deductive system that can be used to construct
a canonical form from an arbitrary well-typed term. Note that the algorithm
does not need to keep track of occurrence constraints—they will be satisfied
by construction (see Theorem 4.2). We write 9 for a single context of distinct
variable declarations whose status should be considered ambiguous since it is
unnecessary to know whether they are unrestricted, irrelevant, or strict.

9 ` M ↓ N : A M has atomic form N of type A.
9 ` M ⇑ N : A M has canonical form N at type A.
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c:A ∈ 6
tcIdc

9 ` c ↓ c : A

x:A ∈ 9
tcIdvar

9 ` x ↓ x : A

M
whr−→ M ′ 9 ` M ′ ⇑ M ′′ : a

tc
whr−→

9 ` M ⇑ M ′′ : a

9 ` M ↓ N : a
tcAtm

9 ` M ⇑ N : a

9, x:A ` M xk ⇑ N : B
tc

k→ I
9 ` M ⇑ (λxx :A. N ) : A

k→ B

9 ` M ↓ P : A
k→ B 9 ` N ⇑ Q : A

tc
k→ E

9 ` M Nk ↓ P Qk : B

Fig. 5. Conversion to canonical form: 9 ` M ⇑↓ N : A.

These utilize weak head reduction, which includes local reduction (β) and par-
tial congruence (ν):

βk

(λxk :A. M ) Nk whr−→ [N/x]M

M
whr−→ Q

νk

M Nk whr−→ Q Nk

Operationally, we assume that M is given and we construct an N such that
M

whr−→ N or fail. The judgments for conversion to canonical form can be inter-
preted as an algorithm in the following manner:

9 ` M ↓ N : A Given 9 and M construct N and A
9 ` M ⇑ N : A Given 9, M , and A construct N

The main theorem of this section states that if0;Ä;1 ` M : A and9 = (0,Ä,1)
then the two judgments above will always succeed to construct an N and A, or
N , respectively.

THEOREM 4.2 (CONVERSION YIELDS CANONICAL TERMS). If (0,Ä,1) ` M ⇑↓
N : A and 0;Ä;1 ` M : A, then 0;Ä;1 ` N ⇑↓ A.

PROOF. By induction on the structure of the derivation of (0,Ä,1) ` M ⇑↓
N : A and inversion on the given typing derivation in each case.

In the construction of logical relations we will need a notion of context ex-
tension, 9 ′ ≥ 9 (9 ′ extends 9 with zero or more declarations). It is clear that
conversion to canonical form is not affected by weakening. We omit the formal
statement of this property.

We can now introduce a unary Kripke-logical relation, in complete analogy
with the usual definition for the simply-typed λ-calculus. At base type we pos-
tulate the property we are trying to show, namely existence of canonical forms.
At higher type we reduce the property to lower types by quantifying over all
possible elimination forms.

Definition 4.3 (Valid Terms)

(1) 9 ` M ∈ [[a]] iff 9 ` M ⇑ N : a, for some N .

(2) 9 ` M ∈ [[A
k→ B]] iff for every 9 ′ ≥ 9 and every N , if 9 ′ ` N ∈ [[A]], then

9 ′ ` M Nk ∈ [[B]].

We say a term M is valid if 9 ` M ∈ [[A]] for appropriate 9 and A.
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First we show that all valid terms have canonical forms, and simultaneously,
that atomic terms are valid.

LEMMA 4.4 (VALID TERMS HAVE CANONICAL FORMS)

(1) If 9 ` M ∈ [[A]], then 9 ` M ⇑ N : A.
(2) If 9 ` M ↓ N : A, then 9 ` M ∈ [[A]].

PROOF. By induction on A.

Case. A = a. Immediate from the definition of [[a]].

Case. A = A1
k→ A2.

(1) 9 ` M ∈ [[A1
k→ A2]] Assumption

9, x:A1 ≥ 9 By definition of ≥
9, x:A1 ` x ↓ x : A1 By rule tcIdvar
9, x:A1 ` x ∈ [[A1]] By i.h. (2)
9, x:A1 ` M xk ∈ [[A2]] By definition of [[·]]
9, x:A1 ` M xk ⇑ N : A2 By i.h. (1)
9 ` M ⇑ λxk :A1. N : A1

k→ A2 By rule tc
k→ I

(2) 9 ` M ↓ M ′ : A1
k→ A2 Assumption

9 ′ ≥ 9 and 9 ′ ` N ∈ [[A1]] for arbitrary 9 ′ and N New assumption
9 ′ ` N ⇑ N ′ : A1 By i.h. (1)
9 ′ ` M ↓ M ′ : A1

k→ A2 By weakening
9 ′ ` M Nk ↓ M ′ N ′k : A2 By rule tc

k→E
9 ′ ` M Nk ∈ [[A2]] By i.h. (2)
9 ` M ∈ [[A1

k→ A2]] By definition of [[·]]
The second major part states that every well-typed term is valid. For this we

need closure of validity under head expansion.

LEMMA 4.5 (CLOSURE UNDER HEAD EXPANSION). If 9 ` M ′ ∈ [[A]] and M
whr−→

M ′, then 9 ` M ∈ [[A]].

PROOF. By induction on A:

Case. A = a. immediate by definition and rule tc
whr−→.

Case. A = A1
k→ A2.

9 ` M ′ ∈ [[A1
k→ A2]] Assumption

9 ′ ` N ∈ [[A1]] for arbitrary 9 ′ ≥ 9 and N New assumption
9 ′ ` M ′ Nk ∈ [[A2]] By definition of [[·]]
M Nk whr−→ M ′ Nk By rule ν
9 ′ ` M Nk ∈ [[A2]] By i.h. on A2

9 ` M ∈ [[A1
k→ A2]] By definition of [[·]]

Due to the need to β-reduce during conversion to canonical form, we need to
introduce substitutions. We will not require substitutions to be well-typed, but
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they have to be valid in the sense that all substitution terms should be valid.

Substitutions θ ::= ε | θ , M/x

For θ = θ ′, M/x, we say that x is defined in θ and we write θ (x) = M . We
require all variables defined in a substitution to be distinct: we use dom(θ ) for
the set of variables defined in θ . Furthermore, the co-domain of θ consists of
the variables occurring in the substituting terms.

Next, we define the application of a substitution θ to a term M , denoted
[θ ]M . We limit application of substitutions to objects whose free variables are
in the domain of θ .

[θ ]c = c
[θ ]x = θ (x)

[θ ](M Nk) = ([θ ]M ) ([θ ]N )k

[θ ](λxk :A. M ) = λxk :A. [θ , x/x]M

In the last case we assume that x does not already occur in the domain or
co-domain of θ . This can always be achieved by renaming of the bound variable.

We will also need to mediate between single substitutions stemming from
β-reduction and simultaneous substitutions. We define how to compose a single
substitution from a β-reduction with simultaneous substitutions, written as
[N/x]θ .

[N/x](ε) = ε

[N/x](θ , M/ y) = [N/x](θ ), ([N/x]M )/ y

Note that [N/x]([θ , x/x]M ) = [θ , N/x]M if x does not occur in the co-domain
of θ . For a context 9 = x1:A1, . . . , xn:An, we introduce the identity substitution
on 9 as id9 = x1/x1, . . . , xn/xn. Clearly, id9M = M if the free variables of M
are contained in 9.

We extend the notion of validity to substitutions as already indicated above:
a substitution θ is valid for context 9 if for every binding M/x such that x:A is
in 9 we have M is in [[A]].

Definition 4.6 (Valid Substitutions)

(1) 8 ` θ ∈ [[·]] iff θ = ε.
(2) 8 ` θ ∈ [[9 ′, x:A]] iff θ = θ ′, M/x such that 8 ` M ∈ [[A]] and 8 ` θ ′ ∈ [[9 ′]].

We remark that contexts are not ordered, hence, for 9 = (0,Ä,1) we will
identify, for example, [[9, x:A]] with [[(0, x:A,Ä,1)]]. Clearly, this view is legit-
imate in terms of the above definition, since validity of a substitution simply
reduces to validity of the terms in it. It is easy to see that validity, both for terms
and for substitutions, satisfies weakening. We omit the formal statement and
proof of this property.

The next lemma is critical. It generalizes the statement that well-typed terms
are valid by allowing for a valid substitution to be applied. This is necessary in
order to proceed with the proof in the case of any of the three λ-abstractions.
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LEMMA 4.7 (WELL-TYPED TERMS ARE VALID). If 0;Ä;1 ` M : A, then for every
9 such that 9 ` θ ∈ [[(0,Ä,1)]] we have 9 ` [θ ]M ∈ [[A]].

PROOF. By induction on the typing derivation D of 0;Ä;1 ` M : A.

Case

D = Idu

(0, x:A);Ä; · ` x : A

9 ` θ ∈ [[(0, x:A,Ä)]] Assumption
9 ` θ (x) ∈ [[A]] By definition of [[·]]
9 ` [θ ]x ∈ [[A]] By definition of substitution

Case. D ends in Id1. As in the previous case.

Case. D ends in Con. Immediate by Lemma 4.4(2) and definition of substi-
tution.

Case

D =
(0, x:A);Ä;1 ` M : B

u→ I
0;Ä;1 ` λxu:A. M : A

u→ B

(0, x:A);Ä;1 ` M : B Subderivation
9 ` θ ∈ [[(0,Ä,1)]] Assumption
9 ′ ` N ∈ [[A]] for arbitrary 9 ′ ≥ 9 and N New assumption
9 ′ ` (θ , N/x) ∈ [[(0, x:A,Ä,1)]] By definition of [[·]] and weakening
9 ′ ` [θ , N/x]M ∈ [[B]] By i.h.
9 ′ ` [N/x]([θ , x/x]M ) ∈ [[B]] By property of substitution
9 ′ ` (λxu:A. [θ , x/x]M )Nu ∈ [[B]] By Lemma 4.5
9 ′ ` ([θ ](λxu:A. M ))Nu ∈ [[B]] By definition of substitution
9 ` [θ ](λxu:A. M ) ∈ [[A

u→ B]] By definition of [[A
u→ B]]

Cases. D ends in 0→ I or 1→ I . Analogous to previous case.

Case

D = 0;Ä;1 ` M : A
u→ B (0,1);Ä; · ` N : A

u→ E
0;Ä;1 ` M Nu : B

9 ` θ ∈ [[(0,Ä,1)]] Assumption
0;Ä;1 ` M : A

u→ B Subderivation
9 ` [θ ]M ∈ [[A

u→ B]] By i.h.
(0,1);Ä; · ` N : A Subderivation
9 ` [θ ]N ∈ [[A]] By i.h.
9 ≥ 9 By definition of ≥
9 ` ([θ ]M )([θ ]N )u ∈ [[B]] By definition of [[·]]
9 ` [θ ](M N )u ∈ [[B]] By definition of substitution

Cases. D ends in 0→ E or 1→ E. Analogous to the previous case.

From this central lemma, the canonical form theorem follows by noting that
the identity substitution is valid.

ACM Transactions on Computational Logic, Vol. 4, No. 4, October 2003.



Higher Order Pattern Complement • 509

LEMMA 4.8 (VALIDITY OF IDENTITY). 9 ` id9 ∈ [[9]].

PROOF. By a straightforward induction on 9 using Lemma 4.4(2).

THEOREM 4.9 (CANONICAL FORMS). If 0;Ä;1 ` M : A, then there exists an N
such that (0,Ä,1) ` M ⇑ N : A and 0;Ä;1 ` N ⇑ A.

PROOF. Direct from prior lemmas.

0;Ä;1 ` M : A Assumption
(0,Ä,1) ` id(0,Ä,1) ∈ [[(0,Ä,1)]] By Lemma 4.8
(0,Ä,1) ` [id(0,Ä,1)]M ∈ [[A]] By Lemma 4.7
(0,Ä,1) ` M ∈ [[A]] By identity substitution
(0,Ä,1) ` M ⇑ N : A for some N By Lemma 4.4(1)
0;Ä;1 ` N ⇑ A By Theorem 4.2

We close this section with some remarks on related work on strictness.
Church’s original definition of the set 3I of (untyped) λ-terms [Church 1941]
has this clause for abstraction:

If M ∈ 3I and x ∈ FV(M ), then λx. M ∈ 3I .

Therefore, in this language there cannot be any vacuous abstractions. The com-
binatorial counterpart of this calculus excludes K and consists of I, W, B, C.
Those are the axioms of what Church called weak implicational logic [Church
1951]: identity, contraction, prefixing and permutation. This establishes the
link with an enterprise born from a very different origin, namely the relevance
logic project [Anderson and Belnap 1975], which emerged in fact in the early
sixties out of Anderson and Belnap’s dissatisfaction with the so-called “para-
doxes of implication,” be it material, intuitionistic, or strict (in the modal sense
of Lewis and Langford).

Following Girard’s and Belnap’s suggestion [Belnap 1993], we will not refer
to our calculus as relevant, but as strict logic, as the former may also satisfy
other principles such as distributivity of implication over conjunction.

On an unrelated front, starting with Mycroft’s seminal article [Mycroft 1980],
compile-time analysis of functional programs concentrated on strictness anal-
ysis in order to get the best out of call-by-value and call-by-need evaluation;
first in terms of abstract interpretation, later by using non-standard types
to represent these “intensional” properties of functions (see Jensen [1991]
for a comparison of these two techniques). However, earlier work such as
Tsung-Min and Mishra [1989] used non-standard primitive type to distinguish
strict or non-strict terms, closed only under unrestricted function space. In
the setting of functional programming, various different notions of strictness
emerged. However, the absence of recursion and effects in our setting admits
fewer distinctions.

Wright [1992] seems to be the first to have extended the Curry-Howard iso-
morphism to the implicational fragment of relevance logic and explicitly con-
nected the two areas, although both Belnap [1974] and Helmann [1977] had
previously recognized the link between strictness and relevance.
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Baker-Finch [1993] presents a type assignment system that makes available
strict, invariant and intuitionistic types. It is biased towards enforcing strict-
ness information, which ultimately leads to a different expressive power from
our calculus. There is only one context, where variables carry their occurrence
status as a label. There is one identity rule, the strict one, so that for exam-
ple, λx. x : A

u→ A is not derivable, as it can be given the more stringent type
A

1→ A. Let us consider the elimination rules for strict and irrelevant functions.

0 ` M : A
1→ B 0′ ` N : A′

app
1→

0, 0′ ` M N : B

0 ` M : A
0→ B 0′ ` N : A′

app
0→

0, 0′[1 := 0] ` M N : B

A side condition A′ ≤ A enforces the information ordering, so that for example
A′ 0→ B ≤ A

u→ B′, provided that A ≤ A′, B ≤ B′. This allows us to infer by strict
application 0, 0′ ` M N : C from 0 ` M : (A

u→ B) 1→ C and 0′ ` N : A
0→ B.

The latter is instead forbidden in our system by the labeled reduction rules. The
rationale on the relabeling operation in the rule app

0→ is that A is not relevant
to B, so all hypothesis should be deleted. Instead, in order to preserve every
variable declaration, their strict label is changed into irrelevant. This would
amount to moving the strict variables in the irrelevant context in our system.
Note the difference with our rule, where the latter variables are moved in the
unrestricted context. Moreover, having only one context, the author needs a
strategy to deal with the same variable with different annotations; the solution
is that while propagating premises top-down a binding x1:A supersedes xu:A,
which in turn supersedes x0:A.

Wright [1996] introduces Annotation Logic as a general framework for
resource-conscious logics. Its formulae have the form A ::= X k | A

k→ B for
any annotation k and there are specific structural as well as annotation rules.
The latter implement rules such as promotion or dereliction. By instantiation
with different algebras of annotation, we get systems such as linear and strict
logic as well as various other usage logics. An abstract normalization procedure
is sketched, which however requires commutative conversions already in the
purely implicational fragment.

In summary, none of the systems of strict function in the literature served
our purpose, nor did any of the authors prove the existence of canonical forms
that are critical for our application.

Finally, it may be argued that it is not necessary to take strictness as a
primitive at all, since linear logic is flexible enough to express the notion of
‘must occur’ already. Indeed, strict implication can be embedded into linear
logic by defining A

1→ B as A −◦ (A → B). While this translation will indeed
retain provability, it is not faithful to the structure of proofs. For example, the
strict term λx1. c x1 x1 corresponds to both λx gλyu. c x g yu and λx gλyu. c yu x g ,
where the ( )g notation refers to linear abstraction and application. On the other
hand, the strict λ-calculus captures exactly the right properties in an elegant
way and can be developed from first principles.
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5. SIMPLE TERMS

Now that we have developed a calculus that is potentially strong enough to
represent the complement of linear patterns, two questions naturally arise:
how do we embed the original λ-calculus, and is the calculus now closed under
complement? We require that our complement operator ought to satisfy the
usual boolean rules for negation:

(1) (Exclusivity) It is not the case that some M is both a ground instance of N
and of Not(N ).

(2) (Exhaustivity) Every M is a ground instance of N or of Not(N ).

Remember that when we refer to ground instances we mean instances without
any existential variables. Parameters, on the other hand, can certainly occur.

Unfortunately, while the first property follows quite easily for a suitable
algorithm, it turns out the second cannot be achieved for the full strict λ-calculus
as presented in the previous sections. The following counterexample is a pattern
whose complement cannot be expressed within the language.

Example 5.1. Consider the signature a:type, b:a, c:a u→ a. Then in the con-
text x:a; ·; · we have

‖E x0‖ = {b, c bu, c (c bu)u, . . . }
Not(‖E x0‖) = {x, c xu, c (c xu)u, . . . }

It is easy to see that Not(‖E x0‖) cannot be described by a finite set of patterns.
The underlying problem is the undetermined status of the argument to c:a u→ a
which means it can contain neither strict nor irrelevant variables while being
allowed to contain unrestricted variables.

However, the main result of this section is that the complement algorithm
presented in Definition 6.1 is sound and complete for the fragment that results
from the natural embedding of the original simply-typed λ-calculus; this is suf-
ficient for our intended applications. We will proceed in two phases. First we
restrict ourselves to a class of terms (that we call simple) for which the crucial
property of tightening (Lemma 5.5) can be established. Second we transform
the complement problem so that each existential variable is applied to all pa-
rameters and bound variables in whose scope it appears. This improvement
is mainly cosmetic and makes it easier to state and prove correctness for our
algorithms.

Recall that we have introduced strictness to capture occurrence conditions
on variables in canonical forms. This means that first-order constants such as
‘app’ (and by extension bound variables) should be considered strict functions of
their argument, since these arguments will indeed occur in the canonical form.
On the other hand, if we have a second order constant, say ‘lam’, we cannot
restrict its argument function to be either strict or vacuous, since this would
render our representation language too weak.
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Example 5.2. Continuing Example 2.1, consider the representation of the
K combinator:

p3x. 3y . xq = lam (λx:exp. lam (λy :exp. x))

Notice that the argument to the first occurrence of ‘lam’ is a strict function,
while the argument to the second occurrence is an invariant function. If we can
give only one type to ‘lam’ it must therefore be (exp

u→ exp) 1→ exp.

Generalizing this observation means that positive occurrence of function
types are translated to strict functions, while the negative ones to undetermined
functions. We can formalize this as an embedding of the simply-typed λ-calculus
into a fragment of the strict calculus via two (overloaded) mutually recursive
translations ()− and ()+. First, the definition on types:

(A→ B)+ = A− 1→ B+

(A→ B)− = A+ u→ B−

a− = a+ = a

We extend it to atomic and canonical terms (including existential variables), sig-
natures, and contexts; we therefore need the usual inductive definition of atomic
and canonical terms in the simply-typed λ-calculus (see for example Pfenning
[1997]), which can be obtained by dropping labels from the definition of canoni-
cal form in Figure 4. In addition, we allow well-typed applications EA xk1

1 . . . xkn
n

of base type as canonical terms. Recall that x1, . . . , xn must be distinct bound
variables or parameters. Note that the embedding ()− is applied only to canon-
ical terms, while ()+ is applied only to atomic terms.

(λx:A. M )− = λxu:A+. M−

(EA x1 . . . xn)− = FA− xu
1 . . . x

u
n

M− = M+ for M of base type
x+ = x
c+ = c

(M N )+ = (M+) (N−)1

(·)+ = ·
(0, x:A)+ = 0+, x:A+

(6, a:type)+ = 6+, a:type
(6, c:A)+ = 6+, c:A+

Example 5.3. Returning to Example 5.2:

(lam (λx:exp. lam (λy :exp. x)))+ = lam (λxu:exp. lam (λ yu:exp. x)1)1

The image of the embedding of the canonical forms of the simply-typed λ-
calculus gives rise to the following fragment, where we allow existential vari-
ables to have arguments with arbitrary labels ki and the head h can be a variable
or constant.

Simple Terms M ::= λxu:A+. M | h M 1
1 . . .M

1
n | EA xk1

1 . . . xkn
n
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It is possible to generalize this language further to allow arbitrary abstractions
as well, but this is beyond the scope of the present paper (see the comment in
the Section 9).

THEOREM 5.4 (CORRECTNESS OF ()±)

(1) If 0 ` M ⇑ A, then 0+; ·; · ` M− ⇑ A−.
(2) If 0 ` M ↓ A, then 0+; ·; · ` M+ ↓ A+.

PROOF. By mutual induction on the structure of the derivations of 0 ` M ⇑
A and 0 ` M ↓ A.

From now on we may hide the ()1 decoration from strict application of con-
stants in examples. Moreover, we will shorten judgment J on simple terms of
the form 9; ·; · ` J to 9 ` J .

We can now prove the crucial tightening lemma. It expresses the property
that every simple term with no existential variable is either strict or vacuous
in a given undetermined variable.

LEMMA 5.5 (TIGHTENING). Let M be a simple term of type A with no existential
variables.

(1) If (0, x:C);Ä;1 ` M ↓ A then
either 0;Ä; (1, x:C) ` M ↓ A or 0; (Ä, x:C);1 ` M ↓ A.

(2) If (0, x:C);Ä;1 ` M ⇑ A then
either 0 Ä; (1, x:C) ` M ⇑ A or 0; (Ä, x:C);1 ` M ⇑ A.

PROOF. By mutual induction on D1 :: (0, x:C);Ä;1 ` M ↓ A and D2 ::
(0, x:C);Ä;1 ` M ⇑ A. We show only one case.

Case

D1 =
(0, x:C,1N );Ä;1M ` M ↓ A

1→ B (0, x:C,1M );Ä;1N ` N ⇑ A
c

1→ E
(0, x:C);Ä; (1M ,1N ) ` M N1 ↓ B

There are four sub-cases, stemming from the two possibilities each for the two
subderivations.

(1) (0,1N );Ä; (1M , x:C) ` M ↓ A
1→ B Subcase of i.h.

(0,1M );Ä; (1N , x:C) ` N ⇑ A Subcase of i.h.
(0,1M , x:C);Ä;1N ` N ⇑ A By Loosening1 x
0;Ä; (1M , x:C,1N ) ` M N1 ↓ B By rule c

1→ E

(2) (0,1N ); (Ä, x:C);1M ` M ↓ A
1→ B Subcase of i.h.

(0,1M ); (Ä, x:C);1N ` N ⇑ A Subcase of i.h.
0; (Ä, x:C); (1M ,1N ) ` M N1 ↓ B By rule c

1→ E

(3) (0,1N );Ä; (1M , x:C) ` M ↓ A
1→ B Subcase of i.h.

(0,1M ); (Ä, x:C);1N ` N ⇑ A Subcase of i.h.
(0,1M , x:C);Ä;1N ` N ⇑ A By Loosening0 x
0;Ä; (1M , x:C,1N ) ` M N1 ↓ B By rule c

1→ E
(4) Symmetrical to (3).
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We remark that tightening fails to hold once we allow unrestricted function
types in a negative position. For example, ( y :A u→ B, x:A); ·; · ` y xu : B but
both y :A u→ B; ·; x:A 6` y xu : B and y :A u→ B; x:A; · 6` y xu : B.

We also have the following related property.

LEMMA 5.6 (IRRELEVANCE). Let M be a simple term without existential
variables.

(1) If 0; (Ä, x:C);1 ` M ⇑ A, then 0;Ä;1 ` M ⇑ A.
(2) If 0; (Ä, x:C);1 ` M ↓ A, then 0;Ä;1 ` M ↓ A.

PROOF. By mutual induction on the given derivations.

Note that irrelevance holds for any strict canonical term, but it is false for
terms containing redices. For example, for c:B we have ·; x:A; · ` (λ y0:A. c) x0 :
B, but ·; ·; · 6` (λ y0:A. c) x0 : B.

For simple terms it is often more convenient to replace explicit reference to
atomic forms by an n-ary version of c 1→ E. This can easily be seen to cover all
atomic forms for simple terms.

9 ` h : A1
1→ · · · 1→ An

1→ a 9 ` N1 ⇑ A1 · · · 9 ` Nn ⇑ An
c

1→E
9 ` h N1

1 . . .N
1
n ⇑ a

We can simplify the presentation of the algorithms for complement and later
unification if we require any existential variable to be applied to every bound
variable in its declaration context. This is possible for any simple linear pat-
tern without changing the set of its ground instances. We just insert vacuous
applications, which guarantees that the extra variables are not used.

In a slight abuse of notation we call the resulting patterns fully applied.
This transformation is entirely straightforward and its correctness is easily
established using Irrelevance (Lemma 5.6). We omit the formal details here,
showing only an example.

Example 5.7. Recall the simple pattern that encodes an object-level η-redex
from Example 2.2,

lam (λxu:exp. app E x).

It is not fully applied, since E is not applied to x. This is crucial, since E is not
allowed to depend on the bound variable x. In its fully applied form

lam (λxu:exp. app (E ′ x0) x),

this occurrence condition is encoded by an irrelevant application of a fresh
existential variable E ′ of type exp

0→ exp to x. According to Lemma 5.6, this
means that x cannot occur in the canonical form of E ′ x0 for any instance of E ′.

In the remainder of this article we will assume that all existential variables
are fully applied as defined above. We refer to a pattern E xk1

1 . . . xkn
n as a gen-

eralized variable. Furthermore, we always sort the variables x1 . . . xn so that
they come in some standard order; this simplifies the description of some of the
algorithms on fully applied patterns. Following standard terminology we call
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0;Ä;1 ` 8 ok 0;Ä;1 ` M : a
grFlx

9 ` M ∈ ‖EA 8‖ : a

(9, x:A) ` M ∈ ‖N‖ : B
grLam

9 ` λxu:A. M ∈ ‖λxu:A. N‖ : A
u→ B

9 ` h : A1
1→ · · · 1→ An

1→ a 9 ` M1 ∈ ‖N1‖ : A1 · · · 9 ` Mn ∈ ‖Nn‖ : An
grApp

9 ` h M 1
1 . . .M

1
n ∈ ‖h N1

1 . . .N
1
n‖ : a

Fig. 6. Ground instance: 9 ` M ∈ ‖N‖ : A.

atomic terms whose head is a bound variable or a parameter rigid, while terms
whose head is an existential variable is called flexible.

Under these assumptions we can more formally specify the interpretation of
terms with existential variables. We use 8 for sequences of distinct, labelled
bound variables; if xk ∈ 8, we set 8(x) = k. We say that 0;Ä;1 ` 8 ok if the
following holds:

8(x) = u ⇔ x ∈ dom(0)
8(x) = 0 ⇔ x ∈ dom(Ä)
8(x) = 1 ⇔ x ∈ dom(1)

Note that 8 determines 0;Ä;1 and vice versa whenever 0;Ä;1 ` 8 ok.
Recall that every pattern can be seen as the intensional representation of the

set of its instances with respect to a fixed signature 6 and a set of parameters
declared in a context9. The judgment in Figure 6,9 ` M ∈ ‖N‖ : A, formalizes
the conditions for M canonical of type A to be a ground instance of a simple
linear pattern N at type A.

Remark 5.8. Note that 9 ` M ∈ ‖EA 8‖ : a means that M is indeed a
ground instance of EA8. Conversely, if8 = xk1

1 . . . xkn
n and A = A1

k1→ · · · An
kn→ a

then we set EA = λxk1
1 :A1 . . . λxkn

n :An. M

6. THE COMPLEMENT ALGORITHM

The idea of complementation for atomic terms and abstractions is quite sim-
ple and similar to the first-order case. For generalized variables we consider
each argument in turn. If an argument variable is undetermined it does not
contribute to the negation. If an argument variable is strict, then any term
where this variable does not occur contributes to the negation. We therefore
complement the corresponding label from 0 to 1 while all other arguments are
undetermined. For vacuous argument variables we proceed dually.

In preparation for the rules, we observe that the complement operation
on patterns behaves on labels like negation does on truth-values in Kleene’s
three-valued logic, in the sense of the following table:.

Not(1) = 0 Not(0) = 1 Not(u) = u
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Noti(8) defined
NotFlxi

9 ` Not(E 8)⇒ Z Noti(8) : a

9, x:A ` Not(M )⇒ N : B
NotLam

9 ` Not(λxu:A. M )⇒ λxu:A. N : A
u→ B

g ∈ dom(6 ∪9), g : A1
1→ . . .

1→ Am
1→ a, h 6= g

NotApp1
9 ` Not(h M 1

1 . . .M
1
n )⇒ g (Z1 9

u)1 . . . (Zm 9u)1 : a

9 ` Not(Mi)⇒ N : Ai
NotAppi

2
9 ` Not(h M 1

1 . . .M
1
n )⇒ h (Z1 9

u)1 . . . (Zi−1 9
u)1 N1 (Zi+1 9

u)1 . . . (Zn 9
u)1 : a

Fig. 7. Complement algorithm: 9 ` Not(M )⇒ N : A.

We extend this definition to sequences of variables as they are used to codify
occurrence constraints for existential variables.

Noti
(
xk1

1 . . . xki−1
i−1 xd

i xki+1
i+1 . . . x

kn
n

) = xu
1 . . . x

u
i−1 xNot(d )

i xu
i+1 . . . x

u
n

Note that we require xi to be determined (d ∈ {0, 1}) for Noti to be defined,
and that variables x j for j 6= i are all unrestricted on the right-hand side even
though their status on the left-hand side varies.

Definition 6.1 (Higher-Order Pattern Complement). For a linear simple
pattern M such that 9 ` M ⇑ A, define 9 ` Not(M ) ⇒ N : A by the
rules in Figure 7, where the Z ’s are fresh logic variables of appropriate type,
h ∈ dom(6 ∪ 9) and 9 ` h : A1

1→ · · · 1→ An
1→ a. We write Z 9u as an

abbreviation for Z 8 where 9; ·; · ` 8 ok.
Note that a given M may be related to several patterns N all of which belong

to the complement of M . We therefore define 9 ` Not(M ) = N : A if N = {N |
9 ` Not(M )⇒ N : A}.

We may drop the type information from the above judgment in examples
and proofs; we will write 9 ` M ∈ ‖Not(N )‖ : A, when 9 ` Not(N ) = N and
9 ` M ∈ ‖N‖ : A.

Example 6.2. Consider the following complement problems.

x:a, y :a ` Not(E xu y1) = {F xu y0}
x:a, y :a ` Not(E x0 y1) = {F x1 yu, G xu y0} (1)

It is worthwhile to observe that the members of a complement set are not
mutually disjoint, due to the indeterminacy of u. We can achieve exclusive
patterns if we resolve this indeterminacy by considering for every xu the two
possibilities x1, x0. Thus, for example, the right-hand side of equation (1) can
be rewritten as

{F x1 y1, G x1 y0, H x0 y0}.
It is clear that in the worst case scenario the number of patterns in a comple-
ment set is bounded by 2n; hence the usefulness of this further step needs to be
pragmatically determined.
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We can now revisit the example of an η-redex in the untyped λ-calculus. To
avoid too many indices on existential variables, we adopt a convention that
the scope of existential variables is limited to each member of a complement
set.

Example 6.3. Reconsider Example 2.2. Then we calculate:

· ` Not(lam(λxu:exp. app (E x0) x))
= {lam(λxu:exp. app (Z x1) (Z ′ xu)),

lam(λxu:exp. app (Z xu) (app (Z ′ xu) (Z ′′ xu)),
lam(λxu:exp. app (Z xu) (lam(λ yu:exp. Z ′ xu yu)),
lam(λxu:exp. lam(λ yu:exp. Z xu yu)),
lam(λxu:exp. x),
app Z Z ′}

We now address the correctness of the complement algorithm with respect
to the set-theoretic semantics. The proof obligation consists in proving that the
former does behave as a complement operation on sets of patterns, that is, it
satisfies disjointness and exhaustivity. Disjointness is the property that a set
and its complement share no element; exhaustivity states that every element
is in the set or its complement. Termination is obvious as the algorithm is
syntax-directed and only finitely branching. We start with disjointness between
a pattern and its complement.

LEMMA 6.4 (DISJOINTNESS OF COMPLEMENTATION). Let 9 ` N ⇑ A be a simple
linear pattern. Then for every Q such that 9 ` Not(N ) ⇒ Q : A, it is not the
case that both 9 ` M ∈ ‖N‖ : A and 9 ` M ∈ ‖Q‖ : A.

PROOF. By induction on the structure of D :: 9 ` Not(N )⇒ Q : A.

Case. D ends in NotFlxi.

9 ` M ∈ ‖E 8‖ : a Assumption
9 ` M ∈ ‖Z Noti(8)‖ : a Assumption
8(xi) = 1 or 8(xi) = 0 Since Noti(8) defined

Subcase. 8(xi) = 1

0;Ä; (1, xi:A) ` M : a By inversion on M ∈ ‖E 8‖
(0,Ä,1); xi:A; · ` M : a By inversion on M ∈ ‖Z Noti(8)‖
⊥ By exclusivity (Lemma 3.7)

Subcase. 8(xi) = 0 is symmetrical.

Case. D ends in NotApp1.

9 ` M ∈ ‖h N1
1 . . .N

1
n‖ : a Assumption

9 ` M ∈ ‖g (Z1 9
u)1 . . . (Zm 9u)1‖ : a for g 6= h Assumption

M = h · · · By inversion on grApp
M = g · · · By inversion on grApp
⊥ Since g 6= h
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Case. D ends in NotAppi
2.

9 ` M ∈ ‖h N1
1 . . .N

1
n‖ : a Assumption

9 ` M ∈ ‖h (Z1 9
u)1 . . . (Zi−1 9

u)1 Q1 (Zi+1 9
u)1 . . . (Zn 9

u)1‖ : a and
9 ` Not(Ni)⇒ Q : Ai Assumption
M = h M1 . . .Mn and
9 ` Mi ∈ ‖Ni‖ : Ai By inversion
9 ` Mi ∈ ‖Q‖ : Ai By inversion
⊥ By i.h.

Case. D ends in NotLam.

9 ` Not(λxu:A. N )⇒ λxu:A. Q : A
u→ B This case

9, x:A ` Not(N )⇒ Q : B Subderivation
9 ` λxu:A. M ∈ ‖λxu:A. N‖ : A

u→ B Assumption
9 ` λxu:A. M ∈ ‖λxu:A. Q‖ : A

u→ B Assumption
9, x:A ` M ∈ ‖N‖ : B By inversion
9, x:A ` M ∈ ‖Q‖ : B By inversion
⊥ By i. h.

Note that disjointness is based on exclusivity (Lemma 3.7), which holds for
any strict term—it does not require simple terms. Next, we turn to the other
direction. First a lemma concerning the special case of generalized variables.

LEMMA 6.5 (EXHAUSTIVITY FOR FLEXIBLE PATTERNS). For every closed M such
that 9 ` M ⇑ a, either 9 ` M ∈ ‖EA 8‖ : a or 9 ` M ∈ ‖Z Noti(8)‖ : a for
some i.

PROOF. Assume 9 ` M ⇑ a. Then by iterated applications of Lemma 5.5
there exist Ä and 1 such that 9 = Ä,1 and ·;Ä;1 ` M ⇑ a.

Case. For every x ∈ dom(Ä) we have 8(x) ∈ {0, u} and for every x ∈ dom(1)
we have 8(x) ∈ {1, u}. Then 9 ` M ∈ ‖E 8‖.

Case. For some xi ∈ dom(Ä) we have 8(xi) = 1. Then 9 `M ∈‖Z xu
1 . . . x

u
i−1

x1
i xu

i+1 . . . x
u
n‖ and therefore 9 ` M ∈ ‖Z Noti(8)‖.

Case. For some xi ∈ dom(1) we have 8(xi) = 0. Then 9 `M ∈‖Z xu
1 . . . x

u
i−1

x0
i xu

i+1 . . . x
u
n‖ and therefore 9 ` M ∈ ‖Z Noti(8)‖.

We are now ready to prove exhaustivity of complementation.

LEMMA 6.6 (EXHAUSTIVITY OF COMPLEMENTATION). Assume 9 ` N ⇑ A is a
simple linear pattern. Then for every closed M such that 9 ` M ⇑ A, either
9 ` M ∈ ‖N‖ : A or there is a Q such that 9 ` Not(N ) ⇒ Q : A and
9 ` M ∈ ‖Q‖ : A.

PROOF. By induction on the structure of D :: 9 ` N ⇑ A.

Case. D ends in cPat. Then the claim follows immediately by Lemma 6.5.
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Case. D ends in c
u→ I . The i. h. yields the two sub-cases.

Subcase. 9, x:A ` M ∈ ‖N‖ : B.

9 ` λxu:A. M ∈ ‖λxu:A. N‖ : A
u→ B By rule grLam

Subcase. 9, x:A ` Not(N )⇒ Q : B and 9, x:A ` M ∈ ‖Q‖ : B for some Q .

9 ` Not(λxu:A. N )⇒ λxu:A. Q : A
u→ B By rule NotLam

9 ` λxu:A. M ∈ ‖λxu:A. Q‖ : A
u→ B By rule grLam

Case

D =
9 ` h : A1

1→ · · · 1→ An
1→ a 9 ` N1 ⇑ A1 · · · 9 ` Nn ⇑ An

c
1→E

9 ` h N1
1 . . .N

1
n ⇑ a

First, assume M = g M 1
1 . . .M

1
m, for g ∈ dom(6 ∪9), h 6= g . Then

9 ` Not(h N1
1 . . .N

1
n )⇒ g (Z1 9

u)1 . . . (Zm 9u)1 : a By rule NotApp1
9 ` Mi ∈ ‖Zi 9

u‖ : Ai for all 1 ≤ i ≤ m By rule grFlx
9 ` g M 1

1 . . .M
1
m ∈ ‖g (Z1 9

u)1 . . . (Zn 9
u)1‖ : a By rule grApp

Otherwise, assume M = h M 1
1 . . .M

1
n . Again, the i. h. yields two sub-cases.

Subcase. 9 ` Mi ∈ ‖Ni‖ : Ai, for all 1 ≤ i ≤ n.

9 ` h M 1
1 . . .M

1
n ∈ ‖h N1

1 . . .N
1
n‖ : a By rule grApp

Subcase. 9 ` Not(Ni)⇒ Q : Ai and 9 ` Mi ∈ ‖Q‖ : Ai, for some Q .

9 ` M j ∈ ‖Z j 9
u‖ : Aj for all j 6= i, 1 ≤ j ≤ n By rule grFlx

9 ` Not(h M 1
1 . . .M

1
n)⇒ h (Z1 9

u)1 . . . (Zi−1 9
u)1 Q1 (Zi+1 9

u)1 . . .

(Zn 9
u)1 : a By rule NotAppi

2
9 ` h M 1

1 . . .M
1
n ∈ ‖h (Z1 9

u)1 . . . (Zi−1 9
u)1 Q1 (Zi+1 9

u)1 . . .

(Zm 9u)1‖ : a By rule grApp.

The correctness of the algorithm for pattern complement follows directly
from the preceding two lemmas.

THEOREM 6.7 (CORRECTNESS OF PATTERN COMPLEMENT). Assume N is a simple
linear pattern such that 9 ` N : A. Then for every closed M with 9 ` M ⇑ A,
9 ` M ∈ ‖Not(N )‖ : A iff 9 6` M ∈ ‖N‖.

It is easy to see that simple linear patterns are closed under complementa-
tion.

THEOREM 6.8 (CLOSURE UNDER COMPLEMENTATION). Assume M is a simple lin-
ear pattern with 9 ` M ⇑ A. Then 9 ` Not(M )⇒ N : A implies N is a simple
linear pattern and 9 ` N ⇑ A.

PROOF. By induction on the structure of the derivation of 9 ` Not(M ) ⇒
N : A.
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∩FF
9 ` (E1 81) ∩ (E2 82)⇒ H (81 ∩82) : a

no rule for flex/flex same

c ∈ dom(6) 9 ` (H1 81) ∩ M1 ⇒ N1 : A1 · · ·9 ` (Hn 8n) ∩ Mn ⇒ Nn : An
∩FRc

9 ` (E 8) ∩ (c M 1
1 . . .M

1
n )⇒ c N1

1 . . .N
1
n : a

y ∈ dom(9) 9 ` (H1 81) ∩ M1 ⇒ N1 : A1 · · ·9 ` (Hn 8n) ∩ Mn ⇒ Nn : An
∩FR y

9 ` (E 8) ∩ ( y M 1
1 . . .M

1
n )⇒ y N1

1 . . .N
1
n : a

h ∈ dom(9 ∪6) 9 ` M1 ∩ N1 ⇒ Q1 : A1 · · ·9 ` Mn ∩ Nn ⇒ Qn : An ∩RR
9 ` (h M 1

1 . . .M
1
n ) ∩ (h N1

1 . . .N
1
n )⇒ h Q1

1 . . . Q
n
n : a

9, x:A ` M ∩ N ⇒ Q : B
∩L

9 ` (λxu:A. M ) ∩ (λxu:A. )N ⇒ λxu:A. Q : A
u→ B

Fig. 8. Unification algorithm: 9 ` M ∩ N ⇒ Q : A.

7. UNIFICATION OF SIMPLE PATTERNS

As we observed earlier, we can solve a relative complement problem by pairing
complementation with intersection. We therefore address the task of giving an
algorithm for unification of linear simple patterns. We start by determining
when two labels are compatible:

1 ∩ 1 = u ∩ 1 = 1 ∩ u = 1
0 ∩ 0 = u ∩ 0 = 0 ∩ u = 0

u ∩ u = u

Recall that 8 is a list of labelled bound variables. We call 81 and 82 com-
patible if they contain the same variables in the same order, but with possibly
different labels. We can extend the intersection operations to compatible lists.

· ∩ · = ·
(8, xk) ∩ (8′, xk′ ) = (8 ∩8′, xk∩k′ ) if k ∩ k′ is defined.

For contexts 01 and 02 that may have variable declarations in common, we
write 01 ∩02 and 01 ∪02 for set-theoretic union and intersection. In both cases
we assume that a variable x declared in both 01 and 02 must be assigned the
same type in both contexts.

Remark 7.1. Assume81 and82 are compatible and81∩82 is defined. Then
01;Ä1;11 ` 81 ok and 02;Ä2;12 ` 82 ok implies that 11 ∩Ä2 = 12 ∩Ä1 = ∅.
Moreover, (01∩02); (Ä1∪Ä2); (11∪12) ` (81∩82) ok. From that it follows that
9 ` M ∈ ‖EA (81 ∩82)‖ : a iff (01 ∩ 02); (Ä1 ∪Ä2); (11 ∪12) ` M : a.

Definition 7.2 (Higher-Order Pattern Intersection). Assume M and N are
linear simple patterns without shared existential variables such that 9 ` M ⇑
A and 9 ` N ⇑ A. We define 9 ` M ∩ N ⇒ Q : A by the rules in Figure 8,
where the H ’s are fresh variables of appropriate type. We omit two rules, ∩RFc

and ∩RF y , that are symmetric to ∩FRc and ∩FR y .
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The rules ∩FRc and ∩RFc have the following proviso: for all 1 ≤ i ≤ n,
dom(8i) = dom(8) and

∀x.8(x) = 0 ⊃ ∀i. 8i(x) = 0
∀x.8(x) = u ⊃ ∀i. 8i(x) = u

∀x.8(x) = 1 ⊃ ∃i. 8i(x) = 1 ∧ ∀ j . j 6= i ⊃ 8 j (x) = u

The rules ∩FR y and ∩RF y are subject to the proviso:

∀x.8(x) = 0 ⊃ ∀i. 8i(x) = 0
∀x.8(x) = u ⊃ ∀i. 8i(x) = u

∀x.x 6= y ∧8(x) = 1 ⊃ ∃i. 8i(x) = 1 ∧ ∀ j . j 6= i ⊃ 8 j (x) = u
(8( y) = u ∨8( y) = 1) ∧ (8( y) = 1 ⊃ ∀i.8i( y) = u)

Finally define 9 ` M ∩ N = Q : A if Q = {Q | 9 ` M ∩ N ⇒ Q : A}.
Some remarks are in order:

—In rule ∩FF we can assume 81 and 82 are compatible lists of variables, since
generalized variables are fully applied and their arguments are in a standard
order.

—Since patterns are linear and M and N share no pattern variables, the
flex/flex case arises only with distinct variables. This also means we do not
have to apply substitutions or perform the customary occurs-check.

—In the flex/rigid and rigid/flex rules, the proviso enforces the typing discipline
since each strict variable x must be strict in some premise. If instead y is
the projected variable, the modified condition on y takes into account that
the head of an application constitutes a strict occurrence; moreover, since y
did occur, it is set to u in the rest of the computation, as there are no more
requirements on that variable.

—The symmetric rules take the place of an explicit exchange rule that is prob-
lematic with respect to termination.

The following example illustrates how the flex/rigid rules, in this case ∩FRc,
make unification on simple patterns finitary. We describe a unification problem
by omitting the eventually computed solution as 9 ` M ∩ N : A.

Example 7.3. Consider the unification problem

x:a ` E x1 ∩ c (F xu)1 (F ′ xu)1 : a

Since x is strict in the left-hand side, there are two ways to apply the ∩FRc rule,
leading to the following subproblems:

1. x:a ` E ′ x1 ∩ F xu : a x:a ` E ′′ xu ∩ F ′ xu : a
2. x:a ` E ′ xu ∩ F xu : a x:a ` E ′′ x1 ∩ F ′ xu : a

Hence the result:

x:A ` E x1 ∩ c (F xu)1 (F ′ xu)1 = {c (H x1)1 (H ′ xu)1, c (H xu)1 (H ′ x1)1}
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Note that, similarly to complementation, intersection returns a set of pat-
terns with common terms; again it is possible, in a post-processing phase to
make the result exclusive.

The following example illustrates the additional proviso on ∩FR y

Example 7.4. The unification problem

y :a 1→ a
1→ a ` E y0 ∩ y (F y1)1 (F ′ yu)1 : a

has no solution, whereas

y :a 1→ a
1→ a ` E y1 ∩ y (F y1)1 (F ′ y0)1 = { y (H y1)1 (H ′ y0)1} : a

This first lemma will be needed to handle the case for unification of general-
ized variables.

LEMMA 7.5. Assume 81 and 82 are compatible and 81 ∩ 82 is defined.
Assume furthermore that 01;Ä1;11 ` 81 ok and 02;Ä2;12 ` 82 ok. Then
01;Ä1;11 ` M : A and 02;Ä2;12 ` M : A iff (01 ∩ 02); (Ä1 ∪ Ä2); (11 ∪ 12) `
M : A.

PROOF. From left to right by induction on the size of (01∪02)\(01∩02), using
tightening (Lemma 5.5). From right to left by appropriate appeals to loosening
(Lemma 3.3).

We introduce two n-ary strict application rules which, for the special case
of simple terms, capture the notion of atomic forms more compactly than the
previous definition. The rules differ only in whether the head h of the atomic
term is a strict variable or unrestricted. These will be needed in the proofs of
Lemmas 7.6 and 7.7.(

0,1u
i

)
;Ä;11

i ` Mi : Ai 1 ≤ i ≤ n
1→Eu

0;Ä;1 ` h M 1
1 . . .M

1
n : b

where h : A1
1→ . . .

1→ An
1→ b in dom(0 ∪6) and

(1) ∀x ∈ dom(1). ∃!i : 1 ≤ i ≤ n. x ∈ dom(11
i ).

(2) ∀i : 1 ≤ i ≤ n. (1u
i ,11

i ) = 1.

(0,1u
i );Ä;11

i ` Mi : Ai 1 ≤ i ≤ n
1→E1

0;Ä;1 ` y M 1
1 . . .M

1
n : b

where y : A1
1→ . . .

1→ An
1→ b ∈ dom(1) and

(1) ∀x ∈ dom(1), x 6= y . ∃!i : 1 ≤ i ≤ n. x ∈ dom(11
i ).

(2) ∀i : 1 ≤ i ≤ n. (1u
i ,11

i ) = 1.
(3) ∀i : 1 ≤ i ≤ n. y ∈ dom(1u

i ).

It is straightforward, but tedious to show that these rules can replace the
rules for atomic terms. The curious reader is invited to consult Momigliano
[2000] for details.
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We are now ready to address correctness of unification. First we show that
our algorithm only computes unifiers, then that the set of unifiers we compute
is most general.

LEMMA 7.6 (INTERSECTION COMPUTES UNIFIERS). For any simple linear pattern
N1 and N2 without shared variables such that9 ` N1 ⇑ A and9 ` N2 ⇑ A, for
every N such that9 ` N1∩N2 ⇒ N if9 ` M ∈ ‖N‖ : A, then9 ` M ∈ ‖N1‖ : A
and 9 ` M ∈ ‖N2‖ : A.

PROOF. By induction on the structure of D :: 9 `N1 ∩N2⇒N and inver-
sion on D′ ::9 `M ∈‖N‖ : A. We show only some of the cases; the others are
analogous.

Case. D ends in ∩FF:

9 ` (E1 81) ∩ (E2 82)⇒ H (81 ∩82) : a Assumption
9 ` M ∈ ‖H (81 ∩82)‖ : a Assumption
0i;Äi;1i ` 8i ok for i = 1, 2 for some 0i, Äi, 1i Determined from 8i
(01 ∩ 02); (Ä1 ∪Ä2); (11 ∪12) ` 81 ∩82 ok By Remark 7.1
0i;Äi;1i ` M : a By Lemma 7.5 (←)
9 ` M ∈ ‖Ni‖ : a By rule grFlx

Case. D ends in ∩FRc.

D :: 9 ` (E 8) ∩ (c Q1
1 . . . Q

1
n)⇒ c N1

1 . . .N
1
n : a Assumption

Di :: 9 ` (E 8i) ∩ Qi ⇒ Ni : Ai, for all 1 ≤ i ≤ n Subderivations
9 ` c M 1

1 . . .M
1
n ∈ ‖c N1

1 . . .N
1
n‖ : a Assumption

9 ` Mi ∈ ‖Ni‖ : Ai By inversion
9 ` Mi ∈ ‖Qi‖ : Ai and
9 ` Mi ∈ ‖Ei 8i‖ : Ai By i. h. on Di

(0i,1u
i );Ä;11

i ` 8i ok and (0i,1u
i );Ä;11

i ` Mi : Ai By rule grFlx

0;Ä;1 ` c M 1
1 . . .M

1
n : a By rule 1→Eu

9 ` c M 1
1 . . .M

1
n ∈ ‖E 8‖ : a By rule grFlx

9 ` c M 1
1 . . .M

1
n ∈ ‖c Q1

1 . . . Q
1
n‖ : a By rule grApp

The second part consists of showing that any unifier of two patterns is an
instance of an element from the computed set of unifiers.

LEMMA 7.7 (INTERSECTIONS ARE MOST GENERAL). For any simple linear pat-
terns N1 and N2 without shared variables such that 9 ` N1 ⇑ A and
9 ` N2 ⇑ A, if 9 ` M ∈ ‖N1‖ : A and 9 ` M ∈ ‖N2‖ : A, then there is
N such that 9 ` N1 ∩ N2 ⇒ N : A and 9 ` M ∈ ‖N‖ : A.

PROOF. By simultaneous induction on the structure of D1 :: 9 ` M ∈ ‖N1‖ :
A and D2 :: 9 ` M ∈ ‖N2‖ : A.

Case. D1,D2 end in grFlx:

0i;Äi;1i ` 8i ok and 0i;Äi;1i ` M : a for i = 1, 2 Subderivations
81 ∩82 is defined By exclusivity (Lemma 3.7)
9 ` (E1 81) ∩ (E2 82)⇒ H (81 ∩82) : a By rule ∩FF
(01 ∩ 02); (Ä1 ∪Ä2); (11 ∪12) ` M : a By Lemma 7.5(→)
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(01 ∩ 02); (Ä1 ∪Ä2); (11 ∪12) ` 81 ∩82 ok By Remark 7.1
9 ` M ∈ ‖H (81 ∩82)‖ : a By rule grFlx

Case. D1 ends in grFlx andD2 ends in grApp: there are two cases depending
on whether the head of N2 is a constant or a parameter.

Subcase. The head of N2 is a constant c.

9 ` M ∈ ‖c Q1
1 . . . Q

1
n‖ : a Assumption

M = c M 1
1 . . .M

1
n and D2

i :: 9 ` Mi ∈ ‖Qi‖ : Ai for all 1 ≤ i ≤ n Subderivation
9 ` c M 1

1 . . .M
1
n ∈ ‖E 8‖ : a Assumption

0;Ä;1 ` c M 1
1 . . .M

1
n : a and 0;Ä;1 ` 8 ok By inversion on rule grFlx

(0,1u
i );Ä;11

i ` Mi : Ai for some 1u
i ,1u

i

satisfying (1) and (2) By inversion on rule 1→Eu

D1
i :: 9 ` Mi ∈ ‖Ei 8i‖ : Ai for 8i such that

(0,1u
i );Ä;11

i ` 8i ok By rule grFlx
Di :: 9 ` (Ei 8i) ∩ Qi ⇒ Ni : Ai and
9 ` Mi ∈ ‖Ni‖ : Ai By i. h. on D1

i ,D2
i

D :: 9 ` (E 8) ∩ (c Q1
1 . . . Q

1
n)⇒ c N1

1 . . .N
1
n : a By rule ∩FRc

9 ` c M 1
1 . . .M

1
n ∈ ‖c N1

1 . . .N
n
n‖ : a By rule grApp

Subcase. Proceed as above, but using inversion on rule 1→E1

Case. D2 ends in grFlx and D1 ends in grApp: symmetrical to the above.

Case. D1,D2 end in grLam: straightforward by induction hypothesis.

Case. D1,D2 end in grApp: a straightforward appeal to the induction hy-
pothesis as in the above case.

The correctness of the algorithm for pattern intersection follows directly from
the preceding two lemmas.

THEOREM 7.8 (CORRECTNESS OF PATTERN INTERSECTION). Assume N1 and N2
are simple linear patterns without shared variables such that 9 ` N1 ⇑ A
and 9 ` N2 ⇑ A. Then 9 ` M ∈ ‖N1‖ : A and 9 ` M ∈ ‖N2‖ : A iff
9 ` M ∈ ‖N1 ∩ N2‖ : A.

Also note that the intersection of linear simple patterns is again a simple
linear pattern.

THEOREM 7.9 (CLOSURE UNDER INTERSECTION). Assume M and N are simple
linear patterns with 9 ` M ⇑ A and 9 ` N ⇑ A. Then 9 ` M ∩ N ⇒ Q : A
implies that Q is a simple linear pattern and 9 ` Q ⇑ A.

PROOF. By induction on the structure of the derivation of 9 `M ∩N ⇒ Q :
A.

8. THE ALGEBRA OF LINEAR SIMPLE PATTERNS

An interesting and natural question is whether complementation is involutive.
The answer is of course positive, since the latter is a boolean property and
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the complement operation has been shown to satisfy “tertium non datur” and
the principle of non-contradiction. However, the reader should keep in
mind that the representation of the set Not(Not(N )) may be different from
{N }, even though the two sets are guaranteed to have the same set of ground
instances. Since on finite set of patterns we also have intersection and set-
theoretic union, we obtain a boolean algebra. For the sake of readability, we
introduce the following notation: PatA(9) denotes the finite set of linear simple
patterns M with9 ` M : A. In the following, we also drop the type information
and overload the singleton pattern notation.

Definition 8.1. ForM,N ∈ PatA(9), define:

M ∩N =
⋃

M∈M,N∈N
M ∩ N

Not(M) =
⋂

M∈M
Not(M )

Those operations on sets of patterns satisfy the same properties that single-
ton intersection and complementation do.

COROLLARY 8.2 (CORRECTNESS OF SET INTERSECTION). For N1,N2 ∈ PatA(9),
9 ` M ∈ ‖N1‖ : A and 9 ` M ∈ ‖N2‖ : A iff 9 ` M ∈ ‖N1 ∩N2‖ : A.

COROLLARY 8.3 (CORRECTNESS OF SET COMPLEMENT). For N ∈ PatA(9), 9 `
M ∈ ‖Not(N )‖ : A iff 9 6` M ∈ ‖N‖ : A.

As we have remarked earlier, we can define the relative complement opera-
tion by using complement and intersection. Its correctness follows immediately
from the correctness of pattern set intersection and complement.

Definition 8.4 (Relative Complement). Given M,N ∈ PatA(9), we define
M−N =M ∩Not(N ).

The properties above mean that we can organize, for a given signature 6,
context 9, and a type A, finite sets of simple linear patterns into a Boolean
algebra by taking equality as extensional identity on sets of terms without
existential variables. In symbols, for N1,N2 ∈ PatA(9):

N1 ' N2 iff ‖N1‖ = ‖N2‖
Under this interpretation, the 0 element is the empty set and the 1 ele-

ment the singleton set containing the η-expansion of a generalized existen-
tial variable of the appropriate type that may depend on all variables in the
context 9.

0 = ∅
1 = {

λxu
1 :A1 . . . λxu

n :An. E 9u xu
1 . . . x

u
n

}
where A = A1

u→ · · · An
u→ a.
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THEOREM 8.5. Consider the algebra 〈PatA(9), ∪, ∩, Not, 1, 0〉. Then the fol-
lowing holds:

(1) M ∩M 'M.
(2) M ∩N ' N ∩M.
(3) M ∩ (N ∪ P) ' (M ∩N ) ∪ (M ∩ P).
(4) M ∩ (N ∩ P) ' (M ∩N ) ∩ P.
(5) Not(Not(M)) 'M.
(6) Not(1) ' 0.
(7) Not(0) ' 1.

PROOF. From Corollaries 8.2 and 8.3 and the fact that ∪ is set-theoretic.

COROLLARY 8.6. The algebra of finite sets of simple linear patterns is boolean.

It is notable that the ∪ operator must be set-theoretic union rather than anti-
unification or generalization, as traditional in lattice-theoretic investigations of
the algebra of terms [Lassez et al. 1988]. The problem is the intrinsically classi-
cal nature of complementation which is not compatible with the very irregular
structure of the lattice of terms where the smallest upper bound is interpreted
as anti-unification.

We end this section showing how pattern complement can be used as a build-
ing block of our main application, that is, a clause complement algorithm in
logic programming [Barbuti et al. 1990]. This incudes algorithms to compute
the complements of heads of clauses in the definition of a predicate, and inter-
section to combine results of negating individual clause heads. Note, however,
that clause complementation of significant programs in a language such as
Lλ [Miller 1991] is notably more complicated than in Prolog and requires fur-
ther machinery that cannot be detailed here. A full development can be found
in Momigliano [2000].

Example 8.7. We can combine Example 2.1 and 2.2 and consider the fol-
lowing trivial program, which encodes when an object-level lambda term is a
βη-redex:

betardx : isredx (app (lam (λxu:exp. E xu)) F ).
etardx : isredx (lam (λxu:exp. app (E x0) x)).

We can compute the complement of both heads, as follows:

Not{app (lam (λxu:exp. E xu)) F, lam(λxu:exp. app (E x0) x)}
= Not(app (lam (λxu:exp. E xu)) F ) ∩Not(lam(λxu:exp. app (E x0) x))
= {lam (λxu:exp. H xu), app (app H H ′) H ′′}
∩ {lam (λxu:exp. app (H x1) (H ′ xu)),

lam (λxu:exp. app (H xu) (app (H ′ xu) (H ′′xu))),
lam (λxu:exp. app (H xu) (lam (λ yu:exp. H ′ xu yu))),
lam (λxu:exp. lam (λ yu:exp. H xu yu)),
lam (λxu:exp. x),
app H H ′}
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= {lam (λxu:exp. app (H x1) (H ′ xu)),
lam (λxu:exp. app (H xu) (app (H ′ xu) (H ′′ xu))),
lam (λxu:exp. app (H xu) (lam (λ yu:exp. H ′ xu yu)))
lam (λxu:exp. lam (λ yu:exp. H ′ xu yu)),
lam (λxu:exp. x),
app (app H H ′) H ′′}

This yields the negation of that program, that is the complementary clauses:

nb1 : non isredx (lam (λxu:exp. app (H x1) (H ′ xu))).
nb2 : non isredx (lam (λxu:exp. app (H xu) (app (H ′ xu) (H ′′ xu)))).
nb3 : non isredx (lam (λxu:exp. app (H xu) (lam (λ yu:exp. H ′ xu yu)))).
nb4 : non isredx (lam (λxu:exp. lam (λ yu:exp. H xu yu))).
nb5 : non isredx (lam (λxu:exp. x)).
nb6 : non isredx (app (app H H ′) H ′′).

9. CONCLUSIONS

In this article we have been concerned with the relative complement problem
for higher-order patterns. As we have seen, the complement operation does not
generalize easily from the first-order case. Indeed, the complement of a partially
applied higher-order pattern cannot be described by a pattern, or even by a
finite set of patterns. The formulation of the problem suggests that we should
consider a λ-calculus with an internal notion of strictness so that we can directly
express that a term must depend on a given variable. We have developed such
a calculus and we have shown that via a suitable embedding in our calculus the
complement of a linear pattern is a finite set of linear patterns and unification
of two patterns is decidable and leads to a finite set of most general unifiers.
Moreover, they form a boolean algebra under set-theoretic union, intersection
(implemented via unification) and the complement operation.

The latter item brings up the question if we can actually decide exten-
sional equality between, and membership of terms in, finite sets of sim-
ple terms. For membership, one can see that 9 `M ∈‖N1, . . . , Nn‖ if and
only if M unifies with some Ni. As far as equality is concerned between
say ‖M1, . . . , Mm‖ and ‖N1, . . . , Nn‖ calculate the two relative complements
{M1, . . . , Mm} − {N1, . . . , Nn} and {N1, . . . , Nn} − {M1, . . . , Mm} and then check
if they are both empty. An emptiness check would rely on the decidability of
inhabitation in the underlying calculus. We conjecture this question to be de-
cidable for the strict λ-calculus and we plan to address this question in future
work.

Our main application is the transformational approach to negation in higher-
order logic programming [Barbuti et al. 1990], where pattern complement and
unification is a necessary component. We plan to extend the results to depen-
dent types to endow intentionally weak frameworks such as Twelf [Schürmann
and Pfenning 1998] with a logically meaningful notion of negation along these
lines. While Twelf uses explicit substitutions internally, the development of
our complement algorithm directly in this notation would require a theory of
complementation modulo an equational theory.
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It may be argued that the restriction to simple terms is somewhat ad hoc.
Ideally, one would have a complement algorithm for the full strict lambda-
calculus (including vacuous types). Yet, this seems to be ill-defined, because
“occurrence” no longer has the desired meaning once we lift the principle that
constructors should be strict in their argument. As we have remarked earlier,
it is possible to describe complement and unification algorithms for a larger
fragment than treated here by allowing arbitrary abstractions, if we adhere to
the above strictness assumption for constructors. The technical development
is not difficult but entails a proliferation of rules to cover the new abstraction
cases, as well as the duplication of all rules concerning strict application in
versions similar to the 1→Eu and 1→E1 typing rules.

Finally, it is our contention that the strict λ-calculus that we have intro-
duced has independent interest in the investigation of sub-structural logics. Our
type system is simple and uniform and arguably more elegant than those pre-
sented in the literature (see the earlier discussion of related work at the end of
Section 4). Moreover, the explicit introduction of the notion of vacuous or irrel-
evant variables can be useful in a variety of contexts. In fact, the second author
has suggested some unexpected usage of those variables in type theory for uses
in reasoning about staged computation [Pfenning 2000] and proof compres-
sion in logical frameworks [Pfenning 2001]. Furthermore, extending a linear
λ-calculus with vacuous variables permits more programs under type assign-
ment; for example a term such as λx. λy . x ⊗ (λw. y) x, which is traditionally
considered not linear, can be given the linear type A−◦B−◦(A⊗B). This carries
over to the study of explicit substitutions in resource-conscious λ-calculi [Ghani
et al. 2000] where it might clarify, for example, the logical status of the extension
operator.
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