Fast and Optimal Prediction on a Labeled Tree

1

Nicold Cesa-Bianchi

Claudio Gentile

Fabio Vitale

Universita degli Studi di Milano, Italy Universita dell'lnsubria, Varese, Italy Universita degli Studi di Milano, Italy

cesa-bianchi @si.unim.it

Abstract

We characterize, up to constant factors, the number
of mistakes necessary and sufficient for sequen-
tially predicting a given tree with binary labeled
nodes. We provide an efficient algorithm achiev-
ing this number of mistakes on any tree. Tree
prediction algorithms can solve the general graph
prediction problem by representing the graph via
one of its spanning trees. In order to cope with
adversarial assignments of labels over a general
graph, we advocate the use of random spanning
trees, which have the additional advantage of re-
taining relevant spectral information of the origi-
nal graph.

Introduction

cl audi o. gentil e@ninsubria.it

fabio.vitale@nim.it

then it should be beneficial to run the algorithm on a thinned
version of the original graph where some of the edges have
been dropped. Since dropping edges that cause the graph to
disconnect is intuitively throwing away too much structura
information, we are naturally led to the idea of running the
learner on a spanning tree of the original graph.

This approach leaves us with the problem of choosing a
good spanning tree. Because of the adversarial nature of the
online setting, the presentation of vertices and the assign
ment of labels are both arbitrary. This suggests to pickea tre
at random among all spanning trees of the graph so as to pre-
vent the adversary from concentrating the cutsize on the cho
sen tree. Moreover, we can exploit Kirchoff’'s equivalence
between the effective resistance of an edge and its prebabil
ity of being included in a random spanning tree. This equiv-
alence allows us to express the expected cutsize of the ran-
dom spanning tree in a simple form, namely, as the sum of
resistances over all edges in the cutbinduced by the ad-
versarial label assignment. On the other hand, the resistan

Several practically relevant classification tasks can seas. ~ weigthed cutsize is a very natural measure of complexity for
the problem of predicting the labels associated with vestic labeled graphs, and this is precisely the fact that led us to
of an undirected graph. Among them are, for example, the consider random spanning trees.

detection of “spam” sites in the Web graph [15], the classifi- Based on the above argument for using random span-
cation of genomic data in functional classes where edges rep ping trees in graph prediction tasks, we mainly focus on
resent gene/protein interactions [13], the predictions#ru the problem of designing a good algorithm for predicting
interests in social networks [14]. In the online version of an arbitrary tree. Our main contribution is the derivation
this problem, vertices are presented in an arbitrary oettef, of an algorithm that is both optimal (up to constant factors)
the learner must predict the label of each vertex beforegbein angd efficient. Optimality is meant in the following sense:
able to observe its true value. As real-world applicatigpst Gjven any treeT’, the worst-case (over labeling and node
ically involve large graphs, online learners play an impott presentation order) number of mistakes made by our algo-
role because of their good scaling properties. An intemgsti rithm can only be improved by a factor which is constant
special case of the online problem is the so-called transduc \yith respect to the relevant parameters. As for efficieney, w
tive setting, where the learner is given prior access to the show that the overall running time of our algorithm is of or-
entire unlabeled graph. The transductive setting is istere ger min{K,n;}K +nlog D, wherekK is the cutsize of the
ing in that the learner has the possibily of “reconfiguring” (jabeled) tred’, D is the diameter of’, n is the number of

the graph before learning starts, so as to make the problemygdes inT, andn; < n/2 is the number of nodes it with
look easier. This pre-processing of the domain might be seengegree bigger than two.

as a kind of regularization method for the problem of graph
prediction.

In this paper, we consider the simplest case of binary la-
bels. In such a case, bounds on the number of predictionOnline linear learners, such as the Perceptron algorithre h
mistakes are naturally expressed in terms ofdimsizei.e., been applied to the general graph prediction problem by em-
the number of edges in the graph whose endpoints are asbedding then vertices of the graph ifR™ through a map
signed disagreeing labels. This immediately suggestsa sim transforming nodeé to thei-th coordinate versoe; € R™.
ple regularization technique: if the mistakes of a predicti For example, the graph Perceptron algorithm [8, 6] predicts
algorithm are bounded in terms of the cutsize of the graph, the label ofe; using the linear kernék = L5 +1 1", where

1.1 Related work

L¢ is the Laplacian of7, Lg is its pseudoinverse, and= t =1,2,...,n until all nodes ofl" have been selected. The

(1,...,1)T. The resulting mistake bound&® (y)Rg + 2 learner’s goal is to minimize the number of prediction mis-
where @ (y) is the cutsize and? = max; ;r;; is the takes. _ o
resistance diameter af (we write ; ; to denote the ef- A ¢-edge of a labeled tre’, y) is any edge, j) such

fective resistance betweerandj). Note the interplay be- thaty; # y;. Let) (T k) be the set of all labelings df with
tween the factors in the upper bound:Gfis dense, then exactlyk ¢-edges. We will say tha¥(T', k) hascutsizek.

Rg = O(1) but ¢ (y) can be of order?. If G is sparse, If Ais atree prediction algorithm and’, y) is a labeled
then®q(y) = O(n) but thenR¢ may become of ordet. tree, thenn (4, T', y) denotes the worst-case number of pre-
The idea of using a spanning tree to reduce the cutsize ofdiction mlstakes_ made_b;t over all presentations, . . . in
G has been investigated in [7], where the graph Perceptronof nodes off". With a slight abuse of language we define

is applied to a spanning trée of G. The resulting mistake m(A,T,<K)= max max m(4,T,y).
bound is of the form®r(y)Dr, where D is the diame- = k=1,....K yeY(T,k) B
ter of the chosen tree. Sinder(y) < @¢(y) this bound This is the number of mistakes made Ayon the worst-case

has a smaller cutsize than the previous one. On the other_, . . : >
hand,Dr — ©(Dg) where Dy is the diameter o7 and, choice of a labeling of" with cutsize budgek’. The maxi

in general,D¢; can be much larger thaR. A different mization overk is needed becauseax, ey r.x) m(4, T’ y)

techni 51 att s trol th tsize by i, is in general not monotonic ikh. Finally, we define thenin-
echnique [5] attempts to control the cutsize by lineag imax mistake bounn a treel’ with cutsize budgek by
via a depth-first visit. This gives a line graphthe so-called

spineof G) such thatbs(y) < 2 ®r(y). By running a Near- oPT(T,K) =minm(A,T,<K),
est Neighbor (NN) predictor ofi, one can prove [5] the mis- A
take boundbs(y) log, ((n—1)/®s(y)) + ®s(y)/In2+1. where the minimum is over all deterministic prediction algo

As observed in [9], similar techniques have been developedrithms.

to solve low-congestion routing problems. In [7] it is sug-

gested to pick’ in order to minimize the diametéd,. How- 2 Lower bounds
ever, since the adversary may concentratesadddges (i.e.,
edges connecting disagreeing labels) on the choserfiree
there is no guarantee th&t-(y) will remain small. A fur-
ther trick proposed in [5] to take advantage of both previous
approaches (graph Perceptron and NN) involves building a
binary tree onG. This “support tree” helps in keeping the
diameter ofG as small as possible. The resulting predic-
tion algorithm is a combination of Perceptron and Nearest-
Neighbor previously proposed in [4]. The corresponding
mistake bound isin,~q (N (G, p) +12®¢(y)p) 41, where
N(G, p) is the smallest number of balls of resistance diam-

ggeljr?dlgst?lgs;’vggg \ﬁfq.n:N%te that the graph Perceptron signs an arbitrary label to one of the two terminal node of
- say nodd. Now leti; be the node of such that there are ex-

There is a vast literature on the problem of drawing ran- actly [n/2] edges betweehandi,. The adversary chooses
dom spanning trees from a graph (see, e.g., the recent mono:

raph [10]). For “most’ graphs, a random spanning tree nodei; first, and forces a mistake by picking, to be dif-
ganpbe saﬁpled with a ra?ld(?m \;valk in tirfG¥n lpn n) [2? ferent frorr_1 the al_gorithm’s p_rediction. NOW .Iéi C lbe
or evenO(n) [1, 16], although all known techniques take the (sub-)line having as terminal nodeandis if i, # 1,

X : : or nodesi; andn + 1, otherwise. Let, be the node of;
©(n?) inthe worst case. As a matter of fact, this cubic worst- ') .
case bound is a theoretical limitation only, since the bound such that there argy| /2] edges between andi. The ad

is hardly met in practice. The space combplexity for qener- VErsary then chooses nodeand another mistake is forced
. y P = SP plexity for g as in the previous step. The adversary proceeds recursively
ating a random spanning tree is always linear in the graph

size. Finally, although we exploit random spanning trees to in this way until the chosen sub-line contains a single edge.

reduce the cutsize, similar approaches can also be used tThen, irrespective to the algorithm’s predictions, all tae
. ' S PD! (r)naining nodes are labeled in such a way that the cutsize does
approximate the cutsize of a weighted graph (see, e.g).[12] notincrease. It is then easy to check tHats, (n i l)J mis-

takes are forced. Moreover, it is important to observe that t
above adversarial strategy works evepifs already known
LetT be atree witm nodesindexed by, ..., n. A labeling to the algorithm. On the other hand, this strategy cannot be
of T is any assignmeny = (y1,...,yn) € {—1,+1}" of applied if the known label is on an internal nodefofThis
binary labels to its nodes. We UEE, y) to denote the result- fact is used in the proof of Theorem 1 below.

We now describe an adversarial strategy that, given a tree
T with n nodes and cutsiz&’ (for 1 < K < n) forces
any deterministic prediction algorithmd to make a certain
number of mistakes that depends bothignand7". This
lower bound is achieved for a worst-case choice (depending
on A) of both labeling and node presentation order.

The lower bound is based on the following fact. Given
a line graplv (i.e., a "list”) with n 4+ 1 nodesl, ..., n + 1
and|/| = n edges, a simple dichotomic adversarial strategy
can always forcelog, (n + 1) | mistakes using a cutsize of
at mostl. In order to achieve this, the adversary initially as-

1.2 Preliminaries

ing labeled tree. The online learning protocol for predict- The above adversarial strategy is extended to trees in the
ing a labeled tre€T, y) is defined as follows: The learner following way. The adversary looks for a certain &eof K
is initially given T', but noty. At timet = 1 an arbi- edge-disjoint line graphs containedfinand then applies the

trary nodei; in T is presented, and the learner must predict dichotomic strategindependentlpn each line. To this end,
its labely;, € {—1,+1}. Theny,, is revealed and a new it suffices the seL is ablanket a notion which we now de-
nodei, # i; of T is presented. This process goes on for fine. Given a seL of edge-disjoint lines contained in a tree

Theorem 1 For any treeT" with n nodes and any cutsize
K=1,...,n—1,we haveoPT(T,K) > LB(T, K).

Proof: Given any sizeK blanketL overT', we need to ex-
hibit an adversarial strategy that allows the adversarypto a
ply the logarithmic lower bounding argument for line graphs
to each linel € L independentlyby using at mos# ¢-
edges. A key fact here is that each linelofan be processed
by the adversary even if one of the two terminal nodes has
already been revealed to the learning algorithm.

SinceL is a blanket, we know there exists a connected
blanketL, such thatl. C Ly. The adversary initially finds a
line ¢, € L which is not grafted4; must exist sincd” has
no cycles) and performs a depth-first visit over the lines in
Ly starting from a terminal node @f. The adversary pro-
cesses the lines ihq in the order determined by the visit.
If the current lineZ belongs toL then the adversary applies
the strategy for line-graphs spending oaerfiostone when
|¢] = 1) ¢-edge, and causing the learning algorithm to make

X) S my mistakes orf. Our argument gives no guarantees on the
the con_nected blanket by removing the two Ilngs indicated ,\mber of mistakes forced on the linesiip \ L (e.g., the
by the_hght sh_ad_ed edges and nodes. The t_ermlnal n_odes 0{i]ght shaded lines in Figure 1). Thus, irrespective to tigoal
each line are indicated by a bulbous endpoint of the incom-

. d The ed directl d hi d rithm’s predictions, the non-terminal nodes of a non-gmft
Ing edge. The edges directly connected to white nodes arg;,q j, Lo \ L are given the same label as the terminal node

not part of the_underlying_connected bllanket. The nUMbers g, 504 with the line irt. that precedes in the depth-first or-
denote a possible depth-first presentation order followed b der. For instance, in Figure 1 the three light shaded interna
an adversary th_at starts from, say, the dark sh_aded node Ohodes in Line2 are labeled like the dark shaded terminal
the top-left. Thls_adversary assigns to the white nodes t.henode shared with Liné. This allows the adversary to avoid
same label as their closest (dark or light) shaded nodes. Sim using¢-edges on the removed linésc L \ L, at the cost
|!arly, the light shaded nodes belon_glng_ to the two removed being forced to set the label of the terminéll nodes of one
lines are labeled as the corresponding line terminal nodes. . 1 ore lines that follow’ in the depth-first order (for in-

stance, assigning labels to the non-terminal nodes of 2ine
determines the labels of the left terminal node of LB)e
However, we know that this constraint is compatible with
the lower bounding argument for line graphs.

If ¢ € Ly is a grafted line, the depth-first order insures
that? will be processed only after the (unique) libis grafted
onto (in Figure 1, Lingr is guaranteed to be processed after
Line 6). Note that, again, this is key to enabling the appli-
cation of the lower bounding strategy for line graphs inde-
pendently on each line ih. Finally, the parts ofl" not in
"Ly (indicated by white nodes in Figure 1) are labeled at the
very end. The adversary does not employ any furthedge
by assigning to each such node the same label as the clos-
est labeled node (for instance, the three white nodes on the
bottom-right of Figure 1 are assigned the same label as the
upper terminal node of Linél). |

Figure 1: A tre€l’ whose nodes have been divided into three
types: dark shaded, light shaded, and white. A connected
blanket is shown including dark shaded and light shaded
nodes only, along with their connecting edges. Another-blan
ket L, of size9, is formed by3 connected blankets (made
up of 2, 2 and6 lines, respectively), and is obtained from

T, we say that € L is agrafted line if one of the two termi-
nal nodes of is also an internal node of another liflec L.
This shared node is called tigeaft node of¢. We say that
L is aconnected blanketif: (i) The union of all lines inL
forms a (connected) tree, (ii) every node in this (connécted
tree can be internal node of at most one such line, and (iii)
Every grafted line inl. shares with the remaining lines in
no nodes but the graft, and Finall, is a blanket if it is
either a connected blanket or it has been obtained by a con
nected blanket after removing one or more of its lih&ee
Figure 1 for an example. Thgzeof a blanketl is the num-
ber of its lines|L|. Note that a blanket need not include all
edges of the original tre€. Also, observe that for any size
K < n, asizeK blanket over a tre&" always exists: take
L to be any set of distinct edges if¥’; then no lines ofL
have internal nodes and the blanket property trivially kold
On the other hand, a given tréeclearly admits many sizés 3 The optimal tree algorithm
blankets.

Let £(T, K) be the set of all sizés blankets ovef’, and
define the functions ("lower bound”) as follows:

In this section we describe a tree prediction algorithm that
achieves, up to constant factors, the lower bound proven in
the previous section even without knowing the cutsize bud-
get K. Our algorithm,TREEOPT, predicts a node with the

LB(T,K) = O : . ;
(T, K) LEI?(aT),(K)e Lme label minimizing the cutsize consistent with all labelsrsee
€ so far. If this label is not unique, then the algorithm préslic
where we use the abbreviationy = |log,(|¢| +1)]. using a nearest neighbor method. As we show in Section 4.1,

TREEOPT can be viewed as an approximate and efficient im-
plementation of the Halving algorithm for trees.
'Observe that a givefi might be generated by many connected We say that a label (or node)ievealedat timet if the
blankets. adversary already selected that node (thus causing ité labe

Figure 2: A treeT with 9 revealed labels inducing Ib-
treesTy, T, andT5. Fork nodes are denoted by double
circles. Ty has two forks,7» has nonel3 has one. The
outer white nodes do not belong to any Ib-tree. This figure
also explains the behavior alREEOPT by illustrating ex-
amples of the three itemized cases (1, 2, and 3 in the box),
depending on the position of the nogdo be predicted. For
instance, in Case Z,REEOPT determines’ and:” as indi-
cated, computeg; (t) = —1, andy;~ (t) = 0 (after running
the fork label estimation procedure éf), and then predicts
¥i, = —1 with rule 2.b.

to be observed by the algorithm). At any time step, the set
of revealed labels defines a collection of edge-disjoint sub
trees of ", which we call label-bordered trees (or Ib-trees,
for short). Formally, given a labeled tré&@, y) with re-
vealed labely;,, . .., y;,, anlb-tree is any maximal subtree

of T'whose leaves are all revealed and no internal node is.
Clearly, a non-revealed node can belong to at most one Ib-
tree. Afork node is any node of an Ib-trd& having degree
greater than two if”. Figure 2 gives an example. Note that
the set of Ib-trees, together with their fork nodes, depends
on the set of revealed labels, and is therefore changing with
time. For brevity, call a node that is either a fork or a re-
vealed node &inge node Also, call hinge line any line
whose terminals are hinge nodes, and such that no interna
node is a hinge node. Given a hinge nedeie compute its
estimated labeh such a way that the cutsize Bfgiven the
past revealed labels is minimized. The procedure for com-
puting this estimate, calldebrk Label Estimation Procedure
(FLEP), is the core of our algorithm. When there is no unique
minimizing label, the procedure assigns the fork a valu@ of
(“undecided”), rather thar-1 or —1. Lety;(¢) be the label

of ¢ estimated byLEP at timet. If i is revealed at time
theny;(t) = y;. Otherwisey;(t) is computed as follows:
Let 77 be the (unique) Ib-treé belongs to.FLEP performs

a depth-first visit ofl” rooted ati. The visit starts at and,
when backtracking to a nogeafter all the children of have
been visited FLEP assigns demporary labelko j given by

the majority vote among the temporary or revealed labels of
its children. Note that temporary labels setOtalo not in-

Algorithm TREEOPT
Parameters : Tree T, revealed node labels
Yiss - - -+ Yi,_,, S€lected nodg.

1. If 4, is afork in an Ib-tred” then:

—1 otherwise
2. Else if i; is contained in a Ib-tre@” but it is
not a fork then:

e Let i’ be the closest hinge node #pin
T’

e Leti” be the second closest hinge node
to; in T” such that the paths connecting
¢ and:” to i have no edges in common
(«"" always exists);

[1.a]
[1.b]

+1 ifge(t) +g(t) >1 [2.a]
—1 g (t) +ge(t) < -1 [2.]
G4 ~1 g) =ge)=0 [2]
v (t) otherwise [2.d]

(i.e. 5 (£)gir (1) = —1)
3. Else(i; is not contained in any Ib-tree)
e Let s be the closest node tig in an Ib-
tree
[3.a] If ys isrevealed attimetheny;, «— y,

[3.b] Else recursively callTREEOPT with
parameterd’, y;,, ..., yi,_,, ands.
Obtainy, and sety;, < ¥ -

fluence this vote. If the vote is a tie, i.e., the sum over all
involved labels ig0, then the temporary label gfis set to

0, too. Once all nodes df’ have been visited (and the visit
is back to nodé) FLEP returns the temporary labg](t) as-
signed toi. Figure 3 gives an example.

In the box is the pseudocode of our algorithm. This al-
gorithm takes in input a tre#, a sety,,,...,y;,_, of re-
vealed labels, and a nodgto be predicted. The algorithm
then returns its predictiof;, for the label ofi,. In partic-
ular, if 4; is a fork node inside some Ib-tree (Case 1), then
TREEOPT just outputs the labgj;, () returned byrFLEP, un-
lessFLEP returns0. In this latter cas@ REEOPT outputs the
default value—1. On the other hand, if; is not a fork, but
it is still contained in some Ib-tree (Case 2), then the algo-
rithm determines the opposite hinge nodési(d:”) closest
to i;, computes (again through P) estimated valueg; (t)
andy;~(t), and uses these values to compute its prediction.
If ; lies between nodes with estimated (or revealed) labels
+1and—1 (Case 2.d) themreeOPT returns the label of the
closer node. Finally, if; is not contained in any Ib-tree (Case
3), the algorithm determines the closest nedeside some
Ib-tree, and then either predicts through the label @f i, is
revealed) or acts as ifwere the label to be predicted at time
t (i.e., TREEOPT recursively invokes itself withi; = s).

Figure 2 contains examples of the algorithm functioning.

2Note that after the recursive catiReEOPT will not recur any
more in that time step, since rule 3.b will subsequently oglyules
1 or 2 only.

Figure 3: Fork label estimation procedure £P) within the
displayed Ib-tree. The question mark indicates the forkenod
whose label has to be estimated. The arrows indicate the
backtracking steps of the depth-first visit, where the major
ity vote (the arrow tags) among the temporary (or revealed)
child labels is calculated. For instance, the right-mosik fo
node receives twa-1 and one—1 from its three incoming
neighbors, and thus sendsl to its left. The second fork
node from the right receives ongel and one—1, thereby
sending oud. The fork node tagged with “?” is estimated
+1 (note tha® is immaterial for the majority vote).

Note thatTREEOPT reduces to a standard 1-Nearest Neigh-
bor algorithm when the tre€ is a line graph (namely, when
fork nodes are absent).

4 Mistake bound analysis

This section contains the analysis DREEOPT. We will
prove the algorithm is optimal up to (multiplicative) coaist
factors.

The following simple property of the functiors is of
primary importance. The proof is given in the appendix.

Lemma 2 For any treeT with n nodes and for any <
K < K' < n,we havas(T,K') < & 1s(T, K) .

At a high level, the proof of optimality hinges on show-
ing m(TREEOPT, T, < K) = O(UB(T,K) + K), where
UB is a function that bounds the number of mistakes made
by TREEOPT in terms of a size9(K) blanketL(T, y) over
T. This blanket is obtained by dividin@' into subparts,
and then by mapping each subpart to a set of lines. The
union of these lines forms the blanket. Then we show
that us(T,K) < K + 1 + LB(T,0(K)). Since by
Lemma 2 we haveB(T,O(K)) O(LB(T,K)), and
K < LB(T,K) holds by definition ofLs, we immedi-
ately getmn(TREEOPT,T, < K) = O(LB(T,K)). Com-
bined with Theorem 1, this implies the optimality condition
m(TREEOPT, T, < K) = O(opPT(T, K)).

The proofis a bit involved and requires us to step through
several auxiliary definitions and intermediate results. We
first introduce the notion of cluster, along with its (inneda
outer) structure.

A cluster C of a labeled tre€T, y) is a maximal subtree
of T' containing nog-edges. The blankdt overT used in
the proof is the union of sets- of edge-disjoint lines from
each cluste€’. The setd. will be defined later on.

Let C be a (non-degenerate) cluster containing at least
two nodes. We will define a covering(C) of the nodes
of clusterC —i.e., each node of’ belongs to at least one
subset inP(C). Then, we will construct a mappinf that,

- -
-~

(" Cluster T i
/N e

a_o

S8pou Japlog Jeino

© 000

@

Figure 4: Cluster structure. All nodes within the cluster ar
labeled+1. The displayed cluster has7 outer border nodes
(henced- = 7) and4 inner border nodes. The frante: is
made up of all dark or light shaded (ard-labeled) nodes.
Dark shaded nodes are either frame-forks or inner border
nodes (i.e., the terminal nodes of a frame-line). The gray
shaded edges indicate paths connecting pairs of outerborde
nodes, identifying the cluster frame. The tagged framé&-for

1 hasd; = 3. Thick black edges identify the shaft of each
grafted tree. The shaft(¢) contoured by dotted lines is as-
sociated with the tagged frame-lidie Examples of grafted
shrubs are also displayed.

for eachC, bijectively associates elements®fC) with el-
ements of subsets of lines I, in such a way that for any
non-degeneraté' the number of mistakeBREEOPT makes
on each elemer € P(C) is O(Y () mu). If Clis a
degenerate cluster (i.&C] contains only one node), thefi
will not be defined.

In order to definef over non-degenerate clusters, we
need to introduce a specific cluster structure terminology.
See Figure 4 for reference.

Definition 3 Let a clusterC of a labeled tree(T,y) be
given.

e Theouter border nodes are all nodes ofl" not in C
that are adjacent to (exactly) one node(of We denote
by & the number of outer border nodes of cluster
i.e., the number af-edges connecting nodesdhto the
outside.

Theinner border nodes are all nodes of” that are ad-
jacent to at least an outer border node®f

e Theframe F is the subtree of’ whose nodes are on
a path connecting any two outer border nodes. We de-
note byd; the maximum number of edge-disjoint paths

connecting with outer border nodes.

e Aframe-forkis a nodei of Fz such thatd;, > 3. implying that the originalL is indeed a blanket ovér. We

e Aframelineisaline¢ C F, where each terminalnode Show below (proof of Theorem 12) thet| = O(K), being

is either a frame-fork or an inner border node, and such /& the maximum cutsize off’, y). _
that no internal node of is a frame-fork. Notice that The following sequence of lemmas, some of which are
d; = 2 for all internal nodes of /. proven in the appendix, show the announced key property of
- 3 mappingf, as related to the behavior oREEOPT. Namely,
e Atreegrafted on aframeis® any connected component o, any non-degenerateé, TREEOPT makes on each element
of C that remains after deleting all nodes of the frame Q € P(C) at mostO(Zl Q) mé) mistakes. For this pur-
c .

F¢c and all edges incident to them. Notice thit= L ; g N
1?0r all nodesgz' of such trees. One can defiﬁ more POS€; we find it convenientto introduce the functim(“up-

generally, a tree grafted on a subtr@® in a similar per bound”):
way.

e Agraftnodei of T'is any node o~ adjacentto a node UB(T, K) = verx) (‘Cl(Tv OIS mf) :
of a grafted treel”; we will say thatT” is grafted or; ’ LeL(T,y)

e Agrafted shrubis a set of one or more trees grafted on ug(7', K) will be shown to be an upper bound (up to a con-
the same node; stant factor) onn(TREEOPT, T, < K).

e Theshaft of a grafted treel”, denoted by (7"), is the
line connecting the graft nodeof T’ to the farthest
node inT’. We definer(¢) to be the shaft of maximal
length among all trees grafted on internal nodes of a
frame-line/. Moreover, for any shrul$ grafted on a
nodei, we definer(S) to be the set containing thd; +
1 longest shafts of trees ifi.

We now defineP(C') for each clusteC, and the bijective
mappingf from|J P(C) to the set of all lines of". More
precisely,f maps eacld) € P(C) to a subset of lines ify".

A subset) of nodes inC' belongs taP(C) if and only if Figure 5: A line/ with terminal nodeg’ and;”" and grafted

one of the following two cases is true: trees above. Dichotomic behavior: afféis revealed, the al-
1. Q is the set of nodes of a frame-lidetogether with all ~ 90rithm makes no more mistakes on the nodes in the dashed
the nodes of shrubs grafted on internal nodes of rectangle (ties are broken as in prediction rule 1.b). After

j1 is revealed, the algorithm makes no more mistakes on the
nodes in the dotted rectangle, etc. Ngdds the graft node
involved in Case 3.b of REEOPT when predicting the label

of jl-

2. Q is the set of nodes of a shrub grafted on either a frame-
fork or an inner border node ¥, together with the graft
node.

For sets) of type 1 we definef(Q) = {¢,0(¢)}. For sets
Q of type 2 we definef(Q) = o(S). Now, if we extend
the mappingf by viewing it as defined ovdr) C' (the union Lemma4 Let C be a cluster andd C ¢’ be a sub-line
including non-degenerate clusters only) one can easilfiver of some frame-ling’ € Fs. Assume at time¢ one of
its bijectivity: In fact, for any cluste€ and any@ € P(C), the two terminal nodes of are revealed. Then after time
the set of nodes contained in a lidec f(Q) is a subset ¢ the total number of mistakes made bREEOPT on ei-
of @ only. LetC; = C1(T,y) be the subset of degenerate ther internal nodes of or trees grafted orf is bounded by
(singleton) clusters. Given a labeled t(@e y) with cluster |log, |¢]] < my (see Figure 5 for reference).
setC = C(T,y), define

The next three lemmas hold for any frame-lihbelonging

L(T,y) = U Lc = U U f@. @ to a clusteiC of a labeled tre€T, y).

cec\e CeC\e QeP(C) Lemma 5 The total number of mistakeREEOPT makes on

Note thatl = L(T,y) is a union of lines that do not contain internal nodes of is at most2m,.

¢-edges. If we add td all ¢g-edges ofl’ we obtain a set)

of edge-disjoint lines whose only grafted lines are thetshaf Lemma 6 (Proof omitted.) The total number of trees grafted
Those, in turn, share with the other lines the graft nodeg onl 0n¢ on whichTREEOPT makes mistakes is at mast,, + 1.

Hence this augmented set of lines is a connected blanket, . :
Lemma 7 (Proof omitted.) There exists at most one tree

3The reader might expect a grafted line, as defined in Section 2 grafted on/ whereTREEOPT makes more than one mistake.
be a special case of a grafted tree. In fact, the two defirstae
slightly divergent, in the sense that the former includes ghaft The next two lemmas bound the number of mistakes made
node, while the latter does not. For the sake of presentatien on trees and shrubs grafted on the frame of a cluster
find it more convenient here to keep the graft node out of théenl
tree. Lemma 8 (Proof omitted.) The number of mistakes made
“Obviously, the number of shafts ia(S) will actually be by TREEOPT on a treeTy grafted on the framé of C'is at
min{|S|,d; + 1} mostm (g, + 1.

Lemma 9 The number of grafted trees of a shrelgrafted wherek < K is the cutsize ofy. Since the above holds for
on¢ on whichTREEOPT can make mistakes is at mastt- 1. all labelingsy of T with cutsize at mosi¢,

The next key lemma bounds the number of mistakes made m(TREEOPT, T, < K)) = 0(max uB(T, k’))
on any element oP(C). o

=0 (uB(T,K)+ K) ,

Lemma 10 LetC be a non-degenerate clust@t(C) be the using Lemma 11 in the last step. Nowg is defined in terms
c_orrespondmg covering. Let be thg bijective mapping de- 4 5 specific blankeL, with |L| = O(K), and]Cl (T, y)‘ <
fined above. Then the number of mistakes mad&BgOPT K + 1 wheny has cutsize bounded by. These facts imply
onanyQ € P(C) is bounded by (3= ¢ ()) UB(T,K) < K+1+LB(T,O(K)). Finally, using Lemma 2
andLB(7T, K) > K, we obtainm(TREEOPT,T,< K) =

Before proving the main result of this section, we need one
more lemma establishing a key property of the functien O(K +LB(T, O(K))) = O(LB(T, K)). u
Lemma 1l Forall K = 1.....1m — 1. the functionus sat- In order to compare the optimal bound achieved by our

isfiesUB(T. K — 1) < UB(T K’ 1 algorithm to the bounds mentioned in Section 1.1, we note
(T,) < UB(T, K) + that, for any given labeled trgd’", y), our algorithm makes

. _ a number of prediction mistakes whose upper bound can be
Theorem 12 For any treeT" with n nodes and any cutsize o_ritten as

budgetk, m(TREEOPT, T, < K) = O(LB(T, K)). O(@r(y)) @)

Proof: Pick any labeled tre¢T’,y) and letk < K be its where®r (y) is the cutsize of 7', y) andm is the average
cutsize. Letl — L(T,y) be the blanket (1). Pick a non- of m, over all lines/ in the blanketl of size @ (y) maxi-

degenerate clust€¥ € C(T,y). LetT, be the tree obtained = M'#!N9 D per, M-
by augmenting the frame with the® outer border nodes Note thatm, < log, Dr + O(1) for all £. More-
of C' as leaves (referring to Figure 4, the resultifigis the over, for many classes of tred§ if the.cutS|ze is not too
tree including all non-white nodes). Then observe that the Small then it is not even possible to find a blanket of size
number of inner border nodes @(®¢). Since in any tree ~ P7(y) whose lines have average length linear/». In
the number of nodes of degree larger tBarannot be greater ~ these casesy, can be much smaller thang Dr. As for
than the number of leaves, the total number of frame-forks the time complexity, since:(TREEOPT, T, < K) > K and
in C is alsoO(®¢). Finally, since a frame-line iy is m = m(A,T, < K) = Q(m(TREEOPT, T, < K)) for any
terminated by either a frame-fork or an inner border node, deterministic algorithmd, if the cutsize isQ2(log D7) our
the total number of frame-lines is al§(®). This can be algorithm is faster than the one in [4], which predicts all la
seen by noting that collapsing each frame-line to a single bels in time©(nm). Note also tharREEOPT does not re-
edge turnsFy into a tree with a number of nodes linear in quire any explicit (and costly) pre-computation. Moregver
®c. This tree then ha® (@) edges, which implies that the unlike Perceptron-like algorithms which use< n matrices,
frame-lines inF are alsoO(®c). Now, by definition of the space required B)REEOPT is always linear im.

: () the number of lines il deriving from subset§) of . . .
tj;psa)l is linear in the number of framg-lines @; (i) ssi)nce 4.1 Comparison to the Halving algorithm
the number of shafts having as terminal node an inner borderWe now compareREEOPT to the so-called HLVING al-
node (i.e., aleaf of o) is linear in®¢, and the total number gorithm (applied to trees). This is a standard version space
of remaining shafts (i.e., those grafted on frame-forks tha algorithm defined as follows. L&¥; be the set of labelings
are internal nodes aof) is linear in the number of frame- y € {—1, +1}" consistent with all labels revelead up to time

lines, the number of lines ih ¢ deriving from subset§) of t. Define nowy™» C), as those labelings with minimum
type2is O(®¢). Therefore, cutsize iny;. HALVING predicts the label of; with the value
y € {—1,+1} that maximizes|{u € Y™} : u;, =y}|.
|L| = Z |Le| = Z O(®c) = O(K) . For example, if assigning a certain labelitoincreases the
cec\e: cec\e current cutsize (irrespective to the value of the remaining

non-revealed labels), thenadvING always predicts the op-
To finish the proof observe that, by Lemma 10 and by defi- posite label, i.e., the cut-minimizing label.

nition of f, Proving tight mistake bounds forAvING is in general
not straightforward. As a simple example, the best bound for
m(TREEOPT, T’ y) HALVING on a star graph with nodes and cutsiz& < n,/2
is O(K). This in contrast with the more intuitive “version
< |Ci(T,y)| + (9< Z Z Z me) space bound© (K log(n/K)) one might think of at first
CEC\C1 QEP(C) Lef(Q) glance. In this section, we prove the optimality oAlv-

combinatorics involved, we do so only indirectly, by exploi
ing the optimality ofTREEOPT.

The following lemma (whose proof is sketched in the ap-
= O(UB(T, k)) pendix) shows that when the fork label estimation procedure

) ING (up to constant factors), but because of the very difficult

= [Cy(T,y)| +0< Z me

e L(T,y)

(FLEP) of TREEOPT returns a nondefault value (as in pre-
diction rule 1.a), then this value is the same cut-miningzin
label predicted by HLVING .

Lemma 13 Lety,.(¢) be the value returned bsLEP run by
TREEOPT at timet to evaluate the label of node If y,.(t) #
0 thenu, = y,.(t) for eachu € Y™™,

The same equivalence betwegREEOPT and HALVING
predictions holds in other cases, for instance whedoes
not belong to any Ib-tree. In general, however, the predic-
tions of the two algorithms may differ. Nevertheless, it is

possible to prove that the number of nodes where the two

predictions differ is small, as stated by the following theo
rem.

Theorem 14 For any labeled tre¢T’, y) with cutsize(, and
any presentatiotiy, . . ., i,, of the nodes of’, the number of
times whenrREEOPT and HALVING output a disagreeing
prediction is bounded b§ (LB (T, K)).

Proof: [Sketch] The predictions of REEOPT and HALVING
differs only when: ()TREEOPT estimates a fork a8 (pre-
diction rule 1.b); (ii))TREEOPT predicts a node between two
forks estimated a8 (prediction rule 2.c); (iii) Node,; does

not belong to any Ib-tree and the closest node in a Ib-tree is ;. These labels are([i — j])

a fork estimated a8 (prediction rule 3.b together with 1.b);
(iv) i; is on a hinge line whose terminal nodésind:” are
such that the label of’ (estimated or revealed) is different
from 0 and the label of’ is estimated a8 (subcases in pre-
diction rules 2.a and 2.b).

The nodes in which cases (i) to (iii) may occur are easily
seen to b&(K). In case (iv) the two predictions differs only
wheni, is closer toi’. This fact makes it possible to find a
sizeO(K) blanketL such that the number of disagreeing
predictions iSO (3", me). []

Theorem 14 implies thatReEeOPT approximates HLv -
ING, the two algorithms making the same number of mis-
takes up to constant factors. A close examination of the
two algorithms reveals that wherReeOPT predicts a de-
fault value, HALVING apparently needs to perform a cer-
tain amount of computation. In this respect, we can view
TREEOPT as a “lighter” implementation of WLVING. In
fact, in the next section we show theReeOPT can be im-
plemented in a quite efficient manner.

5 Efficient implementation

A naive implementation of REEOPT requires space linearin
the total number of nodes. Itis also easy to check that pre-
dicting a single label requires tim@(n), since each Ib-tree
hasO(n) nodes. In this section we describe a more sophis-
ticated implementation that improves significantly the &mo
tized time per time step, while still using space lineanin

Theorem 15 The total timerREEOPT requires to predict all
labels of a labeld tre¢T, y) with n nodes is

O(min{ny, K} K + nlog D)

whereK is the cutsize ofT’, y), ny is the number of inter-
nal nodes ofl" with degree greater thaf, and Dy is the
diameter off".

Note that wheneveK = O(/n), the amortized time per

step is at most logarithmic in the diamétef T'. In order to
achieve this speed up, we maintain the following data struc-
tures (see Figure 6).

Signals and signal values. We store extra links connecting
neighboring hinge nodes so as to avoid running the depth-
first visit involved inFLEP. For each hinge liné with ter-
minal nodes and; we store an extra directed lirffk — j]
connecting to j, and a second orlg¢ —] connectingj to

i. We call these linksignals All signals of the forn{i — j]
are stored together with nodeEach signali — j] is linked
to its twin [j —] and to the node adjacent#dn ¢. Hence,
when traversind for predicting with rule 2, it is possibile to
find both signals associated withn constant time just after
reaching one of the two terminal nodes. Each sighab j]
has a value([i — j]) € {—1,0,1,0}. If j is a frame-fork,
v([i — j]) is equal to the temporary label thatep would
assign toi when estimatingy;. In the special case whep

is already revealed angdis a fork nodep([i — j]) is simply
equal toy;. Finally, if y; is revealed then([: — j]) is equal
to [, and we say that the signaléspty Recall that, in order
to return a label for the fork nodg FLEP assigns temporary
labels to each internal node of the hinge line conneciiiag

Fork values. We associate with each forka numerical
valuew; given by the sum of the temporary or revelead la-
bels of its children in the Ib-tree rooted at Observe that
FLEP always returnsGN(v;) as the value of a fork labey;
(where we definesGN(0) = 0). Moreover,v; is equal to

> jene v([J — i) whereN(i) is the set of hinge nodes
j such thati is linked to j via a signal; note also that
v([i — j]) = SGN(v; — v([j — 1])) for each signali — j]
wherei andj are both forks.

Other auxiliary structures. By means of an initial depth-
first visit of T, we associate with each ed¢ej) € E a
direction given by the relationship chilé parent in the tree

T rooted at nodé;, i.e., the node whose label is revealed at
the end of the first time step. Starting from any nedet
contained in any Ib-tree, itis then possibile to find the aetr
nodej belonging to an Ib-tree in time linear in the distance
betweeni and; by simply following these edge directions.
We associate with each pair of adjacent nodassd; in any
given hinge linel an extra directed linK:, 5], along with

its twin link [j,4]. These links are useful when traversing
£. Each node has a mark that allows the algorithm to know
whether the node belongs to an Ib-tree, or if it is a fork node
or whether its label has been revealed or not.

We now describe the key conceptafinal change prop-
agation Suppose that a signél — j] changes its value in
such a way that([i — j]) # O both before and after the
signal modification. This modifies the valug which, in
turn, may affect the values of some signals departing ffom
Therefore, any signal modification can propagate through th
signal links in the Ib-tree. It is important to observe that a

5Though we do not prove it here, the above computational
bound can be further refined by replacitug; D+ with a smaller
structural parameter (independentfdj. For some trees the value
of this parameter can be constant even whenDr = ©(logn).

Figure 6: Two Ib-trees with the main auxiliary data-
structures for the efficient implementation. The numbers in
side the fork nodes (the two doubly-circled nodes) indicate
the fork values);. Nodei; is located at the bottom-left. The
gray arrows, directed towards, are aimed at supporting a
quick implementation of prediction rule 3 BREEOPTwhen
finding the nearest node contained in an Ib-tree. The bidirec

tional black arrows denote signals exchanged between pair

of terminal nodes of hinge lines.

increase (decrease) of signal vatu& — j]) will not prop-
agate if, before the change;, > 2 (v; < —2) (all values of
outgoing non-empty signal will remain equalsaN(v;)).

We continue by sketching how the algorithm uses and up-

dates the auxiliary structures when predicting ngdeThe

reader is referred to the three prediction rules in the pseu-creating the other auxiliary structures, is lineanin

docode of REEOPT.

1) i; is a fork. The algorithm predicts witlsGN(v;) (or —1

if v; = 0), sets the value of all signals incomingitequal to
0 and that of all signals outgoing froirequal toy;, propa-
gating them if necessary.

2) i; is contained in an Ib-tree but it is not a fork. Let

i andi” be defined as in prediction rule 2. The algorithm
finds the nearest hinge nodey traversing the hinge line in
both directions (using a breadth-first visit on that linefen

it uses the signs of;; and v, for predicting with rule 2,
creates the signal$; — '] and[i; — "], and propagates
them if necessary. Finally, the algorithm replaces the tido o
signals linkingi’ to " with [i" — ;] and[i” — 4.], and sets
both values ta].

3) iy is not contained in any Ib-tree.The algorithms finds
the nearest node contained in an Ib-tree using the extra-
links directed toward$; and creates the auxiliary informa-
tion for the new hinge line connectirigto s. Then the algo-
rithm predicts as if the adversary had asked for laheand
creates the signal$ — j] and[j — 4]. If j is not a hinge

Lemma 16 Lett belong to a phase and lef(t) be the value
of afork node at the beginning of time If y; is not revelead
attimet, thenv; (t+1) > v;(t) if v;(t) > 0, andv;(t+1) <
Uz(t) if Uz(t) < 0.

We can now sketch the proof of the worst case time bound
for predicting the labels iff'.

Proof: [Theorem 15, sketch] Each internal nodeé of a
hinge line¢ can be visited onlyO(log |¢|) = O(log Dr)
times through prediction rule 2. As a matter of fact, for each
of the two traversing directions, the distance betweand
the node from which the breadth-first visit ovestarts is at
least halved each timegets visited. This fact accounts for
theO(nlog Dr) term in the bound.

Now observe that a node with degree smaller thaan
never become a fork. Moreover, the number of forks in-
volved in a signal propagation process in each tree grafted
on a cluster frame is constant. The number of trees grafted
on a frame-line/ on which a signal change can propagate
is again constant. For each shrSbgrafted on a node,

Sthe number of trees df involved in the signal propagation
IS

O(d;). Lemma 16 applied to each fork together with
these observations, allows us to deduce that in a singleephas
the signal propagation process takes tithenin{ns, K}).

This is also the time required by a signal propagation in each
step where the minimal cutsize gets increased. Finally, the
number of phases is equalt¥ K).

The proof is concluded by considering that the total time
required for creating and emptying all signals, as well a&s fo
|

6 Application to labeled graph prediction

We now discuss the application of our tree prediction al-
gorithm to the general problem of predicting the labels of
an undirected graph, and compare our results to the ex-
isting literature. As mentioned in the introduction, when
given a graphz = (V, E) with n nodes and arbitrary bi-
nary labelgy, we suggest runningREeOPT on a (uniformly
generated) random spanning tree(af By exploiting Kir-
choff’s equivalence between the effective resistanceof

(i,7) € E and the probability thati, j) belongs to a ran-
dom spanning tre€, we immediately obtain that the ex-
pected cutsize dl’ is the resistance-weighted cutsize(@f
Pr(y) iz(i_’j)eE rij(yi — yj)?. This is significantly
better than’s cutsize®(y) in most cases. In fact, on an
unweighted graph witlk nodes, the effective resistancg;

of an edgg(i, j) always lies in2/n, 1]. In particular,r; ; is
very small wher(i, j) is located in a densely connected area
of the graph, whiler; ; = 1 when (i, j) is a bridge edge.

node, then a new signal is created. This signal is updated and-or instance, in a dense graph where = O(1/n) for all

propagated analogously to the previous case.

The next lemma (whose proof is omitted) is useful for the
complexity analysis. First of all, we definephaseto be

a maximal non-empty interval of time steps where no label
revelation increases the minimal cutsize consistent viigh t

(i,7) € E, the adversary may choogeso as to concentrate
©(n) ¢-edges on any specific tree, and fet(y) = O(1).

The above argument immediately leads to the following
general result. LerREeOPT+ be the (randomized) graph
prediction algorithm that, on inpu®, first generates a ran-

labels seen so far. Hence a time step where the current mini-dom spanning treé’ of G, and then rungREeOPT on 7.

mal cutsize increases does not belong to any phase.

Define (G, y) andm(A, G, y) similarly to what we did for

trees.

Corollary 17 For any undirected labeled grapltz, y), and the results presented here could contribute to the litezatu
for any presentation ordef, . . ., i, of the nodes of7, the on tree searching. We are planning to explore these connec-
expected (over the random choice of the spanning e tions.

number of mistakesBREEOPT+ makes or{G, y) is bounded

asE[m(TREEOPT+, G, y)| = O(®r(y)logn). Acknowledgments. Thanks to Mark Herbster for useful
discussions. We would also like to thank the COLT 2009
Proof: We have reviewers for their comments which greatly improved the

_ presentation of this paper, and also for pointing out refer-
E[m(TREEOPT+, G, y)| = E[m(TREEOPT, T, y)] ence [11]. This work was supported in part by the PAS-
=E[O(®r(y)me] = O(Pr(y)logn) CAL2 Network of Excellence under EC grant no. 216886.

where the second equality is (2), and the last one follows This publication only reflects the authors’ views.

after (crudely) upper bounding, by log n. | References

Similar bounds could also be shown to hold with high .
probability, rather than in expectation, by exploiting luro (1] ’l:l/l élo{hﬁéA",\';‘ér':/" g%‘é%k%” v%éligzé?:’fgétlé?t;ea{r?gﬂe
concentration properties of random spanning trees. Sge, e. In Proc. 20th SPA%pages 119-128 ACM Press. 2008
[3] and references therein. :) Teo- ' '

The best mistake bound we know of for the general graph (2] éoﬁlrloi%eé SGZ”‘Z?E% rizgoﬂééﬁ’zag?égg trlegesd;’mc.
prediction probl_em has the fprminp(N(G,p)_+ (I)G(y)p.)' [3] N. Goyal LpRgdemacher and S Vempz,ila Ex.panders
WhereJ\/(G,p) is the covering number of? in the resis- vi.a rando'm.spanning tree‘s froc .19th SOD.Apages
tance metric [5]. It is easy to see that this bound gets large 576-585 ACM/SIAM ZOOé ' g
when the diameteb; is large. Moreover, real-world graphs e L : .

: 4] M. Herbster. Exploiting cluster-structure to predicet

G (such as parts of the_ web graph) have dense regions that[] labeling ofagragh. IrF?roc. 19th ALTSpring(Fa)r 2008.
can cause a large cutsize. In some of these cases, (take the[5] M. Herbster, G. Lever, and M. Pontil. Online p,rediction
lollipop graph as an extreme situation), it is just impoksib on larae diameter araohs. NIPS 22 MIT Press. 2009
to find a small-sized covering using balls of small radius. 9 grapns. ’ :

- - 6] M. Herbster and M. Pontil. Prediction on a graph with
A uniformly generated random spanning ttBeof G guar- [
antees, instead, that the presence of dense pats il tzhoeoserceptron. INIPS 19 pages 577-584. MIT Press,
not dramatically increase the cutsizelof Hence the use of 1M H.rb ter M. Pontil. and S. Roias-Galeano. FEast
TREEOPT on a random tree ensures an appealing (expected) [71 M. Herbster, M. Pontil, a - rojas-aleano. Fas

- ; diction on a tree. INIPS 22 MIT Press, 2009.
mistake bound where the cutsize factor cannot get too large, pre ; . -
: : [8] M. Herbster, M. Pontil, and L. Wainer. Online learn-
except for degenerate and very irregular labelings. ing over graphs. IProc. 22nd ICML pages 305-132.
ACM Press, 2005.

7 Ongoing research [9] J. Fakcharoenphol and B. Kijsirikul. Low congestion

We close by mentioning a few research directions we are online routing and an improved mistake bound for on-

currently investigating. First, we are exploring to what ex line prediction of graph labeling. Manuscript, 2008.

tent our tree prediction strategy could be applied to weight [10] R. Lyons and Y. PeresProbability on Trees and Net-

graphs. We would like to prove mistake bounds where the works. Manuscript, 2009.

adversary is measured by a weighted version of the effective[11] K. Onak and P. Parys. Generalization of binary search:

resistance ovep-edges. This seems to require us to some- searching in trees and forest-like partial orders?ioc.

how generalize REEOPT to weighted trees. 47th FOCSpages 379-388. IEEE Press, 2006.
Second, we are studying the case when the learning algo{12] D.A. Spielman and N. Srivastava. Graph sparsification

rithm has at its disposal side information about the binary | by effective resistances. IRroc. 40th STOCACM

bels to be predicted. A standard way of doing so is to assume Press, 2008.

each node is associated with an unknown linear-threshold [13] H. Shin, K. Tsuda, and B. Scholkopf. Protein func-

functionu; € R?, and at the beginning of timethe algo- tional class prediction with a combined graptEx-

rithm observez:; € R? such thaty;, = SGN(u; ;). pert Systems with Application86:3284-3292. Else-
Third, we are planning to collect experimental evidence vier, 2009.

of the performance of our algorithm. Our analysis suggests [14] W.S. Yang, J.B. Dia. Discovering cohesive subgroups

that TREEOPT is very efficient in both time and space, mak- from social networks for targeted advertising. Hn-

ing it suitable to large-scale practical applications. &r-p pert Systems with Application84:2029-2038. Else-

ticular, we expect a committee of spanning trees drawn at vier, 2008.

random from a low diameter graph to be a very accurate and[15] Web Spam Challengeyebspam |i p6. fr.

efficient compound predictor. [16] D.B. Wilson. Generating random spanning trees more
Fourth, as pointed out by one of the reviewers, there seem quickly than the cover time. IRroc. 28th STOCpages

to be connections between the line of research pursued here ~ 206-303. ACM Press, 1996.
and the results presented in [11] about tree searching. It

might be possible, although apparently not straightfodyar

that a different interpretation of our results could be oisd

by extending that work. Conversely, it might be possiblé tha

A Proofs predictions on nodes of imply correct predictions on the
whole shrub grafted on those nodes (see Figure 5), this halv-
ing process implies that the total number of mistakes made
after timet on internal nodes of, or on trees grafted ofy is

at most|log, |4]] < my.

Proof of Lemma 5: As soon as the first nodegets re-

_ _ vealed, line/ is split into the two sub-lineg, and/; shar-
Proof of Lemma 2: Let L’ be a blanket of sizé& overT’ ing 7 as terminal node. By Lemma 4 the number of mis-

achieving Ehe maximum in the definition og. Let L be the takes made on the internal nodes/dé therefore bounded
subset ofL’ obtained by keeping only this longest linesin 11" " 1oe 17,1] + [logy [fa]] < 1+ |log, |[f1||6s]] <

Throughout the appendix(i, j) denotes the (unique) path
connecting node to nodej, andd(, j) denotes the number
of edges inx(i,j). Moreover, without loss of generality,
when focusing on the nodes of a given clustewe assume

they are all given label1.

L’. SinceL’ is a blanket, so id.. By definition ofLB, 1+ [2log, [€] — 2] < 2my.
me < max my = LB(T, K). 3) Proof of Lemma 9: If |S| < d; + 1 the claim is trivial.
= LeL(T.K) ;= Hence, we continue by assumif§j > d; + 1. Suppose that

_ _ _ _ _ at least one mistake has been madelpn- 1 trees grafted
Besides, sincé contains thek longest lines inL’, for any oni. If y; is revelead at time, then the prediction rules 3.a

¢ e L'\ L we can write and 2.a ensure that no more mistakes will be madé.ddn
1 LB(T, K) the contrary, ify; is not revelead, the majority_ vote 'm_EP
mey < — Zml <7 (4) guarantees thaj; will always be correctly estimated in the
K~ K future (i.e.,7;(s) = y; for anys > t), and the prediction
rules 2.a, 3.a, and 3.b guarantee no more mistakes.
Hence Proof of Lemma 10: We first consider the case whéhis
LB(T,K') = Z me of type 1. In this case, the total number of mistakes made
el on @ can be simply bounded by summing: (i) the mistakes
on ¢ (Lemma 5); (ii) the mistakes on the trees grafted on
= Z me + Z mey £ on which the algorithm can make more than one mistake
el veL’\L (Lemma 7 and Lemma 8); (iii) the number of the remain-
K - K ing trees grafted oA where the algorithm can make at most
<LB(T,K)+ Le(T, K) one mistake (Lemma 6 and Lemma 7). Putting together,
K’ the total number of mistakes made @can be bounded by
= 7 B(1LK), O(Xsesig) me)-
Let us now consider a subsgtof type 2, and lef be the
the inequality following from (3) and (4). shrub referred to in the definition of su¢h By Lemma 8,

Proof of Lemma 4: Let j’ be the terminal node dfwhose ~ Lemma 9, and the definition af(S), the total number of
label is revealed, angl’ be the other terminal node. After ~mistakes made o can be bounded as

time ¢, as soon as the algorithm makes the first mistake on a

treeT” grafted on an internal nodgof ¢, the majority vote in Doome++1= " (met+1)+1,

the Fork Label Estimation Procedur EP) ensures that the tea(S) Lef(Q)

algorithm’s estimation oy, will be correct. Moreover the o)

prediction rules 2.a, 3.a, and 3.bTHEEOPT ensure thatno ~ Which is again® (Zeef(Q) mz)-

other mistake will be made in the whole shrub graftedyon

In both cases we have used the hypothesistkahtains no
frame-forks which could change the outcome of the majority

VOti' Smg_e t;het_fourbptredmtlon tr_ule? 3'?‘%(‘??'?'50'3; irue IS mergeL (7' y) contains at most a new line that was not
make no distinction between estimated 1ork 1abeis and rue€ o .aaqy inL, (T, 4'). This new linel is the¢-edge deleted in

(revealed) I_abel_s, for 'ghe purpose of_ this analysis a mistak the merge. Sinc| = 1, UB(T, K —1) < UB(T, K)+myg —
made ong in ¢ is equivalent to a mistake made on a tree UB(T, K) + 1
grafted on that node. These observations, combined with ’ ' _
prediction rules 2.d and 2.a, imply the two following facts. Proof sketch of Lemma 13: Let 7, be the Ib-tree rooted at
Given a node of ¢, denote byn(r) the closest hinge node 7 at timet. Recall thatrLEP works by assigning temporary
tor onn(r, /). Then: labels while backtracking in the depth-first visit 6f. We
’ prove the following claim: each temporary lahg(t) # 0
1. Each node of ¢ on which a mistake is made after time assigned to node of T.. is such that the cutsize is at least

Proof sketch of Lemma 11: Fix T. Any labelingy of T
with cutsize K — 1 can always be obtained from a labeling
y’ with cutsizeK by merging two cluster€; andCs. After

t satisfiesi(r, n(r)) > d(r, j"). as small as the cutsize wheis assigned the opposite label
2. Let T be a tree grafted on an internal nodeof /. —y;(t). The proofis by induction on the maximum distance

A mistake can be made ofi’ only if d(s,n(s)) > Detweeni and its descendants ifi.. Wheny;(t) = 0 we

d(s,). show that the cutsize-minimizing label fbis the same ass

parent. Finally, by applying the claim to the children-ofve
From the above, it is then easy to see that the number ofobtain that the cutsize-minimizing label ofis the majority
internal nodes of on which the algorithm can make mis- vote over the children’s temporary (or revealed) labels.
takes is at least halved after every new mistake. Sincectorre

