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Extended Abstract 

Nanosized titanium dioxide has been widely explored as both pristine and 

doped semiconductor. TiO2 nanocrystals were successfully synthesized by 

three different procedures. Two of them are based on a controlled sol–gel 

reaction, implemented either by doping or by a hydrothermal growth step 

with the use of surfactants, exploiting three-dimensional micelles. The latter 

one is a microemulsion-mediate route, to accurately control the growth of Ti 

precursor in nanoreactors by the confinement in aqueous droplets.  As for the 

doping, both metal and non-metal elements have been chosen, namely 

praseodymium, silver and nitrogen. In this latter case, both organic and 

inorganic sources, in turn, were used to modulate the N content of doped-

titania.  

All samples were characterized from the morphological, structural, optical, 

and electronic points of view. Moreover, for selected N-TiO2 samples, the role 

of the aging time after the calcinations of the powders (from “freshly 

prepared” to “old” samples) both on the intensity of the optical features and 

on the bulk paramagnetic nitrogen concentration was also considered.  

Two main fields of applications for titania powders and films were 

investigated: photocatalysis and photovoltaics. Thus, the photocatalytic 

activity of several samples was tested using either UV or visible light 

irradiation with regard to different pollutants, ranging from ethanol (both in 

aqueous and gaseous media) to the more complex methylene blue molecule 

(deposited onto the oxide film). Besides, advanced oxidation processes were 

successfully applied to the degradation and final mineralization of bisphenol A 

and 4-cumylphenol. The use of TiO2 immobilized in thin films is of paramount 

importance for the plant-scale applicability of the process, especially if a low 

intensity irradiation source, such as solar light, is to be exploited. Then, 

photocatalytic reduction of hexavalent chromium was conducted with the use 

of electrodeposited TiO2 layers. 

Even though (doped) titanium dioxide is one of the most commonly adopted 

semiconductors in photocatalysis, it suffers from a relatively high bandgap – 

hence the doping to increase visible light absorption – and from 

recombination of photogenerated charge carriers. Furthermore, univocal 

conclusions on the Fermi energy levels, chemical nature and location of the 

doping centers, and related charge transfer processes versus dopant 



 

10 

concentration are absent in the literature. Therefore, electronic effects 

induced by the presence of the heteroatom in the TiO2 nanocrystals were 

investigated by a synergistic combination of electrochemical experiments 

(Mott-Schottky plots, photovoltage and photocurrent measurements) and 

theoretical DFT calculations. Results on the doped materials point towards a 

reduced tendency to charge carriers’ recombination and different effects on 

the (quasi-)Fermi energy location of the final material. 

Recombination is a central issue also in solar cell devices, resulting in possible 

low efficiencies. The ability of spin-coated and spray-pyrolyzed TiO2 blocking 

layers in preventing or reducing losses arising from electron transfer via the 

transparent conductive substrate has been examined in bilayer hybrid dye-

sensitized solar cell (DSC) devices. Then, different types of both solid-state 

dye-sensitized solar cells and DSCs with a liquid electrolyte were tested 

making use of the more effective spray-pyrolyzed TiO2 as “blocking layer” and 

optimizing home-made nanostructured titania pastes. 
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12 Introduction 

In recent years, with the rapid development of semiconductor-based 

photocatalytic and photovoltaic devices, studies of surface and bulk processes 

on nano-sized titanium dioxide, as well as its deep characterization, have 

gained significant importance. Much attention is devoted to its wide potential 

applications in clean solar energy conversion and environmental purification. 

Despite the numerous papers published since the discovery of photoinduced 

decomposition of water on TiO2 electrodes in 1972, many fundamental 

questions remain unsolved.  

This thesis deals with several aspects related to nanocrystalline TiO2, both 

pristine and doped, ranging from its chemical synthesis to its characterizations 

and applications. 

As a general fact, the photocatalytic performance of titania should be further 

enhanced from the viewpoint of practical application and commercial benefit. 

To achieve this purpose, academic research has drawn the attention to 

various modifying methods, such as doping, metal deposition, surface 

sensitization, coupling of semiconductors, and so forth, in order to optimize 

different properties of TiO2, thus enhancing its photocatalytic activity. 

In the present work, three different synthetic routes have been adopted to 

obtain titania with the above mentioned desired features. A classical sol-gel 

synthesis has been integrated on one side by doping with either metal (Pr, Ag) 

or non-metal elements (N) – codoped samples have been considered too – 

and on the other side by an hydrothermal growth step using monomeric 

(dodecylpyridinium chloride, DPC) or dimeric gemini-like (GS3) surfactants as 

template directing agents. Furthermore, a microemulsion-mediated route has 

been employed to accurately control the synthesis of bare titanium dioxide 

nanocrystals grown in nanoreactors by the confinement in aqueous droplets. 

The first mentioned synthetic procedure has been derived by the awareness 

that, in a context of photocatalytic applications, it is desirable to move over 

the well-established photoactivity of TiO2 in ultraviolet region. This is due to 

the fact that only a small fraction of solar light (3-5 %) can be utilized by the 

photocatalyst because of its wide band gap (3.0-3.2 eV). As a matter of fact, 

the success in nitrogen doping provides good opportunities for extensive 

applications but needs more exhaustive and comprehensive enlightenments, 

such as what concerns the not striking coincidence between absorption into 

the visible light and better photocatalytic results with visible irradiation. 
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Different starting N/Ti molar ratio, as well as dissimilar N precursors, appeared 

to affect some peculiar features and properties of the final material. Some of 

them have been already described in the literature for N-doped samples, 

while some others, such as unexpected effects upon aging the samples, were 

not previously reported.  

Moving from nitrogen dopant, also Pr and Ag were exploited, thus exploring 

other promising heteroatoms which are either very scantily taken into account 

in the literature, as in the case of rare-earth elements, or show outstanding 

characteristics such as suitable reaction with chemicals, environmental 

friendliness, reasonable price, and antimicrobial activity, as in the case of Ag.  

This part of the work has been driven by the fact that, in addition to the main 

drawback of titanium dioxide consisting in its quite large intrinsic bandgap, a 

second important issue to be controlled and optimized is the low quantum 

photoefficiency due to the high recombination rate of photogenerated 

electron–hole pairs. If, on the one hand, the presence of metal centers in TiO2 

leads to a considerable absorption of light into the visible region, on the other 

hand both Pr and Ag - in the metallic state - reduce the electron-hole 

recombination rate in doped titania. 

Composite oxides and doped semiconductors are both well exploited 

categories which include titanium dioxide as one of the most studied material. 

Even though literature studies on applications and basic characterizations of 

TiO2 are probably prevailing, some authors also focus on the principles of 

band bending, surface states, charge transport (etc.) and their effect on 

photochemistry and photocatalysis. This may be helpful to chemists and 

material scientists in understanding the photoexcitation process and the 

development of highly efficient photoactive materials and processes. To gain 

insight into these electronic aspects of doped and undoped nano-TiO2, optical 

measurements have been combined with direct electrochemical 

characterizations, such as chronoamperometry, impedance, and photovoltage 

measurements. Starting from an introduction to the physical principles of 

semiconductors and theory of the measurements performed, going through 

experimental details and results, the effects of electronic features on other 

semiconductor properties are considered. Chronoamperometry, in terms of 

photocurrent developed by the samples under irradiation, could give a 

reliable insight into charge carrier recombination rate, whereas the other two 

techniques have been adopted to evaluate the (quasi-)Fermi level of the oxide 
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or the absolute scale of conduction/valence band location. Both impedance 

analysis in the form of Mott-Schottky plot and photovoltage measurements as 

a function of the pH of the TiO2 suspension can shed light on band bending 

occurring in titanium dioxide when in contact with an electrolyte. Therefore, 

the flatband potential representing the lower edge of the conduction band for 

an n-type semiconductor, which is approximately the value of the Fermi 

energy on an electrochemical scale, could be determined when using a Mott-

Schottky plot. On the other hand, photovoltage analysis gives access to the 

quasi-Fermi level of electrons, thus enabling a direct measure of the lower 

edge of the TiO2 conduction band under illumination, which can be compared 

with the information achieved by Mott-Schottky analysis performed in the 

dark. In this way it is possible to capture a picture of two different physical 

situations for the same oxide, both meaningful when dealing with both 

heterogeneous photocatalysis and all other possible titania studies and 

applications.  

Electrochemical methods were chosen for their inherently sensitivity to the 

electronic structure and for the need to tackle the above mentioned still 

unsolved issues. Besides this, also morphological and structural features of the 

synthesized metal oxide powders were explored by several techniques, 

extended to the less routinely used EXAFS (extended X-ray absorption fine 

structure) and EPR (electron paramagnetic resonance) measurements. In this 

context, a multidisciplinary approach involving surface, interphases and 

synthetic knowledge by my group has been performed with the help of Dr. L. 

Falciola (Electroanalytical Chemistry Working Group, Università degli Studi di 

Milano) for the electrochemistry involved and in partnership with a 

theoretical chemistry group (Dr. M. Ceotto, Università degli Studi di Milano). 

Indeed, by placing theory and experiment side by side, the aim was that of 

systematically and fully explore these systems to gain novel insights into the 

interplay among structural and electronic degrees of freedom that underlie 

the observed photochemical properties of TiO2.  

Another worldwide exploitation of titanium dioxide is in dye-sensitized solar 

cells as the preferred inorganic wide-bandgap semiconductor. The main 

reasons of its success can be summarized in the following: it is easy to 

synthesize, it acts as an n-type semiconductor due to the donor-like oxygen 

vacancies, and molecular sensitizers (dye molecules) attached to the its 
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surface can be finely used to collect a greater portion of the electromagnetic 

spectrum. Basically, a photon absorbed by a dye-sensitizer molecule layer 

induces electron injection into the conduction band of titania, resulting in 

current flow. However, short diffusion length in titania dye-sensitized solar 

cells decreases the solar-to-energy conversion efficiency. Thus, to enhance 

diffusion length or carrier lifetime, a variety of organic materials are tuned to 

be attached to titania. 

Ensuing the enormously growth in research interest on different types of solar 

cells, herein the third generation devices belonging to the group of thin film 

photovoltaics, namely dye-sensitized solar cells, have been studied with the 

perspective of analyzing the role of home-made titanium dioxide. This has 

been done during a research period at the Department of Physical and 

Analytical Chemistry (Uppsala, Sweden), in the group held by Professor A. 

Hagfeldt. 

A first goal was to investigate the performance of different types of titanium 

dioxide pastes made from previously obtained TiO2 nanopowders or sol in 

hybrid solar cells, solid state dye-sensitized solar cells or liquid electrolyte dye-

sensitized solar cells. The first class of devices encompasses a wide range of 

solar cells with different assembling materials, both organic and inorganic, 

which have recently revealed to be highly challenging. Eventually, the hybrid 

devices investigated herein can be considered as well solid state dye-

sensitized solar cells with the traditional “transparent” hole conductor 

replaced by a hole transporting dye.  

In bilayer hybrid solar cells the device performance depends critically on the 

nanoscale morphology of the interface between the inorganic and organic 

semiconducting components. Therefore, a second goal was to display the 

differences between two types of commonly used “flat” titanium dioxide 

films, prepared by either spray-pyrolysis or spin-casting, to be adopted as 

acceptor layer in bilayer hybrid solar cells. This part of the thesis includes work 

in close collaboration with Dr. E.L. Unger (ex PhD student at Uppsala 

University). In addition to playing this inescapable role, such TiO2 films should 

also prevent recombination losses to the fluorine-doped tin oxide substrate, 

thus avoiding one of the major reasons of reduced efficiency of the device.  

In the following chapters, first an overview on titanium dioxide and its 

applications at a glance will be given (chapter 1). Then, the different synthetic 
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procedures are described (chapter 2). Basic characterizations, ranging from 

morphological to optical and structural ones, are exposed in chapter 3 along 

with the obtained results. The background for understanding the electronic 

features of the oxide besides the techniques used to investigate those intrinsic 

material properties will be presented in chapter 4, together with references to 

theoretical calculations. Chapter 5 is devoted to photocatalytic experiments, 

whereas chapters 6 and 7 deal with solar cells from the perspective of the 

inorganic semiconductor component, namely titanium dioxide. Whereas in 

chapter 6 two types of TiO2 films as “underlayers” for hybrid (dye-sensitized) 

solar cells are deeply characterized, in chapter 7 three classes of dye-

sensitized solar cells are investigated making use of the best of the two TiO2 

previously discussed films and different other TiO2 nanostructured materials.  

All experimental details are reported together with results - in appropriate 

sections - for syntheses, electrochemical characterizations, and photocatalytic 

tests (chapters 2, 4, and 5, respectively), while an appendix is dedicated to 

“instrument, method, and accessories” in which experimental details relative 

to all other material or device characterization (chapters 3, and partly 6, 7) are 

reported. 
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1.1. Abundance and polymorphs 

Titanium dioxide occurs in nature as different mineral 

polymorphs:  rutile, anatase, brookite and two recently found high pressure 

forms, namely monoclinic baddeleyite-like and orthorhombic α-PbO2-like. The  

first three are the most abundant and, therefore, most studied modifications. 

Their crystal structures are shown in Figure 1.1. 

 

Figure 1.1. Rutile (left), anatase (middle) and brookite (right) structures described in 

terms of TiO6 octahedrons. 

Rutile is stated to be the thermodynamically most stable form of TiO2 at all 

temperatures and pressures up to 60 kbar (6 GPa). There are only small 

differences in Gibbs free energy between anatase, brookite and rutile (4-20 kJ 

mol-1) meaning that the metastable polymorphs are almost as stable as rutile 

at normal pressures and temperatures.  

As the differences in Gibbs free energy are so small, the relative phase 

stability may be reversed as a function of particle dimensions. At decreasing 

the particle size the specific surface area increases, thus affecting surface free 

energy and surface stress.  

Anatase has lower surface energy than rutile, therefore if the particle sizes of 

the three crystalline phases are equal, anatase is most thermodynamically 

stable at sizes less than 11 nm, brookite is most stable between 11 and 35 nm, 

and rutile is most stable at sizes larger than 35 nm.1  

Kinetically, anatase is stable, thus its transformation into rutile at room 

temperature is so slow that the transformation practically does not occur. 
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Such transformation, achieved by increased temperature or pressure, reaches 

a measurable rate for bulk TiO2 at T >600 °C and is influenced by several 

factors, such as the concentration of surface and bulk defects and the particle 

size. 

Rutile 

Rutile is the most common natural TiO2 polymorph: it is present in high-

pressure and high-temperature metamorphic and igneous rocks since it has 

the lowest molecular volume among the three polymorphs. Natural rutile may 

contain up to 10 % Fe (it often has a red color) and significant amounts of 

other impurities. Rutile is a mineral with a very high refractive index (n = 2.55-

2.65 or 2.83-2.95 depending on the light polarization), thus it is largely used as 

white pigment. It has a hardness between 6 and 6.5 on the Mohs scale and a 

specific weight of 4.3 x 103 kg m-3. 

Rutile crystallizes in the tetragonal system (P42/mmm space group) with cell 

constants a = b = 4.593 Å and c = 2.959 Å. Its structure is a distorted hcp lattice 

of O2- ions, with Ti4+ cations occupying only half of the octahedral holes. Each 

Ti atom is surrounded by a slightly distorted octahedron of O2- ions (Ti4+ 

coordination number = 6, O2- coordination number = 3). The rutile structure 

can be equivalently described in terms of a chain of octahedral TiO6 units. Each 

octahedron shares two opposite edges with neighbors, giving rows of 

octahedrons parallel to the [001] direction. Rows are connected along the 

[110] direction through the vertex of the octahedron. Channels are created 

along [001] direction. 

Anatase 

Anatase is usually found in nature in very small crystals with variable colour 

(from blue to yellow), depending on the type of impurities. Its hardness is 

around 6 on the Mohs scale and its specific weight is 3.85 x 103 kg m-3. 

Anatase crystallizes in the tetragonal system (I41/amd space group) with cell 

constants a = b = 3.785 Å, c = 9.514 Å (values obtained by theoretical 

calculations performed by Dr. M. Ceotto will be given in chapter 3). The unit 

cell contains 4 formula units instead of 2. In the anatase structure, TiO6 

octahedrons are still present, even if they are much more distorted: each 

octahedron shares 4 edges and 4 corners with neighbors. This increases Ti-Ti 

distances and reduces O-O distances with respect to rutile. The anatase 
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structure is rich in channels. These cavities are large enough to host either 

cations or anions that can be included in the structure at the synthesis stage.  

Brookite 

Brookite forms small tubular to platy crystals, with a colour that varies from 

pink to brown. Its hardness is around 5.5 - 6 in the Mohs scale and  its specific 

weight is of 4.1 x 103 kg m-3. 

Brookite is the TiO2 polymorph with the highest structural complexity. It 

crystallizes in the orthorhombic system (Pbca space group) with cell constants: 

a = 9.184 Å, b = 5.447 Å, c = 5.145 Å. The unit cell contains 8 formula units. 

The TO6 octahedrons are remarkably distorted: all distances between the 

atoms are different. Each TiO6 octahedron shares three edges with the others. 

Small ions, for example H and Li, can be guests in the channels formed along 

the c axis ([001]) direction. 

 

Polymorphs’ stability 

The anatase polymorph is the dominant outcome of the vast majority of 

liquid-solid and gas-solid transformation-based preparation methods.2 This is 

a consequence of being a stable polymorph at working temperatures for sizes 

(e.g., primary particle size) below ca. 15 nm.3 However, as in most of the cases 

presented in this thesis, samples often contain some brookite or, alternatively, 

mixtures of anatase and rutile, owing to the different preparation conditions 

(temperature, precursor concentration, etc.).1,4  

Upon heating, amorphous Ti-containing materials would generically transform 

on anatase.1,5 Exarhos et al. were the first to study the kinetics of the 

corresponding transition of amorphous films supported on silica substrates.5 

Under hydrothermal conditions, several authors gave evidence of the media 

influence (pH, presence of ions) on the crystallization mechanism and pointed 

out that the rate-determining step can be related to the incorporation of new 

building units at the surface of the growing anatase crystal (solid-type step) 

and/or the dissolution of small anatase particles (Ostwald ripening; liquid-type 

step).6,7 In other studies, using sol-gel8,9 or microemulsion10 procedures, 

details of the solid-state transformation mechanism leading to the anatase 

phase have been reported. Quantitative knowledge of the key kinetic 

parameters controlling the amorphous titania to anatase transformation has 

been achieved in liquid media under hydrothermal conditions11 and for solid-
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solid transformations concerning titania films,5 powders,9 or mesostructured 

systems.12 The physical characteristics of the transformation (e.g., onset and 

reaction rate-energy of activation) in air should be different from those in 

liquid media as, obviously, dissolution steps are critically involved in the latter. 

The broad range of temperatures where amorphous titania transform into 

anatase (see below) also tells of a wide range of situations within the air-

assisted transformation occurring in solid materials, as it happens during the 

calcination step. To this end, crystallization has been considered to be 

controlled by either surface10 or interface9 nucleation processes. As a first 

approach to the rationalization of the nucleation mechanism, one may expect 

that interface nucleation can work at low temperature, starting from the 

lowest onset published (ca. 350 °C), while the surface dominated mechanism 

may get primacy above a certain temperature, ca. 600 °C.13 However, a point 

to stress is that all the above analyses are mainly of kinetic nature and always 

involve several assumptions to establish the kinetic mechanism, which should 

be ultimately validated by a multi-parameter fitting procedure of the 

experimental data. On the contrary, Fernandez-Garcia and co-workers14 

examined the crystallization of anatase from amorphous titania powders using 

an essentially assumption-free experimental approach. Indeed, using bulk and 

surface structural characterization techniques sensitive to both local and long 

range order, they eventually proved that the anatase nucleation onset is 

exclusively dependent on amorphous intraparticle structural characteristics 

and then that anatase crystallization is essentially free of interface 

interferences. This was said to be valid for samples crystallizing in the 400 to 

600 °C temperature interval, indicating the invariance of the mechanism with 

temperature. No doubts on the fact that the structural characteristics of the 

initial amorphous powders determine the final morphology of the 

nanoparticles, inferring in this manner the main parameters of the growth 

step. 

1.2. Nanosize effect 

In the nanosize regime (<10 nm), a new class of materials has emerged where 

quantum confinement and surface phenomena based on particle size 

dominate materials properties. It is well known that nanoparticles of a certain 

material exhibit very different behaviors compared to their bulk counterpart. 
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A vast number of fields, ranging from magnetism and luminescence to sensors 

and renewable/alternative energy as well as photocatalysis, continuously 

benefit from this new class of materials. The common theme in all these fields 

is the alteration and possible enhancement of physical properties based on 

control of the electronic energy levels via quantum size and surface effects. 

The principal benefit of decreasing the particle size of TiO2 is the increased 

surface to volume ratio. Usually a blue shift in the absorption spectra is 

recorded for nanosized particles. Concomitantly, the small Bohr radius of this 

material ensures that only a minor effect on the electronic properties and the 

absorption onset occurs.  

Of course different materials have different critical sizes. With the broadening 

of the band gap, electrons at the bottom edge of the conduction band and 

holes at the top edge of the valence band acquire more negative and positive 

potentials, respectively, which means that they have stronger redox powers in 

such nanoparticles. A TiO2 crystal already has a relatively large band gap (3.2 

eV), with quite energetic holes and so the efforts to increase the gap by 

decreasing the size below the value of the Bohr radius is almost unnecessary. 

However, by decreasing the particle size from bulk TiO2 to ∼ 20–30 nm, the 

ratio of surface/volume atoms increases by ∼ 10 %. Also, the distance the 

photogenerated carriers have to travel to reach the surface is significantly 

decreased leading to possible enhancement in charge separation and 

increased carrier lifetime. This has been shown to be effective for materials 

such as the well-known P25 (Evonik) TiO2 photocatalyst with a primary particle 

size of ∼ 20–30 nm and a popcorn-ball like aggregate structure of 2–3 µm.15  

Larger surface area also provides more active sites for reactant adsorption and 

decomposition, and light harvest. A shorter distance for the charge carrier 

transfer is provided, thus largely avoiding the bulk recombination.  

These effects provide a multitude of possibilities in the fields of photocatalytic 

degradation of waste and H2 production. For example, cluster surface 

modification can enhance the efficiency of charge transfer and charge 

separation. Materials systems that are not viable for these applications in bulk 

form due to insufficiently energetic holes or electrons can be utilized on the 

nanoscale. 

There are also several potential disadvantages if the size becomes too small. 

First of all, not always the best crystal structure for photocatalysis can be 

guaranteed. Normally, too small particles (or quantum dots) are apt to have 
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amorphous structure. Then, too small particles easily aggregate and may 

result in increased surface electron-hole recombination, which offsets the 

benefits of high surface area.  

Furthermore, porous materials have high surface area and good adsorption 

ability, and can concentrate reactants around active sites. Selective 

photocatalysis can be achieved by adjusting the pore size. 

In the field of nanomaterials, low-dimensional samples have shown their 

outstanding properties in catalysis and photocatalysis. One-dimensional (1D) 

nanostructures (i.e., nanowires, nanorods, nanotubes and nanofibers) have 

higher surface areas and can normally provide fast charge transportation, 

especially in the case of single crystalline 1D nanostructures. Two-dimensional 

(2D) structured materials (i.e., nanosheets, nanoscrolls and nanolayers) can 

expose a certain facet with high photocatalytic activity (or high selectivity), 

and provide fast charge transfer.  

Due to the nanosize effect, surface related defects play an important role in 

determining the electronic energy levels of an electrode composed of metal 

oxide nanoparticles.16 Surface states originate from the breakdown of the 

lattice periodicity in the semiconductor, resulting in the formation of dangling 

bonds and/or the rearrangement of the surface atoms. They are critical in the 

case of carrier trapping, since they retard the recombination rate under 

optimum conditions. This will be discussed in more details in chapter 4.  

Eventually, it should be mentioned that nanosize materials are small enough 

to easily escape undetected into the environment. Even though they are 

claimed to be useful in solving some of the environmental problems facing the 

nowadays society, their possible adverse effects have to be seriously 

considered. It is responsibility of researchers in the field of nanotechnology to 

take these issues into account, providing the foresight to avoid many potential 

problems. 

1.3. TiO2 crystal lattice and defects 

During last decades, it has been realized that several properties of solid 

materials are mostly controlled by faults or defects in the structure, more 

than by their pure geometric and electronic structure.17 Defects in solids, 

especially if nanosized, should be carefully distinguished between bulk and 

surface defects. In ionic compounds, the complexity of defects is at least one 
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order of magnitude higher than in metals because of the presence of anions 

and cations, which, in some cases, can assume different charged states. This 

situation is particularly pronounced in metal oxides.  

The problem is that defects are often elusive species, highly diluted, and 

therefore difficult to detect.18 Very often the proofs of their existence are 

indirect, based on the change of a property or of a spectroscopic response as 

a function of the number of defects present in the sample; sometimes, a more 

direct detection can be provided, as in the case of electron paramagnetic 

spectroscopy for oxygen vacancies in titania or Ti3+ centers.19-22 Along with 

oxygen vacancies, reduced titanium species (Ti3+) formation is indeed 

expected. 

In titanium dioxide, the octahedral site occupied by the Ti-ions in anatase is 

slightly distorted as to have a square base (best defined by the diagonal of 

0.378 nm which is identical to the lattice constant a) and a long axis (0.398 

nm), according to calculations previously performed by the theoretical group 

held by Dr. M. Ceotto. The anatase structure involves the presence of 

interstitial sites, which can be described by a strongly distorted octahedron or 

a square bi-pyramid with the same square base as the TiO6 octahedrons 

(diagonal = 0.378 nm) but have a long axis of 0.555 nm. As a result, these 

square bi-pyramids have a larger volume but still the same square base.  

As a matter of fact, foreign atoms - as dopants in titania - are associated with 

defect formation in the original crystal lattice.  Therefore,  larger  cations  can  

be  expected  to  occupy  the  larger  interstitial site  but  will  most  likely  

cause  a  distortion  of  the  square  base  of  the  bipyramid.  Cations smaller 

than or similar in size to Ti4+ can occupy the cation lattice site. Some cations 

can take both positions due to their intermediate size. Dopant anions 

normally only occupy the O2- positions. If the anion is reported to go 

interstitial it is normally not introduced as anion but as oxo-anion (i.e., as  

cation  with  bonding  to  nearby  O).  An  example  is  the  introduction  of  

NO¯,  which  can occur when doping TiO2 with N.   

One of the easiest way to determine which lattice position could be occupied 

by the cation is to consider  its size. However, not only many exceptions can 

occur, but one should also take into account that ion sizes are not constant for 

a given ion. They depend on the coordination environment defined by the site 

the ion occupies in the crystal lattice, on the type and number of the 
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neighboring atoms as well as the nature of the bonding between them. This 

means that the ion adjusts its size to the lattice position it occupies.  

According to its valence and its occupation site, vacancies or charge carriers  

must  be  created  for  charge  balance. Then, in the case of ‘acceptor doping’, 

doping is associated with hole formation,23 whereas for ‘donor doping’, extra-

electrons are generated. This occurs under loss of oxygen. Additionally, since 

the electron  can  be associated with Ti4+, a Ti3+ state should be created. It is 

worthy to highlight that in both acceptor and donor doping, normally, not only 

a charge defect is associated with the foreign ion, but also a size defect, since 

the ionic radii of dopant ion and lattice ion deviate to some extent. If a cation 

is substituted interstitially its charge will always be higher than the lattice site 

(which is equivalent to zero), so that the result is always donor doping. In this 

case there is a lattice distortion associated with the defect. If an ion of the 

same valence is introduced in the lattice site (substitutional doping), there is 

no nominal charge defect, but a lattice distortion will usually be formed due to 

the size difference.  

From the electronic point of view, any lattice defect introduces an energy 

state in the band gap: a donor introduces a state (just) below the conduction 

band, while an acceptor introduces a state (just) above the valence band. 

There is no total agreement on the exact depth of the defect state in the band 

gap. The states in the band gap may facilitate the formation of an electron-

hole pair and increase the number of charge carriers, but they also may act as 

trap sites, decreasing the number of charge carriers, especially when they are 

deep in the band gap. Carp et al. 24 argued that the charge carrier trapping 

out-weighs any positive benefits.   

Since the nature of the individual dopant as well as its concentration and 

distribution determine the defect structure of the crystal, it will also influence 

the electronic and optical properties of the resulting TiO2 crystal.  

1.4. Doping 

Titania doping with various metal and non-metal ions is one of the strategies 

that has been more extensively used to enhance the semiconductor 

photocatalytic efficiency. Dopants can substitute lattice ions (a cation X+ 

replacing Ti4+, an anion X- replacing O2-) or occupy an interstitial position, or 

even form mixed oxides.  
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It has to be stressed in advance that “doping” is here used in a broad sense 

meaning modification of the material by foreign atoms. The amount of foreign 

atoms is considerably higher than traditionally used for doping for 

applications in electronics.  

The effect of doping on titania photocatalytic activity is a complex issue, as the 

dopant addition may produce manifold effects. Indeed, it essentially modifies 

the catalyst spectral absorption, the number of charge carriers, the adsorption 

capacity at the catalyst surface, the interfacial charge transfer rate. These two 

latter effects are direct consequences of the possible preferential occupancy 

of surface sites by the dopant ions and the role of trapping sites for charge 

carriers that the dopant itself may play.  

According to the literature, the main aim of doping is to induce a 

bathochromic shift, i.e., a shift of the absorption edge of TiO2 to longer 

wavelengths. Indeed, one of the main drawback of titanium dioxide is its large 

band gap (3.2 eV for anatase and 3.0 eV for rutile) that corresponds to an 

absorption in the UV ( <390 nm for anatase,  <410 nm for rutile). This 

definitely limits TiO2 photocatalytic activity under solar irradiation, which is 

composed of UV rays by less than 5 %. 

One of the first strategies that has been explored to enhance titania visible 

absorption was doping with metal ions. Substitution of Ti4+ by dn metallic ions 

in the TiO2 lattice creates allowed energy states in the band gap of TiO2 which 

may induce photoactive transitions in the visible light, due to the excitation of 

an electron from these energy levels into the TiO2 conduction band.  

However, the doped materials suffer from thermal instability and increase of 

the charge carrier recombination rates. In fact, p-type dopants (i.e., 

heterocations of valency lower than that of Ti4+, like Al3+, Cr3+ or Ga3+) act as 

acceptor centers, which trap photoelectrons and, once negatively charged, 

attract holes, thus forming recombination centers. On the opposite, n-type 

metal dopants (heterocations of valency higher than +4 , like Nb5+, Ta5+, Sb5+) 

act as donor centers.  

To overcome this point, anion non-metal species such as C,25,26 S,27 B,28 F29,30 

and N,31-34 have been considered to improve the photocatalytic efficiency of 

TiO2 under visible light. Among the anion dopants, nitrogen has proved to be 

one of the most promising. However, the mechanism of the visible light 

response in N-doped TiO2 has not yet been clarified. One of the main debated 

questions concerns the electronic structure of these systems, once 
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established that the enhanced visible-light absorbance is due to the narrowing 

of the apparent band gap, and more precisely to the introduction of localized 

impurity states in the gap (intra-gap or mid-gap states). Further questions 

regard the actual localization of N species in the TiO2 lattice and their 

interactions with oxygen vacancies. Depending on the material, the nature 

and properties of oxygen vacancies can vary substantially. As affirmed by 

Pacchioni,18 one could say that the oxygen vacancy is a fingerprint of the 

electronic structure of the oxide. 

A second important issue to be controlled and optimized since it constitutes a 

downside of TiO2 is the low quantum photoefficiency due to the high 

recombination rate of photogenerated electron−hole pairs.35 This is a 

recurring problem during photoelectrochemical and photocatalytic processes, 

and it is often considered to some extent to be the major limitation for TiO2 

widespread applications.36 Unfortunately, the recombination of 

photogenerated charge carriers most often results to be an undesired effect 

of the modifications made on titania to overcome the wide bandgap issue and 

the related visible-light inactivity. Many authors have studied the influence of 

the dopant on the electron-hole recombination processes which take place in 

the doped oxide.37,38 Choi et al.35 widely explored the role of different metal 

ion dopants on photoreactivity and charge carrier recombination dynamics 

concluding that these processes are deeply affected by both the nature and 

the amount of the dopant. In fact, on one hand a small dopant content (<1 %) 

can introduce traps for electrons and holes, thus increasing the recombination 

time;38 on the other hand, such a low concentration could be not enough to 

significantly increase the absorption of the material in the visible range. A 

rather high amount of the dopant (5-10 %) definitely leads to an effective 

narrowing of the semiconductor band gap, but at the same time introduces 

new recombination centres for the photogenerated charge carriers so that 

recombination processes could be more numerous and probable.39  

As for the preparation of doped-TiO2 materials, a brief overview will be given 

in the following chapter. In the present thesis, all kinds of material have the 

peculiarity to possess a basic shape and are very easily obtainable, so that an 

accurate study on the electronic and structural features could be reasonably 

straightforward, if not really applicable to other titania samples of different 

habit and shape. Therefore, a one-pot facile synthesis of doped-TiO2 
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nanoparticles is presented in the following chapter. The focus will be on the 

dopant selected to be investigated in this study: N, Pr, Ag.  

1.4.1. N-doped TiO2     

At present, N-doped TiO2 has been prepared by various methods such as 

mechanochemical reaction, sputtering, ion implantation, chemical vapor 

deposition, spray pyrolysis, sol-gel, and oxidation of TiN.40,41 Then, various 

methods for preparing thin films of N-doped TiO2 by gas condensation 

techniques have also been reported in recent years.42,43 Most of the above 

methods need a higher temperature or complicated and expensive 

equipment; therefore, it is important to insist on simple and lower 

temperature method to extend the application of the nitrogen-doped TiO2 

photocatalyst, not using more lengthy and complex doping approaches at 

elevated temperature. 

Charge carriers lifetime is a relevant parameter to evaluate the photocatalytic 

efficiency of a catalyst; however it is important to bear in mind that metal ion-

doping might affect the efficiency of the material altering several other 

parameters (such as changes in surface hydrophilicity and adsorption ability 

towards reactant species, shifts of Fermi levels or other physical properties) 

that can be relevant in determining the reactivity of the particles. In the 

literature it is reported that doping with nitrogen may lead to a decrease in 

charge carrier recombination, as proved by photoluminescence spectra.44 This 

effect can be attributed to both electrons trapping by oxygen vacancies and 

holes trapping by N atoms.44 On the other hand, one can argue that excited 

electrons might be transferred back from the conduction band to the N-

induced states in the gap and more easily reach photogenerated holes, thus 

decreasing recombination efficiency. This is a debated aspect and depends on 

different side parameters. Indeed, at high levels of nitrogen doping the 

introduction of a significant number of defects, would serve as recombination 

centers for holes and electrons and would, therefore, decrease the quantum 

yield of photocatalytic reactions.45  

As far as the electronic effects on the oxide bandgap are concerned, Asahi et 

al.46 proposed that the substitutional doping of nitrogen into the TiO2 lattice 

causes a significant red-shift of the absorption edge of TiO2 by narrowing the 

titania band gap. Their calculation predicted that N 2p states contribute to the 
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band gap narrowing through mixing with O 2p states in the valence band. The 

same authors investigated interstitial doping of N and a combination of 

substitutional and interstitial doping of N, which might correspond to the 

introduction of molecular NO or N2. Such molecularly existing dopants give 

rise to bonding states below the O 2p valence band and antibonding states 

deep in the band gap: both are well screened and not interacting with the 

band states of TiO2, thus they are unlikely to be active for photocatalysis. 

Irie et al.41 proposed that an isolated narrow band formed above the valence 

band in N-doped titania is responsible for the visible light response. In 

addition, they found that an increase in the nitrogen concentration lowered 

the quantum yield under UV irradiation, indicating that the doping sites could 

also work as recombination centers. Lindgren et al.42 used 

photoelectrochemical measurements to confirm that the nitrogen created 

states were located close to the valence band edge and that the conduction 

band edge remains unchanged by nitrogen doping.  

Ihara and coworkers40 synthesized N-doped TiO2 with oxygen deficient 

stoichiometry active in the visible; they proposed that oxygen deficient sites 

formed in the grain boundaries were responsible for the visible light response, 

while the presence of nitrogen only improved the stabilization of these oxygen 

vacancies by preventing re-oxidation during heat treatments. Serpone47 

argued that the visible light activation of the anion doped TiO2 was the result 

of the formation of color centers associated with the oxygen vacancies 

created during the doping. 

Since the pioneering work of Asahi and coworkers,43 there has been an 

astounding number of publications describing N-doped TiO2 and its related 

photochemistry. However, the debate on the fundamental understanding of 

the electronic and structural aspects of these materials is still open. A general 

agreement has been reached on the fact that for N-TiO2 the visible absorption 

involves the occupied hybridized O 2p–N 2p states in the proximity of the 

valence band: transitions of electrons occur from the impurity states to the 

conduction band states. It is here anticipated that the case of undoped TiO2, 

the valence band has mainly a 2p–O character whereas the conduction band 

has mainly a 3d–Ti character. 

Reported experimental results also show considerable diversity. As already 

mentioned, several different methods have been presented in literature to 

incorporate nitrogen in titanium dioxide, and different sources of N have been 
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adopted (NH3/NH4
+, amines, nitrides, etc.).31,47,48-50 Characterization analyses 

proved that the predominant type of N dopant species depends on the 

experimental synthetic conditions. Di Valentin’s calculations51 suggested that 

substitutional N-doping can be stabilized by the presence of oxygen vacancies 

under oxygen-poor experimental conditions, whereas under oxygen-rich 

conditions interstitial N species become favored. 

Absorption spectra of N-doped samples invariably exhibit a shift to the visible 

region, regardless of the preparative method employed and of the nature of 

the dopant.  Nevertheless, visible-light photoactivity of N-doped TiO2 appears 

to be highly sensitive to the preparative routes: although these materials 

absorb visible light, they are nonetheless frequently inactive in photo-

oxidation and photocatalysis in general, probably because of charge 

recombination effects. 

1.4.2. Pr-doped TiO2 

While the number of papers on p-block non-metal dopants (especially B, C, N) 

has undergone an exponential increase, some other promising heteroatoms 

are very scantily taken into account.52-54 In this respect, rare-earth (RE) metals 

have started to show a tremendous potential improvement of several TiO2 

features, becoming interesting sources for new advanced materials and 

receiving quite much attention as dopants too. It is reported that doping TiO2 

with such metal ions can slow the recombination rate of photogenerated 

charge pairs by shallowly trapping electrons and enhance the interfacial 

charge transfer efficiency due to the ability of the metal to form complexes 

with a Lewis base (e.g., amines, aldehydes, alcohols, thiols, etc.) via 

interactions of functional groups of the base with the metal empty f-orbitals.53 

Secondly, the RE dopant can retard the transformation from anatase to rutile 

phase55 and also inhibit the increase of the crystallite size.52 Most importantly, 

Pr doping could slow the radiative recombination of photogenerated  

electrons and holes in TiO2.
53 Once again, it is the case that doping not only 

alters the charge-transfer properties but also affects the crystallinity and 

optical characteristics of the material. 

Consequently, Pr-TiO2 systems may find successful applications in 

photocatalysis, as already pointed out by several authors both recently and in 

the past.52,56,57  
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Notwithstanding all these findings, no complementary experimental and 

theoretical studies have been found in the literature focusing on the above 

mentioned aspects, except Chen et al. who analyzed the electronic structures 

of the different lanthanide-doped systems by using a DFT + U (Density 

Functional Theory with Hubbard U correction) approach.58  

Thus, in this thesis theoretical calculations are employed to corroborate the 

electronic and structural experimental results. A similar combined approach 

has been used when studying the location of nitrogen dopant species in TiO2 

matrix by EXAFS measurements59 (see chapter 3).  

In this work, the aim has been to focus on a synergic and deep experimental 

and theoretical characterization of Pr-doped TiO2 with – Pr as a representative 

RE element - from both electronic and structural points of view, while keeping 

the synthetic strategies as simple, quick and effortless as possible.  

1.4.3. Ag-doped TiO2 

It is generally believed that modification on TiO2 with transition metal ions 

could influence the light absorption and photoactivity of TiO2 since the metal 

should act as electron (or hole) trap, which could decrease the electron-hole 

pair recombination rate and subsequently increase the lifetime of charge 

carriers.35,60 In a photocatalytic context, transition metals deposited on 

semiconductors increase the charge transfer rate between reactants and 

photocatalyst as the intermediary in electron pathway.61,62  

Moreover, noble metals are said to extend the light absorption into the visible 

range, besides, in some cases, modifying the surface properties of the 

photocatalyst.63,64  

Among all kinds of metal-semiconductor heterostructures, Ag-TiO2 

nanocomposites especially attract much more attentions because silver has 

the most efficient plasmon resonance in the visible region, which can be 

attributed to the favorable frequency dependence of the real and imaginary 

parts of the dielectric function.65 Therefore, many Ag-TiO2 composite 

materials with different morphology have  been synthesized through a variety 

of methods.66-68 However, the photocatalysis efficiency of these 

photocatalysts is sometimes still low. Indeed, there are still some voices in the 

literature claiming that, except for a few favorable cases, the photocatalytic 

activity of a cation-doped TiO2 decrease, because of thermal instability or an 
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increase in charge carriers recombination (due to recombination centers 

introduced by the dopants' localized d-states deep in the band gap of 

titania).69  

Silver is known for its antibacterial properties. Indeed, enhanced 

photocatalytic disinfection of different types of bacteria even under visible 

light illumination was achieved by several authors.70,71  

Ag/TiO2 nanocomposite films have been known for few years to exhibit 

multicolor photochromism,72 thus being very interesting for many applications 

like rewritable color copy paper, smart glass, multiwavelength optical 

memory, holographic data storage, or writable and rewritable data 

carriers.73,74 Several methods have been implemented for their fabrication 

such as the photocatalytic or electrochemical growth of silver nanoparticles 

(NP) in porous75-77 or on bulk crystal78,79 TiO2 films, or the deposition by 

magnetron sputtering.80 In all cases, the reversible change of color under 

illumination relies on the modification of the nanoparticles size distribution 

through photo-activated redox reactions occurring specifically with the titania 

matrix. UV light excites electrons in the conduction band of titania, which 

reduce Ag(I) species and lead to the formation of Ag NP. Visible light oxidizes 

silver NP via the photoexcitation of electrons on Ag and their stabilization by 

adsorbed oxygen molecules in the titania matrix.79,81  

As shown in chapter 2, home-made Ag-TiO2 materials have been studied by 

varying synthetic parameters. Moreover, the concept of Ag-doping has been 

taken further and Ag,N-codoped TiO2 samples have been also synthesize. As 

stated by Sun et al., it could be expected that the transition metal ion 

modification on anion-doped TiO2 could be helpful to address what is said by 

some authors to be the intrinsic problem of charge carrier recombination 

from anion doping.70 Accordingly, a facile and simple synthesis of a 

conceptually novel Ag/TiO22-xNx under mild experimental conditions was also 

reported by Virkutyte and Varma to produce a remarkably efficient, stable and 

recyclable nano-photocatalyst that is functional under visible light.82  

1.5. Applications  

Chemical stability, non-toxicity and cheapness are always invoked as the main 

qualities of TiO2 that motivate the choice of such material among other 

inorganic semiconductors. Nevertheless, it has received special attention due 
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to other properties such as high refractive index, high dielectric constant, 

biocompatibility, superhydrophilicity (under UV light), and superior 

photocatalytic properties. Thus, depending on the type of application, it can 

be used as bulk, powder, thick/thin film or granulate as photocatalyst, bone 

substituent, reinforcing mechanical support, white pigment (paints, cosmetics, 

etc.), and also in optical interference coating, capacitors, self-cleaning, anti-

fogging, gas-sensing and photovoltaics. 

These features have brought about a great interest not only in the 

investigation of fundamental aspects of titania but also in the manifold 

applications it can be involved into. 

In this thesis, different types of TiO2 commercial and home-made samples 

have been explored in the field of photocatalysis and photovoltaics. 

Different powders or films have been tested towards the degradation of 

pollutants in the gaseous, liquid or dry state. Whereas these experiments have 

been carried out in the NIG group held by Professor Silvia Ardizzone at the 

Università degli Studi di Milano, the studies on solar cells (specifically, dye-

sensitized solar cells, DSCs) have been conducted in the Department of 

Analytical and Physical Chemistry at Ångström, Uppsala (Sweden).  

 

1.5.1. Photocatalysis 

In the very broad area of chemical reactions, electron transfer reactions 

between two species (redox reactions) which have to go through a transition 

state are said to be catalyzed when the activation energy of the process is 

lowered and, as a result, the reaction rate is enhanced. 

Ideally, the catalyst is returned to its original state after the reaction is 

completed: the catalyst participates without being consumed. In reality, its 

lifetime is limited due to alteration of its state, referred to as ‘catalyst 

poisoning’. Therefore, usually a ‘turn-over number’ is defined, which gives the 

number of reaction cycles that can be catalyzed before the catalyst becomes 

inactive.   
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If the catalyst is in a different phase than that of the reactants, as in the case 

of photocatalysis, the process is heterogeneous. Here the reaction takes place 

at the surface of the catalysts, to which the reactants are absorbed.  

Thus, heterogeneous semiconductor photocatalysis describes a process where 

a semiconductor particulate (TiO2, ZnO, WO3, CdS, ZnS, ZrO2, etc.)  is  activated  

by  illumination  with  light suitable to its band gap energy (i.e., equal or higher 

than the semiconductor band gap) to catalyze a redox reaction at its surface. 

Among all, TiO2 is the most studied photocatalyst in both bulk and nanosized 

form.  

The light irradiation causes excitation of the system, which is followed by an 

energetic and/or electronic transfer. Due to their band structure, 

semiconductors with appropriate bandgap show photocatalytic activity: after 

the generation of an electron-hole (e--h+) pair in the semiconductor caused by 

the light-induced promotion of an electron from the valence band (VB) to the 

conduction band (CB), such e--h+ pair has a sufficient lifetime (in the order of 

nanoseconds) to allow the transfer of the photoexcited electron or hole to a 

reagent adsorbed at the catalyst surface. However, the e--h+ generation is 

followed by e--h+ recombination, which, to some extent, is an unavoidable 

process. Indeed, different fates exist for the excited-state conduction band 

electrons which can recombine with the holes and dissipate the input energy, 

get trapped in surface states, or react with electron donors and electron 

acceptors adsorbed on the semiconductor surface. To successfully compete 

with electron-hole recombination and trap effectively the conduction band 

electrons or the valence band holes, the respective electron acceptor or donor 

should be confined to the semiconductor surface 

One of the most important prospective technologies for all types of 

photocatalysts resides in the field of environmental remediation.15 Issues 

directly related to human health and the health of the environment such as 

water and air purity can be effectively addressed through photocatalysis. 

Photooxidation of organics and toxic biological organisms in water by ozone, a 

strong oxidant, using UV light, as for instance, is widely used. The use of 

semiconductor nanoclusters in photocatalysis enables the photooxidation of a 

large range of toxic chemicals by more effective alignment of valence (holes) 

bands with the necessary redox potentials of the contaminant. In addition, the 

correct choice of semiconductor material can allow the oxidation to occur 

using sunlight, reducing energy costs.  
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1.5.2. Photovoltaics  

The increasing demand for clean energy and the largely untapped potential of 

the sun as an energy source is making solar energy conversion technology 

increasingly important. 

Generally speaking, photovoltaics (PV) is a method of generating electrical 

power by converting solar radiation into direct current electricity; this is 

indeed possible using semiconductors that exhibit the photovoltaic effect.  

Photovoltaic power generation employs solar panels composed of a number 

of solar cells containing a photovoltaic material. Nowadays, the most used 

materials on the market include silicon (either single-crystalline or 

multicrystalline or amorophous), cadmium telluride, copper indium selenide 

or sulfide, gallium arsenide, and others. Although silicon wafer solar cells are 

still the most commercially widespread as well as the oldest type (first 

generation of solar cells), the so called second, third and fourth generation 

solar cells are attracting researchers’ attention. They respectively involve 

thinner, more flexible and more inexpensive amorphous silicon, cadmium 

telluride and copper-indium-gallium-selenide (main materials for the second 

generation); plastic (polymer) solar cells, photoelectrochemical solar cells and 

organic dye-sensitized cells (third generation); while fourth generation solar 

cells are considered the future of solar technology. Still years off, this category 

includes such cutting edge technology as quantum dots and nanowires.  

Eventually, each material has unique strength and characteristics that 

influence its suitability for specific applications. For example, PV cell materials 

may differ according to their crystallinity, band gap, absorption, and 

manufacturing complexity. 

In the case of dye-sensitized solar cells (DSCs), in contrast with the 

conventional systems where the semiconductor assume both the task of light 

absorption and charge carrier transport, the two functions are separated. 

Light is absorbed by a sensitizer, which is anchored to the surface of a wide-

band-gap semiconductor. Although other inorganic semiconductors are 

emerging as promising components in DSCs, TiO2 is still the preferred 

inorganic material since it is easy to synthesize and acts as a n-type 

semiconductor due to the donor-like oxygen vacancies.  

Charge separation takes place at the interface via photo-induced electron 

injection from the dye into the conduction band of the oxide. Carriers are then 
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transported to the charge collector. The use of sensitizers having a broad 

absorption band in conjunction with oxide films of nanocrystalline 

morphology permits to harvest a large fraction of sunlight. Nearly quantitative 

conversion of incident photon into electric current (IPCE) is achieved over a 

large spectral range extending from the UV to the near IR region. Solar 

(standard AM 1.5) to current conversion efficiencies over 12 % have been 

recently reached.83 Increasing the module efficiencies of DSCs to more than 14 

% would relax the ultralow-cost constraints, thus providing substantial 

incentive to create laboratory-scale devices with efficiencies greater than 15 

%.84 The relatively slow increase in record values for DSCs over the past ten 

years could give the impression of a performance ceiling, which is partially 

justified since conventional iodide- and ruthenium-based DSCs are said to 

have a realistic maximum possible efficiency of little more than 13 %.85  

However, to make the big step towards full commercialization of the 

technology, DSCs have first to demonstrate, as a main priority, significantly 

enhanced efficiencies, without neglecting other important parameters such as 

their operating lifetime, the total cost for their integration, as well as their 

complete life-cycle assessment.86 Additionally, there are good opportunities 

and new prospects to produce these cells at lower cost than conventional 

devices, making dye-sensitized solar cells viable and competitive alternative to 

traditional silicon solar cells and other new expensive devices. Since DSCs can 

be produced from low-cost materials using simple manufacturing processes 

(such as coating and printing), overall manufacturing expenditures are 

expected to be comparatively low. Other benefits over silicon-based solar cells 

include the ability to use a variety of designs and colors and achieve high 

performance under indoor and low light settings. Additionally, changes in the 

angle at which light hits the surface of the cells have minimal effect on 

performance. Such advantages are expected to expand the range of use for 

solar cells, which are ideal for a variety of consumer-related applications in 

which even conventional solar cells are unsuitable. 

1.6. Thin films deposition 

The application of thin films in modern technology is widespread, ranging 

from the above mentioned photovoltaics and photocatalysis to 

optoelectronics and sensors. "Thin" is a relative term, but 
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nowadays deposition techniques control layer thickness from fractions of 

a nanometer (monolayer) to several micrometers. 

“Thin film deposition” refers to a technique for applying a thin film of material 

onto a surface, either previously deposited layers or a different substrate. 

Deposition techniques fall into two broad categories, depending on whether 

the process is primarily chemical or physical. The physical methods involve 

mechanical, electromechanical or thermodynamic means to produce the film. 

They include sputtering, physical vapor deposition, laser ablation, cathodic arc 

deposition, electrohydrodynamic deposition, molecular beam epitaxy, and so 

on. The chemical methods comprise gas-phase deposition methods and 

solution techniques, in both cases involving a fluid precursor which undergoes 

a chemical change at a solid surface. Among the former types are chemical 

vapor deposition86,87 and atomic layer epitaxy,89 while spray pyrolysis,90 sol-

gel,91 spin-92 and dip-coating93 methods employ precursor solutions.  

In this thesis four methods (drop-casting, spin-coating, spray-pyrolysis, and 

screen-printing) have been used to deposit TiO2 for different purposes 

(characterization, photocatalysis, solar cell devices) on different substrates, 

ranging from aluminum rough foil to optically transparent electrodes. In this 

latter case commercial glasses covered with indium-doped tin oxide (ITO) 

were used for some preliminary experiments. However, a similar high-

performance material is fluorine-doped tin oxide (FTO), which provides the 

following advantages: it is less expensive than ITO, it has lower sensitivity to 

surface cleaning methods, and, most importantly, more light is obtained at a 

given voltage. One drawback is that the leakage current is on the order of 1 

mA cm-2, which could cause cross talking problems among pixels in certain 

display applications, but it should not constitute a problem in configurations 

employed . 

Except for the very simple and intuitive drop-casting method, in the following 

a brief description of the three other methods employed for titania deposition 

is given.  

 

Spin- coating 

Spin coating is a process in which a solution is spread evenly over a surface 

using centripetal force, resulting in a relatively uniform thin film of a specific 

thickness. During the spin coating process the solvent evaporates, thus 

leading to increasing concentration and viscosity, which change the rheology 
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of the solution. Indeed, the flow of the liquid is governed by a balance 

between centrifugal driving force and viscous resisting force. Spin coating 

involves four main processing steps:94: i) the material dissolved in a volatile 

solvent is poured by dripping on the centre of a rotating substrate initially at 

rest (solution pouring); ii) while the substrate spins, the liquid flows radially 

driven by the centrifugal force (spin-up); iii) the liquid which reaches the 

substrate edge is expelled in drops, with  viscosity increasing as the film thins 

down (spin-off); iv) though evaporation occurs at all times from the beginning 

of the spin-coating process, when spin-off is slow and for less volatile solvents, 

the evaporation becomes the main mechanism of solvent removal and 

thinning of the film. To get homogeneous films, several different factors have 

to be considered, such as the evaporation rate of the solvent, the viscosity of 

the fluid and concentration of the solution, the angular velocity (rotating 

speed), the spinning time, the substrate roughness and the air surrounding 

(temperature and humidity). 

 

Spray pyrolysis 

The spray pyrolysis thin film deposition is a simple, cheap and versatile 

method of preparing thin films for studying and manufacturing DSCs, as 

precursors can be directly deposited on various substrates in ambient 

atmosphere.  

The typical equipment consists of an atomizer, precursor solution, substrate 

(FTO) heater, and temperature controller, and the technique involves spraying 

a solution containing the precursor onto the heated substrate.95  A crucial role 

is played by the substrate surface temperature: sprayed droplets or residual 

particles reaching the hot surface undergo pyrolytic decomposition and form 

the crystalline film.  

The main atomization variables are: droplet size, atomization rate, droplet 

velocity (affecting residence time) and size dispersion, in term of homogeneity 

of the final products.  

As for the phenomena which take place in a spray pyrolysis deposition, the 

first step is the evaporation of the solvent from the surface, which accounts 

for the diffusion of solvent vapor away from droplet, a change in droplet 

temperature, the diffusion of the solute toward the center of the droplet, and 

a change in droplet size. Then, precipitation/drying involves volume 

precipitation or surface precipitation of the solute, followed by the 
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evaporation of the solvent through the nanoporous crust. The thermal 

decomposition (pyrolysis) usually forms the nanoporous structure. Finally, the 

sintering step results in the solidification and adhesion of the crystallites. 

Undesired hollow particles are formed when the droplets are large and the 

droplet number concentration is low. Smaller droplets produce solid particles 

because the diffusion distance for the solute is shorter, leading to a more 

uniform concentration distribution within the droplet. Increasing the number 

of droplets results in a larger solvent vapor concentration in the carrier gas. 

Consequently, the evaporation rate decreases and precipitation is delayed.96 

Chen et al. investigated the correlations between film morphologies and 

deposition parameters.97  

 

Screen printing 

This approach is more versatile than traditional printing techniques. Indeed, 

the surface does not have to be printed under pressure, 

unlike etching or lithography, and it does not have to be planar. Different inks 

or pastes can be used to work with a variety of materials, such as textiles, 

ceramics, wood, paper, glass, metal, and plastic. Screen printing has become 

increasingly popular recently for the fabrication of electrodes and complete 

cells for a number of diagnostic and other applications.  

The printing apparatus consists of a frame with fabric stretched across it. Parts 

of the fabric are masked so that the printing areas remain open and 

permeable to the material that has to be printed. Pastes are then applied and 

forced by means of a semi-flexible squeegee blade through the masking 

screen onto the substrate to create the film electrode assembly. The 

downward pressure closes the gap between the substrate and screen. Finally, 

the drying and curing steps of the process are also crucial and depends on the 

desired application.  
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An astounding number of studies can be found in the literature not only about 

modified TiO2 but also related to titania synthesized in various sizes and 

shapes. Indeed, a variety of preparation methods have been investigated for 

both undoped and doped TiO2 powders, ranging from the chemical synthesis 

(e.g., sol-gel,1,2 chemical treatment of TiO2
3 or of TiN4 reverse 

microemulsions5,6) to sophisticated physical methods (e.g., ion implantation7). 

All of these different procedures could lead, in principle, to materials quite 

different from one another.  

Quite often, titania is hydrothermally treated in order to form a crystalline 

sample at relatively low temperature8 or even at room temperature.9  

Furthermore, many of these studies have also included evaluations of the 

photocatalytic activity of the home-made synthesized materials.5,10-12 The type 

of reaction (reduction or oxidation) as well as the reaction conditions seem to 

play a major role in the outcome of the photoinduced process. 

In the present thesis, both home-made (mostly) and commercial (as 

reference) titania powders were considered. Home-made samples were 

prepared by three different synthetic procedures: a classic sol-gel method 

from an alkoxide precursor, a template synthesis and a microemulsion 

mediated route.   

Home-made samples were compared with two commercial titania samples: 

P25 (Evonik), widely accepted in literature as the benchmark for 

photocatalytic tests, and Hombikat UV-100 (Sachtleben), a large surface area 

pure anatase sample. 

2.1. Sol-gel synthesis  

Sol-gel synthesis is a general synthetic method that allows to obtain high 

purity metal oxides. The general mechanism is the hydrolysis and 

polycondensation of the metal alkoxide M(OR)x, which leads to the formation 

of a hydrated gel, formed by a 3D network of M-O bonds, finally ending with 

the solvent elimination.  

Without presenting operative difficulties, it can be performed in controlled 

and reproducible conditions. Moreover, the final oxide features may be 

tailored by varying selected experimental parameters, such as the molar ratio 

of the components, the duration of hydrolysis and polycondensation steps, 
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the catalyst type and concentration, the reaction temperature, the technique 

to remove the solvent and the addition of salts or surfactants to the reaction 

environment. 

Since the obtained product is generally amorphous, further thermal 

treatments (i.e., final calcination step) are needed to improve the crystallinity 

of the sample and also to remove water, organic residuals and other 

impurities. However, high temperature treatments cause sintering processes 

which decrease the surface area, may induce phase transformation from 

anatase to rutile and provoke the removal of physi-chemisorbed water. 

2.1.1. Experimental details (undoped and doped TiO2) 

All reactants employed in this thesis were purchased by Sigma-Aldrich and 

used without any other purification treatment; doubly distilled water passed 

through a Milli-Q apparatus (Millipore Corporation) was used as reagent itself 

and to prepare solutions and suspensions.  

In the following, the synthetic procedures for nitrogen-doped TiO2 (N-TiO2), 

praseodymium-doped TiO2 (Pr-TiO2), silver-doped (Ag-TiO2) and nitrogen-, 

silver-codoped TiO2 (N,Ag-TiO2) are described. Undoped reference samples 

are always produced. 

 

Undoped TiO2  

Undoped titania samples were synthesized by sol–gel route with the following 

procedure. Titanium (IV) isopropoxide (30.7 mL) (MM = 284.26 g mol-1, d = 

0.955 g cm-3, 97%) was used as precursor and put into a 500 mL reactor with 

2-propanol (37.6 mL) (MM = 60 g mol-1, d = 0.786 g cm-3). The mixture was 

kept stirring (300 rpm) for about 10 min to form a solution. A KOH aqueous 

solution (180 mL) was added dropwise. The molarity of this basic solution was 

adjusted to fix the pH around 9. It should be noted that the hydrolysis process 

depends on the pH. Then the possible addition of a base could catalyze the 

reaction. The gel prepared at basic pH is usually formed in shorter time and at 

lower temperature than at acidic conditions.13 The water/alkoxide molar ratio 

was 100 and the water/2-propanol molar ratio was 20, on the grounds of 

optimization studies performed by the group.14 Temperature was kept 

constant at 25 °C by means of a water/ethylene glycol bath. A white gel was 

immediately obtained. The same stirring continued for 90 min after the 
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completion of addition of the alkaline solution. Then, the wet precursor was 

dried in oven as a xerogel (80 °C overnight) and subsequently calcined for 6 h 

under oxygen (nitrogen in the case of microemulsion-mediate route) stream 

(9 NL h-1).  

The usual calcination temperature was set to 400 °C, but in some peculiar 

cases it has been raised to 500 °C or 600 °C. Unless otherwise specified, all 

xerogels, even for doped samples, were calcined with the above mentioned 

standard procedure. 

 

N-TiO2 

TiO2 samples were synthesized by following a classical sol-gel route. A solution 

of 0.063 mol of Ti(OC3H7)4 in 24 mL of 2-propanol was stirred for 10 min at 300 

rpm. An aqueous solution containing the base necessary to obtain a final pH 

of 9 was prepared separately: KOH was adopted for all the samples except for 

the case of the NH3-doped powders, in which a buffer solution containing NH3 

and (NH4)2CO3 was employed in order to have an initial N/Ti molar ratio of 0.1. 

In the case of triethylamine- (TEA) and urea-doped samples, the 

correspondent N-source was also added to the base solution in the 

stoichiometric amount to obtain an initial N/Ti molar ratio of 0.1. 114 ml of 

the alkaline aqueous solution were added dropwise to the alkoxide solution, 

in order to obtain a water/alkoxide molar ratio of 100 and a water/2-propanol 

molar ratio of 20. The slurry was stirred for 90 min at 25 °C to complete the 

hydrolysis. Such precursor was dried to a xerogel. Finally the powders were 

thermally treated at 400 °C for 6 h under O2 stream (9 NL h-1).  

For different purposes, samples doped with triethylamine and urea were 

synthesized with different initial N/Ti molar ratio: 0.05-0.1-0.2-0.4-0.5.15  

Titania samples are named by labelling T or TN in the case of the undoped and 

N-doped oxides respectively, followed by the name of the nitrogen source 

(urea, TEA or NH3). In a context where a series of samples with different 

nominal dopant amount, the label “TN_x”, with x standing for the nominal 

N/Ti molar ratio, was used. Otherwise, if no specific molar ratio is expressed, 

N/Ti = 0.1 is meant. 

 

Pr-TiO2 

Once again the synthetic chemical route has been very quick and simple, as 

follows. TiO2 precursor was obtained by acidic hydrolysis (pH 4 by adding HCl) 
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of titanium(IV) isopropoxide in 2-propanol at room temperature. Except for a 

reference undoped sample (named “T”), a varied amount of Pr(NO3)3 (Pr/Ti = 

0.2-0.3-0.5-0.7 % molar ratio) was dissolved in the aqueous HCl solution, 

which was added dropwise to the organic mixture. The colloidal suspension 

was stirred at 300 rpm for 90 min and then dried in the oven at 80 °C 

overnight. Finally, the dry powder was calcined at 400 °C under oxygen 

stream. Doubly distilled Milli-Q (Millipore Corporation) water was used and 

reagent grade chemicals were supplied by Aldrich. 

Thus, the praseodymium dopant was introduced into the titania precursor by 

a synthesis which is typically a bulk procedure. EDX analyses confirmed the 

presence of the Pr species and the relative concentration in the titania 

powders (0.18-0.62 Pr/Ti atomic ratio). 

Doped titania samples were named “TPr_x”, with x standing for the 

percentage of initial Pr/Ti molar ratio. 

 

Ag-TiO2 and N,Ag-TiO2 

Single-doped and codoped samples were obtained by following the same 

procedure described for N-TiO2 (urea/triethylamine doped) samples, except 

for the source of the dopant: for Ag-TiO2, AgNO3 was used, whereas for N,Ag-

TiO2 both AgNO3 and urea were introduced as precursors in the sol-gel 

procedure. N/Ti and Ag/Ti initial molar ratio are equal to 0.1 and 0.1-0.5, 

respectively. Ag content higher than 5 % could be detrimental: a 10 % led to a 

non-homogeneous sample with a decreased surface area and segregated 

metal species. 

The synthetic route for the samples reduction (to obtain metallic Ag) was 

realized by suspending the calcined powders in methanol, then adding sodium 

borohydride and heating the suspension at 60 °C for 6 h. Finally, filtration and 

washing steps were performed to obtain the nanopowders. 

Doped titania samples were named “TAg_x”, with x standing for the Ag/Ti 

molar ratio. In the case of codoped samples, the label “TNAg_x” was adopted. 

Chemically reduced samples were named “T(N)Ag_x_R”. 
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2.2. Template titania materials 

Surfactant templating route for the synthesis of mesoporous inorganic 

frameworks utilizes aggregated structures formed by surfactant molecules as 

moulds around which a solid inorganic matrix may subsequently be formed. 

The effective removal of surfactant molecules from this composite can 

generate porosity according to the size of the aggregates in that solid 

material. This soft templating approach for the synthesis of ordered 

nanoporous materials has been extensively practiced since the first report of 

the synthesis of ordered mesoporous silica, M41S, by the Mobil researchers in 

1992.16 Besides silica-based materials, mesoporous transition metal containing 

molecular sieves have huge potential applications in the fields of catalysis,17,18 

electronic,19 magnetic,20 and optical21 materials, as they usually have very high 

surface area and tunable pore diameters. In contrast to Si, the transition 

metals have ability to form complex with organic ligands by utilizing their 

coordination sphere. So different organic ligands can act as co-templates 

along with surfactants/polymer assemblies. This may play a significant role 

into two possible directions to be taken at the time of the formation of 

mesoporous transition metal oxide framework. Indeed, on the one hand, as a 

template the constituent ligand molecules form complexes with the precursor 

of transition metal; due to this reason the subsequent hydrolysis and 

condensation rate to metal oxide may be retarded, which is an important 

criteria for the formation of ordered porous materials. On the other hand, in 

the mixed surfactant assembly the ligands/cosurfactant may modify the shape 

and size of the surfactant assemblies either through hydrophobic interaction 

or interaction between functional groups of ligands and the head groups of 

surfactants. 

Nevertheless, the use of a single specific surfactant allows to tune the 

synthesis of the transition metal oxide with the desired features. In this 

context, sol-gel techniques based on low-temperature synthetic processes are 

to be preferred because higher temperatures are responsible for undesired 

particle growth and sintering, which decrease surface areas and increase 

particle sizes.22  

It has been demonstrated that crystalline anatase TiO2 powders with 

hierarchically macro/mesoporous structures, reasonable phase structures and 
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composition provide a readily accessible porewall system, high specific surface 

area for light and reactants, and optimize the transport of matter within 

materials.23 As for instance, the presence of such mesoscopic pores in TiO2 is 

of great importance for dye-sensitized solar cells.  

In general, the control of the bimodal porosity is achieved by combining 

suitable templates for the required length scale organization; for example, 

tetraalkylammonium ions are used for directing microporosity (<2 nm), long-

chain surfactant or block copolymer micelles for mesoporosity (2-50 nm), and 

polystyrene latexes or organized bacterial threads for macroporosity (>50 

nm).24 Promising results were obtained by Mitra et al.25 by using self-assembly 

of surfactant (anionic, like sodium dodecyl sulfate, or cationic ones, as 

cetyltrimethyl ammonium bromide) and cosurfactant (benzyl alcohol) 

mixtures as templates. 

Recently, several reports have confirmed that ordered macro/mesoporous 

materials including titania can be obtained by the surfactant templating 

method.26 However, post-treatment removal (via dissolution and calcination) 

of the templates to produce the desired titania powder requires additional 

processing steps that can be costly, wasteful, and of environmental concern. 

Several attempts to easily solve these problems have been done by working in 

the absence of auxiliary organic templates and additives: in literature the 

coupling of hydrothermal reactions with physical phenomena such as 

microphase separation, transient hydrodynamic gradients, time dependent 

diffusion gradients and phase transformation of amorphous TiO2 are 

reported.27 For example, three recent works by Yu et al.28-30 describe a facile 

and environmentally benign synthetic route which is template-free and leads 

to enhanced photocatalytic activity of trimodal macro/mesoporous titania 

obtained at room temperature by simple dropwise addition of tetrabutyl 

titanate to pure water, and then calcined at various temperatures or 

hydrothermal treatment. However, the template-free synthesis of high-

surface-area materials with precise porous structures still remains a great 

experimental challenge.   

Among several liquid-crystal templating (LCT) techniques which exploit three-

dimensional structures of ionic/nonionic surfactants and block copolymers,31 a 

simple process implying a sol-gel starting reaction, followed by a growth step 

with surfactants in solution, has been chosen and performed in the presence 
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of both monomeric and dimeric “gemini-like” alkylpyridinium surfactants. The 

former was dodecylpyridinium chloride (DPC) and the latter 1,1’-didodecyl-

2,2’-trimethylendipyridinium-dicloride “gemini spacer 3” (GS3). Their 

structures are shown in Fig. 2.1. 

 
Figure 2.1. Structural formulas of the monomeric dodecylpyridinium chloride (DPC) 

and dimeric 1,1’-didodecyl-2,2’-trimethylendipyridinium-dicloride “gemini spacer 3” 

(GS3) surfactants used in the template TiO2 synthesis. 

 

Together with the surface area/porosity, also the grain size and relative 

enrichment in the different oxide polymorphs should be controlled through 

such template routes. In fairly recent times, many studies concerning the 

practical use of gemini molecules appeared in the literature32-34 showing that 

the first speculative interests were followed by practical applications, due to 

their unusual properties. 

2.2.1. Gemini surfactant 

Gemini surfactants belong to the family of surfactant molecules possessing 

more than one hydrophobic tail and hydrophilic head group. Whereas 

conventional surfactants have a single hydrophobic tail connected to an ionic 

or polar head group, a gemini has in sequence a long hydrocarbon chain, an 

ionic group, a spacer spacer (short or long, rigide or flexible, polar or 

nonpolar), a second ionic group and another hydrocarbon tail. A schematic 

representation of gemini is given in Figure 2.2. 

 

 
Figure 2.2. Schematic representation of gemini surfactant. 

 

Menger and Littau35 assigned the name gemini to bis-surfactants with rigid 

spacer (i.e., benzene, stilbene). The name was then extended to other bis or 

double-tailed surfactants, irrespective of the nature of spacers, which can vary 
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a lot.36 The great majority of geminis have symmetrical structures with two 

identical polar groups and two identical chains. A gemini with two Cn (n is the 

number of alkyl carbon atoms) tails and a Cs (s is the number of alkyl carbon 

atoms) spacer separating the quaternary nitrogen atoms can be represented 

as n-s-n. 

Gemini can show unique properties, even orders of magnitude more evident 

than those of comparable conventional surfactants.37 First of all, these 

surfactants generally have better surface-active properties than 

corresponding surfactants of equal chain length. They also have lower critical 

micellar concentration (CMC) values with respect to their single monomers, 

and the tendency to form micelles of different shapes and dimensions (i.e., 

spherical, rodlike, threadlike, vesicles), even at low concentration.  

Nowadays, gemini are used as promising surfactants in industrial detergency 

and have shown efficiency in skin care, antibacterial property, metal-

encapped porphyrazine, vesicle formation, construction of high porosity 

materials, and so on.38,39  

A detailed review by Hait and Moulik deals with synthesis, structure, critical 

micellar concentration, surface active properties and uses of gemini 

surfactant.34  

 

CMC for gemini surfactants 

Critical micellar concentration (CMC) is the concentration above which 

monomeric surfactant molecules abruptly aggregate to form micelles. It is 

determined mostly by tensiometry, conductometry, goniometry, and so on. By 

using these techniques, not only CMC, but also shape and structure of micelle, 

surface activity, solubilization, adsorption, wetting and phase behavior of 

surfactants can be accounted for. As a general rule, the value of CMC 

decreases with increase in the hydrophobic chain length of the molecule. 

Hydrophobic interaction opposed by electrostatic repulsion among the ionic 

head groups drives the process of micellization. A list of CMC data of some 

gemini tensides with some conventional surfactants determined by static 

surface tension method is presented by Hait and Moulik.34 Some general 

conclusions can be drawn from literature data, starting from the statement 

that geminis have remarkably low CMC values compared to the corresponding 

conventional surfactants of equivalent chain length. Furthermore, CMC values 

are not sensitive to the polarity of short spacers (2–8 atoms). A long 
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hydrocarbon spacer of 16 methylene groups reduces the CMC almost ten-fold 

relative to a short spacer of 3–8 methylene groups. Additionally, the long 

spacer contributes to the overall hydrophobicity of the gemini reducing the 

monomer solubility and enhancing its tendency to self-assemble. Anionic 

gemini surfactants have somewhat lower CMC values than their cationic 

counterparts. Finally, geminis are more responsive to tail length than 

conventional surfactants. Thus, increasing the tail length by four carbon atoms 

in a conventional cationic surfactant lowers the CMC 16-fold. A corresponding 

tail lengthening in the gemini series lowers the CMC by two orders of 

magnitude.  

Thermodynamic parameters for micellization of geminis with varying spacer 

length (n-s-n;  n = 12) obtained by calorimetry are reported by Bai et al.,40 who 

compared the results with conventional surfactants. 

Menger and Littau35 have reported the use of pinacyanol chloride to 

investigate micellization of gemini surfactants. Corrin et al.41 had used the 

method and started a discussion based on the pink–blue color shift. The 

method is not useful unless it gives a broad range of concentration values as 

CMC. It is applicable to anionic surfactants as they form a charge transfer 

complex with the dye rather than the cationic  surfactants. 

2.2.2. Experimental details  

Titania samples’ preparation 

TiO2 particles were obtained by following a room-temperature sol-gel reaction 

starting from Ti(C4H9O)4 and adopting a water/alkoxide molar ratio of 81.7 and 

a water/propanol molar ratio of 8.5. The xerogel powders were purified by 

centrifugation-resuspension cycles and then powder fractions were aged at 80 

°C, at neutral pH, for fixed time-length (5h) with different surfactants 

concentrations (1-100 mM and 0.1-50 mM for DPC and GS3, respectively). 

After the ageing step, the suspensions were dried in oven at 80 °C. Finally, the 

powders were thermally treated at 600 °C for 6 h under oxygen stream (9 NL 

h-1). 

CMC determination 

The values of the critical micelle concentration (CMC) of DPC and gemini 

surfactants were obtained by conductimetric determinations as a function of 

the temperature. Therefore, using as a guideline an average increasing slope 
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with the temperature of the CMC of DPC and GS3, obtained from the present 

results and literature data,42-44 a concentration range roughly corresponding 

to a possible CMC at 80 °C was estimated for both surfactants (18-22 mM, for 

DPC and 2-4 mM in the case of GS3). 

 

Adsorption isotherm measurements 

The adsorption isotherm of GS3 at the TiO2 interface was obtained under the 

following conditions: T = (25 ± 0.3) °C; pH = 8.0 ± 0.2; equilibration time = 4 h; 

ionic strength I = 2×10-3 M KCl. At the end of the adsorption time the 

surnatant solution was sampled for the residual surfactant concentration by 

spectrophotometric characterization at 265 nm for the gemini salt. Data on 

DPC adsorption on TiO2, obtained by Koopal et al42 are elaborated and 

reported for comparison (T = (21 ± 1) °C; pH = 8.0 ± 0.2; equilibration time = 

12 h; ionic strength I = 1×10-3 M NaCl). Adsorption isotherms of the two 

surfactant molecules are reported by plotting the surface excess (Γ) as a 

function of the final concentration at equilibrium. 

2.2.3. Determined features of DPC and GS3 surfactants    

Self aggregation features  

Due to the formation of colloidal aggregates, many physicochemical 

properties of a solution show sudden changes when the concentration of a 

surfactant is exceeded. Usually, such change occurs over a relatively small 

concentration range which is characteristic of the surfactant. The formation of 

direct micelles of DPC in water and in aqueous salt solutions has been widely 

explored by different experimental approaches. By scattering techniques, DPC 

is reported to form in water, globular micelles with aggregation number of 

about 20, with a corresponding micellar radius of about 1.9 nm, comparable 

with the extended length of a C12 chain (1.67 nm).45,46 Spherical DPC micelles 

are not reported to aggregate in tridimensional structures.47 The 

corresponding gemini surfactant (GS3) having short spacer (n = 3) has a 

particular behavior since it binds its counterions more strongly than the 

“single” does, as the n-s-n ammonium gemini amphiphiles.48,49 The lack of 

conformational freedom could be the result of the sharing of one counterion 

between the two pyridinium head groups.43 As a consequence, the short 

spacer surfactant (GS3) is probably aggregating in non spherical micelles, but 
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in elongated forms, like rods, as reported in the literature for ammonium 

gemini surfactants.50,51 In particular, Manne et al.50 found that simmetric 

gemini C12-s-C12 (s ≤6) surfactants composed by linear hydrocarbon tail with 

quaternary ammonium headgroups may assemble in hexagonal cylinders in 

silicate mesophase and  parallel cylinders at the mica surface with average 

spacings of (4.2 ± 0.4) nm. Thus, possibly cylinders in hexagonal arrangement 

for gemini spacer 3 could also occur at high surfactant concentrations. 

 

Adsorption at TiO2-solution interface  

Figure 2.3 reports the experimental adsorption isotherms, at the TiO2 solution 

interface, of both monomeric DPC and dimeric “gemini-like” GS3 surfactants. 

The shape of the two curves is markedly different. The monomer isotherm 

(Fig. 2.3a) is S-shaped showing a low adsorbent-adsorbate affinity due to weak 

interactions between the surfactant and the oxide.42 Interestingly, it can be 

proposed that the adsorption leads to the formation of surface ion pairs, 

TiOPy+ (the surface charge of TiO2 at pH 8 is negative), provoking a partial 

compensation of the surfactant aromatic charge, in accordance with previous 

XPS results from our group.31  

 

Figure 2.3. Adsorption isotherms (surface excess vs equilibrium concentrations) at the 

TiO2/solution interface of monomeric DPC (a) and dimeric GS3 (b) surfactants. Inset: 

sketches of possible disposition/orientations of the adsorbed surfactant at the titania 

surface; å is the adsorbate co-area value, calculated from the maximum coverage 

(max). Data of DPC are re-elaborated from ref. [42].  
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Figure 2.4. Log-log plot of the surface excess (Γ) as a function of the equilibrium 

concentration for DPC and GS3 surfactants (a). The general shape of surfactants 

adsorption isotherms at solid substrates and the proposed four-region model of 

adsorption (b). 

 

The curve pertaining to the gemini (Fig. 2.3b), instead, follows the trend 

classified in the literature as L-type, which is generally associated with 

coverage of the solid surface by a monolayer of adsorbate molecules and is 

characterized by a strong adsorbent-adsorbate interaction. The higher affinity 

of the gemini GS3 for the solid appears also from the larger adsorbed amounts 
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(Γmax = 7.7×10-5 µmol cm-2) in the quasi-plateau regions with respect to the 

maximum surface excess (Γmax = 4.8×10-5 µmol cm-2) of  the monomeric DPC 

surfactant.  

For these reasons, data relative to the DPC and GS3 isotherms were 

elaborated on the basis of the Langmuir (strong adsorbent-adsorbate 

interaction, no lateral interactions between adsorbate molecules) and the 

Frumkin-Fowler-Guggenheim (FFG, weak adsorbent-adsorbate interaction, 

electrostatic and non-electrostatic lateral interactions52-54) model equations, 

respectively, and the obtained parameters are reported in Table 2.1. The 

linear correlation (R2) is good in both cases, justifying the choice of the two 

different model approaches. The adsorption equilibrium constants (β) and the 

relative standard adsorption Gibbs energy (ΔG0) values support the dramatic 

increase in adsorption at the TiO2 surface passing from the monomer to the 

dimer.55 In the case of the DPC isotherm the lateral interaction parameter (a) 

is positive, i.e., it represents electrostatic repulsion interactions between the 

positive charges of the surfactant headgroups, in agreement with what 

reported by Mehrian et al.56 in the case of DPC adsorption on clays. They 

studied the influence of the electrolyte concentration on the adsorption of 

DPC on Na-kaolinite; an attractive lateral term was obtained only in the case 

of high ionic strength (100 mM), while repulsion prevailed at lower electrolyte 

concentrations (5 and 20 mM).  

Surfactant 
Isotherm 

model 
R2 

 
ΔG0  

(kJ mol-1) 
a 

DPC FFG 0.97 160 ± 20 -5.6 ± 0.2 3.2 ± 0.2 

GS3 Langmuir 0.997 18000 ± 6000 -27.1 ± 0.3 - 

Table 2.1. Data (β, adsorption equilibrium constant; ΔG
0
, standard adsorption Gibbs 

energy; a, lateral interaction parameter) from the elaboration of GS3 and DPC 

isotherms. 

 

The limiting areas (å, co-area) for DPC and GS3 – (350 ± 20) and (216 ± 5) 

Å2mol-1, respectively – at maximum packing (Γmax) calculated from the surface 

excess at maximum coverage are higher than those present in the literature. 

Ottewill et al.57 reported two different values of co-area for DPC molecule, 

obtained by surface tension at the air-water interface, in the case of flat-lying 

(110 Å2) and vertical (35 Å2) orientations. Thus, on the basis these 
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considerations, the present size of adsorbed DPC molecule could be 

interpreted as being due to a flat orientation (sketch inset Fig. 2.3), with the 

formation of a diluted film, characterized by electrostatic repulsion between 

the charged pyridinium heads. On the contrary, the lower value of å for the 

GS3 surfactant could be ascribable to a vertical orientation (see sketch inset 

Fig. 2.3) in which, in agreement with our previous results of adsorption of 

gemini zero-spacer on TiO2,
55 only one pyridinic group is directly involved in 

the electrostatic interactions with the oxide, whereas the second one is 

compensated by its counterion (Cl-). 

As stated above, strong chemi- and physi-interactions with TiO2, in the 

absence of lateral interactions, occur for GS3. This feature is amplified by a 

log-log plot at low surface excess values (Fig. 2.4a). The primary advantage of 

using a log–log plot is that it amplifies the features of the isotherm at low 

surface excess values. The general form of isotherms plotted in this manner, 

and the morphology of adsorbed structures associated with each region are 

depicted schematically in Fig. 2.4b. Somasundaran et al.58.59 proposed the 

four-regions model attributed respectively to the adsorption of (I) monomers 

by electrostatic interactions, (II) surface aggregates (hemimicelles) up to the 

substratum charge compensation, (III) headout molecules by chain–chain 

interactions, and (IV) fully formed bilayer. In the case of the examined 

samples, only three regions are appreciable since the isotherms are limited to 

monolayer coverage (for both surfactants, cSURF < CMC) without the complete 

formation of  bilayers. The surfactant concentration relative to the beginning 

of hemimicelle formation is about 1.8×10-4 M and  8.0×10-6 M, respectively for 

DPC (A point) and GS3 (B point); these values could be compared with the bulk 

CMC values (DPC: 1.6×10-2 M, GS3: 1.5×10-3 M at 25 °C) obtained from 

conductimetric/tensiometric determinations,42-46 following the criterion 

reported by Fuerstenau60 that hemimicelles may occur about 1/100th of the 

CMC. 

The trend between the two isotherms (the shift along the x-axis, the variation 

of the slope in the different regions and the distribution of surface excesses) is 

the expected one due to the presence of a second homologous pyridinic ring 

in the case of GS3 species. For both surfactants, the slope of the plot in the 

region I (the Henry region), is unity in the ideal situation (ΔG0 is constant).42 

The initial slope of the experimental isotherms cannot be determined 

accurately, but they are, within experimental error, almost equal to unity. The 
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slope of the DPC curve increases passing from region I to region II, where 

hemimicelles form, indicating that the adsorption is enhanced by the 

formation of surface aggregates. This trend is typical for S-shaped isotherms.42 

In the case of the gemini molecules the slope is, instead, depressed in the 

region of hemimicelles, possibly due to the steric hindrance. 

2.3. Microemulsion-mediate titania materials 

General aspects   

An emulsion is generally defined as a thermodynamically stable, isotropic and 

transparent mixture composed of at least three components: two immiscible 

liquids (typically water and oil) and a surfactant, which plays the role of 

separating the former two by a thin monolayer. It can be either water in oil 

(see Fig. 2.5, oil in water, or bicontinuous.61 Such system can be very 

complicated, containing a great variety of complex structures, such as liquid 

crystals, gels, vesicles, micelles, etc.62  

 

Figure 2.5. A pictorial representation of a water-in-oil microemulsion. 

 

The use of a suitable emulsifier allows to disperse an aqueous solution 

containing the metal precursor into the oil phase, forming nanosized droplets 

due to minimization of the surface energy. Chemical reaction or precipitation 

can take place within each single droplet, giving rise to final products 

maintaining the main characteristics of the starting nanodroplets in terms of 

size and shape. Moreover, during the precipitation stage, each particle is 

coated by a surfactant film preventing the particle agglomeration.63  

The stability of the microemulsion, which affects the success of the synthesis, 

depends on several process parameters, in particular the water-to-oil ratio, 

the type and content of emulsifier, the precursor concentration into the 

solution and the mixing conditions.  
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The advantage with the microemulsion route is that the size of the particles 

can be affected by the ratio of surfactant to water. The size of the water 

droplets in the reverse microemulsions is approximately the same as that of 

the produced particles.64 When water in oil microemulsions are used, water 

droplets are typically in the size range of a few nanometers to 100 nm, and 

they can be used as micro/nanoreactors for chemical reactions5,64 as 

illustrated by Andersson et al. in the sketch reported in Fig. 2.6.5  

 

Figure 2.6. Schematic overview of the different stages of titania formation as a 

function of time using the microemulsion route at room temperature: stable water-in-

oil microemulsion to which the Ti precursor (titanium alkoxide) is added, being soluble 

in the continuous organic phase (1); hydrolysis and formation of water-soluble species 

within the water droplets (2); aggregation of titania particles (3); crystallization 

process (4). Re-drawn from ref [5]. 

 

By dissolving metal salts in the water pools followed by the addition of a 

reducing agent, researchers have prepared metals such as Cu, Pt, and Pd in 

the form of nanoparticles.65,66 If, instead, two microemulsions containing salts 

such as Cd(NO3)2 and Na2S are used, water insoluble compounds such as CdS 

can be prepared as nanoparticles.67,68  

Wu and co-workers showed that nanoparticles of both anatase and rutile TiO2 

can be prepared at 120 °C by hydrothermal treatment of microemulsions.69 

Although their interpretation that the microemulsion templates the TiO2 

particle size at 120 °C was fairly wrong, as shown by Andersson et al.5, their 
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outcome can be considered of great interest since they yielded the two 

polymorphs using the same temperature and the same synthetic method. 

Later on Andersson et al. performed a similar synthesis at room temperature, 

resulting in nanocrystalline rutile with an extremely high specific surface area 

(ca. 300 m2g-1). Furthermore, Cong et al.70 successfully synthesized nitrogen-

doped nanocrystalline titania by a microemulsion-hydrothermal process, 

avoiding high calcination temperatures and consequently averted the 

agglomeration and sintering of the TiO2 particles. Triethylamine, urea, 

thiourea, and hydrazine hydrate were employed as nitrogen sources. More 

recently, the reactive microemulsion synthesis has been further studied by 

Deorsola and coworkers starting from a TiCl4 solution emulsified into the oil 

phase.71 The precipitation of spherical and ultrafine titania particles occurred 

due to the high instability of the Ti precursor and the interactive contact 

among nanodroplets. This is one of the rare case in which the process 

parameters were varied in order to investigate their effect on the 

microemulsion stability and consequently on the structural and morphological 

characteristics of the particles. As a result, the synthesis parameters were 

optimized in order to achieve spherical and nanosized titania particles. 

The interest of the present work was limited to microemulsions showing a 

simple structure, namely water-in-oil microemulsions, as the purpose of the 

method described hereafter was the optimization of the process parameters 

for the achievement of ultra fine and nanometric particles.  

Thus, after having used surfactants to dictate the shape of the final TiO2 

materials (particles and pores) as in the template route, now surfactants are 

used to stabilize an emulsion, which plays the role of “nano-reactor” for the 

oxide material.  

2.3.1. Surfactants used 

In the syntheses via microemulsions three different surfactants were 

employed: LUTENSOL TO389, TWEEN 80, and TRITON X-100. Details are 

reported in Table 2.2 and their structural formulas are depicted in Fig. 2.7. 
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Surfactant  

(short name) 
Chemical name 

MM 

(g mol-1) 

d  

(g mL-1) 

cloud 

point (°C) 

CMC 

(mM) 

LUTENSOL 

TO389 

polyoxyethylene 

saturated iso-C13 ether 
500 0.99 70 n.d. 

TWEEN 80 
polyoxyethylene (20) 

sorbitan monooleate 
1310 1.08 65 0.01 

TRITON X-100 
polyoxyethylene octyl 

phenyl ether 
625 1.07 66 0.50 

Table 2.2. Main features of the surfactant employed. 

 

 

  
 

 
 

  

Figure 2.7. Structures of the surfactant employed in the microemulsion synthetic 

routes: LUTENSOL TO389 (top), TWEEN 80 (center), and TRITON X-100 (bottom). 
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In the following, thermogravimetric analysis (TGA) performed on the pure 

surfactants are reported. The  purpose of such analyses was to identify the 

proper calcination temperature according to the degradation of the surfactant 

Degradation of LUTENSOL TO389 starts at about 224 °C and most of the 

surfactant is degraded at 276 °C. It is however necessary to go up to 446 °C to 

complete the process, as shown in Figure 2.8.  

This is the reason why the calcinations temperature had been set to 500 °C.  

Nitrogen was chosen instead of oxygen, since it turned out to be more 

effective (oxygen led to a final powder not properly white, probably owing to 

the faster and more complete combustion which leads to carbonaceous 

residues). 

 

Figure 2.8. Thermogravimetric analysis of LUTENSOL TO389 surfactant. 

 

TGA analysis on TWEEN 80 appears much more simple than the previous case 

(surfactant LUTENSOL TO389): as shown in Fig. 2.9, degradation occurs in a 

sole step at a temperature not much higher than 400 °C. Unfortunately, a 

residue of the surfactant equal to 2.3 % of the total weight is not eliminated 

even raising the temperature up to 700 °C. 
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Figure 2.9. Thermogravimetric analysis of TWEEN 80 surfactant. 

 

Degradation of TRITON X-100 occurs at 377 °C and is completed a few degrees 

above 400 °C (Fig. 2.10).  For this reason, in the case of this surfactant, the 

calcination step has been performed at 400 °C, under nitrogen stream. 

 
Figure 2.10. Thermogravimetric analysis of TRITON X-100 surfactant. 
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Microemulsion stabilization and titania samples’ preparation 

Most of the research on this system has been focused on the choice of the 
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precursor hydrolysis and polycondensation), on the purification of the product 

(washing and filtration steps) and, related to this latter issue, also on the 

conditions to be adopted for the final thermal treatment.  

The surfactant was dissolved in n-heptane and the solution was stirred for 

about 30 min. Then, the proper amount of water was slowly added at room 

temperature, thus forming the quite viscous microemulsion. After 90 min 

stirring, a solution containing Ti(OPr)4 and i-propanol was added drop-wise. 

The resulting precursor-containing mixture turned into a milky-white 

suspension and was kept stirring 10 h. Then, the precipitate was recovered by 

either centrifugation or filtration and washed several times with deionized 

water (900 mL) and absolute ethanol (60 mL totally), in order to remove 

solvents and surfactant. The residual wet solid was dried in oven at 90 °C and 

subsequently calcined at 500 °C for 6 h under N2 stream (9 NL h-1). Calcination 

at 400 °C (sufficient for the complete removal of the surfactant) was 

maintained only for samples obtained with TRITON X-100: In Table 2.3 the 

amounts of all components used in the syntheses are reported. 

The amount of surfactant was varied in the range 0.3-1.2 surfactant/Ti molar 

ratio. In some cases, a mixture of two surfactants (LUTENSOL TO389 and 

TWEEN 80) has been used instead of a single one. 

Preliminary experiments were carried out using different amount of the 

microemulsion components. The final choices were made with aim of keeping 

the surfactant amount not too high and, at the same time, maintaining the 

microemulsion stable all over the reaction time. Accordingly, the volume 

percentages of surfactant and water were varied within the one-phase 

microemulsion region, detecting the phase boundaries as those compositions 

where samples became turbid.72  

In Table 2.4 samples are listed as they are named in the following and details 

on the amount of surfactant employed are reported. 

Reference samples obtained by a traditional sol-gel route (see paragraph 

2.1.1) are reported for comparison and labeled as “T_400N” and “T_500N”, 

according to the different calcination temperatures (suffix “N” refers to the 

calcination atmosphere, namely nitrogen, always used for samples obtained 

from microemulsions, instead of oxygen, which is more commonly used 

throughout this thesis). It should be noted that the only sample obtained via 

microemulsion calcined at 400 °C is the one deriving from TRITON X-100, 
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because of the complete decomposition of the surfactant at that 

temperature. 

Chemical 
MM 

(g mol-1) 
m (g) d (g mL-1) vol (mL) mol 

Ti(OPr)4 284 14.33-7.33 0.955 7.50 0.050-0.025 

i-propanol 60 12.50 0.800 15.9 0.417-0.208 

n-heptane 100 48.15 0.683 70.5 0.961-0.481 

water 18 17.00 1.000 17.0 1.875-0.938 

LUTENSOL 

TO389 
500 

7.43/14.85

/22.28 
0.990 7.5/15.0/23.0 

0.015/0.030 

/0.045 

TWEEN 80 1310 26.74 1.076 24.85 0.021 

LUT : TWEEN - - - - 
0.0067:0.0158 

/0.002:0.020 

TRITON X-100 625 18.90 1.070 17.70 0.030 

Table 2.3. Details of all components used for the syntheses via microemulsion route. 

 

Sample Surfactant(s) Surf/Ti molar ratio 

T_L0.3 LUTENSOL TO389 0.3 

T_L0.6 LUTENSOL TO389 0.6 

T_L0.9 LUTENSOL TO389 0.9 

T_TW0.9 TWEEN 80 0.9 

T_TW0.6L TWEEN 80 + LUT. TO389 0.9 (0.6 + 0.3) 

T_TW0.8L TWEEN 80 + LUT. TO389 0.9 (0.81 + 0.09) 

T_TW0.09L TWEEN 80 + LUT. TO389 0.9 (0.09 + 0.81) 

T_TX1.2 TRITON X-100 1.2 

Table 2.4. Labels used for samples obtained via microemulsion route and details on 

the amount of surfactant employed. 
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2.4. Samples ID 

Throughout all the thesis, the undoped TiO2 sample, prepared by the simple 

sol-gel synthesis and calcined at 400 °C was labeled as T. Whenever other 

calcination temperatures or atmospheres (N2 instead of O2) have been used, 

they are explicitly written after “T” (e.g., T_500N stands for TiO2 obtained with 

the basic sol-gel procedure and annealed under nitrogen stream – same 

conditions as for oxygen).  

For all other types of TiO2, valid samples ID are those explained at the end of 

each experimental section related to a specific synthesis (see above).  

To summarize, besides samples prepared by template and microemulsion 

routes, different sets of samples were obtained by sol-gel reaction: 

 undoped TiO2 calcined at 400 °C or higher temperatures (T, T_600, 

T_400N, T_500N) 

 N-doped TiO2,: TEA-doped / urea-doped / NH3-doped titania (TN_TEA 

/ TN_urea / TN_NH3) 

The reason why in some cases no N sources are explicitly written is 

that the comparison is not meant among different N sources but 

among different starting dopant/Ti ratios. 

 Pr-doped TiO2 from Pr(NO3)3, with different Pr/Ti molar ratio (TPr) 

 Ag-doped TiO2 from AgNO3, with different Ag/Ti molar ratio (TAg)  

 N,Ag-codoped TiO2 from urea and AgNO3 (TNAg) 

 

The following table (Table 2.5) summarizes all the classes of synthesized 

samples (except for home-made TiO2 films used for solar cells), with their 

main synthetic features. 
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Sample Synthesis Dopant Surfactant 

T / T_x / T_xN 
(x = calcination 
temperature) 

sol-gel - - 

TN_TEA / TN_urea / 
TN_NH3 / TN_x 

(x = N/Ti nominal 
molar ratio) 

sol-gel 
N (TEA / 

urea / NH3) 
- 

TPr_x  
(x = Pr/Ti %  
molar ratio) 

sol-gel Pr (PrNO3) - 

TAg_x  
(x = Ag/Ti molar ratio) 

sol-gel Ag (AgNO3) - 

TNAg_ x  
(x = Ag/Ti molar ratio) 

sol-gel 
N (urea)  

Ag (AgNO3) 
- 

no abbreviations template - DSC / GS3 

see Table 2.4 microemulsion - 
LUTENSOL TO389 
and/or TWEEN 80 

/ TRITON X-100 

Table 2.5. Summary of all home-made sample categories.  

 

As the Table 2.5 shows, the set of home-made powders included very 

different samples. Several synthetic features were systematically varied: 

- the synthetic route (sol-gel, template or microemulsion-mediate 

route); 

- the type of introduced dopant  (N, Pr, Ag); 

- in the case of N-doped TiO2, the source of dopant: inorganic (NH3) or 

organic (triethylamine, tea). 
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This chapter is comprised of results deriving from different techniques used to 

characterize nanosized titanium dioxide obtained in powdery form. While 

some methods are commonly adopted, other types of measurements are 

definitely less routinely applied to TiO2 or less used in general. A separate 

chapter (chapter 4) is dedicated to a particular class of characterization 

techniques, namely electrochemical ones, for their relevant, quite unusual 

and extensive use in this thesis. 

Depending on the nature of the samples and according to specific purposes, 

not all the techniques presented have been applied to all classes of home-

made TiO2 materials. As for instance, the synthesized series of Pr-doped 

titania with different Pr amounts has been widely characterized with the final 

aim of assessing the location of the dopant species into the TiO2 lattice, which 

is one of the debated aspect concerning the doping of TiO2.  

For such a reason, this chapter, rather than tracing a structural classification of 

all the employed methods, is more focused on the different types of TiO2 

samples, giving for each of them a detailed description of peculiar aspects. 

Starting from titania materials obtained via template and microemulsion 

routes (paragraphs 2.2 and 2.3, respectively), doped samples are explored, 

with a more thorough study performed on N-TiO2 nanoparticles. 

First of all, the main structural and morphological features of the two 

commercial samples used in the present thesis for comparison with selected 

home-made samples are summarized in Table 3.1 and compared with a home-

made undoped sample (labeled as “T”, see paragraph 2.1.1 for the synthetic 

procedure). Hombikat UV100 (Sachtleben) is a high purity anatase powder, 

characterized by the highest surface area among all the samples presented in 

this thesis. The commercial P25 (Evonik), very often used in the TiO2 literature 

as a benchmark, is a mixed anatase-rutile TiO2 powder with a surface area 

much lower than the home-made samples, the largest crystallite size and 

highly dispersibility in both aqueous and polar organic solvents.  
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Sample % A % B % R 
<Danat> 

(nm) 

SBET 

(m2g-1) 

Vpore 

(mL g-1) 

P25 75 - 25 30.0 ± 0.3 50 0.26 

Hombikat UV100 100 - - 10.0 ± 0.3 354 0.35 

T 66 37 - 4.8 ± 0.1 150 0.44 

Table 3.1. Phase composition (A=anatase, B=brookite, R=rutile), average diameter of 

the anatase crystallites (XRPD), specific surface areas and pore volumes (BET-BJH 

analysis) for two commercial samples and a home-made one obtained by sol-gel 

synthesis (see paragraph 2.1.1.).  

3.1. Density functional theory  

In this thesis, density functional theory (DFT) calculations have been 

performed by a theoretical chemistry group (Dr. M. Ceotto, Università degli 

Studi di Milano) with different purposes, namely to reproduce EXAFS results 

for pristine TiO2 and N-doped TiO2 over the whole N/Ti molar range of the 

experimental samples (chapter 3), to quantify the primitive cell distortion 

under Pr doping – see comparison with XRPD outcomes – (chapter 3) and 

finally to study the Density of States (DOS) and evaluate the Fermi and quasi-

Fermi level of undoped, N-doped, and Pr-doped titania (chapter 4). 

Solid-state calculations DFT based on the atom-centered linear combination of 

Gaussian-type functions (LCGTF) have been performed by Dr. L. Lo Presti 

(Università degli Studi di Milano) to optimize the geometrical crystal structure 

of both pure and defective TiO2 anatase (chapter 3, EXAFS analysis). 

DFT is a quantum mechanical modeling method used 

in physics and chemistry to investigate the electronic structure of many-body 

systems, in particular atoms, molecules, and the condensed phases. With this 

theory, the properties of a many-electron system can be determined by 

using functionals, namely functions of the electron density. 

Although DFT has its conceptual roots in the Thomas–Fermi model, DFT was 

put on a firm theoretical footing by Hohenberg and Kohn1 and further 

developed by Khon and Sham.2 The many electron Schrödinger equation can 

be very much simplified if electrons are divided in two groups: valence 

electrons and inner core electrons. The electrons in the inner shells are 

strongly bound and do not play a significant role in the chemical binding 
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of atoms, thus forming an almost inert core with the nucleus. Binding 

properties are almost completely due to the valence electrons, especially in 

metals and semiconductors. This separation suggests that inner electrons can 

be ignored in a large number of cases, thereby reducing the atom to an ionic 

core that interacts with the valence electrons. The use of an effective 

interaction, a pseudopotential, that approximates the potential felt by the 

valence electrons, was first proposed by Fermi in 1934 and Hellmann in 1935. 

In spite of the simplification pseudopotentials introduce in calculations, they 

remained forgotten until the late 50’s.  

During recent years, the development in electronic structure theory has lead 

to dramatically improved possibilities for calculations even on large molecular 

systems. However, despite recent improvements, there are still difficulties in 

using density functional theory to properly describe intermolecular 

interactions, especially van der Waals forces (dispersion), charge transfer 

excitations, transition states, bandgap in semiconductors, global potential 

energy surfaces and some other strongly correlated systems. Its incomplete 

treatment of dispersion can adversely affect the accuracy of DFT (at least 

when used alone and uncorrected) in the treatment of systems which are 

dominated by dispersion or where dispersion competes significantly with 

other effects. The development of new DFT methods designed to overcome 

this problem, by alterations to the functional3 or by the inclusion of additive 

terms4 is a current research topic.  

In the literature, there are several theoretical papers devoted to the study of 

the electronic structure and some physico-chemical properties of the doped 

oxide by using different computational methods, such as the full-potential 

linearized augmented plane wave (FP-LAPW) method,5 and the 

pseudopotential plane wave (PPW) method,6,7 and the B3LYP hybrid Hartree–

Fock (HF) density functional theory method.8 

These calculations have given the possibility to obtain new information on the 

nature and processes of defect formation and the structural transformations 

occurring in the doped material. However, most of the calculations carried out 

in the near-Fermi region of the electronic spectrum of doped TiO2 are in poor 

agreement with the experimental results, especially if dealing with bandgap 

arguments.  

In the present context, since the excess charge localization and the strongly 

correlated nature of the occupied Ti 3d states seriously challenges DFT 
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calculations, the electronic structure calculations were conducted using both 

the GGA (Generalized Gradient Approximation) and the GGA + U method 

(GGA associated with the use of the Hubbard empirical U parameter, see the 

following),9 which can lead to a good description for the reduced TiO2, as 

shown in previous works.10-12 The DFT + U approach introduces an on-site 

correction in order to describe systems with localized d and f electrons, which 

can produce better bandgap and midgap states energetics in comparison with 

experimental results. As already mentioned, the main disadvantage of the 

methods used in calculations of titanium dioxide is an inaccurate estimate of 

the bandgap. The use of the methods based on the electron density functional 

theory (such as the linear combination of atomic orbitals (LCAO), localized 

spherical wave (LSW), and pseudopotential methods) leads to an 

underestimation of the band gap, whereas the calculation performed within 

the Hartree–Fock approximation results in a substantially overestimated band 

gap as compared to the experimental value. In order to more accurately 

describe the electronic spectrum and optical properties, it is necessary to take 

into account the exchange–correlation interactions. In the present work, 

effective on-site Coulombic interactions U (U = U′ - J) for Ti 3d were used. U′ 

and J represent the energy cost of adding an extra electron at a particular site 

and the screened exchange energy, respectively. 

3.2. Template titania: structure and morphology  

Besides the possible promotion of a controlled pore network, the presence of 

an amphiphilic molecule can intervene in different ways by tuning the sample 

final morphology. Very interesting is, for instance, the  recent work by Chen et 

al.,13 where three-dimensionally ordered arrays of mesoporous titania spheres 

have successfully been synthesized through opal (ordered closed-packed face-

centered cubic lattice of silica  or latex spheres) template and triblock 

copolymer (Pluronic P123) as a mesopore-directing agent. The mean diameter 

of the titania spheres has been observed to be ca. 165 nm with a narrow 

distribution of the mesopore size in the range 2-6 nm. 

Fig. 3.1 reports the relative phase enrichment (histograms) at different 

surfactant concentrations of samples submitted to a hydrothermal growth 

step in the presence of the DPC and GS3, subsequently calcined at 600 °C. The 
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polymorph composition appears to be directly dependent to the 

concentration of the surfactant in the solution adopted for the ageing. When 

such concentration corresponds to the existence of non-aggregated surfactant 

units (1, 10 mM for DPC and 1, 2.5 mM for GS3), the anatase polymorph is 

prevalent; the crystallite sizes (Table 3.2) appear to be smaller than those in 

the absence of surfactant.  

 

Figure 3.1. Relative phase enrichment in anatase (white part of histograms) and rutile 

(black part of histograms) TiO2 polymorphs of samples grown in surfactant solutions 

(DPC, a, GS3, b) and subsequently calcined at 600°C.  

The specific surface areas of the calcined oxide remain approximately the 

same (Table 3.2, last column).  

By increasing the surfactant concentration at values larger than the CMC (>25 

mM for DPC and >5 mM for GS3), the amount of anatase decreases and the 

anatase and rutile structures are almost equally promoted. The formation of 

rutile comes along with larger crystallite sizes and lower surface areas (Table 

3.2).  

Moreover the presence of GS3 at higher concentrations seems to preserve the 

surface area (11-14 m2g-1) and to limit the increase in rutile crystallite sizes 

(75 nm) with respect to the DPC surfactant (5-8 m2g-1 and >85 nm, 

respectively).  
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Sample <DA> (nm) <DR> (nm) SBET (m
2g-1) 

no SURF 28 - 18 

D
P

C
 

1 mM 20 - 19 

10 mM 22 - 19 

25 mM (CMC) 24 - 16 

50 mM 32 86 8 

100 mM 41 >100 5 

G
S3

 

0.1 mM 23  20 

2.5 mM 30 54 16 

5 mM (CMC) 37 63 13 

10 mM 44 73 14 

30 mM 43 76 11 

Table 3.2. Anatase (A), rutile (R) domain sizes and BET surface area for all titania 

samples obtained by surfactant template route. 

 

These results are considered to be significant since after a calcination at 600 

°C both the surface area and the total pore volume are still appreciable at 

variance with samples prepared by template-free procedures.14-16  

The trend in Fig. 3.1 is in agreement with the generally reported lower surface 

energy of anatase with respect to rutile17,18 and with the consistent finding 

that the phase transformation to rutile occurs after the anatase grains have 

grown to a certain threshold size, of about 30-40 nm.19 Actually, during the 

hydrothermal step particle growth through Ostwald ripening can be expected 

to occur.20 When the growth occurs in the presence of a non-aggregated 

surfactant, the surface of the precursor particles is shielded from the 
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deposition of soluble Ti species by the presence of the surfactant film. The 

growth is slightly depressed, the particles remain smaller and stable 

supporting the formation of anatase. At higher concentrations, the micelles 

may act as carriers for the soluble Ti containing species promoting the growth. 

Further, the micelles may be, also, adsorbed at the surface of different 

particles and may therefore promote bridging phenomena leading to larger 

particles.  

These considerations are closely mirrored by the particle morphology shown 

in SEM micrographs (Fig. 3.2). In the case of the sample prepared in the 

absence of the surfactant (Fig. 3.2a) small spheroidal particles with an average 

size of about 30 nm grouped in raspberry-like aggregates can be appreciated. 

Instead, in the case of the sample grown at high DPC concentration (Fig. 3.2b) 

the particles are much larger, with sizes ranging from about 100 nm (single 

crystals) and to about 200-300 nm as the result of sintering between 

crystallites. The large particles in Fig. 3.2b reveal a particularly smooth surface. 

This effect is presumably the result of a surface annealing provoked by the 

heat released during the surfactant combustion. In the case of titania particles 

grown at high GS3 concentration, the shape of the aggregates remains 

spheroidal, characterized by a diameter of  60-70 nm.  
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Figure 3.2. SEM micrographs of titania particles hydrothermally grown in absence of 

surfactant (a) and in presence of high concentration of (b) DPC (100 mM) and (c) GS3 

(30 mM), subsequently calcined at 600°C. 
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Mesoporosity 

The mesoporosity induced by micelles and further three-dimensional 

organization of both surfactants can be appreciated by the hysteresis loop of 

the nitrogen adsorption–desorption isotherm (Fig. 3.3), with respect to the 

reference material prepared without surfactant. The hydrothermal treatment 

in the presence of DPC micelles (cDPC = 25 mM, Fig. 3.3a) leads to titania 

particles with bottle-neck shaped pores mainly in the range of 6< d <10 nm 

(Fig. 3.4a), comparable with the average diameter of the globular DPC micelles 

( 4 nm).21  

 
Figure 3.3. N2 adsorption–desorption isotherms of TiO2 samples aged in different 

surfactant solutions and calcined at 600°C. a) DPC, b) GS3  
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When the particles are grown at surfactant concentrations higher than CMC, 

in the case of DPC the shape of hysteresis loops is similar to the reference 

sample, the total pore volume increases, but the fraction of desired 

mesopores is not significantly large. On the other hand, the presence of GS3 

cylindrical micelles and three-dimensional hexagonal arrangements (sketches 

in Fig. 3.4b) produces an increase of total pore volume at increasing surfactant 

concentration (Fig. 3.4b), especially the fraction of mesopores with diameters 

in the range 6< d <20 nm. The shape of the hysteresis loop is typical of open-

ended slit-shaped pores (Fig. 3.3a).  

 
Figure 3.4. Pore volume distribution of TiO2 samples after a) DPC and b) GS3 ageing as 

a function of surfactant concentration and calcined at 600°C. Insets: possible 

surfactant three-dimensional aggregations. 

 

A typical pore size distribution curve for the hydrothermally treated TiO2 in 

the presence of three-dimensional GS3 hexagonal arrangements is shown in 

Figure 3.5a. A fairly narrow size distribution, 6-20 nm, is achieved for the 

present sample at variance with the untreated one (calcined at 600 °C), which 

shows almost no porosity. This result indicates that the hydrothermal 

template treatment of the TiO2 particles leads to their aggregation with 

evolution of a mesoporosity probably arising from the template structure, 

which is successively thermally decomposed.  
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Part of the mesoporous structure can be appreciated in the HRTEM image of 

Figure 3.5b. 

 

 

Figure 3.5. Pore size distribution curve of (a) TiO2 bare particles and (b) after GS3 

ageing (30 mM) calcined at 600 °C (a). HRTEM image of GS3 hydrothermally treated 

and calcined sample (b). 

 

These results, together with the surface and morphological aspects, could be 

explained by invoking the different local heat of combustion (during the 

calcination step) for DPC and GS3, especially for high surfactant 
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10                                   100

0.10

0.08

0.06

0.04

0.02

Pore diameter / nm

d
V

/d
D

/ 
m

L
g-1

n
m

-1

a)

5 nm

b)



 

85 3.     Basic Characterizations 
 

ensuing calcinations step to large heats of combustion, particle sintering and 

an almost un-controlled mesoporosity. In the case of gemini, instead, the 

relevant surfactant/oxide interactions allow the templating function of the 

surfactant to significantly occur. Possible ordered hexagonal GS3 

arrangements may lead to lower surfactant/oxide ratio in the template 

growth, inherent in the rods vs globule structure, even if the GS3 surfactant is 

formed by double aromatic ring. This leads to a lower heat of combustion and 

to controlled particle shape, size and mesoporosity.  

3.3. Microemulsion-mediate titania: structure and 

morphology 

As expected, the crystallite size is slightly increased at increasing the 

calcination temperature (from ca. 8 nm to ca. 16 nm raising the temperature 

from 400 °C to 500 °C). All values are reported in Table 3.3, 2nd column. The 

qualitative phase identification shows the presence of anatase (mainly) and 

brookite in all specimens, with a low amount of rutile for some samples due to 

the calcination temperature higher than 400 °C. All diffraction lines(not 

shown) do not differ from those of sol-gel undoped sample (in the cases 

where a low amount of rutile is present, it is not detectable from the 

diffraction profile). 

Fig. 3.6a shows the comparison among three selected hysteresis loops relative 

to a sample obtained with LUTENSOL TO389 (T_L0.9), one obtained with 

TWEEN 80 (T_TW0.6L) and another one obtain by using TRITON X-100 

(T_TX1.2). The three isotherms are surely affected by the type of nitrogen 

source, though are all ascribable to type IV and the hysteresis loops seem to 

be H4 type (predominant slit-shaped pores), as in the case of undoped sol-gel 

sample named T and urea-doped samples (see paragraph 3.3.3). 

Because of sintering phenomena related to the calcination temperature (500 

°C) specific surface areas and pore volumes are lower than those obtained for 

samples calcined at 400 °C (see T_400N, T_TX1.2 and compare to samples 

presented in other sections): the only value well above 100 m2 g-1 refers to the 

sample obtained with TRITON X-100 which was calcined at 400 °C owing to 

the complete decomposition of the surfactant at that temperature. An easy 

comparison is that between samples T_400N and T_500N, which simply differ 

for the annealing temperature: the specific surface area drops from 136 down 
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to 68 m2g-1 when reaching 500 °C during calcination. Out of this trend is 

sample T_L0.3, which is indeed hardly comparable with the others owing to 

the high pore volume and significant presence of macropores (Fig. 3.7b). As 

for the pore size distribution, it is possible to observe from Fig. 3.7b that 

micropores are only present in samples calcined at 400 °C, while they almost 

disappear when the calcination temperature is 500 °C. Also the type of 

surfactant deeply affects the pore size distribution: apparently, TRITON X-100 

leads to oxides with very few macropores (>20 nm), which, in turn, are 

present in a large fraction in the samples obtained with either LUTENSOL 

TO389 or TWEEN 80. This result indicates that such microemulsion route leads 

to particle aggregation with evolution of a mesoporosity probably arising from 

the interparticle space. 

 

Table 3.3. Specific surface areas and total pore volumes (BET-BJH analysis), anatase 

crystallite size and phase composition (XRPD measurements - A=anatase, B=brookite, 

R=rutile) of titania samples obtained via reverse microemulsion route. 

Sample 
SBET 

(m2 g-1) 

Pore vol. 

(mL g-1) 

dA
101 

(nm) 
% A % B % R 

T_400N 136 0.301 8 66 34 - 

T_500N 68 0.208 16 77 23 0 

T_L0.3 89 0.468 12 94 4 2 

T_L0.6 68 0.205 14 88 10 2 

T_L0.9 71 0.179 12 97 0 3 

T_TW0.9 48 0.129 13 87 9 4 

T_TW0.6L 75 0.279 12 72 23 5 

T_TW0.8L 45 0.118 14 94 6 0 

T_TW0.09L 79 0.237 13 87 13 0 

T_TX1.2 125 0.218 8 77 23 0 
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Figure 3.7. N2 adsorption-desorption isotherms for selected samples (a) and pore size 

distribution of all titania samples (b) obtained via reverse microemulsion route. 

 

TEM images of TiO2 obtained by microemulsions are reported in Fig. 3.8 for 

selected samples (T_TX1.2 and T_TW0.6L). It can be observed that particles 

are fairly spherical, with a narrow size distribution that well agrees with the 

above mentioned results.  
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Figure 3.8. TEM images of samples T_TX1.2 and T_TW0.6L, obtained by a 

microemulsion route using a respectively a single surfactant, TRITON X-100, and two 

surfactants, namely TWEEN 80 and LUTENSOL TO389. 

3.4. N-doped TiO2  

Nowadays, nitrogen incorporation can be achieved by both physical and wet-

chemical synthetic methods (such as sol-gel synthesis, chemical treatments of 

the bare oxide, titanium nitride oxidation, sputtering with Ar-N2 gas, N ion 

bombardments at high energies, molecular beam epitaxial growth, chemical 
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vapor deposition, post-treatment by NH3 gas at elevated temperatures, spray 

pyrolysis and other super-critical methods).22-24 Given such a jungle of 

synthetic routes, materials with largely different properties are produced. 

Therefore, direct comparison and unifying photocatalytic conclusions are 

difficult to draw. 

In the following, XRPD and EXAFS detailed analyses will be presented for N-

TiO2 doped with triethylamine as N source, whereas, further on, a comparison 

among three different N sources (triethylamine, ammonia and urea) will be 

made focusing on the role of effect of the aging time (from the freshly 

synthesized powders to aged ones – up to two months) on the prepared 

titania doped materials. 

The actual N contents in all N-doped samples presented hereafter were 

determined to be in the range 0.06–0.09 wt.% (corresponding to 0.003-0.005 

molar ratio),  based on the CHN analysis; such values are comparable to those 

reported by Silija et al.25 It should be noted that the N/Ti atomic ratios 

determined by XPS analysis elsewhere26 range around 0.015–0.022. These 

values are much lower (one order of magnitude) than the starting molar ratios 

adopted in the different synthetic routes and a little higher than those 

obtained by CHN analysis, thus indicating that most of the nitrogen is lost 

during the sample preparation. Triethylamine as a tertiary amine theoretically 

provides less nitrogen atoms to titania than the other adopted sources. As 

affirmed by Ananpattarachai et al., this information would suggest that the 

chemical composition (N content) of N-doped TiO2 largely depends on the 

molecular structure of the nitrogen dopant and the accessibility of nitrogen 

atoms to react with the titania precursor.27 However, more or less the same 

amount of N was found in all N-doped samples, lying in the range mentioned 

above. 

3.4.1. Structural features  

XRPD is widely applied for the characterization of materials’ structure and 

microstructure. The Rietveld method28,29 and the WPPM (Whole Powder 

Pattern Modelling)30 are the state of the art tools for quantitative phase 

analysis and for microstructure studies. In close analogy to the structural 

refinement provided by the Rietveld analysis, WPPM is a general technique for 

microstructure refinement which consists in a simultaneous modeling of all 
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peak profiles of the diffractogram from single or multi-phase polycrystalline 

materials, without using arbitrary profile functions.  

A direct link between the chemical nature of the bulk nitrogen and the 

characteristics of the XRPD patterns has never been reported in the literature, 

probably because of the inherent difficulty in extracting reliable cell 

parameters for a mixture of nanopowders. To overcome this limitation, high-

resolution synchrotron radiation XRPD will be employed here, as they 

combine a high signal/noise ratio with a negligible instrumental contribution 

to the diffraction profiles. The analyzed samples are those doped with 

triethylamine with different initial N/Ti molar ratios (0.01-0.05-0.1-0.2-0.4-

0.5). 

Ti K-edge XAS data will also be employed in the following to get an 

independent experimental evidence about the environment of Ti in the 

lattice.  

Synchrotron Radiation XRPD data allowed a large portion of the reciprocal 

space to be accessed. This is of paramount importance for the analysis of 

nanocrystalline TiO2. Anatase and brookite were the only identified phases: 

the latter gradually reduces from 25% in the undoped sample to 10 % in the 

TN_0.50 one (Table 3.4). In Table 3.4 also morphological features (specific 

surface area and pore volume) taken from a previous work are listed.  

Sample % A % B SBET  (m
2 g-1) Pore vol. (mL g-1) 

T 75 25 171 0.44 

TN_0.01 77 23 163 0.28 

TN_0.05 77 23 130 0.48 

TN_0.10 77 23 120 0.10 

TN_0.20 83 17 98 0.02 

TN_0.40 84 16 90 0.01 

TN_0.50 90 10 87 0.04 

Table 3.4. Phase composition (XRPD measurements - A=anatase, B=brookite), specific 
surface areas and pore volumes (BET-BJH analysis) for the series of titania samples 
doped with triethylamine. 
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An example of X-ray powder diffraction pattern (sample TN_0.10) is shown in 

Fig. 3.9, with raw data and result of the WPPM. 

 

Figure 3.9. Powder X-ray diffractogram of sample TN_0.10: experimental points in 

black, the corresponding WPPM fitting curve in red and the point-by-point difference 

between “observed” and calculated intensities in blue. 

Microstructure (WPPM) model parameters were refined directly on the XRPD 

pattern assuming the domains being spherical and lognormally distributed. 

Dislocations were also considered to account for the observed anisotropy in 

the line profile broadening. Even if the fitting quality (see Fig. 3.10) is not 

extreme, residuals are well-centered around the peaks and they average to 

zero, i.e., cell parameter and intensity are fully matched, whereas the 

size/shape distribution is not perfect. The results suggest that the anatase 

domains increase with the N/Ti molar ratio and the brookite ones decrease, 

after reaching a maximum at nominal N/Ti=0.10 (Fig. 3.10). The domain size of 

anatase gradually increase from 4.8 nm for the undoped material to 5.8 nm 

for the TN 0.50 sample, while it seems that brookite reaches very small values 

ffor nominal N/Ti ≥ 0.2.  
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Figure 3.10. Average domain size for anatase <Da> and brookite <Db> as a function of 

the N/Ti initial molar ratio. 

High-resolution transmission electron microscopy (HR-TEM) pictures reported 

in a previous paper26 confirms the XRD conclusions in terms of average size 

and size uniformity. The tendency toward agglomeration increases by 

increasing the nitrogen content, showing a high particle superposition. 

Domains are well crystallized, even if the effects of the deformation field 

caused by the presence of dislocations can be observed. Quantities of 

dislocations in the powders are displayed in Fig. 3.11. The maximum is 

reached at nominal N/Ti = 0.1. This finding can be considered a possible 

explanation of the higher photocatalytic activity of sample TN_0.10, as found 

in a previous work.26  

 
Figure 3.11. Amount of edge dislocations found in N-doped powders by WPPM 

analysis of XRPD measurements as a function of the initial N/Ti molar ratio. 
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Cell parameters were also extracted from the WPPM analyses and are 

reported in Table 3.5. Some correlation seems to exist between cell 

parameters and refined eccentricity of the capillary. However, forcing the 

eccentricity to be the same, reduces the number of parameters (thus the 

correlations). The overall trend of the data is qualitatively similar: the largest 

variations occur for the c axis that initially shrinks and then elongates reaching 

a quasi-plateau for a nominal doping N/Ti greater than 0.2.  

Sample aanat 

(pm) 

canat 

(pm) 

abrook 

(pm) 

bbrook 

(pm) 

cbrook 

(pm) 
T 378.98(2) 944.7(2) 915.9(3) 545.8(2) 517.7(1) 

TN_0.01 379.06(2) 944.6(2) 915.7(2) 544.8(1) 517.80(9) 

TN_0.05 379.01(1) 945.7(1) 915.0(2) 545.2(2) 517.9(1) 

TN_0.1 378.88(1) 947.50(6) 916.0(2) 545.7(1) 517.77(9) 

TN_0.2 379.06(1) 948.51(6) 913.3(5) 543.6(4) 521.3(3) 

TN_0.4 379.05(1) 948.55(4) 920.1(1) 531.1(5) 526.8(6) 

TN_0.5 379.02(1) 949.08(4) 914.0(7) 543.3(5) 522.5(4) 

Table 3.5. Cell parameters of N-doped powders obtained by WPPM analysis of XRPD 

measurements: aanat and canat refer to anatase, while abrook, bbrook, and cbrook refer to brookite. 

Trend of the cell volume vs content of nitrogen is plotted in Fig. 3.12a,b for 

anatase and brookite, respectively. 
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Figure 3.12. Anatase (a) and brookite (b) cell volume as a function of the N/Ti initial 

molar ratio. 

The initial shortening of the c axis of the cell may be therefore attributed to a 

substitutional N-doping. Adding more nitrogen, promotes the transition to an 

interstitial position, expanding the cell along c. Saturation is eventually 

reached and a plateau is shown for the experimental data.  

In order to assess these conclusions on a secure footing, Ti K-edge XAS was 

successfully employed (see the following), though abundant line defects might 

have been problematic for the analysis of the EXAFS signal. 

3.4.2. N location in N-doped TiO2  

A challenging open question recurring in literature31 concerns the location of 

nitrogen in the lattice of N-TiO2. It is in fact still under debate whether the N 

anion in titania, generically labelled as Nb (“b” standing for bulk32), is 

interstitial (Nint) or substitutional, i.e., it replaces an oxygen vacancy (N@O). 

While experimental characterization techniques failed in determining the 

exact location of N,31 DFT calculations,33 based on thermodynamic 

considerations under oxygen-rich conditions, have suggested N atoms to be 

preferably interstitially located in the lattice. However, these calculations have 

never been backed by experimental results. Also, it is still under debate 

whether other chemical species like NOx or NHx are present in bulk and why, 

in some cases, the photocatalytic performances become poorer by increasing 

N content, even if visible light absorption increases. Overall, the experimental 
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solid state picture of the N-doped titania remains scanty because detailed 

information about the crystal structure and the nature of the photoactive 

centers are still missing. 

A clear understanding of these issues is necessary to build up focused 

syntheses and to get future improvements of N doped titania photocatalytic 

performances. It is essential to know whether Nb is primarily interstitial or 

substitutional because the very different behavior of N in these sites will 

accordingly affect the material photocatalytic properties. Fig. 3.13, based on 

DFT calculations, helps in understanding this concept. It schematically 

represents the electronic structure of substitutional (left side) and interstitial 

(right side) N-doped titania.32 In the first case, after suitable irradiation, both A 

and B compounds are oxidized, whereas in the second case, only A is oxidized. 

Electron-hole recombination is more likely to occur in the interstitial case, 

because of the apparent band-gap narrowing induced by the N states, and any 

beneficial effect may vanish in this way. For these reasons, a rational 

comprehension of the synthetic route with the target of improved 

photocatalytic properties may be devised only if one is able to determine 

exactly the nature of the synthesis products, i.e., the location of the N atom 

within the lattice.  

 
Figure 3.13. Schematic photocatalytic oxidations with substitutional (left) and 

interstitial (right) N-doped titania. “A” and “B”  are molecules with different electronic 

energy levels. The subscript “Ox” stands for “Oxidized” form and “Red” for “Reduced” 

one. The dashed arrow indicates electron-hole recombination.  
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Several experimental techniques have been employed to understand where 

nitrogen is located in titania, reaching only partial conclusions. For example, X-

ray photoelectron spectroscopy of the N 1s electron is quite noisy due to the 

low dopant concentration and presents questionable attribution of poorly 

resolved peaks, which are the convolution of more than one signal 

component. Then, this technique is representative of the outer part (surface 

and subsurface electronic states) of the material, rather than the actual bulk 

one. On the other side, electron paramagnetic resonance, which can detect 

very low paramagnetic species concentrations, is not able to discriminate 

between interstitial and substitutional doping. The spin density on N indicates 

that both doping models may account for the observed species.33 X-ray 

Absorption Spectroscopy (and in particular EXAFS) is a promising alternative 

for the localisation of N, as it provides information on the local site symmetry 

and bond lengths. However, its potential in the field of doped titania has not 

been fully exploited yet.  

 

An introduction to EXAFS technique  

The dominant process in the X-ray absorption - at photon energies below 100 

keV - is the photoeffect, whereby the absorbed photon transfers its energy to 

the ejected photoelectron. The X-ray absorption coefficient for the 

photoeffect decreases smoothly with increasing photon energy. However, 

when the photon energy reaches one of the deep inner-shell ionization 

energies of the atom, a sharp jump (absorption edge) appears and marks the 

opening of an additional photoabsorption channel. Immediately above the 

absorption edge, in a range up to 1000 eV, a precise measurement of 

absorption shows rich fine structure superimposed onto the smooth energy 

dependence. This is the so called Extended X-ray Absorption Fine Structure 

(EXAFS), and the information is stored in the resulting oscillations, which 

derive from constructive and destructive interference seen as local maxima 

and minima.  

EXAFS spectrum measured above the absorption edge of a selected type of 

atoms contains scalar information on their local structure.34 This is due to the 

fact that at high energy in the continuum of electrons participating in EXAFS, 

the effect of neighboring atoms becomes small and electron states 

approximate to spherical waves that are simply scattered by such atoms.  
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In particular, EXAFS provides information about distances between “central” 

and neighboring atoms, local atomic coordination, the nature of neighboring 

atoms (chemical/oxidation state), as well as changes in central-atom 

coordination with changes in experimental conditions. Besides the advantage 

that it applies to any element, it works at low concentrations, thus a minimal 

amount of sample is required. 

By Fourier transformation (FT) of the measured EXAFS structure, the 

contributions of individual shells of atoms are separated visually. The peaks in 

FT magnitude spectra appear at the corresponding position of the i atom, ri. 

To obtain quantitative information on the local environment, i.e., number and 

species of neighboring atoms in a given shell, their distance from the 

absorbing atom and their thermal or structural disorder, the peak of interest is 

analyzed.  

Contrary to XRD, which provides long-range geometric information, EXAFS is a 

local probe. That is why it is often so useful to compare XRD and EXAFS 

results. However, this comparison should not be misleading: first of all, XRD 

measures interplanar spacing, while EXAFS - interatomic distances, and they 

are absolutely not the same if disorder is present.  

Absorption spectroscopy has seldom been used for the analysis of doped 

titania.35,36 For this oxide, literature works usually identify the presence of 5-

fold-coordinated species in the nanostructured anatase and rutile surfaces, 

with a shortening of the Ti-O first shell bond distance,37,38 which in some cases 

is identified as a result of the presence of Ti hydroxyl groups at the surface.37 

Pioneering tests on mesoporous N-TiO2 have shown that accurate average 

distances can be obtained between Ti and the octahedrally coordinated 

neighbors:35 a significant variation in bond distances was not found, even if 

the Ti coordination number effectively increased.35  

It has to be said that EXAFS analyses are not routine ones, mostly because of 

the complexity of the elaboration of raw data and to the source they require 

(usually synchrotron light). Especially for systems like nanocrystalline 

semiconductor oxides (i.e., TiO2, ZnO, etc.), they are definitely not among the 

most commonly used types of characterizations.  

Moreover, it should be stressed that the EXAFS amplitudes depend on several 

factors, other than the relative phase concentrations, such as the average 

coordination number (that may be different with respect to the 

crystallographic bulk structures), the amplitude reduction factor, and the 
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relative thermal motion of the neighboring atoms with respect to the probe 

element. As each of these parameters can assume different values for 

different phases, great care should be paid in providing quantitative estimates 

for the relative abundances of each phase from the EXAFS fitting results alone. 

In this thesis, the chemical environment surrounding the (heavy) Ti atoms is 

studied for a series of N-doped samples by combining Ti K-edge EXAFS with 

DFT calculations. Indeed, the N-doping effects to the bulk geometry have been 

computationally explored at different levels of theory.  

This can represent a general method for bulk characterization based on DFT 

and EXAFS joint approach, which can be extended to several systems. The 

main finding, as will be elucidated in the following, is that nitrogen substitutes 

oxygen at low levels of doping, whereas interstitial sites are preferred at 

higher concentrations. The possibility of achieving these results, together with 

results themselves, may pave the way to reinterpret photocatalytic data and 

properties in view of tailored syntheses with different N content and N lattice 

sites.  

Home-made titania nanoparticles synthesized via wet chemistry with nominal 

N/Ti molar ratio ranging from 0 to 0.5 have proved to posses photocatalytic 

activity that changes dramatically according to the initial N content. Such a 

wide concentration range is necessary for catching how gradually doping sets 

in.  

 

DFT 

In order to have a fair comparison between EXAFS results and DFT 

calculations, first principles periodic boundary supercell calculations were 

performed by Dr. M. Ceotto (Università degli Studi di Milano) and arranged in 

such a way to reproduce the whole N/Ti molar range of the experimental 

samples. A realistic supercell arrangements for DFT calculations ranged from 

48 up to 162 atoms. For the Ti54O108 supercell, reciprocal space sampling was 

restricted to the Γ-point, which is justified due to the rather large size of the 

used simulation supercells. For the Ti16O32 one, instead, a 555 Monkhorst-

Pack39 k-point mesh was adopted. In a symbiotic EXAFS and DFT approach, it 

was advisable to switch from the usual point of view based on a primitive or 

crystallographic cell to a less common one, where the fundamental unit is 

represented by Ti (the scatterer) and its nearest neighbors (oxygen and 
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nitrogen). In anatase, these atoms make up a Ti-centered octahedron. In order 

to put theory on a solid footing, DFT calculations were performed with PAW as 

well as LCGTF bases.  

 

Atom centerd Gaussian DFT (all-electron and pseudopotential)  

Solid-state calculations based on the atom-centered linear combination of 

Gaussian-type functions (LCGTF) were performed by Dr. L. Lo Presti 

(Università degli Studi di Milano) to optimize both pure and defective 

TiO2 anatase. CRYSTAL06 code was adopted with triple-zeta basis sets 

previously optimized for calculations of inorganic solids40,41 and both spin-

polarized B3-LYP42-44 and PBE045,46 hamiltonians. To speed up convergence, the 

frozen-core Stuttgart-Dresden ECP10MDF pseudopotential47 was applied to Ti 

atoms in all the Nint interstitial solid state optimizations. Eventually, the 

starting electron populations on Ti, O and N were always chosen so that the 

crystal cell was always electrically neutral. The crystal structure (atom 

coordinates and lattice parameters) was iteratively refined until a minimum 

was found on the potential energy surface, i.e., until the root-mean-square 

(RMS) of gradients and estimated atomic displacements, as well as their 

absolute values, fall below a given threshold. An 8x8x8 Monkhorst-Pack k-

mesh was adopted for undoped TiO2, whereas a broader net of 4x4x4 points 

was employed for defective structures.  

For all the Nint_p interstitial calculations, the frozen-core Stuttgart-Dresden 

ECP10MDF pseudopotential47 was applied for Ti atoms, while the all-electron 

basis sets reported above were always applied to lighter non-metal N and O 

atoms. Other program specifications remained the same as for the all-electron 

calculations, with the only exception of the tolerances on the maximum 

atomic displacement and the corresponding root mean square parameter. It 

should be noted that such a choice significantly ( 50 %) reduces the 

computational time required for crystal structure optimizations, providing on 

the other hand structural results of comparable quality with respect to the all-

electron ones. In other words, adopting a Stuttgart-Dresden pseudopotential 

for Ti in TiO2 can be a reasonable strategy to significantly reduce the 

computational cost without losing accuracy. The results discussed in the main 

text are relative to the all-electron outcomes, with the only exception of 

B3LYP and PBE0 optimizations of the interstitial N-doped structure in Pm 
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symmetry, where the pseudopotential approximation was chosen to speed up 

the convergence up to an affordable time.  

More details on this part of the computational setup can be found in the 

related published paper.48  

 

XANES vs XPS analyses 

Pre-edge X-ray absorption near-edge structure (XANES) features are known to 

be sensible to the local environment of the absorbing species. The pre-edge 

part of the XAS spectra and the X-ray Photoelectron Spectroscopy (XPS) 

techniques can be both employed to gain insight into the different oxidation 

states of the metal present in the examined specimens.  

 
Figure 3.14. Ti 2p XPS region for TN_0.10 and TN_0.50 samples. 

The combined inspection of the XPS and the pre-edge part of the XAS spectra 

enables to conclude as follows: (i) the so-called A2 features, i.e., shoulders 

among peaks A1 and A3 just below the Ti K-edge, are clearly visible in all our 

samples. In the Literature, they are usually related to the presence of surface 

5-coordinated Ti;49,50 (ii) this evidence is consistent also with the picture 

provided by XPS spectra, where a broad shoulder in the 455-458 eV range is 

detected for the TN_0.50 sample, indicating the occurrence of defective Ti(IV-
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δ) species - interestingly, the TN_0.10 spectrum does not show any feature 

attributable to Ti3+ species (Figure 3.14); (iii) due to the occurrence of 

significant lattice distortions, in turn ascribable to various reasons, a trend is 

not clearly recognizable in the intensity of the XANES signals, i.e., no obvious 

relationships there exist that allow to correlate the intensity of the pre-edge 

peaks with the amount of nitrogen content (Figure 3.15). In any case, as the 

A2 feature is clearly already present in the undoped specimen, it is likely not 

directly related with bulk nitrogen dopant. On the other hand, post-edge 

EXAFS fitting, together with PAW and LCGTF periodic simulations, provided 

satisfying and more detailed information on the nature of bulk nitrogen in 

anatase. 

 
Figure 3.15. Normalized Ti K-edge absorption curves in the pre-edge (XANES) region of 

the spectra for six TiO2 samples with various N/Ti nominal molar ratios. Specific 

absorption features are labeled according with the literature
49

. 

 

EXAFS analysis 

Figure 3.16 summarizes, both in the real and k spaces, the overall matching 

among data and least-square model functions.  
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Figure 3.16. Fitted magnitude of the forward EXAFS Fourier transform (left) and 

corresponding fitted k
2
-weighted Ti K-edge EXAFS spectra (right) of six TiO2 samples 

with various initial N/Ti molar ratios. Blue curves: experimental data; red curves: least-

squares fitting; green curves: least-square estimate of the background.  

Fig. 3.17 shows the normalized background-corrected Ti K-edge absorption 

curves for the whole set of specimens. The pre-edge peaks are the same in all 

cases and are compatible with the presence of anatase. 
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Figure 3.17. Background-corrected and normalized Ti K-edge absorption curves for 

undoped and several N/Ti  molar ratio. 

 

To obtain accurate information on the nearest neighbors of Ti (oxygens), the 

EXAFS data were modeled both considering just the first scattering paths (O 

and Ti nearest neighbors) and extending the analysis by including 22 

scattering paths. An average anatase cell geometry was employed because of 

the similar electronic structure of oxygen and nitrogen. Analogous results 

were obtained in both cases for the first-neighbor distance, the errors being 

lower with the larger set of paths.  

Figure 3.18a shows the final estimates for the average axial and equatorial 

first shell Ti-O distances in the anatase structure (scheme in Fig. 3.18b – 

oxygen atoms are numbered as in the following figures, namely Fig. 3.19 and 

Fig. 3.20). The numerical entries corresponding with data reported in Figure 

3.18a can be found in Table 3.6, whereas the complete list of the fit results, 

together with final statistical agreement factors, can be found in the 

Supplementary Materials of ref [48]. Even if the estimated standard deviations 

are quite high with respect to the observed range of variation, especially for 

<Ti-O>axial distances, a clear trend appears. In particular, <Ti-O>equatorial remains 

basically constant throughout the overall doping range, whereas <Ti-O>axial 

undergoes a ca. 0.1 Å reduction when the doping nitrogen exceeds the 

nominal 0.1 N/Ti molar ratio. Then, it remains constant up to the maximum 

dopant concentration.  
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Figure 3.18. a) Average axial (blue triangles) and equatorial (red circles) Ti-O distances 

within the first coordination shell of titanium as a function of the N-doping extent. The 

error bars correspond to 1 estimated standard deviation; b) Crystallographic 

tetragonal unit cell of the TiO2 anatase structure, with the distorted octahedral 

coordination of oxygen atoms (red spheres) around the Ti ions (grey spheres) 

highlighted.  

 

N/ Ti  

molar ratio 
0.00 0.05 0.10 0.20 0.40 0.50 

<dTi-O>axial  1.99(5) 1.99(3) 2.03(3) 1.97(3) 1.92(3) 1.92(3) 

<dTi-O>equatorial  1.82(1) 1.83(1) 1.80(1) 1.83(1) 1.84(1) 1.83(1) 

Table 3.6. Ti-K edge EXAFS estimates of the average Ti-O distances (in Å) within the 

first coordination shell in pristine and N-doped nanostructured crystalline TiO2 

samples (anatase phase). Estimated standard deviations are reported in parentheses. 

 

In other words, it is possible to distinguish between a low N/Ti doping regime 

from a high one, by inspecting the average distances of the Ti first 

coordination shell. The first doping region goes from pure TiO2 to 0.10 N/Ti 

molar ratio: here, the ligand geometry around Ti is invariant with respect to 

the pure sample. The other relevant region appears when 0.4  N/Ti nominal 

 0.5, and it is characterized by a significant reduction of the average Ti-O axial 

distances with respect to the low doping regime. In details, the average value 

a) 
b) 
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of the Ti-O distance (<dTi-O>axial) among 0 and 0.1 N/Ti nominal molar ratio 

(first three columns of Table 3.6) is as large as 2.03(3) Å, to be compared with 

the axial distance evaluated by averaging the entries among 0.4 and 0.5 N/Ti 

doping concentrations (last two columns in Table 3.6), 1.92(3) Å. The entry in 

Table 3.6 corresponding to the 0.2 N/Ti ratio appears to be somewhat 

intermediate between these two limit situations, with <dTi-O>axial = 1.97(3) Å.  

It should be stressed that the values reported in Figure 3.18a and Table 3.6 

are not directly comparable with crystallographic results, since EXAFS, as said 

before, is sensible to the local environment around titanium and it is not able 

to provide information on the long-range structure. In this context, we use 

this technique to estimate the relative, average degree of distortion with 

respect to the undoped nanostructured material. As the presence of brookite 

is taken into account in the fitting procedure of the experimental signals, such 

local distortions of the anatase structure should be indirectly related to the 

amount of lattice nitrogen, and most importantly, to the preferential doping 

type (substitutional or interstitial) of N atoms for each specific doping 

concentration.  

 

Titania DFT modeling 

Possible substitutional and interstitial N-doping of the octahedron are 

represented in Fig. 3.19. The calculated distances between Ti and neighbors in 

stoichiometric anatase are reported in the second column of Table 3.7. The 

axial oxygen atoms are at 2.00 Å distance, while all the equatorial ones are at 

1.94 Å. Then, it was possible to simulate how the shape of the octahedron 

changes under both substitutional and interstitial doping.  
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Figure 3.19. Nearest titanium neighbors: (a) and (b) for substitutional N doping, (c) 

and (d) for interstitial ones. 

 

Even if (a) and (b), as well as (c) and (d), geometries look different for a single 

octahedron, they are potentially the same in a supercell periodic framework. 

Actually, the (a) substitution is equivalent to (b) (and (c) to (d)) when the 

neighboring Ti atom is taken as the octahedron center. Substitutional doping 

preserves the octahedral symmetry and the bond distances of the original 

anatase phase, as shown in Fig. 3.19.  

Distances are reported in Table 3.7 (3rd column) for the equatorial oxygen 

atom substitution and (4th column) for the axial one, at three different levels 

of DFT calculations. In all cases the Ti neighbor-atom distances are almost 

unchanged: equatorial ones are on average equal to 1.94 Å and the axial ones 

are on average equal to 2.03 Å.  

Despite the well-known differences among the LCGTF and PAW approaches, it 

is important to note that the LCGTF perfectly reproduces the PAW DFT and 

the experimental findings on the coordination geometry around Ti.  

The picture changes dramatically in the case of interstitial doping. On panel (c) 

of Fig. 3.19, the interstitial doping occurs at the equatorial region. The 

octahedral symmetry is broken and the distances, except one, are increased, 

with an average value around 2.00 Å. The exception is due to the O3 atom, 

which is trans-equatorial with respect to O4 and quite distant from the 

interstitial nitrogen. Therefore, it is less affected by changes of the bonding 

network around titanium.  

As reported in Fig. 3.19d, axial distances are very much elongated, whereas 

equatorial ones are left almost unchanged. This geometry could resemble the 

undoped one. However, it should be noted that geometry reported in panel 

(d) of Fig. 3.19 is the same as (c), if taken from another point of view. In other 
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words, both geometries are present in the case of interstitial N-doping. Thus, 

the octahedral is broken for the geometry in panel (d) of Fig. 3.19 as well.   

Bond Undoped N @ O eq. N @ O ax. Nint eq. Nint ax. 

Ti-O1 
2.00/2.00

/1.981 

2.01/2.04/

2.02 

2.03/2.03/ 

2.00 

2.00/2.04/ 

2.02 

1.89/1.85/ 

1.85 

Ti-O2 
2.00/2.00

/1.98 

2.01/2.01/

1.99 
- 

1.97/1.96/ 

1.94 

2.37/2.38/ 

2.35 

Ti-O3 
1.94/1.95

/1.94 
- 

1.93/1.94/ 

1.93 

1.90/1.91/ 

1.90 

1.94/1.96/ 

1.95 

Ti-O4 
1.94/1.95

/1.94 

1.94/1.94/

1.92 

1.93/1.94/ 

1.93 

2.12/2.13/ 

2.11 

1.94/1.96/ 

1.94 

Ti-O5 
1.94/1.95

/1.94 

1.93/1.94/

1.93 

1.94/1.95/ 

1.94 

1.98/2.04/ 

2.02 

1.94/1.95/ 

1.94 

Ti-O6 
1.94/1.95

/1.94 

1.93/1.94/

1.93 

1.95/1.95/ 

1.94 

1.99/1.99/ 

1.98 

1.94/1.95/ 

1.94 

Ti-N - 
1.96/1.98/

1.96 

2.08/2.10/ 

2.09 

2.08/2.06/ 

2.04 

2.33/2.48/ 

2.42 

N-O - - - 
1.34/1.37/ 

1.36 

1.34/1.37/ 

1.36 

Table 3.7. Ti nearest neighbors DFT distances. 
1
First PAW calculations with PBE, 

second and third for LCGTF with B3-LYP and PBE0 Hamiltonians, respectively. “eq.” 

and “ax.” stand for “equatorial” and “axial”, respectively. The last four columns refer 

to cases a,b,c,d of Fig. 3.19.
 

For a more realistic modeling, one needs to consider the effect of the 

presence of vacancies in the local geometrical arrangement. Then, the 

purpose is to see how the original octahedral geometry changes by placing a 

vacancy at one of the oxygen atoms both with and without the presence of N-

dopant. The arrangement where both O-vacancy and dopant are located in 

the same octahedron is quite rare, because the actual dopant bulk 

concentration has been estimated to be very small. Nevertheless, such an 

eventuality cannot be excluded, as in nanostructured materials the surface-to-

bulk atom ratio is significantly higher with respect to conventional bulk 
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compounds. Moreover, the eventuality that some kind of defect clustering51 

could take place within the lattice cannot be a priori neglected.  

Figure 3.20. Nearest Ti neighbors in the presence of an oxygen vacancy: (a) and (b) for 

axial and equatorial substitutional N doping, respectively; (c) and (d) for the equatorial 

and axial interstitial N doping, respectively. Geometries (e) and (f) for undoped axial 

and equatorial vacancy, respectively. 

Figure 3.20 reports the PAW-DFT equilibrium geometries for the concomitant 

occurrence of N-doping and O-vacancy around the same Ti ion, as well as for 

only O-vacancy. In geometries (a) and (b), the N-dopant atom is located 

respectively at equatorial and axial substitutional location, while the oxygen 

vacancy is respectively axial and equatorial. In geometry (a) the original 

octahedral shape is preserved, whereas in (b) the Ti-N axis is tilted with 

respect to the original octahedral axis in such a way to compensate for the 

equatorial oxygen vacancy. Geometries (c) and (d) represent the interstitial 

type of doping: in (c) the dopant is originally located at the equator and the 

vacancy at the axes, in (d) viceversa. From Fig. 3.20c, one can see how, during 

the DFT optimization procedure, the NO moiety (see Fig. 3.19c) migrates to 

compensate the O-vacancy by placing the oxygen next to the axial vacancy. 

Similarly, in Fig. 3.20d, the original axial NO moiety (see Fig. 3.19d) has 

arranged in a way to place the oxygen next to the equatorial vacancy. In 
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geometries (e) and (f) no dopant is present and the vacancy is located in axial 

and equatorial location, respectively. 

For a better comparison, the distances between the central Ti atoms and the 

nearest neighbor-atoms are reported for the undoped (Fig. 3.20e-f) and 

doped (Fig. 3.20a-d) cases in Table 3.8. For the undoped defected octahedron 

(Fig. 3.20e-f and 2nd, 3rd columns of Table 3.8), the axial distances are reduced 

and are quite similar to the equatorial ones, which are left unchanged. In 

these cases one would observe a single set of distances, located at the 

equatorial anatase value. On the 4th column, the distances of the geometry in 

Fig. 4.20a for a substitutional doping at equator are reported: the equatorial 

distances are left unchanged, while the axial one is greatly reduced. As 

reported on the 5th column of Table 3.8, the axial distance is left invariant and 

the average equatorial one is slightly shorter, because the dopant is 

substitutionally located at the equator and an O-vacancy at the axis. Thus, in 

the case shown in Fig. 3.20b, the two sets of distances of the original anatase 

are almost unchanged. When the interstitial doping occurs, one can observe 

shorter equatorial and unchanged axial distances when the vacancy is placed 

on the axes, as reported in the 6th column of Table 3.8. Finally, in the last 

column the distances of Fig. 3.20d are almost identical with the ones of the 

last column in Table 3.7: the equatorial distances are unchanged, while the 

axial one are elongated in the case of Ti-N distance and shortened for Ti-O. 

Bond 
Undoped 

ax. vac. 

Undoped 

eq. vac. 

N@O 

eq. 

N@O 

ax. 
Nint eq. Nint ax. 

Ti-O1 X1 1.92 X 2.03 2.03 1.88 

Ti-O2 1.86 1.96 1.88 - X X 

Ti-O3 1.93 X - 1.93 1.93 1.93 

Ti-O4 1.92 1.81 1.90 1.93 1.93 1.93 

Ti-O5 1.90 1.92 1.94 1.81 1.81 1.94 

Ti-O6 1.90 1.91 1.94 X 1.81 1.94 

Ti-N - - 1.90 1.90 1.90 2.24 

NO - - - - 1.46 1.46 

 

 
Table 3.8. Ti nearest neighbors PAW-DFT distances for oxygen defected octahedron. 
1
X indicates the presence of oxygen vacancy. “eq.”, “ax.”, and “vac.” stand for 

equatorial”, “axial”, and “vacancy”, respectively. The last four columns refer to cases 

a,b,c,d of Fig. 3.20. 
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A rare configuration is achieved by placing both N doping and oxygen vacancy 

at equators. Would the picture have changed? Specifically, if both the N 

substitutional doping and oxygen vacancy had been equatorial, this would 

correspond to originally have two nearest neighbor vacancies. Instead, if the 

interstitial doping and oxygen vacancy had been equatorial, then the nitrogen 

would migrate into the vacancy (as can be seen from DFT calculations) and the 

arrangement would be equivalent to a substitutional equatorial doping. 

 

EXAFS and DFT comparison / joint discussion  

When trying to compare the EXAFS results with the DFT calculations, it should 

be remembered that EXAFS signals contain an average picture of the 

specimen, accounting for both doped and undoped regions. Thus, for a more 

realistic modeling, Table 3.9 reports the average equatorial versus axial 

distances values calculated from the PAW-PBE results in Table 3.7 and 3.8, 

since EXAFS results clearly allow us to make the equatorial-axial distinction. As 

for instance, under the column labeled “N@O” the average of all PBE 

equatorial Ti-nearest neighbor atoms taken from the 3rd and 4th columns of 

Table 3.7 is reported. This would be the EXAFS result if all Ti centers 

experienced a nearest-neighbor substitutional doping. Surely this is never the 

case and the EXAFS signal would presumably be an average (with different 

weights) among all possible scenarios reported in Table 3.9. The point is to see 

how the weight of each scenario changes with N content. 

Distances (Å) Undoped N@O Nint 

Undoped 
and  

O-vac. 

N@O  
and 

O-vac. 

Nint   

and 
O-vac. 

<Ti-O(N)>equatorial 1.94 1.94 1.98 1.90 1.91 1.90 

<Ti-O(N)>axial 2.00 2.03 2.11 1.91 1.94 2.05 

Table 3.9. Averaged Ti nearest neighbors (including N) from PAW-DFT distances in 

Tab. 3.7 and 3.8. “vac.” stands for “vacancy” 

 

Table 3.9, 3rd column, reinstates that the original octahedral distances are 

invariant when substitutional doping is predominant. Instead, if the interstitial 

doping prevailed, one should observe elongated axial distances (see 4th 

column). The creation of O-vacancies strongly affects the original octahedral 
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geometry, since distances become almost degenerate, as reported in the 5th 

column. Then, taking into consideration that doping happens to be within the 

same octahedron where an O-vacancy has been created, then the equatorial 

and axial distances are about the same when the doping is substitutional (6th 

column). Instead, last column, axial distances are elongated and equatorial 

ones shortened when it is the interstitial to share the same Ti center as the O-

vacancy. As said above, a realistic picture includes all the different kind of Ti 

centers presented in Table 3.9. However, column 6th and 7th  are clearly less 

frequent because they refer to a doping scenario where the dopant N atom 

and the O vacancy are both located near the same Ti atom. Although such a 

situation cannot be excluded a priori even if the O vacancies are few and 

randomly distributed, it is clear that it should become really significant only 

when the concentration of vacancies is very high. Therefore, columns 6th and 

7th of Table 3.9 should be considered as limiting scenarios, corresponding 

respectively to (i) predominant substitutional N and (ii) predominant 

interstitial N together with the presence, in both cases, of high vacancy 

concentration. 

The averaging over all possible scenarios confirms that the original anatase 

octahedral distances are unchanged only when substitutional doping prevails. 

Instead, the starting geometry would not be preserved if interstitial doping 

became dominant or O-vacancies concentration is significantly increased with 

respect to the original undoped sample. EXAFS averaged distance results show 

that there are much less Ti centers that experience a nearest-neighbor O-

vacancy than a stoichiometric arrangement in the undoped sample, as 

reasonable. The original anatase octahedral geometry is preserved for doping 

below or equal to ca. 0.1 N/Ti initial molar ratio. By comparing the EXAFS 

results with all possible DFT scenarios in Table 3.9, one can safely deduce that 

N-doping is either superficial or bulk substitutional up to ca. 0.1 N/Ti initial 

molar ratio.  

Instead, the scenario at higher dopant concentration is more complex. By 

increasing the dopant content, this geometry is significantly changed because 

some distances are elongated. Thus, with the help of theoretical calculations, 

it can be concluded that the doping is mainly substitutional at low 

concentration and then gradually interstitial sites are filled. This is in 

agreement with the conclusions reached using XRD data and related DFT 

considerations. 
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The decrement of axial distance observed by EXAFS can be explained by DFT 

calculations by assuming an indirect N-doping effect which increases the 

number of O-vacancies. According to DFT calculations, only the generation of 

O-vacancies can induce such an average axial distance shrinking (see the 

'Undoped and O vacancy' column of Table 3.9). The same calculations allow 

for a concomitant N-doping increase: this can be either substitutional or 

interstitial, since both the N@O and Nint scenarios (see the 3rd and 4th columns 

of Table 3.9) are possible when O-vacancies predominate. At this level it is not 

possible to distinguish if the N-content is either substitutional or interstitial. 

The contemporary occurrence of a nitrogen atom and an oxygen vacancy near 

the same metal center (last two columns of Table 3.9) are considered quite 

remote possibilities.  

In the light of theoretical simulations, EXAFS results point towards a picture 

where N-dopant atoms are present together with higher concentration of 

oxygen vacancies as doping increases. This finding is in line with results 

obtained by an independent set of experiments about electronic features of 

titania:52 as it will be exposed in the following chapter, quasi-Fermi levels are 

almost invariant under N-doping and the amount of N-dopant, that acts as an 

electron acceptor, is always less than the O-vacancy concentration. The 

confirmation of the presence of O-vacancies can be supported also by XPS 

analyses in the Ti 2p region, with the presence of Ti3+ as a shoulder of the Ti4+ 

main component for the case of TN_0.50 (Fig. 3.14).  

As far as photocatalysis is concerned, EXAFS data allowed us to have a direct 

interpretation of previous mineralization results of methylene blue.26 In this 

case, the 0.05 N/Ti sample generated a 33 % improvements and the 0.1 a 133 

% one, given the same surface area. Therefore, it can be safely asserted that 

only moderate interstitial N doping can considerably improve photocatalysis 

of methylene blue under solar irradiation.  

 

Influence of the polymorphs 

One may wonder if this distance change detected by the EXAFS experiments 

can be induced by a change of composition ratio between anatase and 

brookite that N doping generates.  

Actually, brookite geometry is such that the Ti-O distances of the octahedron 

can be divided into three groups. Two distances are around 1.86 Ǻ, other two 
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around 1.95 Ǻ and the last two around 2.03 Ǻ. We exclude that the brookite 

component is inducing the reported distances change because its component 

gradually decrease from 23 % in the undoped samples to a 10 % in the 0.5 

N/Ti sample. If the brookite component was highly influencing the EXAFS 

analysis, clear axial and equatorial distances for the undoped sample should 

have been found. It is possible that part of the brookite signal was taken as 

part of the background signal included in the modeling for the undoped 

samples and this limited any spurious effect. This change could not justify the 

observed drastic change in the EXAFS signal, not only because it is of the order 

of the reported error bar, but also owing to the fact that the EXAFS signal 

changes abruptly at nominal 0.1 N/Ti, while the change in brookite content is 

modest and gradual. 

Rutile polymorph content is excluded based on the relative low calcination 

temperatures. 

 

Thermodynamics considerations 

Can thermodynamics predict the sequence where first substitutional doping is 

followed by the interstitial one?  

Some authors claim that there are “some evidences for a preference for 

interstitial sites”33 and that interstitial doping may occur first, based on 

theoretical thermodynamics considerations.22,32,33 However, these calculations 

take the crystal titania as the thermodynamic reference, while this is not the 

case in the majority of the syntheses. Actually, inclusion of  nitrogen is 

concomitant with TiO2 synthesis, which already starts during the gel formation 

at room temperature. Subsequent calcination at T = 400 °C is not able to 

reinstate a full thermodynamic equilibrium to a perfect crystal and to validate 

the above energetic considerations. 

By DFT calculation it was possible to determine the N-doped titania formation 

energy starting from stoichiometric titania.  

In the case of a perfect crystal semiconductor, energy differences and the 

molecular oxygen and nitrogen chemical potentials involved by theoretical 

DFT calculations using both a 2x2x2 and a 3x3x3 supercell were evaluated. 

Since nanoparticles were calcined under O2(g) stream, oxygen rich conditions 

have been taken for evaluating the oxygen chemical potential. Considering 

that doping is thermodynamically inefficient, the interstitial doping resulted to 

be the more probable one by 0.42 eV for a 2x2x2 set-up and 0.84 eV for a 
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3x3x3 primitive supercell. Remarkably, the Stuttgard-Dresden pseudopotential 

LCTGF calculations on a 2x2x2 primitive supercell also find the interstitial 

doping scenario to be the most favorable one by 1.96 eV (2x2x2 primitive 

supercell, PBE0 hamiltonian).  

The same conclusions do not necessarily apply to the more realistic defected 

crystal as starting point. In this case, however, the interstitial doping is still 

found to be more probable by both plane wave (0.41 eV for a 2x2x2 set-up 

and 0.84 for a 3x3x3 one) and LCTGF (1.96 eV) methods. Still, referring to a 

sol-gel synthesis to which is added the N source, it is not correct to consider 

the reactant as perfect or partially defected crystals. Indeed, inclusion of 

nitrogen is concomitant with TiO2 formation, when it is under a gel phase. 

Subsequent 400 °C calcination may not be able to reinstate a full 

thermodynamic equilibrium and validate the above energetics considerations. 

The reasons why the substitutional doping should be favored, even under 

oxygen rich conditions,22,32 may lay on the kinetic barrier involved in breaking 

the octahedral shape. In other words, interstitial doping pays a higher kinetic 

price than substitutional one, as contemplated by the EXAFS data up to ca 0.1 

N/Ti nominal molar ratio. A set of DFT calculations on vacancies, interstitial 

and substitutional nitrogen migration has shown that kinetic barriers change 

drastically depending on the bulk set-up.53 As far as the oxygen vacancies 

creation is concerned, these are favoured under N doping likely because of 

the electron transfer from an F center (or Ti3+ state) to a midgap N electronic 

state.52,54-56  
 

3.4.3. Morphology and structure of N-TiO2 from different N sources 

X-ray diffraction data show the presence of anatase and brookite polymorphs 

for all samples, with the former as the predominant one (Table 3.10, 2nd and 

3rd columns). From the most intense reflection (101) of the TiO2 anatase 

phase, the average diameter of the crystallites, dA
101, (Table 3.10, 4th column) 

was estimated to be about 7-8 nm, thus not differing significantly for undoped 

and doped samples.26  
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Sample % A % B dA
101 (nm) SBET (m

2 g-1) Pore vol. (mL g-1) 

T 70 30 7 165 0.34 

TN_TEA 78 22 8 114 0.04 

TN_urea 74 26 7 162 0.30 

TN_NH3 77 23 8 149 0.20 

Table 3.10. Specific surface areas and pore volumes (BET-BJH analyses), average 

diameter of the anatase crystallites and phase composition (XRPD - A=anatase, 

B=brookite) for N-TiO2 from three different N sources (triethylamine, ammonia and 

urea, nominal N/Ti molar ratio = 0.1). 

 

Fig. 3.21a and 3.21b shows the HR-TEM images of undoped and TEA-doped 

TiO2, respectively. The latter has been selected as representative for all N-TiO2 

samples since no significant differences could be detected among the doped 

oxides. The micrographs show only a few isolated particles in the powders, 

which indeed show some degree of aggregation. As reported in a previous 

work,26 the tendency to superposition is noticeable. All domains are well 

crystallized, though the presence of defects (dislocations mainly) and the 

related deformation field effects are not entirely negligible. Fig. 3.21b exhibits 

that N–TiO2 particles are approximately in the range of 5-8 nm, similar to the 

N–TiO2 made by sol–gel method by other authors.57 Caratto et al.58 found the 

shape of ammonia-doped TiO2 to be more angular and a little more elongated 

respect to the undoped, without evidence that the increase of the NH3 

concentration modifies the crystallization process, the shape and dimensions 

of nanoparticles.  
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Figure 3.21. HR-TEM images of bare TiO2 (a) and TN_TEA (b) as representative sample 

for nitrogen doping. 
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BET-BJH analysis 

Unlike the above mentioned features of our doped powders, the shape of the 

N2 adsorption-desorption hysteresis loops is deeply affected by the type of 

nitrogen source (Fig. 3.22a): they change from H4 type (predominant slit-

shaped pores) in the case of the undoped and urea-doped samples, as also 

found by other authors,25,59  to a prevailing ‘‘bottleneck’’ shape (H2) for both 

the TEA and NH3 derived samples. However, the isotherms obtained for all 

samples are ascribable to type IV.  

Interestingly, the isotherms of the undoped and urea-doped titania show 

similarities as for both the shape and the total amount of pores. When TEA 

and ammonia are used, the hysteresis loop becomes narrower implying a 

lower degree of porosity. At the same time, for such dopants, the maximum 

adsorbed volumes drop by about 50 % indicating a decreased surface area, as 

can be noticed by the values reported in Table 3.10, 5th column. The results of 

the BJH pore size statistics, i.e., the pore size distribution curves, are shown in 

Fig. 3.22b, which was derived from the desorption branches of the isotherms, 

and the total pore volumes are summarized for each sample in Table 3.10, 6th 

column. Also these data partly support such differences among the three N-

doped samples. The oxide showing the largest pore volume is the one derived 

from urea (TN_urea), the increase concerning the smallest pore sizes (<6 nm), 

while the sample obtained from triethylamine (TN_TEA) shows a significant 

collapse of the total pore volume.  
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Figure 3.22. N2 adsorption-desorption isotherms with relative hysteresis loops (a) and 

pore size distribution (b) of the N-doped samples. 

3.4.4. “Aging” effects on the dry powders 

Structural, morphological - and optical, as demonstrated hereafter - 

characterizations have pointed out that the fresh N-doped samples not only 

differ from undoped TiO2, thus attesting that the promotion by the non-metal 

element has occurred, but also show different features depending on the 

nitrogen source adopted in the synthesis.  

In the following it will be shown that significant differences exist not only 

among the adopted N-doped powders, but also between “fresh” and “old” 

ones (samples are named “old” if they are simply stored in closed flasks for 

months in the dark and under ambient atmosphere). This is valid not only in 

term of physico-chemical properties but also for the final photocatalytic 

performances, as it will be shown in chapter 5. Hereafter, samples have been 

studied also after several days from preparation mainly by means of EPR and 

DRS to explore the “time effect” on the concentration of paramagnetic species 

and on the optical features, respectively. To the author’s best knowledge no 

studies are present in the open literature on the topic of the stability of 

defects induced by the addition of nitrogen doping. 
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DRS analysis 

To gain information on the light absorption features of the various samples, 

experimental data of diffuse reflectance were collected (Fig. 3.23a) and 

presented in derivative form (Fig. 3.23b) to better highlight the differences 

among the samples. The former figure permits a comparison of the shape of 

the diffuse reflectance spectra (DRS) according to the different N dopants. The 

undoped T sample presents the traditional sigmoidal form of the pure oxide, 

while in the visible region ( >400 nm, h <3.1 eV) all doped samples show a 

marked absorption which differs depending on the N source. Indeed, the 

spectra of TN_urea and TN_NH3 almost overlap, whereas the TN_TEA sample 

sharply differs from the others because it does not show two inflection points 

but a broad absorption in the visible region.  

 
Figure 3.23. Diffuse reflectance spectra (a) and the respective derivative plots (b) for 

all samples.  
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The derivative plots of the absorption spectra show that the absorption 

maximum lies at 3.2-3.3 eV for T, shifting to lower energy (3.0 eV) for 

TN_TEA. At lower energies (2.5-2.6 eV), contrary to the very weak absorption 

of the TN_TEA sample, the urea- and ammonia-doped samples present a well-

defined secondary maximum, which denotes a noticeable absorption into that 

specific visible range, this being in agreement with the hνmax numerical values 

reported by Kuznetsov and Serpone.55 They distinguished a few regions of 

single dominating absorption bands where values of hνmax differ slightly. Then, 

they supported the evidence that only the intrinsic defects in TiO2 are 

responsible for these bands, which they affirmed to be independent of the 

nature of the anion or cation dopant, although the relative intensities of the 

bands depend on the contribution of the reductive and oxidative treatments 

performed on the oxide. 

The effects of time after synthesis and calcinations on the N-doped samples is 

clearly shown in Fig. 3.24. Indeed, after keeping the doped powders in dark 

and in closed vessels for a certain period, they show a clear, even though 

slight, tendency to modify their light absorption features: the diffuse 

reflectance spectrum of the “2-month old” TN_NH3 sample lies higher than 

the “fresh” one, as occurs in the case of TN_TEA. On the contrary, the 

TN_urea displays striking dissimilarities with respect to the other doped ones: 

even after 5 months of ageing (in Fig. 3.24 it is reported the 2-month-old for 

the sake of comparison), its spectrum perfectly overlaps with the one of the 

relative fresh sample. 
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Figure 3.24. DRS of the “fresh” and of the “2-month old” powder for TiO2 doped with 

ammonia (a), triethylamine (b) and urea (c). 

 

EPR investigation 

Employing electron paramagnetic resonance, Livraghi et al. detected 

paramagnetic bulk species of N (Nb
) at a g-value of 2.005, which formed 

localized states within the band gap of their N-doped TiO2.
60 The authors 

proposed a reversible electron transfer between the Nb
 and Ti3+ centers 

forming the diamagnectic bulk species of N (Nb
−) and Ti4+. A similar 

phenomenon was also observed by Napoli et al. when they exposed a 

prereduced TiO2 to a N plasma.61 The N-induced states of Nb
− species are 

higher in energy than that of corresponding Nb
 species due to greater 
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Coulombic repulsion, thus enabling excitation with photons of longer 

wavelengths.62  

In the present study, to better enlighten the effects of time on the stability of 

the paramagnetic defects induced by the presence of the N dopants, their 

concentration has been monitored by EPR spectroscopy 24 h after the 

calcination (first dot in the plot, Fig. 3.25) and then periodically every 5-10 

days.  

 
Figure 3.25. EPR signal decay normalized by weight for all the N-doped samples. Inset: 

EPR signal obtained at room temperature and assigned to the paramagnetic species 

Nb
, as representative for all N-doped titania. 

 

All reported intensities have been normalized by the weight of the powders in 

the capillary tube. The spectral profile is simulated by hypothesizing an 

unpaired electron with Zeeman energy parameters gx = 2.0066; gy = 2.0054; gz 

= 2.0040 and interacting with a nuclear magnetic moment I = 1 through the 

hyperfine coupling parameters Ax ≈ Ay ≈ 3 G and Az ≈ 32.2 G.26 As a general 

consideration, this EPR signal associated to Nb
 decreases with time. The 

TN_urea sample behaves quite uniquely: the amount of paramagnetic species 

is nearly constant. The TN_TEA sample shows a very low signal compared to 

the other ones (Fig. 3.25). For this reason its weak decay can be considered as 

a nearly time-independent behavior. Table 3.25 reports elaboration of 

selected EPR data shown in Figure 3.25: to make a tighter comparison, EPR 

signal intensities corresponding to one day and to thirty days after calcination 
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have been normalized to the sample with the highest intensity (TN_NH3). 

Thus, it is immediately clear what stated above: constant values of EPR 

intensity for TN_urea, and low signals – however decreasing, as for TN_NH3 – 

for TN_TEA. 

Sample 

Relative EPR signal intensity 

1 day after 

annealing 

30 days after 

annealing 

TN_NH3 1 0.55 

TN_urea 0.56 0.58 

TN_TEA 0.11 0.03 

Table 3.11. EPR signal intensities, as reported in Figure 3.25, have been normalized to 

the sample with the highest intensity (TN_NH3). Values refer to the EPR signals 

recorded one day or thirty days after annealing (calcination treatment) to compare 

the decay of paramagnetic species (Nb
•
 ) for all the N-doped samples. 

 

An analogous, even though less pronounced, behavior of these doped 

powders with time has been also shown in Fig. 3.24.  

Apparently the life-time of the induced defects (Ti3+ and/or oxygen vacancies) 

at room temperature and ambient pressure depends on the specific structure 

and chemical environment of the defect itself. The “fast” ageing features 

shown by TN_NH3 might suggest a prevailing surface localization of the 

defects and their consequent lower stability upon the contact with 

O2/humidity. The situation might be opposite in the case of urea which is by 

far less volatile than NH3 and might therefore give rise to more “permanent” 

defective sites during the synthetic steps. 

3.5. Pr-doped TiO2 

Pr-doped titania explored in this study consists in a series of samples with 

different Pr/Ti molar ratio (0.2-0.3-0.5-0.7 %). They have been characterized 

not only by the morphological, structural and optical point of view: also 

electrochemical tools have been used to evaluate specific features of such 

samples. However, since two separate chapters have been overall dedicated 

to characterizations of all the titania materials presented in this thesis (except 
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for TiO2 employed in solar cell devices), results related to electrochemical 

techniques, i.e., electronic aspects, will be discussed in chapter 4. For Pr-TiO2 

samples this sharp separation could sound unfavorable for a logical discussion, 

but the whole “story” on Pr-doped titania to determine the Pr location in the 

lattice will be however exposed and conclusions will be drawn in the following 

chapter. 

The praseodymium dopant at different molar ratio was introduced into the 

titania precursor by a synthesis that is typically a bulk procedure. The whole 

range of Pr nominal amount is comparable with concentrations employed in 

the literature. EDX analyses confirmed the presence of the Pr species and the 

relative concentration in the titania powders (0.18 to 0.62 % Pr/Ti atomic 

ratio). Moreover, Pr could be considered to be randomly present in both 

anatase and brookite TiO2 polymorphs, and its manifest effect also lies in a 

progressive increase in the average lattice distortion (see infra). 

Computational setup  

The following computational details are valid for both geometric and 

electronic (see paragraph 4.2) calculations on undoped and Pr-doped titania. 

Spin-polarized calculations were performed within the Generalized Gradient 

Approximation (GGA)63 to Density Functional Theory (DFT)1,2 with the Perdew–

Burke–Ernzerhof (PBE) exchange correlation functional.45,64 The Kohn-Sham 

scheme was solved using the plane wave basis with projected augmented 

wave method (PAW)65,66 implemented in the Vienna Ab-initio Simulation 

Package code (VASP),67,68 with an energy cutoff of 400 eV. The ground state 

optimizations were obtained by minimizing the partial derivatives of free 

energy with respect to the atomic position, including the Harris-Foulkes 

correction to forces,69,70 using the conjugate-gradient scheme.71,72 Iterative 

relaxation of atomic positions was stopped when the change in total energy 

between successive steps was less than 0.001 eV. Electronic property 

calculations were carried out using the block Davidson scheme.73 The 

supercell and atomic relaxations were carried out until the residual forces 

were below 0.01 eV Å-1.  The bulk doped systems were constructed from the 

relaxed 3x3x3 162-atom anatase TiO2 supercell.  Reciprocal space sampling 

was restricted to the Γ-point, which is justified due to the rather large size of 

the used simulation supercells. Given the nature of the atoms considered and 
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to properly describe the reduced Ti ions, we have applied the GGA+U method, 

formulated by Dudarev et al.,9 to account for the strong on-site Coulomb 

repulsion amid the localized Ti 3d and Pr 4f electrons. Comparison with UPS 

(ultraviolet photoelectron spectroscopy) data suggested a value of U = 3 eV.74 

However, there is no agreement on a precise value of U for all oxidation states 

of Ti, and the values of U  span a range from 2 to 8 eV, as a result of the U 

dependence on the oxide, the Ti oxidation states, and the underlying 

exchange-correlation functional.12,75-78 Theoretical calculations for catalysis 

showed that U values can also be derived from the oxidation of Ti2O3 to TiO2 

reaction energy and one should prefer using either PBE+U or PW91+U, with U 

=2-3 eV.79 Finally, it is possible to adopt a self-consistent linear response 

approach for the determination of the Hubbard U correction term.80,81 

Mattioli et al.82 found a value of 3.23 eV for the anatase Ti 3d electrons using 

this approach. In conclusions, these and other studies12,74,83 provided evidence 

of the unsuitability of exchange-correlation functionals for describing the 

reduced Ti ions. Consequently we chose to perform our calculations with the 

U = 3 eV, 3.3 eV, 4 eV and 5 eV. As far as the U value for the 4f Pr orbitals, 

there have been several theoretical works to study the effects of lanthanide 

doping into titanium dioxide by first- principles calculations.84,85 According to 

experiments,86,87 Pr2O3 is a dielectric material with band gap energy equal to 

3.9 eV. The Pr2O3 electronic structure was simulated with U = 0-1-2-3-4 eV and 

found the band gap to be, respectively, 3.81-3.85-3.94-4.03-4.12 eV. The 4f Pr 

electrons U value was then fixed to 2 eV. 

The optimized undoped stoichiometric supercell lattice parameters were 

found, by theoretical calculations, to be a=11.547 Å and c=16.472 Å (a=3.849 

Å and c=9.535 Å for a primitive cell), in good agreement with experimental 

results.88  

3.5.1. Morphological and structural characterizations  

HR-TEM 

To shed some light on the external habit of the various TiO2-based materials 

under study, both conventional transmission electron microscopy (C-TEM) and 

high-resolution transmission microscopy (HR-TEM) have been performed. The 

main features exhibited by the materials are summarized in Fig. 3.26: it can be 

observed that, despite the presence/absence of Pr, all samples show rather 
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small particles, with average crystallites sizes in the 7-10 nm range, highly 

packed but also highly individual (see the three left-hand images, referring to 

a low magnification investigation). If we inspect in more detail the ultimate 

morphology exhibited by the crystallites, we can evidence that, in the absence 

of Pr species, the plain TiO2 particles (Fig. 3.26a) possess roundish but highly 

defective edges and high crystallinity, as witnessed by the presence of both 

fringe and thickness (Moirè’s) patterns:89 the crystal planes which generate 

this feature are in the majority of the cases due the (101) crystal planes of the 

TiO2 anatase polymorph. When Pr species are present (Fig. 3.26b,c), the 

overall features above described remain almost unchanged, in particular for 

what concerns both phase and family of planes most exposed, but for the 

edges: for both Pr-doped materials it can be evidenced a more regular shape 

of the crystallites, with slightly less defectivity. In no cases either the presence 

of segregated Pr-rich phases or the formation of rutile-rich phases has ever 

been observed. 
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Figure 3.26. HRTEM images of undoped (a), 0.2% (b) and 0.5% (c) Pr-doped TiO2 

particles.  
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BET-BJH analysis 

As concerns the specific surface areas, those of Pr-doped samples are lower 

than that of the undoped oxide, being reduced by even one third for the 

sample with the highest Pr content (see Table 3.12, 2nd column). Moreover, no 

specific linear trend occurs at increasing the Pr content. Accordingly, a 

substantial loss of the total pore volume is found with respect to the undoped 

TiO2. Then, most of the survived pores are micropores (with the diameter 

lower than 6 nm), as reported in Table 3.12. This is in absolute accordance 

with Yana et al., who affirmed that all doped samples show a conspicuous 

percentage of micropores, with a quite sharp and narrow distribution.90  

Sample 
SBET  

(m2 g-1) 

Pore vol.  

(mL g-1) 

 <6 nm  

pores (%) 

6-80 nm  

pores (%) 

>80 nm  

pores (%) 

T 160 0.34 64 27 9 
TPr_0.2 108 0.17 86 12 2 

TPr_0.3 102 0.15 90 8 2 

TPr_0.5 111 0.15 91 7 2 

TPr_0.7 118 0.16 91 7 2 

Table 3.12. Specific surface areas and pore volumes (BET-BJH analysis). Specifically, 

both the total pore volume and the percentages of three different pore sizes are 

reported. 

The lowering of the specific surface areas could be in accordance with a less 

prominent presence of defects, thus leading to less favorable charge 

recombination events, which resemble the chronoamperometric results (see 

paragraph 4.2). 

 

XRPD 

X-ray powder diffraction experiments were performed on the freshly prepared 

nanostructured TiO2 samples to evaluate the amount of their brookite content 

and possible changes in the lattice parameters, crystallite size and lattice 

strain as a function of the doping extent.  

Figure 3.27 shows the diffraction patterns collected on the nanostructured 

TiO2 powders at various doping extent, together with the corresponding least-

squares fitting results. The significant intensity changes among different XRPD 
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patterns (see, for example, the peak at  25.5° in each diffractogram of Figure 

3.27) were attributed to the effect of the preferred orientations of crystallites.  

 
Figure 3.27. Collected powder patterns (blue crosses), with the corresponding least-

square fitting curve and the point-by-point difference between “observed” and 

calculated intensities (red lines). The computed angular positions of both anatase and 

brookite reflections in pristine TiO2 (T) are marked at the bottom of the plot. 

 

All the specimens are clearly biphasic, as the large peak at 2θ  30.8° is 

entirely due to the (211) reflection of brookite. However, the anatase 

structure appears to be the predominant one in all the diffractograms. No 

other phases were detected: attempt to add the rutile91 or the Pr2O3 

structures92,93 to the model invariably led to the worsening of the least-square 

fit. As a matter of fact, most papers report the anatase phase as the only one 
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found in rare-earth-doped TiO2,
94-97 therefore corroborating the lacking of any 

detectable segregated Pr-based phase in the present samples. The sole 

exception is represented by Amlouk et al. who synthesized transparent 

xerogel monoliths and detected traces of the Pr4(Ti9O24) phase.98 However, 

Amlouk et al.98 employed a very different procedure (the monoliths grew in 90 

days and underwent a very high calcination temperature, 1200 °C) compared 

to the classical sol-gel route we followed, which was also used by the authors 

of the other cited papers.  

As a function of the Pr doping, no clear trends are detectable in the cell 

parameters of both the anatase and brookite phases (see Table 3.13), as their 

changes are non-monotonic and barely significant in terms of the 

corresponding estimated standard deviations.  

Sample 
Anatase Brookite

 

a (Å) c (Å) V (Å
3
) a (Å) b (Å) c (Å) V (Å

3
) 

T 3.7850(2) 9.473(1) 135.72(2) 9.151(3) 5.439(2) 5.161(2) 256.84(14) 

TPr_0.2 3.7847(2) 9.475(1) 135.73(2) 9.156(3) 5.439(2) 5.166(2) 257.26(14) 

TPr_0.3 3.7849(2) 9.471(1) 135.68(2) 9.145(3) 5.439(2) 5.173(2) 257.31(14) 

TPr_0.5 3.7844(2) 9.472(1) 135.65(3) 9.166(4) 5.437(2) 5.166(2) 257.46(16) 

TPr_0.7 3.7848(2) 9.471(1) 135.67(3) 9.154(4) 5.436(2) 5.173(2) 257.42(17) 

Table 3.13. XRPD anatase (I41/amd) and brookite (Pbca) symmetry-independent 

lattice parameters and unit cell volumes for all Pr-TiO2 samples. Estimated standard 

deviations (esd's) from the Rietveld fitting are given in parentheses. 

Moreover, the brookite content was found to be invariant throughout the 

whole sample series (see Table 3.14). More in details, the weight fractions of 

anatase and brookite were estimated from the refined phase fraction 

coefficients to be, on average, as large as 0.612(1) and 0.388(1), respectively. 

Sample Anatase Brookite 

T 0.614(1) 0.386(2) 
TPr_0.2 0.612(1) 0.388(2) 

TPr_0.3 0.613(1) 0.387(2) 

TPr_0.5 0.611(1) 0.389(2) 

TPr_0.7 0.610(1) 0.380(2) 

 Table 3.14. Weight fractions of anatase and brookite phases for all Pr-TiO2 samples, 

as retrieved from the Rietveld refinement on the XRPD data. Estimated standard 

deviations (esd's) are given in parentheses. 
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The full width at half maximum (FWHM) values, corrected for the 

instrumental line broadening, of some representative reflections belonging to 

the anatase structure are shown in Figure 3.28. Brookite reflections exhibit an 

analogue behavior.  

 
 

 

Figure 3.28.  Behavior of some reflection-broadening parameters as a function of the 

Pr doping extent. (a) Full-width at half maximum (FWHM) of some low-angle 

reflections belonging to the anatase structure, as computed from the least-squares 

optimized profile coefficients in GSAS. The plotted curves serve as eye guidelines. (b) 

Volume-weighted average crystallite dimensions, DV (blue squares, left axis) and 

average lattice strain, ε (red triangles, right axis), as computed from the Williamson-

Hall method for the anatase reflections below 2θ = 60°. The plotted curves serve as 

eye guidelines. The error bars correspond to ±1 estimated standard deviations (esd's). 
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Figure 3.29.  Volume-weighted column-length distribution, normalized on unit 

volume, of the anatase crystallites along the real vector modulus (L) orthogonal to the 

anatase (101) plane family, as computed from the double-Voigt method assuming a 

lognormal distribution of the crystallites (a). The same is depicted in panel (b) for the 

lattice strain distribution estimated from the double-Voigt method.  

  

Interestingly, at increasing the nominal Pr/Ti molar ratio, the diffraction 

profiles systematically broaden. Such an effect may provide information on 

the behavior of the lattice strain and the average crystallite sizes as a function 

of the doping extent. It should be noted, however, that these quantities are 

quite difficult to be computed when, as in the present case, the diffraction 

patterns suffer of significant peak superposition.99 Therefore, it has been 

chosen to provide a couple of size-strain estimates from two well-routed 

methods that face the problem from different perspectives. First of all, the 

Williamson-Hall recipe100 was applied to the reflections belonging to the 

anatase structure up to 2θ = 60°. From Figure 3.28b it can be seen that the 

average volume-weighted domain size, <DV>, undergoes a  16 % roughly 

linear reduction on going from the undoped sample (Pr/Ti = 0.0 %) to the most 
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doped one (Pr/Ti = 0.7 %). In general, it should be noted that the XRPD 

estimates for the crystallite dimensions agree quantitatively with the HRTEM 

outcomes commented above, providing a further evidence of the very high 

crystalline nature of such nanostructured compounds. On the other hand, the 

average lattice strain parameter, ε, undergoes a significant increase on going 

from the pure nanostructured TiO2 to the doped specimens (Figure 3.28b)). It 

should be noted that ε(TPr_0.2) ≈ ε(TPr_0.3) within 3 estimated standard 

deviations, i.e., the apparent decrease in ε upon going from the Pr/Ti = 0.2 % 

sample to the 0.3 % one is poorly significant from a statistical viewpoint.  

Secondly, the double-Voigt method101 implemented in the program 

BREADTH102 was employed. Within this approach, the Lorentzian and Gaussian 

size and strain contributions to the physical profile broadening are singled out, 

provided that at least two reflections belonging to the same crystallographic 

family are analytically modelled with known suitable functions. In the present 

case, three reflections of anatase were used, namely the (101), (202) and 

(303) ones, approximating their experimental line profile with pseudo-Voigt 

functions, whose FWHM (amplitude) and η (mixing) parameters were 

retrieved from the optimized GSAS profile coefficients.103  In this way, we were 

able to estimate the corresponding volume-weighted column length and 

strain distributions as a function of the real-space distance along the 

scattering vector, upon the assumption that the crystallite size distribution is 

lognormal (see Figure 3.29a,b). Some estimates for <DV> and <ε 2>1/2, based on 

such distributions, can be found in Figure 3.30.  

 
 

 

Pr/Ti (%)

D
V

/ 
Å

Figure 3.30. Outcomes of the double-Voigt method for size-strain estimates, referred 

to the anatase lattice, as a function of the Pr doping extent. The dark blue points (left 

axis) refer to the average volume-weighted crystallite domain size, DV. The red 

triangles and the green squares (right axis) show the behavior of two different root 

mean square strain estimates, RMSS (<ε
2
>

1/2
), averaged over the a3 (the edge of the 

orthorhombic cell, orthogonal to the diffracting planes) or the DV/2 real distances.  
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It should be stressed that the integral breadth-based methods, including the 

Williamson-Hall approach, only give the volume-weighted domain size and the 

upper limit of the microstrain.104 On the contrary, the knowledge of the 

crystallite distribution, although being based on some (reasonable) a priori 

assumptions, is required to fully characterize the sample microstructure.105 As 

concerns the present case, the results provided by the double-Voigt approach 

agree well with the conclusions above sketched on the basis of the 

Williamson-Hall method. More in detail, it can be seen that an increment of 

the dopant concentration implies the shift of the most probable value of the 

size distribution (the mode) towards lower values, i.e., it implies the 

corresponding reduction of the average crystallite size. At the same time, a 

progressive increment of the lattice strain can be also detected, with 

ε(TPr_0.7) ≈ ε(TPr_0.5) > ε(TPr_0.3) ≈ ε(TPr_0.2) > ε(T) at equal L. 

In conclusion, it can be stated that the increment of the lattice strain observed 

by both the methods correlates with the increasing amount of Pr, as the 

brookite content remains the same throughout the sample series here 

considered. Together with the lacking of segregated Pr-based phases in our 

compounds, this evidence implies that the RE ions are likely disorderly 

dispersed in the bulk matrix, being either in the octahedral interstitial sites or 

the substitutional positions of anatase TiO2. At the same time, the average 

crystallite size tends to become a little smaller as the Pr concentration is 

increased, in agreement also with previously reported literature results on 

nanostructured Pr-TiO2 systems.106  In any case, both the Williamson-Hall and 

the double-Voigt methods provide an estimate for this quantity in good 

agreement with the HRTEM outcomes.  

 

DFT geometric calculations 

As the diffraction experiments are not conclusive from the perspective of 

locating the Pr site within the TiO2 lattice, a plane-wave DFT geometric 

optimization of a bulk Pr-doped 3x3x3 supercell was performed to understand 

if the XRPD outcomes are compatible either with substitutional or interstitial 

doping.  

A supercell composed of 27 primitive cells was chosen to reproduce the 

averaged cell distortions that can be observed by XRPD analysis. In other 

words, the attention was drawn to the distortion effects on the averaged cell 



 

135 3.     Basic Characterizations 
 

parameters. The values of the cell anatase parameters after distortion, i.e,. a, 

b, c, and of the averaged primitive cell volume (V), are reported in Fig. 3.31. 

 
Figure 3.31. Primitive cell parameters (a,b,c) and cell volume (V) variation under Pr 

doping and for different values of U. 

 

All the parameters increase under substitutional doping given the bigger 

effective ionic radius of Pr3+ (0.99 Å) with respect to Ti4+ (0.61 Å).107  

Nevertheless, these changes are more evident in the case of interstitial 

doping. To quantify the primitive cell distortion under doping, the distortion 

parameter d = 2(a-b)/(a+b) was introduced, where a and b are the primitive 

cell parameters obtained as an average over all the primitive cells considered 
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in the simulation. If the primitive cell angles had been unchanged under 

doping, this parameter would have been the orthorombic cell distortion 

parameter. In this case, the angle changes are contained within 0.1°, and d is 

very similar to the orthorombic one. In Fig. 3.32 the values of d are reported 

for the undoped supercell in the presence of an oxygen vacancy (TiO2+VO), for 

the Pr substitutional doped supercell (TiO2+VO+Prsub) and for the interstitial Pr 

doped supercell (TiO2+VO+Print). While substitutional doping leaves the d 

parameter unchanged, this is no longer true when the interstitial doping is 

considered. Thus, it would have not been possible to fit accurately interstitial 

Pr doping XRPD data with the anatase crystallographic model. Instead, as 

described above, XRPD data fit with good statistical accuracy into the anatase 

model. Moreover, theoretical results do not depend significantly on the U 

value and the same conclusions can be reached for any U.  

 

 
Figure 3.32. Averaged distortion d parameter of the primitive cell. Different colors and 

symbols for difference U (Pr) values. 

 

All these geometric considerations have been done on the averaged cell. In 

order to have a local insight, Table 3.15 reports the distances between the Ti 

or Pr atom and the O atoms placed at the octahedron vertexes. These 

distances do not change for different U values in the case of the Ti central 

atom. Instead, minor differences can be seen in the case of Pr. Specifically, for 

each U value, the Pr centered octahedron presents slightly elongated 
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distances by still keeping the octahedral shape. This view of the substitutional 

doping is compatible with the XRPD patterns previously discussed. 

 

U values 

for Ti 

System d(X-1) d(X-2) d(X-3) d(X-4) d(X-5) d(X-6) 

3-3.3-4-5 X = Ti 1.97 1.97 2.00 2.00 1.97 1.97 
3 X = Pr 2.15 2.15 2.29 2.27 2.15 2.14 

3.3 X = Pr 2.13 2.13 2.22 2.23 2.12 2.12 

4 X = Pr 2.13 2.13 2.22 2.22 2.13 2.13 

5 X = Pr 2.13 2.13 2.22 2.22 2.13 2.13 

Table 3.15. Nearest oxygen atoms from substitutional center (in Å). 

As a general remark, it should be stressed that, when DFT+U methods are 

employed to study the positions of dopant-induced defect states in a metal 

oxide, extreme care must be taken when making even qualitative conclusions 

without reference to more accurate approaches or experiments. 

3.5.2. Optical characterizations  

As already noticed by Xu et al., the presence of RE3+ ions in the TiO2 matrix 

may lead in general to a red-shift of the O 2p to Ti 3d charge transfer band.96 

Indeed, when the dopant content is increased, a slightly more pronounced 

absorption in the visible region is obtained for all our doped samples (Fig. 

3.33), with the presence of some peculiar absorption features. In the 

literature, Li et al.95 reported that neodymium dopant did not significantly 

shift the main absorption band edge, but brought some new absorption peaks 

attributable to 4f internal electron transitions in the visible region. It was 

further confirmed that significant photoluminescence emission occurred in 

the visible range of 350-700 nm; this is likely due to the electron transfer 

between Nd3+ and TiO2 owing to introduction of a Nd 4f  level.108 Compared to 

the undoped sample having a bandgap of 3.2 eV, all the doped ones have an 

apparent bandgap of about 3.0 eV, according to the Kubelka–Munk 

equation.26  
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Figure 3.33. Diffuse reflectance spectra of the undoped (T) and all Pr-doped samples. 

It should be noted that the photoexcited states of lanthanide ions attributed 

to 4f-5d or f-f transitions could transfer their excess energy to other molecules 

adsorbed to the semiconductor surface. These “host/guest” energy and 

electron transfer processes, on the other hand, should be a vital route in 

suppressing the recombination of charge carriers, thus playing a beneficial 

role in photocatalytic reactions.  

3.6. Ag- and N,Ag-doped TiO2 

As far as metal-doped titania is concerned, no doubt that the study Ag-doped 

TiO2 or Ag/TiO2 composites, which are both known to exhibit 

photocromism,109 falls within a quite controversial and complex scenario 

since, as for instance, the determination of the oxidation state is not a 

straightforward issue. Indeed, the reversible change of color of Ag-TiO2 under 

illumination relies on the modification of the nanoparticle size distribution 

through photoactivated redox reactions occurring specifically with the titania 

matrix. However, few information is available about the dependence of 

composition and properties of such nanocomposites on external stimulations 

and on the change of the silver oxidation state.110 Photooxidation of Ag to Ag+ 

and photoreduction of Ag+ to Ag are discussed in the literature concomitantly 

with photochromism.111  
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The present (N,)Ag-doped yellowish powders turned grey when exposed to 

ambient or UV light. A potentiometric titration has been used to determine 

the amount of Ag+ species in the Ag-TiO2 samples.  

In order to verify the role played by Ag species in the recombination of the 

semiconductor charge carriers, the chemical reduction of selected samples 

(TAg0.01, TAg0.05, TNAg0.01, TNAg0.05) was performed by a treatment with 

NaBH4 (see paragraph 2.1.1). 

3.6.1. Morphological and structural characterizations  

XRPD spectra show that doped samples are anatase-brookite composites, with 

crystallite size not differing significantly  with respect to the undoped sample 

(in the range of 6-8 nm). None of the spectra shows the presence of silver 

oxide segregated phases. 

The addition of silver ions lead to higher surface areas and pore volumes, as 

determined by BET analysis, with respect to the undoped TiO2. Figure 3.34a 

shows a typical adsorption-desorption isotherm plot for the nitrogen sorption 

(77 K) of the samples. All plots correspond to the “type IV” isotherm in the 

Brunauer classification. At increasing the amount of silver dopant in the 

samples, surface areas decrease. The hysteresis loop observed in the plot is 

associated with the filling and emptying of mesopores by capillary 

condensation. Pore size distributions were then determined by the BJH 

method applied to the adsorption branch in the plot. While TN (the sample 

doped with urea only) exhibits bottle-neck pores, the other doped samples 

show the presence of open-ended cylindrical ones. 

Porous oxide materials often contain micropores (<2 nm), which can also 

contribute to the nitrogen adsorption, influencing the type of the isotherm. In 

the present case, all samples show a marked presence of micropores, as can 

be deducted from the sharp decline in the low relative pressure region of the 

isotherms (Fig. 3.34a) and can be argued from the black part of the histograms 

in Fig. 3.34b. 
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Figure 3.34. N2 adsorption-desorption isotherms for selected samples (a) and pore 

size distribution (b) of the Ag-doped and Ag,N-codoped titania samples. 

3.6.2. Optical characterizations  

Diffuse reflectance spectra of all samples are displayed in Fig. 3.35. The 

present codoped samples show a broad absorption in the visible region. This is 

only partly due to the contribution of the N dopant: with increasing the 

starting Ag amount in the samples a more pronounced absorption covering 

the whole visible region is registered.  
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Ag-doped and N,Ag-codoped titania simply differ for the shape of the spectra 

(see the two inflection points for the N-doped oxides). Instead, the increase of 

the silver amount from 1 % to 5 % gives rise to much lower apparent band gap 

values (Table 3.16). Indeed, there is a difference in the onset of absorption for 

samples TAg_0.05 and TNAg_0.05 with respect to TAg_0.01 and TNAg_0.01.  

 
Figure 3.35. Diffuse reflectance spectra of undoped, single-doped and codoped 

samples (a) and of their respective reduced form (b). 

 

Nevertheless, Ag content higher than 5% could be detrimental: a 10 % led to a 

non-homogeneous sample with a decreased surface area and segregated 

metal species. Moreover, as in other cases, superfluous dopants could have a 
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negative effect since they could act as recombination centers of 

photogenerated e−–h+ pairs.112 Indeed, the photocatalytic activity towards 

photodegradation of ethanol (pollutant disappearance and mineralization 

followed by gas-chromatography) was the highest for titania with 1 % Ag/Ti 

molar ratio, and even higher for the same material when codoped with N.  

Sample 
SBET 

(m2 g-1) 
Pore vol. 
(mL g-1) 

d< 10 nm 
pores (%) 

d
A

101 

(nm) 

% A % B 
b.g. 
(eV) 

T 189 0.34 81 7 59 43 3.2 

TN 159 0.25 89 7 74 26 3.1 

TAg_0.01 196 0.34 96 7 57 43 3.2 

TAg_0.05 157 0.31 95 8 48 52 2.7 

TNAg_0.01 178 0.31 85 7 57 43 2.9 

TNAg_0.05 142 0.32 94 8 69 31 2.7 

Table 3.16. Specific surface areas, total pore volumes and percentage of pores with 

diameter smaller than 10 nm (BET-BJH analysis); anatase crystallite size, anatase and 

brookite percentage (XRPD analysis - A=anatase, B=brookite) and apparent band gap 

values (DRS) of Ag-doped and Ag,N-codoped samples. 
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In this chapter three main types of electrochemical measurements employed 

to characterize the home-made TiO2 nanopowders will be discussed.  

Capacitance analyses based on electrochemical impedance spectroscopy (EIS) 

and formulated in the Mott-Schottky plot shed light on band bending 

occurring in titanium dioxide when in contact with an electrolyte. They have 

been used mainly to evaluate the flatband potential of the semiconductor. On 

the other hand, photovoltage measurements as a function of the pH of the 

TiO2 suspension give access to the quasi-Fermi level of electrons. In this way, 

two viable routes have been explored to gain access to the electronic 

structure of titania, capturing a picture of semiconductor energetic both in the 

dark and under illumination. Then, chronoamperometry under chopped 

illumination will be presented in terms of photocurrent transients which can 

give a reliable insight into TiO2 charge carrier recombination rate. 

To understand reactions occurring at the electrode surface, the 

electrochemical approach is a useful method, since it allows the relationship 

between the potential, current and charge to be measured.  

4.1. Dark behavior  

Undoped semiconductors are referred to as intrinsic semiconductors. Doped 

semiconductors in which the dominant (or majority) charge carriers are 

electrons are referred to as n-type semiconductors, whereas those in which 

holes are the majority charge carriers are referred to as p-type 

semiconductors. It has to be noted that pristine titanium dioxide, both 

commercial and home-made synthesized, can be considered an n-type 

semiconductor because defects such as oxygen vacancies act as electron 

donors. In the following, indeed, the term “pure” will never be used, whereas 

“pristine” or “bare” TiO2 will be adopted to indicate undoped materials, as 

opposite to doped ones. 

For an intrinsic semiconductor the Fermi level (EF) lies at the mid-point of the 

bandgap. This statement derives from the definition of the Fermi function f(E): 

according to thermal equilibrium the probability of finding an occupied energy 

level at a specific value E is given by: 

      
 

   

      
   

     (eq. 4.1) 
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Pristine TiO2 can be considered as an n-type semiconductor, with its Fermi 

level located quite close to the conduction band (ECB). Doping changes the 

distribution of electrons within the solid, and hence changes the Fermi level. 

For a n-type semiconductor, the Fermi level lies just below the conduction 

band, whereas for a p-type semiconductor it lies just above the valence band.  

Simple promotion of electrons from the valence band to the conduction band 

is not sufficient to generate a net current flux, since non-radiative relaxation 

of excited electrons to the ground state is quite facile in solid state. This 

deactivation pathway can be overcome by placing the semiconductor in 

contact with a second phase prior to photoexcitation to generate a charge 

separating electric field at the semiconductor surface. This interfacial electric 

field can be used to spatially separate photoinduced electron-hole pairs, 

thereby preventing their non-radiative recombination. The second phase 

placed in contact with the semiconductor must have a free energy different 

from that of the semiconductor: the best given example is an electrolyte, 

which is the most interesting contact phase from an electrochemical point of 

view. 

Through the formation of a threedimensional and interconnected TiO2 

network using the sol–gel process as well as the microemulsion route and 

template procedure, the voids between the semiconductor nanoparticles are 

connected and filled with an electrolyte.  

As a rule of thumb, contact between a semiconductor and another phase (i.e., 

gas, liquid, or solid) involves a redistribution of electric charges in the form 

charge carriers transfer in order to reach the kinetic and thermodynamic 

equilibrium at the interface. The direction of electron flow during this process 

will depend on the relative values of the Fermi level and the redox potential. 

In theory, both the free energy of the semiconductor and the free energy of 

the electrolyte should change in order to establish the equilibrium conditions. 

However, since there exists a significant excess of charge carriers in the 

electrolyte (i.e., the number of electroactive molecules) compared to the 

number of charge carriers in the semiconductors, the redox potential of the 

electrolyte is virtually unaffected by this process. Rather, the semiconductor 

Fermi level shifts to the electrolyte redox potential. 

The transfer of electric charge produces a region on each side of the junction 

where the charge distribution differs from the bulk material, and this is known 

as the spacecharge layer. On the electrolyte side, this corresponds to the 
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well-known electrolytic double layer, that is, the compact (Helmholtz) layer 

followed by the diffuse (Gouy–Chapman) layer. Unlike a metal, where excess 

charge resides at the surface, charge in a semiconductor is not free to move 

about and forms a “space charge layer” which extends into the bulk for a 

significant distance (100-10,000 Å).1 This region has an associated electrical 

field. Hence, there are two double layers to consider: the interfacial 

(electrode/electrolyte) double layer, and the space charge double layer. 

As for metallic electrodes, changes in the potential applied to the electrode 

shift the Fermi level. The band edges in the interior of the semiconductor (i.e., 

away from the depletion region) also vary with the applied potential in the 

same way as the Fermi level. However, the energies of the band edges at the 

interface are not affected by changes in the applied potential. Therefore, the 

change in the energies of the band edges on going from the interior of the 

semiconductor to the interface, and hence the magnitude and direction of 

band bending, varies with the applied potential. Different situations have to 

be considered. 

At a certain potential, the Fermi energy lies at the same energy as the solution 

redox potential. There is no net transfer of charge, and hence there is no band 

bending. This potential is therefore referred to as the flatband potential, Vfb 

(Fig. 4.1a), which plays the same role as the potential of zero charge for 

metals. Since for an n-type semiconductor electrode at open circuit the Fermi 

level is typically higher than the redox potential of the electrolyte, electrons 

will be transferred from the electrode into the solution. Therefore, there is a 

positive charge associated with the space charge region, and this is reflected 

in an upward bending of the band edges. Since the majority charge carrier of 

the semiconductor has been removed, this region is also referred to as a 

depletion layer (Fig. 4.1b). Hence, a positive excess charge formed by 

immobile ionized donor states is left behind. If electrons accumulate at the 

semiconductor side one obtains an accumulation layer (Fig. 4.1c). Finally, 

electron depletion can go so far that their concentration at the interface falls 

below the intrinsic level. As a consequence, the semiconductor is p-type at the 

surface and n-type in the bulk, corresponding to an inversion layer (Fig. 4.1d). 

The illustration in the figure refers to n-type materials where electrons are the 

mobile charge carriers. Analogous considerations apply for p-type 

semiconductors, in which positive holes are the mobile charge carriers and the 
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immobile negatively charged states of the acceptor dopant form the excess 

space charge within the depletion layer. 

 

Figure 4.1. Sketch of the electronic energy levels at the interface between an n-type 
semiconductor and an electrolyte containing a redox couple in four different 
situations: a) flat band potential, where no space-charge layer exists in the 
semiconductor; b) depletion layer, where electrons have moved from the 
semiconductor to the electrolyte, producing an upward bending of the bands; c) 
accumulation layer, where excess electrons have been injected into the solid 
producing a downward bending of the conduction and valence band towards the 
interface;  d) inversion layer, where the electrons have been depleted below their 
intrinsic level, enhancing the upward band bending and rendering the 
semiconductor p-type at the surface. Re-drawn from ref [2]. 
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At first glance, band bending appears to suggest that the energetic of the 

semiconductor surface are fixed while the bulk energetic are changing; the 

opposite is true. 

If a semiconductor responds in an ideal way, the potential applied to the back 

side of the electrode will be dropped across the internal electrode-electrolyte 

interface, contrary to what happens for a metal-electrolyte interface. This has 

two implications: the potential applied to a semiconducting electrode does 

not control the electrochemistry, and in most cases there exists a “built-in” 

barrier to charge transfer at the semiconductor-electrolyte interface, so that 

electrochemical reversible behavior never exists. 

According to Grätzel,2 the nanostructuring of the semiconductor introduces 

profound changes in its photoelectrochemical properties. Of great importance 

is the fact that a real depletion layer (see Fig. 4.1) cannot be formed in the 

solid: the particles are simply too small. The voltage drop within the 

nanocrystals remains small under reverse bias, typically a few millivolts. As a 

consequence there is no significant local electric field present to assist in the 

separation of photogenerated electron–hole pairs.3 Thus, the photoresponse 

of the electrode is determined by the rate of reaction of the positive and 

negative charge carriers with the redox couple present in the electrolyte. This 

came as a great surprise already in 2001 to a field where the traditional 

thinking was to link the photoresponse to formation of a charge-depletion 

layer at the semiconductor–electrolyte interface. Along with the absence of a 

proper electric field in mesoporous semiconductor electrodes, no band 

bending occurs in nanocrystals and whole film (since the maximum band 

bending in a spherical semiconductor particle is negligible at room 

temperature. Electrons are charge-compensated by ions in the electrolyte and 

transported by diffusion, as supported by Sodergren et al. who proposed a 

diffusion model for electron transport in these porous films.4  

Band positions and energy levels 

The determination of the flat band potential facilitates the location of the 

energetic position of the valence and conduction band edge of a given 

semiconductor material. Electron transfer from the semiconductor to 

adsorbed species is ruled by the band energy position of the semiconductor 

compared to the redox potential of the adsorbate. In order to have electron 

donation from the conduction band to an acceptor, energetic level of the last 
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must be below (on a potential scale more positive than) the conduction band 

potential of semiconductor. The potential level of the donor, instead, needs to 

be above (more negative than) the valence band position of the 

semiconductor in order to donate an electron to the vacant hole.5  

Similarly, electron transfer from the semiconductor to a molecule (e.g., a dye) 

adsorbed on the semiconductor to the semiconductor itself is determined by 

the reciprocal position of the energetic levels. Band positions of several 

semiconductors compared to the standard potentials of two fundamental 

redox couples (H2/H2O, H2O/O2) are presented in Fig. 4.2.  

 

Figure 4.2. Band positions of several semiconductors in contact with an aqueous 

electrolyte at pH = 1. The lower edge of the conduction band and upper edge of the 

valence band are presented along with the bandgap. The energy scale is indicated in 

eV using either the normal hydrogen electro4de (NHE) or the vacuum level as a 

reference. On the right side, the standard potentials of two main redox couples are 

presented against the normal hydrogen electrode potential.
2
  

H2/H2O

H2O/O2
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4.2. Behavior under illumination 

When TiO2 particles are irradiated with UV-visible light, a non-equilibrium 

population of electrons and holes is generated, thereby splitting the Fermi 

level into two quasi-Fermi levels, one for the holes and the other for the 

electrons. That is to say, the population of electrons, p(e) is distributed in the 

conduction band states with the Boltzman factor:6  

        
  

        
 

      (eq. 4.2) 

where nE*
F is the quasi-Fermi level for electrons. Similarly, there is a quasi-

Fermi level for holes pEf*, and the holes are distributed in the valence band 

states as: 

        
  

        
 

      (eq. 4.3) 

The quasi-Fermi level for electrons, which practically merges with the TiO2 

conduction band, is to be considered since the electrons are the majority 

charge carriers in such a material. In the presence of an electrolyte – a 

condition that holds for all the present studies – nEf* will equilibrate with the 

potential of the redox couple in solution.  

The Fermi level (Ef) of the semiconductor is directly related to the number of 

accumulated electrons as illustrated in the expression:  

            
  

  
    (eq. 4.4) 

where nc is the density of accumulated electrons, and Nc is the charge carrier 

density of the semiconductor.  

If more electrons are accumulated in TiO2 or in a doped/composite system, a 

negative shift in the Fermi level of the TiO2 would be expected. By shifting the 

Fermi level closer to the conduction band, it would therefore be possible to 

improve the energetics of the semiconductor system. This holds in the case of 

a species to be reduced in solution, as the gap between the two potentials 

involved would be larger. 

Kongkanand and Kamat7 determined the concentration of electrons 

accumulated in the TiO2 particle using thionine dye as an acceptor. By 

determining the number of reduced dye molecules, they estimated an 
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accumulation of about 300 electrons per 15-nm TiO2 particle during extended 

UV irradiation.  

4.3. Flat-band potential / quasi-Fermi level determination 

techniques  

There are plenty of experiments used to measure the flatband potential of a 

semiconductor and the various parameters related to its electronic features. 

For semiconductor powder suspensions, as most commonly employed in 

semiconductor photocatalysis, photocurrent8,9 or photovoltage measurements 

are the methods of choice, besides the less used flash photolysis.11 They 

resemble the experimental conditions applied in photocatalysis much better 

since no electrochemical potential has to be applied to the semiconductor. 

However, the same intrinsic features studied for suspension particulate can be 

exploited when the system is slightly different, namely when nanoparticles are 

deposited on conducting substrates and used as photoanode in a 

photoelectrochemical cell. For semiconductor electrodes capacitance 

measurements,12-15 modulation spectroscopy,16,17 and spectro-

electrochemistry18,19 were applied.  

The most used methods to determine the flatband potential consist in 

measuring the photopotential as a function of radiation intensity, or the onset 

of the photocurrent, or, alternatively, the capacitance of the space charge 

region. Among these techniques, the simplest one is to measure the open-

circuit potential (photopotential) of the electrochemical cell under radiation of 

varying intensity. For a system under equilibrium, the photopotential is the 

change in the Fermi level due to the promotion of electrons to the conduction 

band, and it reaches a maximum at the flatband potential. Therefore, a plot of 

photopotential versus light intensity will attain a limiting plateau at the 

flatband potential.  

For the second method, although the onset of the photocurrent might be 

simplistically considered to be the flatband potential, it is actually the 

potential at which the dark current and photocurrents are equal. Therefore, 

such measurements should be used with caution.  

The third method will be explained more in details in the  following paragraph 

(3.1). 
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Furthermore, under open circuit conditions the electrons accumulate and 

equilibrate with the redox couple in the electrolyte. The measured open 

circuit voltage in a photoelectrochemical cell is the difference between the 

apparent Fermi level of the semiconductor film and the reduction potential of 

the redox couple employed. Thus, the open circuit voltage is a direct measure 

of the apparent Fermi level of the semiconductor film if one equilibrates using 

the same redox couple centers.7 Indeed, Beranek and Kisch20 determined EFB 

from the dependence of the electrode open-circuit voltage (VOC) on the 

illumination intensity, since at sufficiently high intensity VOC becomes 

constant, representing Vfb.21  

In a more extended manner, when recordering photocurrents at different 

applied potentials under UV illumination, the zero-current potential 

correspond to apparent flatband potential of the nanostructured 

semiconductor film. At this applied potential, all the photo-generated 

electrons and holes recombine without producing any net current flow. Any 

built-in driving force within the film for driving electrons to the collecting 

surface of the optically transparent electrode is neutralized by the applied 

negative bias.  

Among the variety of techniques for the electrochemical semiconductor 

features determination, two intentionally different kinds of measurements 

have been employed in the present study and applied to selected samples: 

impedance spectroscopy in the form of Mott-Schottky plot and photovoltage 

method, leading to the evaluation of the flatband potential and quasi-Fermi 

level, respectively. 

4.3.1. Mott-Schottky plot 

One of the traditional methods to evaluate the flatband potential of a 

semiconductor, as mentioned above, involves measuring the apparent 

capacitance of the semiconductor–electrolyte junction as a function of applied 

potential to increase the potential step across the junction. It is based on the 

Mott-Schottky (MS) relationship:  

 

    
 

           
        

   

 
    (eq. 4.5) 
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where C is the space charge capacitance, V the externally applied potential, Vfb 

the flatband potential at semiconductor/electrolyte junction, ND the donor 

density, ε0 the permittivity of the free space, εTiO2 the permittivity of the 

semiconductor electrode (considered equal to 30,22 e0 the elementary charge, 

kB the Boltzmann’s constant, and T the operation temperature. A and R  the 

geometric area and the roughness of the substrate, respectively. 

As most of impedance measurements, also these are conducted in a range of 

frequencies, usually centred at 1 kHz or starting from 1 kHz and increasing the 

frequency of one or two orders of magnitude. 

Plotting (C-2) vs V should thus yield a straight line, intersecting the potential 

axis at Vfb, as depicted in Fig. 4.3. The respective donor density ND can be 

calculated from the slope of this line.  

 

 

Figure 4.3. Mott-Schottky plot obtained at different frequencies for the TiO2 thin film 

electrode prepared with 125 mmol TiOSO4, 37.4 mmol Silres MP42E, 28 mmol NH3, 

and 0.5 mmol Pluronic F-127. Ag/AgCl and Pt were used as reference and counter 

electrodes, respectively, in 0.1 M KCl, pH = 7.0. Taken from ref [15]. 

When a Mott-Schottky measurement is performed, the semiconductor is in 

contact with a solution where a redox couple is present. Then, an exchange of 

electrons can occur in order to match the two Fermi energies (Ef and Eredox) 

as depicted in Fig. 4.4. 
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Figure 4.4. Pictorial representation of the electronic energy levels for titania in 

two different situations: (a) for the gas phase titania where CB is the 

conduction band energy, VB the valence band energy, Ef the Fermi energy and 

ECB the conduction band edge; (b) for titania in contact with a solution where a 

redox couple is dissolved. “Ox” stands for oxidated form, “Red” for reduced 

form and “Eredox” is the redox potential. The depletion region is the one where 

the band is bent. 

 

The variation of capacitance can be measured using a frequency response 

analysis (impedance method).  

As already mentioned, the flatband potential that can be measured by an MS 

plot is defined as the counter-potential that flats the potential back again by 

compensating the migrated charges capacitance effect. When analyzing data, 

there are two capacitances to be considered, the space-charge capacitance 

and the capacitance of the Helmholtz layer (CH) present at the electrolyte side 

of the interface. Since these capacitances are in series, the total capacitance is 

the sum of their reciprocals. In the depletion regime the space charge 

capacitance is much smaller than Helmholtz capacitance. Therefore, the 

capacitance value calculated from this model is assumed to be the value of 

the space charge capacitance.7 As underlined by Zhang et al.,23 especially in 

the case of contact between the substrate and the electrolyte permeating 

through the voids of the analyzed material, the capacitance relationship 

should be described taking the Helmholtz capacitance into account. 
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The equivalent circuit used in this model to represent the metal 

oxide/electrolyte system is a series combination of a resistor and a 

capacitance (the space charge capacitance). The capacitance is calculated 

from the imaginary component of the impedance (Z")  using the relationship 

Z" = 1/2πfC. The model is adequate provided the frequency is high enough (on 

the order of kHz). 

 

Experimental setup 

The flat-band potentials of the both pristine and doped titanium dioxide were 

measured by impedance spectroscopy using the Mott-Schottky plots.10,24 The 

measurements were performed in a conventional thermostatted (25 °C) 

three-electrode cell, with a 2 cm2 platinum flag as counter electrode and a 

saturated calomel electrode as reference.  

The working electrode was a TiO2 thin film prepared as follows: the TiO2 

powder was well dispersed with 2-propanol and the suspension was applied 

on an indium-doped tin oxide conducting glass (ITO), 21 cm2, by drop casting. 

After being dried, the film was finally annealed at 400°C for 1 h. The 

experiment was performed in aqueous 0.5 M Na2SO4 solution at pH6. The 

potential was systematically varied between +1.7 and -1.3 V (vs NHE) with the 

frequency range being modulated between 500 to 2000 Hz by an ECO-CHEMIE 

Autolab PGStat 30-Potentiostat Galvanostat equipped with Frequency 

Response Analyzer (FRA).  

 

Deviations from ideal behavior 

In the derivation of equation 4.5 several assumptions are made which can be 

summarized as follows. Both the electrolyte and the bulk semiconductor have 

zero resistance; the interface is perfectly planar, two-dimensionally infinite 

and possesses perfectly blocking properties. Neither surface states nor 

interfacial layers, such as the Helmholtz layer, are present. The dielectric 

constant ε is frequency-independent. Only  one  type  of localized electronic 

defect  is  present,  being  a  completely ionised  donor (or acceptor, for p-type 

semiconductors); the spatial distribution of such defects is homogeneous. In 

real  cases, several of  these  conditions will  not  be  sufficiently met, as 

exposed in a paper by Cardon and Gomes.25 This is the complex reason why, 

contrary to an easily obtainable estimation of the bandgap from diffuse 

reflectance measurements, the flatband potential and quasi-Fermi level 
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evaluation generally requires more efforts: not only the techniques 

themselves are more delicate, but also real semiconductors necessarily differ 

from the ideal counterpart. 

When surface states are present, phenomena like e/h+ trapping and 

recombination are to be rediscussed. Surface states can be considered as 

intermediate for charge transfer reactions and charge trapping can occur, thus 

leading to unpinning of band edges. This happens because surface states can 

act as channels for electron transfer, if they lie at the appropriate energy. 

Techniques such as EIS, photocurrent transients, and photoluminescence are 

indeed the most used for studying to what extent surface states affect charge 

transport and recombination. 

Then, another main cause of non-ideal behavior is photodecomposition of the 

electrode; that is, oxidation of the electrode itself by holes in the depletion 

region. This can be avoided by the addition of an appropriate electroactive 

species to the solution that competes with the auto-oxidation, or by the 

stabilization of the electrode surface by chemical modification.  

Last but not least, differences in the substrate roughness could account for 

different slopes found for the Mott-Schottky plot response, thus affecting the 

donor density.  

4.3.2. Photovoltage technique 

This method to determine the quasi-Fermi level of titanium dioxide consists in 

the measurement of the photovoltage developed on irradiating the TiO2 

suspension in the presence of an electron acceptor, methylviologen 

(MV2+/MV+) in the present case.  

Since the redox potential of the MV2+/MV+ couple is pH independent, the 

observation of a pH effect on the measured photovoltage must be related to 

changes within or on the surface of the TiO2. The most likely source of this 

effect is shifting of the Fermi level energy with pH.8  

As already mentioned, after light irradiation inducing the separation of 

electron-hole pairs, the associated energy states are named quasi-Fermi 

energy levels and are located just below the conduction band for the 

electrons and just above the valence band for the holes. Because of the 

protolitic equilibrium between the semiconductor and the aqueous solution 

taking place at the titanium oxide interface, the electronic levels of the 



 

163 4.     Electrochemical Characterizations 

semiconductor can be rigidly shifted by varying the pH of the solution. Once 

the pH is high enough to guarantee that the electron quasi-Fermi energy level 

is more negative (on the electrochemical scale) than the one of the pH-

independent redox couple in solution, the electrons will flow from the 

semiconductor to the solution (see Fig. 4.5). Thus, a sudden voltage change 

versus the pH will be observed in a titration curve fashion. Indeed, the 

photovoltage method is based on the pH-dependence of the quasi-Fermi level 

of TiO2 according to eq. 4.6: 

    
                        (eq. 4.6) 

wherein the factor k is usually equal to 59 mV.13 From the pH value at the 

inflection point (pH0) - at which the quasi-Fermi level and the potential of the 

redox couple are equal - one can calculate the quasi-Fermi electron energy 

levels at any pH as reported in eq. 4.7: 

    
                                   (eq. 4.7) 

Thus, nEf* is shifted towards more negative values upon increasing the pH 

value. In the presence of a pH-independent redox system like methylviologen 

(MV2+) the interfacial electron transfer from the photogenerated reactive 

electron to MV2+ can be therefore controlled by changing the suspension pH 

value. Reduction to the blue radical cation occurs only if the quasi-Fermi 

potential of electrons matches the methylviologen reduction potential, that is 

for pH > pH0. The photogenerated hole oxidizes water or an added electron 

donor (hole acceptor).  

 
 

 

 

 

Figure 4.5. Sketch of the photoexcitation process and the electron-hole pair energy 

levels in titanium dioxide. “Ef(e
)” indicates the electron quasi-Fermi energy levels, 

while “Ef(h
+
)” the hole one.  
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Experimental setup 

The quasi-Fermi level of electrons was measured using methylviologen 

dichloride ((MV)Cl2, Ered(MV2+/MV+) = -0.4421 V vs NHE) as a pH-independent 

redox system, according to the literature.10 A two-electrode cell using a 2 cm2 

platinum flag and a saturated calomel electrode (SCE) as working and 

reference electrodes, respectively, was adopted. A combined glass electrode 

was also employed for pH measurements. 30 mg of semiconductor powder 

were suspended and sonicated in 50 mL of 0.l M KNO3, and then placed in a 

thermostatted (25°C) cell. After being degassed with N2 for 0.5 h, 6 mg of 

methylviologen dichloride was added to the suspension, and again degassed 

for about 15 min. The pH of the suspension was adjusted to pH 1 using 1 M 

HNO3 and then it was raised by adding NaOH solutions. Stable photovoltages 

were recorded about 30 min after changing the pH value by irradiation of a UV 

lamp (see the Appendix for details). Magnetic stirring and nitrogen flow were 

kept constant during the measurement. The cell potential differences 

between the working electrode and the reference SCE were recorded with a 

KEITHLEY 619 differential Electrometer/Multimeter, with an input impedance 

greater than 1014 Ω. The precision of potential difference measurements was 

0.01 mV. For pH measurements, an AMEL 338 pH-meter was used, after 

appropriate calibration. 

Both the plotted potential data and quasi-Fermi level values are given relative 

to the normal hydrogen electrode (NHE). 

In the following, both the “quasi-Fermi level” and “flatband potential” terms 

will be used according to the techniques adopted, though the former would 

be more accurate to describe both determinations for small crystal size (about 

5 nm, in the case of our home-made titania, both pure and N-doped) which 

presumably does not produce a relevant band-bending. However, the main 

difference lies in the following: MS plot gives information about the electronic 

structure of the metal oxide in the dark, whereas the photovoltage technique 

gives access to the quasi-Fermi level, that is to say a picture of the 

semiconductor under illumination. 

 

Factors affecting the flatband potential / quasi-Fermi level  

Besides attesting that an accurate assessment of the flatband potential/quasi-

Fermi level for poly-crystalline semiconductor particles is still problematic and 
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not straightforward, recent works are not abundant on this topic. In this 

context, the focus is addressed to undoped and N-doped TiO2, since nitrogen 

is the most studied of all dopants from the electronic point of view. However, 

literature data concerning the evaluation of these electronic properties for 

doped TiO2 nanoparticles are very scarce. Actually, as shown in Table 4.1, 

there is also a significant variation in the literature values concerning undoped 

TiO2 powders. Comments on the comparability of the data reported in Table 

4.1 are not possible, since the available metrology protocol details are 

sometimes poor and quite often the uncertainty of the measure is not given. 

Moreover, one should consider that different synthetic and doping 

procedures may lead to materials with largely different properties. Since not 

only the metrology methods but also the types of electrode deposition vary 

considerably among the reported values, it is definitely difficult to ascribe the 

wide range of results to precise factors and to compare them unambiguously. 

For instance, Bolts et al.8 found by MS measurements that Efb values differ by 

up to -0.3 V for the various determinations. Instead, Beranek and co-workers20 

affirmed that they determined nEf* from the dependence of the electrode 

open-circuit potential on the illumination intensity, since capacitance 

measurements did not give reliable data due to a high frequency dispersion of 

the resulting Mott-Schottky plots. Still, Hirai et al.26 declared that their 

experimental results do not show an ideal MS-behavior, so the flatband 

potential could not be determined by the impedance method, though a value 

is reported. Then, in Table 4.1 only the values of flatband potential/quasi-

Fermi level related to powders are considered, thus excluding single crystals, 

nanotubes, array electrodes, and so on. Indeed, the crystallinity degree of the 

oxide, related to its specific surface area, should be taken into account: the 

defective nature of nanoparticles can introduce large differences from one 

sample to another. For this reason, in the present work, both home-made and 

commercial samples with very dissimilar specific surface areas and average 

crystallite diameters have been purposely chosen.  
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Mott-Shottky plot 

Photovoltage /  

photocurrent method / 

spectroelectrochemistry 

Undoped 

TiO2 

Vfb 

(V vs NHE) 
pH 

nEf* 

(V vs NHE) 
pH 

-0.01 V  5 -0.08 0 

-0.41 V 7  -0.71 V 7 

-0.9 V 10 -0.52 V  7 

-0.9 V 13 -0.68 V  7 

-0.2 V 0 -0.55 V  7 

-0.40V  7.5 -0.56 V  7 

-0.40 V   6.5 -0.82 V 11 

-0.42 V  8 -0.05 0 

-0.16 V  0 -0.14 V   0 

-0.10 V 7 -0.28 V 6.6 

  -0.53 V -0.52 V 6 

  -2.00 V  n.r.a 

   -1.2 V  n.r. 

  -0.50 V n.r. 

N-doped 

TiO2 

-0.52 V 7 -0.20 V, -0.22 V 7 

  -0.47 V -0.48 V -0.49 V  7 

  -0.59 V, -0.64 V 7 

  -0.35 V 7 

  -0.16 V b  7 

  -2.04 V, -2.10 V  n.r. 

  -0.42 V, -0.48 V c  7 

  -0.35 V n.r. 

Table 4.1. Literature values of flatband potential (Vfb) and quasi-Fermi level (
n
EF*) 

obtained by different metrology methods for undoped and N-doped TiO2 powders. 
a 

n.r. = Value not reported in the reference. 
b
 Value derived from the dependence of 

the electrode open-circuit potential on the illumination intensity. 
c 

N,C-codoped TiO2 

sample. References to the papers from which numerical values have been taken can 

be found in a previous work.
27 
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Apart from the intrinsic features of the semiconductor, the flatband 

potential/quasi-Fermi level depends on the nature and composition of the 

electrolyte. In aqueous solution and for most oxide semiconductors, it shifts 

by 0.059 V when the pH is changed by one unit, as exposed in eq. 4.6. This is a 

consequence of the fact that protons are potential-determining ions for these 

solids. Previous studies have even shown that changes in local pH occurring 

during the photo-oxidation process when TiO2 in aqueous media is exposed to 

UV irradiation lead to variations in band bending and changes in the flat-band 

potential.28 As a negative mark, it has to be stressed that there a few literature 

works do not even report the pH at which the flatband potentials/quasi-Fermi 

levels are determined, thus providing an incomplete information. According to 

Nelson and coworkers,29 the measurement of the flat-band potential of 

porous semiconductor electrodes can be used to aid in understanding surface 

potential, especially when compared to electrophoretic mobility 

measurements of colloidal suspensions of the same oxide. Nelson et al.29 

demonstrated how changes in adsorbed species on the surface such as 

hydronium and hydroxide ions, as well as protolyzable anions (phosphate and 

arsenate, in their case) affect the space charge layer and even surface 

conductivity and can be used to control the adsorption of charged molecules. 

4.4. Home-made undoped and doped-TiO2 

4.4.1. N doping  

Mott-Schottky measurements  

Flatband potential values from impedance experiments were obtained, 

according to the literature,13 from the extrapolation of Mott-Schottky plots (C-

2 vs V, electrode potential), as mentioned above. As a rule of thumb, a 

judicious selection of electrodes (surface/interface) preparation methods is 

necessary, in order to optimize titania as working electrode and to assure that 

the electrochemical parameter is not influenced by spurious contributions.  

Examples of the Mott-Schottky plots obtained for bare TiO2 layers on indium-

doped tin oxide (ITO) glass substrates for different frequencies are shown in 

Fig. 4.6a. The experimental points were fitted by linear extrapolation in the 

range (0.2-1.2 V vs NHE) and the final value of Vfb was obtained by the 

intersection with the potential axis (Vfb = 0.5 V vs NHE). While in the case of 
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this sample and of undoped commercial ones, the reproducibility was pretty 

good, that of N-doped samples - triethylamine as N source and different 

nominal N/Ti molar ratios - is less satisfactory (Fig. 4.6b, TN_0.10 as 

representative for N-doped TiO2). This is more probably due to the formation 

of heterogeneous films ensuing the increasing polydispersity of the doped 

powders. In particular, the frequency dispersion behavior is usually explained 

by a non-uniform distribution of donors, dielectric relaxation phenomena 

associated with irregularities in the surface structure of the electrodes, and a 

possible amorphous nature of the films, as stated in the literature.30,31  

To ensure a straightforward comparison of the results for the TiO2 thin film 

electrodes prepared here, flatband potential values were calculated from the 

capacity measurements performed at 1000 Hz. Moreover, the same range 

(0.2-1.2 V vs NHE) was adopted for the extrapolation for all samples. This can 

be a debated aspect, since the assumed flatband potential value could be 

different if alternative linear parts of the data set would be considered. As for 

instance, here the substrate response to the measurement is not taken into 

account. This is fairly questionable due to the nature of the titania films: as 

they are nanoporous, it cannot be excluded that the electrolyte came in 

contact with the underlying ITO. However, a steeper slope would be expected 

for ITO than for TiO2 since the donor density should be higher in the former 

(highly-doped material). 

As average datum deriving from all impedance measurements, a flatband 

potential of (-0.6 ± 0.2) V vs NHE can be provided for both undoped and N-

doped titania. Thus, no significant effects are introduced by doping with 

nitrogen.  

Further discussion can be found on Mott-Schottky plots of titanium dioxide in 

chapter 6 (paragraph 6.3.1), as two different types of TiO2 films for hybrid 

solar cells are characterized and compared to be used as “blocking layers” 

toward charge recombination. 
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Figure 4.6. Mott-Schottky plot obtained at different frequencies for undoped TiO2 

(sample T, a) and N-doped TiO2 (sample TN_0.10, b). 

 

Photovoltage measurements 

The photovoltage method has the important advantage of directly employing 

TiO2 as a powder in suspension, thus overcoming the possible problems 

connected with the deposition of the powder onto the solid support. This is a 

crucial issue, especially when heterogeneous and polydisperse samples are 

concerned. For such a reason and for the inherently connected problem arisen 

with the Mott-Schottky plot on nanoporous systems, the evaluation of the 

Fermi/quasi-Fermi level for other types of doped-TiO2 has been done by 

photovoltage analysis.  
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As already mentioned, this technique is based on the linear pH-dependence of 

the TiO2 quasi-Fermi level, according to a Nernstian behavior of the 

semiconductor. This behavior can be associated with the 

protonation/deprotonation equilibrium of the oxide surface. Thus, upon 

recording the photovoltage as a function of pH, a curve with a shape similar to 

a titration curve is obtained, as shown in Figure 4.7 for selected samples. 

Usually, an inertia is noticeable in reaching a more or less constant value of 

the measured potential. Constant photovoltage values can be obtained after 

shorter time at pH values quite far away from the pH of the inflection point, 

especially at high pH. 

 

 
Figura 4.7. Photovoltage vs pH for selected TiO2 suspensions in the presence of 

(MV)Cl2. 

 

Table 4.2 reports the obtained values of the quasi-Fermi level at pH 6, referred 

to the NHE scale. There is no significant variation among all the N-doped 

samples - triethylamine as N source - which range around -0.7 V, nor between 

doped and undoped ones.  

Overall, we found the measurement of the photovoltage to be quite simple 

and reliable (notwithstanding a considerable work devoted optimization of 

the method), even more accurate and reproducible with respect to many 

other techniques, such as Mott-Schottky analysis by impedance spectroscopy, 

though the latter is absolutely well-known in the field of semiconductors and 

validated when applied to single crystals. Thus, photovoltage measurements 
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can be probably considered the most suitable technique for the quasi-Fermi 

level experimental evaluation in nanosized semiconductor powders. 

Sample nEF* (V vs NHE) 

T -0.67 ± 0.07 

TN_0.10 -0.67 ± 0.07 

TN_0.20 -0.71 ± 0.06 

TN_0.40 -0.67 ± 0.06 

TN_0.50 -0.66 ± 0.01 

P25 -0.64 ± 0.04 

HOMBIKAT UV100 -0.62 ± 0.04 

Table 4.2. Quasi-Fermi levels evaluated at pH 6 by photovoltage method for home-

made and commercial samples. 

DFT calculations  

Results deriving from theoretical calculations are partially integrated in this 

thesis because of their highly interconnected nature with the experiments 

herein reported. They have been conducted by the theoretical chemistry 

group held by Dr. M. Ceotto of the Università degli Studi di Milano. The aim 

was that of more systematically and fully explore some aspects of pristine and 

doped TiO2 by placing theory and experiment side by side. More specifically, 

calculations were included to gain novel insights with respect to the current 

literature into the interplay among structural and electronic degrees of 

freedom that underlie the observed photochemical properties of TiO2. Indeed, 

theoretical DFT calculations in conjunction with both photovoltage and 

impedance experiments allowed to outline a comprehensive picture of the 

electronic structure of titania nanoparticles, especially N-doped ones.  

 

Computational setup  

All spin-polarized calculations were performed using the VASP code.32,33 The 

projector augmented wave (PAW) pseudopotentials was employed to treat 

the valence-core interactions and the Perdew-Burke-Ernzerhof (PBE) 

parametrization34 of the generalized gradient approximation35 was adopted 

for the exchange-correlation potential. Forces on the ions were calculated 

through the Hellmann-Feyman theorem as the partial derivatives of free 

energy with respect to the atomic position, including the Harris-Foulkes 

correction to forces.36,37 More details can be found in a reference paper.27  
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In a DFT + U study, a value of U = 5 eV was used, which has previously been 

shown to properly account for the electronic structure of the Ti 3d states.38-41 

The bulk doped systems were constructed from the relaxed 333 162-atom 

anatase TiO2 supercell. The optimized supercell lattice parameters were a = 

11.392 Å and c = 28.606  Å (a = 3.797 Å and c = 9.535 Å for a primitive cell), in 

good agreement with experimental results.42 Both of these results indicate 

that our computational approach is reasonable. A variety of positions of N 

atoms in the TiO2 lattice were considered, such as substitutional N (N@O) and 

several interstitial N (Nint) geometries. Reciprocal space sampling was 

restricted to the Γ-point, which is justified due to the rather large size of the 

used simulation supercells. 

 

Electronic scenario from DFT calculations 

To study Density of States of N-doped titania in the presence of oxygen 

vacancies, DFT calculations have been performed on a bulk anatase supercell 

containing either substitutional or interstitial nitrogen doping, plus one or two 

oxygen vacancies located as far as possible from the N-centers, so as to avoid 

any direct defect-impurity interaction.  

In the presence of N impurities, oxygen vacancies excess electrons are 

transferred from the higher energy Ti3+ states to the empty N mid-gap states. 

Even if this internal charge transfer occurs independently of the exchange-

correlation functional used, depending on the stoichiometric ratio between 

vacancies and impurities, this transfer can involve only some of the Ti3+ 3d 

electrons, leaving others on the Ti ions sites. Due to such a strongly correlated 

nature of the d-electrons in titania,43 plain DFT could not be a proper choice 

for calculations. Thus, the so-called DFT + U44 has been used, as mentioned in 

the “Computational Setup” section. It implies the addition of a Hubbard-U 

term in the functional representing an on-site Coulomb repulsion among 

selected orbitals associated with the given atomic sites in order to better 

describe the electron correlation effects. Different U parameters have been 

tested to correct the self-interaction error and the resulting bias toward non-

integer orbital occupations in DFT.45 Thus, the results can depend on the value 

of the interaction parameter U in the DFT + U scheme. As for hybrid 

functional,46 both these methods suffer from dependence on a tunable 

parameter. Although schemes for calculating the U parameter have been 

derived from DFT, the resulting U can be quite different, dependent on the 

- 
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scheme used.47 The extent to which the excess electrons was found to spread 

over the system differed considerably.48-50  

The results of DFT calculations for Density of States are reported in Figures 4.8 

and 4.9. As usual for periodic PBE calculations, the bandgap is underestimated 

around 2.2 eV instead of 3.2 eV,51 as shown on panel (a) of Fig. 4.8. To the 

author’s knowledge, among DFT based approaches only hybrid functional 

gives a better agreement to the band-gap energy.43 Once a oxygen vacancy is 

generated, examination of DOS in Fig. 4.8b reveals that for U = 0 the Ti 3d-like 

state lays just below the conduction band, as previously reported.52,53 At the 

PBE level, the two extra electrons are fully delocalized on all of the Ti ions in 

the supercell, and consequently, the singlet and triplet spin solutions are 

degenerate. The structural deformation of the lattice is very small and 

symmetric, with the three undercoordinated Ti ions around the vacancy 

showing a slight outward relaxation with respect to their equilibrium position.  

Instead, two distinct peaks in the density of states can be observed in Fig. 4.9b 

where DOS were calculated for U = 5 eV. Since the TiO2 is more of a charge-

transfer type semiconductor than a Mott-Hubbard insulator, one should not 

expect to be able to open up the bandgap to its experimental values using a 

physically reasonable value of U.54  
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Figures 4.8 (left) – 4.9 (right). Density of electronic States (DOS) at the level of GGA 

for different combinations of oxygen vacancies (V@O) and N doping locations (N@O 

for substitutional and Nint for interstitial) and their stoichiometric ratio (left panel). 

DOS obtained from calculations at the level of GGA + U (U = 5 eV) is represented in 

the right panel. Spin polarized states are in continuous black and dashed red lines; 

Fermi energy levels are indicated by the vertical dashed  lines. 

 

Once the substitutional nitrogen is introduced concomitant with an oxygen 

vacancy, the localized N states just above the valence band behave as 

excellent electron traps. These shallow gap states just above the valence band 

- reported on panels (c), (d) and (e) of Fig.s 4.8 and 4.9 - are originated from 

the combination of the substitutional N 2p orbitals with the oxygen ones and 

they were detected by the optical measurements described above. If 

interstitial N doping is considered, the N orbitals are deeper into the bandgap 

as shown on panels (f) and (g) of Fig.s 4.8 and 4.9. It has been suggested that 

these states may act as recombination ones, annihilating the electron-hole 
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photogenerated pair. However, from an optical point of view, also these 

states explain the apparent bandgap narrowing observed in the DR 

measurements. Either N-substitutional shallow or N-interstitial deeper 

electronic states play a crucial role as acceptors promoting the conversion of 

the Ti3+ species into the Ti4+ ones.55,56 However, the three N p states originally 

host five electrons and can accept only one more. For this reason when an 

equal number either of substitutional or interstitial N doping is present, as in 

the cases reported in panel (c) and (f) of Fig.s 4.8 and 4.9, one Ti3+ electron is 

still present out of the two originally created by a single oxygen vacancy, and 

the Fermi energy is still pinned at the bottom of the conduction band. This is 

pictorially represented on panel (a) of Fig. 4.10.  

 
Figure 4.10. Pictorial representation of the electron transfer process during nitrogen 

substitutional doping: (a) an oxygen vacancy and a substitutional N is present and the 

Fermi energy is invariant; (b) an oxygen vacancy and two substitutional N are present 

and the Fermi energy level is shifted at the top of the valence band; (c) two oxygen 

vacancies and a single substitutional N are present and the Fermi energy  is invariant. 

The same reasoning can be applied to interstitial doping energy levels. 
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Similar conclusions have been reached by Graciani et al.,57,58 but in the case of 

the rutile surface and subsurface oxygen vacancies in the presence of nitrogen 

doping. Only when enough N states are introduced, as shown on panel (d) of 

Fig.s 4.8 and 4.9, the charge transfer from the Ti3+ states is complete and the 

Fermi energy is lowered to just above the valence band. Each nitrogen 

impurity traps one Ti 3d electron as shown on panel (b) of Fig. 4.10. Another 

possible set-up is the one reported on panel (e) and (g) of Fig. 4.8 and 4.9, 

where  vacancies stoichiometric coefficient is double respect to the N doping 

one. In these cases, the Fermi energy is even more pinned at the bottom of 

the conduction band, since an extra number of Ti3+ states are present. The 

orbitals representation of this electronic arrangements is the one on panel (c) 

of Fig. 4.10. Finally, by comparing panels (b), (e) and (g) of Fig. 4.8 versus the 

ones of Fig. 4.9, one can appreciate how DFT + U was necessary to describe 

the Ti3+ states. Localized states arise on panels (b) of Fig. 4.9 and clearly 

increment their populations when the number of vacancies is doubled, as it is 

evident from the DOS of panels (e) and (g) of Fig. 4.9. However, the same 

conclusions can be reached in terms of Fermi energy location, indicated by 

vertical lines in Fig.s 4.8 and 4.9, using both DFT or DFT + U approach. 

 

The experimental-theoretical joint picture 

The present DFT calculations, in agreement with literature previous results, 

clearly indicate that the apparent bandgap narrowing observed in the DR 

measurements is due to the presence of intra-gap states induced by the N p 

orbitals mixing with the oxygen ones.55 However, from this partial point of 

view, the photogenerated electrons fate is still unclear and opened to the 

possibility of complete or partial transfer into the empty N orbitals generated 

by doping. Thus, only partial conclusions can be drawn by comparison 

between optical experiments and DFT calculations.  

Then, considering that the visible light response could be induced not directly 

by the doping, but by oxygen vacancies, stabilized by the presence of nitrogen 

as a result of charge compensation, and acting as color centers,59,60 the 

motivation for other electronic experiments in conjunction with DFT 

calculations is clear and the theoretical findings allow one to have a 

comprehensive interpretation of the impedance and photovoltage 

experimental results.  
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On one hand, by inspection of the Ti3+ 3d states pictorially reported on Fig. 

4.10 just below the conduction band, we can safely conclude that these states 

are originated by the oxygen vacancies and are invariant under N doping. On 

the other hand, the quasi-Fermi energy levels determined by photovoltage 

experiments are the electronic orbitals populated under light irradiation and 

they should be distinguished from the Fermi energy level which, instead, 

indicates the half population energy. Thus, a direct comparison between the 

quasi-Fermi energy levels and  the Ti3+ 3d states can be made, showing the 

agreement with the photovoltage results. 

Instead, the Mott-Schottky plots, which are obtained under dark conditions, 

allow one to measure Efb. This value indicate the average occupation number, 

i.e., the Fermi level. For an n-type semiconductor, it represents also the 

conduction band edge. A comparison between the Mott-Schottky and the 

theoretical results can be done by looking at the vertical dashed lines (Fermi 

energy) in Fig.s 4.8 and 4.9. This excludes panels (d) of both Fig. 4.8 and 4.9 to 

be a realistic doping set up. 

Besides, the Mott-Schottky flatband and the photovoltage quasi Fermi energy 

values show that these are located at the same levels on an electrochemical 

scale. Taking into consideration that the Mott-Schottky measurements are 

under dark and the photovoltage ones under light irradiation, one can 

univocally identify the location of the conduction band and conclude that this 

is invariant under N-doping for all our samples.  

At the light of these considerations and by comparison with the several 

different N-doping and O vacancies ratio scenarios simulated at the level of 

DFT + U calculations (Figures 4.8 and 4.9), one can safely conclude that in the 

case of the present samples, oxygen vacancies are more numerous than N 

doping centers, since doping is not changing significantly the Fermi energy 

location. Thus, on one side, partial accommodation of oxygen vacancies 

electrons into N 2p states occurs and leads to the formation of charged 

diamagnetic N impurities and re-oxidized Ti ions. On the other side, this 

electron transfer process induces the formation of extra oxygen vacancies, 

that has been proved to be favored in the presence of N-doping.61 Eventually, 

re-oxidation of Ti ions is somewhat compensated by the formation of Ti 3d 

states and the Fermi energy is left invariant, i.e., pinned at the bottom of the 

conduction band. Thus, a likely comprehensive picture is that one represented 

by panel (c) of Figure 4.10.  
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In conclusion, the effects of N doping sites may be multiple, since they not 

only act as electron scavengers, but also stabilize the color centers.62  

All these findings derived from joint experimental and theoretical 

investigations are rationalized by assuming that the position of the conduction 

band is not affected by the doping. These considerations can be extended to 

the Fermi energy level. Then, only with the help of theoretical calculations it is 

possible to assert that oxygen vacancies are more numerous than N doping 

centers in our samples and that the electron transfer from Ti3+ 3d orbitals 

occurs only in part, keeping the Fermi Energy pinned at the bottom of the 

conduction band. 

4.4.2. Pr doping 

Photovoltage measurements and DFT electronic calculations 

Also for Pr-doped titania samples the position of the quasi-Fermi level (nEf*) 

was determined by measuring the photovoltage as a function of the 

suspension pH. The obtained values are reported in Table 4.3, 2nd column. It 

can be noticed that the quasi-Fermi levels are only slightly shifted away from 

the conduction band of the oxide.  

Sample nEf* (V vs NHE) 

(V vs NHE) † 
T -0.67 

TPr_0.2 -0.65 

TPr_0.3 -0.64 

TPr_0.5 -0.59 

TPr_0.7 -0.62 

Table 4.3. Quasi-Fermi levels evaluated at pH 6 (photovoltage method). The standard 

deviation is 0.2 V for all samples.  

These data were compared with electronic DFT computations (see section 3.4 

for computational details): the Fermi and quasi-Fermi (the first excited Kohn-

Sham orbital) energy levels variation under Pr doping were calculated. From 

Fig. 4.11, it can be observed that there is not a unique answer for Fermi 

energy shift under substitutional Pr doping, but it depends on values of U for 

Pr. Instead, the interstitial Pr doping shifts the Fermi energy level toward the 

conduction band edge for any U value.  
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Figure 4.11. Fermi (upper panel) and quasi-Fermi (lower panel) energy levels for 

different Pr doping and for different values of U for Pr.  

 

However, during a photovoltage experiment, it is the quasi-Fermi energy level 

to be populated under irradiation and to be measured. Only as an 

approximation, the Fermi is assumed at the same level as the quasi-Fermi one, 

given that TiO2 is a n-type semiconductor. For this reason, the quasi-Fermi 

energy variation under doping is plotted on the lower panel of Fig. 4.11, 

highlighting a common trend for any U value for both doping sites: when a 

substitutional Pr doping is performed, the quasi-Fermi levels are lowered with 

respect to the conduction band, whereas when an interstitial doping occurs, 

the quasi-Fermi levels are raised toward the conduction band.  

Given the experimental photovoltage observations, the presence of 

substitutional Pr doping in the present samples can be asserted once more. 

The quasi-Fermi energy levels shift originated by substitutional Pr doping also 

confirms the apparent bandgap narrowing observed by the Kubelka-Munk 

transformed DRS data. 

To perform a closer comparison between experimental data and theoretical 

calculations, the density of electronic states (DOS) of the doped supercell 

arrangements is plotted in Fig. 4.12. In all panels the total spin polarized DOS 

of the Pr doped oxygen defected TiO2 are reported in continuous black and 
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dashed red curves. The Fermi energy is indicated by the vertical dashed line. 

As far as the Pr electrons are concerned, the d and f DOS have been magnified 

10 times and put into evidence because these are located in the proximity of 

the valence and conduction bands. More specifically, in the case of 

substitutional doping (left panel of Fig. 4.12) and for U >3 eV, the d states 

(blue curves) are located just above the valence band and they are filled, while 

the f orbitals (green curves) are just below the conduction band and they are 

empty. Small deviations are seen by varying the U value between 3.3 eV and 5 

eV, while for U = 3 eV the Pr d orbitals place as mid-gap states. Instead, for Pr 

interstitial doping (right-handed panel of Fig. 4.12), the d and f orbitals 

generate a set of mid-gap states, whose location vary with the value of U. 

Interestingly, these mid-gap f orbitals are filled, since Pr is not employed in 

any bond.  

 
Figure 4.12. Electronic density of states (DOS) for substitutional (left column) and 

interstitial (right column) Pr doping of anatase TiO2. Comparison among different U 
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values for Pr on each panel. Continuous black and dashed red lines for the oxygen 

defected Pr doped TiO2 spin-polarized calculation, continuous green line for Pr 4d 

orbitals and continous blue line for Pr 4f orbitals. The Pr 4d and 4f DOS has been 

magnified 10 times for convenience. The Fermi energy is indicated by the vertical 

dashed lines. 

 

From this electronic description, it can be inferred that electronic transitions 

can occur from either filled d Pr orbitals or valence band states to empty f 

orbitals just below the conduction band in the case of substitutional Pr 

doping. Instead, with the interstitial Pr doping set-up, the possible electronic 

transitions are from either d or f filled Pr orbitals to Ti 3d ones, which delimit 

the bottom of the conduction band. On the basis of the DRS results, which put 

into evidence the f orbitals contribution to the absorption, it can be safely 

concluded that substitutional Pr doping should be preferred. 

4.4.3. Ag doping  

Photovoltage analyses on (N,)Ag-doped titania samples were performed on 

both “chemically reduced” and “not chemically reduced” materials. However, 

results on the samples not chemically reduced were not straightforward. As a 

consequence, only “reduced” samples are discussed hereafter. 

Surprisingly, all photovoltage curves did not show a single definite inflection 

point, in the cases of both single doping and codoping. For this reason, In 

Table 4.4 two tentatively pH0 values and are reported. It can be noticed that 

the first inflection point is shifted towards very low pH values (negative nEf*) 

for TNAg0.05_R, whereas the second one coincides with the main pH0 point of 

TAg0.01_R. Note that for this latter sample pH0 (2) is reported in brackets as it 

was definitely less marked as the other ones. The coincidence of two pH0 

values for the two samples together with the presence of an additional 

inflection point for the codoped samples could suggest an influence of the 

non-metal dopant on such electronic feature of the system. This finding is, 

however, not supported by any literature evidence. By comparing the 

numerical results with the undoped sample, having a quasi-Fermi level of -

0.67 V (NHE), it can be noticed either a shift towards more negative values, if 

considering the first inflection point for TNAg0.05_R, or a substantial 

invariance of the quasi-Fermi level, considering a standard deviation of about 

0.05 V. 
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Sample pH0 (1) 

(V vs NHE) † 

pH0 (2) 
 

nEf* (1) nEf* (2) 

TAg0.01_R 4.5 (6.8) -0.60 (-0.36) 
TNAg0.05_R 1.8 4.5 -0.76 -0.60 

Table 4.4. pH0 values (pH values corresponding to the inflection point of the 

photovoltage curve) and quasi-Fermi levels (V vs NHE) for two (N,)Ag-doped titania 

samples chemically reduced in the synthetic step. The standard deviation is 0.05 V for 

both samples.  

 

Then, the presence of the metal element in the oxide can be extensively 

discussed, even though no certainties exist on the actual oxidation state of 

silver in these samples nor on the definite nature of the semiconductor-metal 

system, which is not exactly defined as a composite. TEM and possibly EXAFS 

analyses are planned for future investigations on this topic. 

No doubt that electron transfer between photoexcited semiconductor and 

metal is an important phenomenon in photocatalysis. Indeed, TiO2 

nanoparticles modified with precious metals have been extensively employed 

in photocatalytic water-splitting reactions.63,64 Recent studies have shown that 

metal or metal ion doped semiconductor composites exhibit shift in the Fermi 

level to more negative potentials.65-68 Such a shift in the Fermi level improves 

the energetics of the composite system and enhances the efficiency of 

interfacial charge-transfer process. The unusual property of gold nanoparticles 

to undergo quantized charging makes them a unique candidate to achieve 

Fermi-level equilibration.69 Platinum metal, on the other hand, introduces 

ohmic contact facilitating a quick transfer of electrons to the electrolyte.65 If 

such metal particles come in contact with a charged semiconductor 

nanostructure or nanoparticle, the Fermi levels of the two systems 

equilibrate, as in the case of the semiconductor-electrolyte interface. One 

factor that can potentially influence the electronic properties of the 

nanocomposite is the size of the metal particle. A greater shift in the energy 

level for each accumulated electron, along with a higher catalytic activity, is 

expected in smaller size metal nanoparticles than in larger ones.7  

Subramanian et al. probed the effect of particle size of gold nanoparticles on 

the charge distribution and Fermi level equilibration of the composite 

system.70 Besides, Kongkanand and Kamat stated that the shift of the Fermi 
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level of the composite TiO2/Au system to more negative potential is the result 

of a higher degree of electron accumulation causing the composite system to 

be more reductive than the pristine TiO2 system.7 The double-layer charging 

around the metal nanoparticle facilitates storage of the electrons within the 

gold nanoparticle. When the semiconductor and metal nanoparticles are in 

contact, the photogenerated electrons are distributed between TiO2 and Au 

nanoparticles. The transfer of electrons from the excited TiO2 into Au 

continues until the two systems attain equilibration (Fig. 4.13). Since the 

electron accumulation increases the Fermi level of Au to more negative 

potentials, the resultant Fermi level of the composite shifts closer to the 

conduction band of the semiconductor. 

According to such an explanation, a negative shift of nEf* would be expected 

for the reported samples. This occurred for the first inflection point of the 

codoped oxide, whereas the substantial invariance of the quasi-Fermi level as 

a result of the above mentioned experiment on Ag-doped titania sounds 

slightly conflicting. As already stated, further work will be devoted to a deeper 

study of the complex Ag-TiO2 system obtained by our synthetic procedure. 

 
 

Figure 4.13. Equilibration of semiconductor-metal nanocomposites with the redox 

couple before and after UV Irradiation.
7
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The following second part of this chapter is devoted to another 

electrochemical method (photocurrent transient measurements) used to 

evaluate charge carrier recombination in titanium dioxide.  

4.5. Charge carriers’ behavior 

For an n-type semiconductor like defective nano-TiO2, illumination with 

above-bandgap light promotes and accumulates electrons in the conduction 

band of the nanostructured film, as a result of the separation of electron and 

hole charge carriers. As an intrinsic feature and as a quite relevant drawback, 

TiO2 also exhibits recombination of excited electrons and holes at a rate that is 

often detrimental to its photocatalytic activity. The recombination rate of 

charge carriers is connected to photocatalytic activity by an unambiguous 

relationship. Indeed, photogenerated holes can be trapped either deeply or 

shallowly and, in the former case, charge carriers do not contribute to the 

photocatalytic activity.71 To facilitate its direct applications, it is challenging to 

succeed in extending the photoactive response of TiO2 to visible light and 

concurrently inhibiting the electron-hole recombination. 

Although the hole dynamics in the photoexcited TiO2 film is relatively simple 

(quick trapping within a few hundred fs and long lifetime), the electron 

dynamics is more complicated. Surface-trapped electrons and energetically 

dispersed bulk trapped electrons must both be considered. In Fig. 4.14 Tamaki 

et al. depicted the energy levels for the surface-trapped electrons and bulk 

electrons suggested from the observed relaxation dynamics.72 Immediately 

after photoexcitation, some of the free electrons are trapped at surface sites, 

whereas the rest of the free electrons are trapped in the bulk. Since these two 

species are energetically equivalent and probably very close to the conduction 

band edge, electrons can migrate between surface trap sites and shallow bulk 

trap sites that are in equilibrium. All the possible trapping sites represented in 

Fig. 4.14 by the energetically distributed levels enable shallow trapped 

electrons to relax into deeper sites with a through a hopping process involving 

trapping sites (time constant in the order of ps). It is underlined that when 

electrons relax into deep sites, they become less mobile, making it difficult for 

them to recombine with surface-trapped holes.  
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Figure 4.14. Schematic illustration of spatial and energetic distribution of electron 

traps in a TiO2 film (taken from ref [73]). 

 

As a matter of fact, nanometer-sized particles are generally too small to 

sustain significant electric fields so that transport of electrons (majority 

carriers) in the network of particles is expected to be dominated by a gradient 

in the chemical potential of the electrons (diffusion) rather than by an 

electrical potential gradient (drift).4 The driving force of the diffusion process 

is the concentration gradient of the charge carriers. To create an electron 

concentration gradient in the nanostructured semiconductor film, it is 

important to quickly remove one type of photogenerated charge carriers (in 

our case the holes). Accordingly, fast hole kinetics at the 

semiconductor/electrolyte interface is of paramount importance to prevent 

recombination of the photogenerated charges. This is something which should 

be pursued in case the desired process is, as for instance, an efficient water 

splitting in a photoelectrochemical cell after bandgap excitation or whatever 

photocatalytic process of either reduction or oxidation. In this context, the 

application of a potential bias can be thought as a possible way to increase the 

electron-hole separation and consequently to enhance quantum yield.74  

When dealing with a semiconductor in contact with an electrolyte, the 

depletion layer in the semiconductor nanoparticles is practically absent due to 

their small size, so that an applied potential, as the one present in 

photocurrent measurements, exerts a significant weaker action on the 

efficiency of electron-hole separation, compared to compact electrodes.75 As a 

consequence, electron transport may be considered as a random motion 

between equivalent sites, while hole diffusion is not important as the particles 

are very small and totally surrounded by the electrolyte.76  
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This statement can be supported by the analysis of linear sweep 

voltammetries (see below): for nanostructured electrodes the photocurrent is 

almost indipendent of potential (V) in a rather wide range of V. However, the 

nature of electron migration in these electrodes is not straightforward and 

several mechanisms for electron transport have been suggested. In particular, 

the exact role of electron trapping remains unclear: some authors reported 

that soon after electrons are injected into the conduction band of titania a 

large fraction of them is trapped in surface states (from which they need to 

proceed with a hopping mechanism,77,78 while some others reported the 

possibility of tunneling through a potential barrier between the particles.79 No 

doubt, however, that in nanoparticulate TiO2 systems electron transport a is 

strongly affected by trapping and detrapping events,80 with the transit time of 

trapping about three orders of magnitude faster than that of detrapping, 

indicating that most of the photoinjected electrons are localized in the trap 

states.81  

Concepts like electron transport time and electron lifetime will be encountered 

hereafter. The former can be defined as the average time required to the 

electrons to reach the conductive glass substrate from the location where 

they are photogenerated (i.e., the time constant under short circuit conditions 

in intensity-modulated photocurrent spectroscopy (IMPS),82 whereas the 

latter is the average time for recombination of an electron in the 

semiconductor with species in the electrolyte or adsorbed onto the 

semiconductor (i.e., the time constant under open circuit conditions in 

intensity-modulated photocurrent spectroscopy (IMPS). When electrons have 

to cross more grain boundaries (many cases of defective titanium dioxide, in 

particular at decreasing the particle size), a slower electron transport can 

occur. This means that a smaller particle size can lead to inefficient electron 

diffusion. On the other hand, the electron lifetime usually increases as the 

particle size decreases.83 For a solar cell to be efficient, the electron transport 

time must be significantly shorter than the electron lifetime. 

Fig. 4.15 shows a schematic representation of the different reaction pathways 

for the photogenerated electron–hole pair for an n-type semiconductor. It is 

generally accepted that three major processes limit the photoelectrochemical 

current in semiconductors: (a) bulk recombination via bandgap states, or (b) 

directly electron loss to holes in the valence band (eventually followed by 

emission of light) ,and (c) surface recombination.84 These three limiting factors 
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are general. If a proper electron scavenger is present (in Fig. 4.15 represented 

by O2), electrons can also be lost from the conduction band (process (d)). 

Similarly, holes can be scavenged by a hole acceptor, but this implies the 

presence of an additional species into the system. When considering a 

photoelectrochemical cell, any acceptor in the electrolyte collecting electrons 

will decrease the efficiency of the working cell. This should be true regardless 

of the way the charge carriers are created. 

The kinetics of the charge transfer at the semiconductor-electrolyte interface 

(SEI) of the particles constituting the film essentially determine the direction 

and magnitude of the photocurrent. If the semiconductor is porous, the 

electrolyte penetrates the depth of the colloidal film up to the surface of the 

back contact.  

 

Figure 4.15. Sketch of the reaction pathways for a photogenerated electron–hole pair 

in semiconductor in contact with an aqueous electrolyte. 

 

Electron diffusion processes 

Experimental measurements as well as computer simulations have been 

carried out extensively to study the electron diffusion coefficient, which is 

affected by the following parameters: the structure of the mesoporous film,85 

the necking of neighbouring nanoparticles,86,87 the composition of the 

electrolyte via an ambipolar diffusion mechanism,88 and the incident light 

intensity.3  

A great variety of experimental methods have been used to study the electron 

transport processes in mesoporous TiO2 films, ranging from small-amplitude 

modulation methods such as intensity-modulated photocurrent 
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spectroscopy89-91 and transient photocurrent measurements88,92 to electrical 

impedance spectroscopy applied to both mesoporous TiO2 electrodes93 as well 

as to complete dye-sensitized solar cells (DSCs).94 Charge transport 

measurements have been also conducted in open-circuit conditions by a 

transient voltage rise method.95 DC conductivity measurements of 

mesoporous TiO2 electrodes have been performed in redox inactive 

electrolytes,96 while conductivity measurements by microwave absorption97 

and terahertz spectroscopy98 have been performed in the absence of 

electrolyte. Experimental results have demonstrated that the measured 

(effective) diffusion coefficient is closely related to the quasi-Fermi level in the 

mesoporous TiO2.
93,94  

4.6. Probing electron-hole recombination: the choice of 

photocurrent measurements 

Photogenerated electrons and holes in TiO2 can recombine or react with 

molecules at the surface; therefore, generation and relaxation processes of 

electrons and holes are crucial in determining the efficiency of a 

photocatalytic reaction. Minority carriers are not primarily responsible for 

current transport so that electrons may be collected with high efficiency as 

long as recombination in the form of electron transfer to an electron acceptor 

in the solution (or to the oxidized form of the dye in a dye-sensitized solar cell) 

can be minimized. 

To understand these primary processes, many kinds of experimental methods 

have been utilized. Among them, transient absorption spectroscopy is one of 

the most powerful methods because it provides very high temporal 

resolutions (about 100 fs) and allows identification of transient chemical 

species. It has been used extensively to study the trapping dynamics of 

electrons and holes.99,100 Thanks to the different absorption wavelengths, it is 

also possible to state the type of charge carrier excited by light.101 Absorption 

spectra of electrons and holes in TiO2 are very broad, extending from the UV 

to the IR region and overlapping in the visible wavelength range.102-104 

Although the spectroscopic features of electrons and holes in TiO2 are said to 

be well understood,73 this is, however, not straightforward. Notwithstanding 

such a slight uncertainty, using spectroscopic investigations on colloidal titania 

suspension upon illumination and in the absence of any hole scavenger, it has 
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been found that, while photogenerated electrons are trapped instantaneously 

(ns time scale, see Fig. 4.16), holes can be trapped in electronically shallow or 

deep states. Holes in deep traps are rather long lived and inactive, while 

shallowly trapped holes are in thermal equilibrium with free holes and exhibit 

a very high oxidation potential.71  

 
Figure 4.16. Decay profiles of transient absorption in a rutile TiO2 single crystal under 

various excitation intensities, as reported in inset (taken from ref [105]). 

 

However, photocurrent transient measurements on a longer time scale 

(seconds) as those presented in the present research can give a picture of the 

average scenario of excitation-relaxation phenomena involving electrons in 

TiO2. 

Going through literature about titanium dioxide, especially doped, and other 

semiconductors, it is well established that photoluminescence (PL) - namely, 

the spontaneous emission of light from a material under optical excitation - is 

a useful tool to explore electron-hole recombination (Fig. 4.17). In general, the 

quenching of photoluminescence implies an enhanced photocatalytic activity 

because PL emission is the result of the combination of excited electrons and 

holes106,107 Features of the emission spectrum can be used to identify surface, 

interface, and impurity levels and to gauge disorder and interface roughness, 

with the intensity of the PL signal providing information on the quality of 

surfaces and interfaces. Under pulsed excitation, the transient PL intensity 

yields the lifetime of non-equilibrium interface and bulk states. Variation of 
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the PL intensity under an applied bias can be used to map the electric field at 

the surface of a sample. The fundamental limitation of PL analysis is its 

reliance on radiative events. Thus, materials with poor radiative efficiency, 

such as some indirect bandgap semiconductors, are difficult to study via 

ordinary PL. Similarly, identification of impurity and defect states depends on 

their optical activity. Although PL is a very sensitive probe of radiative levels, 

one must rely on secondary evidence to study states that couple weakly with 

light.  

 
Figure 4.17.  Photoluminescence (PL) spectra of (a) bare TiO2, (b) TiO2-P25 and (c) N- 

TiO2 (from a hydrazine hydrate nitrogen precursor, wet synthetic method). 

TiO2 exhibited two photoluminescence emission peaks at 420 and 485 nm. Since PL 

emission is the result of the recombination of excited electrons and holes, the lower 

PL intensity of N-TiO2 indicates a lower recombination rate of excited electrons and 

holes (taken from ref [108]). 

 

Photocurrent transient measurements 

Alternatively, chronoamperometry with chopped light can be applied to TiO2 

nanopowders to gain information on the charge recombination processes 

which take place in the oxide and affect its photocatalytic performance. The 

photocurrent is generated by the separation and transfer of photo-generated 

electron-hole pairs on the surface of TiO2 particles, and then subsequent 

diffusion of electrons among the connected nanoparticles to the back 

collector in the photoelectrodes. Overall, the photocurrent transients can be 

attributed to photoinduced electron–hole separation, trapping, 

recombination, and scavenging. During the hops of electrons from one 

320             400             480             560 
λ / nm

I /
 a

.u
.

200

150

100

50

0

a

b
c

420 nm

485 nm



 

191 4.     Electrochemical Characterizations 

nanoparticle to another until hitting the back collector, they can be trapped in 

surface states from each TiO2 particle making up the photoelectrode. 

Because of their successful use in combined studies on dye-sensitized solar 

cells, photocurrent transients following the injection of electrons from the 

excited state of the dye into the conduction band of the semiconductor have 

been quite widely investigated in literature,109,110 as a means to probe the 

working electrode and to understand the factors which determine the final 

operative short circuit current of the cell. In these cases and when the 

photocurrent is recorded as a function of  the applied potential, the system 

under study is composed not by the bare TiO2 electrode alone: this latter is 

either sensitized by the dye or measurements are directly performed on the 

assembled solar cell.111,112  

Cao et al.3 deeply studied the electron transport in porous nanocrystalline 

TiO2 photoelectrochemical cells, namely dye-sensitized solar cells, by 

photocurrent transient measurements and intensity-modulated photocurrent 

spectroscopy. They stated that the photocurrent transients are characterized 

by a fast and a slow component (see Fig. 4.18), with a rise time of the 

transients in the range of milliseconds to seconds. Overall, the transient 

response of these cells is dominated by electron transport in the TiO2 film 

through diffusion (with a diffusion coefficient for electrons in the particle 

network being a function of the light intensity).  

 
Figure 4.19. Semilogarithmic plot of a photocurrent transient under monochromatic 

(514 nm) illumination at 4 mW cm
-2

 for a porous nanocrystalline TiO2 

photoelectrochemical cell (taken from ref [3]). 
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Indeed, recombination is primarily an interfacial process in DSCs, in contrast 

to the bulk process that occurs in conventional p-n junction solar cells.113  

The aim of this part of the work was to test the bare (doped-)TiO2 electrode, 

without dye, keeping the system as simple as possible in order to characterize 

the charge recombination behavior of home-made samples by a useful 

traditional photoelectrochemical technique which is very rarely used for this 

specific purpose. 

Nevertheless, other literature works present chopped light amperometric 

measurements on nano-TiO2 electrodes76,114 or other inorganic semiconductor 

devices23 under potentiostatic conditions in aqueous electrolytes. Such 

experimental data allow to qualitatively judge the photocurrent and 

eventually compare it with the dark current. Alternatively, polarization curves 

on irradiated TiO2 layers were measured by Waldner et al. in various 

electrolytes, namely sodium hydroxide, sulfuric acid, oxalic acid, and 

potassium oxalate.74,115 The shape of such curves was interpreted in terms of 

response time to irradiation and photocurrent depletion. Besides, the 

photocurrent developed following a nanosecond laser pulse (bandgap  

excitation) has been monitored under steady-state conditions in a certain 

number of literature studies,3,112 in some cases to give a merely qualitative 

description of charge carrier separation and charge transport in 

nanocrystalline porous TiO2 electrodes. Then, electron migration in 

nanostructured anatase TiO2 films by intensity-modulated photocurrent 

spectroscopy was investigated by Goossens et al.,116 who described the 

transport of electrons by a macroscopic diffusion model. 

However, very few papers deal with chronoamperometric measurements and 

the consequent evaluation of the transient time constant (τ) making use of 

this characterization mainly to investigate the electronic properties of the 

tested samples and also to judge their photoactivity.  

Indeed, the use of such a tool as a helpful prescreen of semiconductor oxides 

synthesized in powdery form is herein proposed. No literature examples exist 

with this specific aim. In particular, a method which turns out to be useful for 

any type of nano-TiO2, starting from both powders and films, will be proposed. 

As most of metal or non-metal doped titania samples are obtained by wet 

methods, like the sol-gel route, they are usually produced and used in 
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photocatalytic applications as powders. Then, their deposition as suitable 

electrodes for chronoamperometric tests is not trivial at all. 

The lack of widely accepted experimental procedures in this field led to focus 

mainly on the optimization of the analysis procedures, testing and reviewing 

most of the possibilities proposed in literature. Thus, hereafter is a 

comprehensive evaluation of the optimal conditions that allow reproducible 

quantitative photocurrent measurements on thin TiO2 films by varying 

different experimental parameters such as the type of electrolyte, the 

illumination source, and the presence of a hole acceptor.  

Since the efficient utilization of the solar spectrum is one of the important 

subjects for improving the future generation of TiO2-based photocatalysts, 

also metal and non-metal doped titania have been analyzed by chopped light 

chronoamperometry.  

Doping TiO2 with metal or non-metal ions also affects the lifetime of 

photoinduced charge carriers in doped TiO2, as appears from the different τ 

values reported by Dholam et al. (see Fig. 4.20).117  

 
 Figure 4.20. (A) Schematic representation of the photocurrent transient curve. 

Normalized plot of current-time dependence for: (B) pure TiO2, (C) single bilayer, 

and (D) 6-bilayers of “ITO/Cr9-doped TiO2” multilayer film (taken from ref [117]). 
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Regarding transition metal ions Choi et al.118 proved that both type and 

concentration of the dopant are important factors in determining 

recombination processes. 

In particular, there might be an optimal dopant ion concentration.119 Below 

this concentration recombination processes may be reduced thanks to the 

introduction of electrons and/or holes traps,120 but also benefits deriving from 

the dopant itself may not be signicant. At appropriate concentrations, instead, 

the dopants can selectively trap one type of charge carrier, i.e., allowing the 

other one to reach the particle surface, being able to take part in the desired 

redox reaction.71  

 

A kinetic information 

The photocurrent transient can be defined by the following kinetic 

equation:121  

     
 

    (eq. 4.8) 

where D is defined as  

  
      

       
   (eq. 4.9) 

Here τ is the transient time constant, It is the current at time t, Iin is the current 

at t = 0, and Ist the stationary current. The slope of the plot lnD vs time 

provides the transient time constant τ, which is related to the time for charge 

recombination processes in the films. The higher the transient time constant, 

the more inhibited the recombination processes are.  

Thus, Iin denotes the initial anodic photocurrent spike. This current signal is 

mainly determined by the separation of photo-generated electron-hole pairs 

within the photoelectrode: holes transfer at the photocatalyst/electrolyte 

interface, while the electrons are transported to the back contact.122,123 After 

Iin has been attained, then a continuous decrease of the photocurrent with 

time is observed until a steady-state photocurrent, Ist, is reached. The 

photocurrent decay indicates that charge recombination processes are 

occurring: the holes accumulated at the TiO2 surface competitively recombine 

with electrons from the TiO2 conduction band, instead of being trapped or 

captured by reduced species in the electrolyte (to oxidize water and form OH 

radicals or peroxo complexes, in the absence of any sacrificial reagent); that is, 

the decay is largely determined by the efficiency of the transfer of conduction 
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band electrons towards back contact and, at the same time, by the rate at 

which minority carriers trapped at surface states capture majority carriers.122 

Charge carriers that are generated deep within the film take a longer time to 

reach the surface than those generated close to the surface, and so are more 

likely to be lost to recombination before they can be collected. The 

photocurrent becomes constant after the equilibration of competitive 

separation and recombination of electron-hole pairs.  

Two concepts are mainly enclosed in a photocurrent transient: the separation 

of photo-generated electron-hole pairs, related to the intensity of the 

photocurrent signal, and the recombination of charge carriers, which appears 

in the evolution of the anodic photocurrent spike. Both types of phenomena, 

however, are not the only causes of the final profile of the curve: in the case 

of the former issue, the photocurrent intensity also depends on intrinsic 

parameters of the film, e.g., the film thickness, whereas the photocurrent 

decay, can be influenced, in turn, by other factors, e.g., the presence of 

electron/hole acceptors in the electrolyte. 

Indeed, when dealing with real systems, different photocurrent profiles can be 

obtained. As reported in the pioneering paper by Peter about dynamic aspects 

of semiconductor photoelectrochemistry,124 three main classes of decay can 

be sketch out (Fig. 4.21): no recombination (a), almost complete 

recombination (b), partial recombination (c). 

 

Figure 4.21. Transient photocurrent response to chopped illumination calculated for a 

GaP semiconductor electrode with surface states: (a) no recombination; (b) almost 

complete recombination; (c) partial recombination (taken from ref [124]). 

Besides this quite hasty simplification, another round up of photocurrent 

profiles can be given according to the disparate literature. Fig. 4.22 shows 

three different shapes of decays, the first one definitely being the most 

common for semiconductors, such as titania, exhibiting recombination until 
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generation of a steady-state current. Cases b) and c) in Fig. 4.22 have been 

displayed by Liu et al. and refer to undoped and nitrogen doped TiO2 thin 

films, respectively under UV–Vis irradiation (0.1 M Na2SO4 electrolyte at 0.3 V 

vs SCE and illumination intensity of around 100 mW cm-2).125 Jin and 

coworkers also reported similar shapes of the photocurrent transient for their 

“2D-ordered dome films” of nano-titania, both undoped and doped with Ag2+ 

(2D-Ag- TiO2), prepared by RF magnetron sputtering.126  

 

Figure 4.22. Possible shapes of photocurrent versus time profiles of titanium dioxide 

synthesized under different conditions or analyzed with different experimental set-up. 

A typical response of (undoped) TiO2 under UV or visible irradiation in inert electrolyte 

(a);  undoped (b) and nitrogen doped (c) TiO2 thin films under UV–Vis irradiation (0.1 

M Na2SO4 electrolyte at 0.3 V vs SCE and illumination intensity of around 100 mW 

cm
-2

) as reported by Liu et al.
125

  

Such a jungle of experiments points out that the use of photocurrent 

measurements for the characterization of semiconductor thin film electrodes 

could be not straightforward, due to the lack of a widely accepted 

experimental procedure and the several parameters involved in this type of 

analysis (layer reproducibility, choice of extrapolation time range, photoanode 

modification during analysis, etc.). 

In the context of the present thesis, an optimization of experimental 

parameters, in order to achieve a reliable insight into the relation between 

the type/concentration of a dopant and charge carriers recombination rate, 

has been performed. 
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Experimental setup 

Working electrode preparation 

TiO2 thin films were prepared by spin-casting a 2-propanol suspension of the 

oxide powder (100 mg of semiconductor in 1 mL of 2-propanol, 15 min in an 

ultrasonic bath) with a Spin150 spin-coater (SPS, ATP GmbH) onto fluorine-

doped tin oxide (FTO) conducting glass (Aldrich, 2.3 mm thick, ca. 7 /sq 

surface resistivity) after 10 min of rest to favour large particles sedimentation. 

The suspension was drop cast on the substrate and spun at 2000 rpm for 20 s 

using a scotch tape as a frame in order to have an active area of 3 cm2; the 

deposition was repeated for eight layers. The as-prepared films were finally 

annealed at 400 °C in stationary air for 1 h to improve adhesion and 

homogeneity of the films. TiO2 photoanodes were thus ready to be used as 

working electrodes (WE) in the photoelectrochemical cell. 

Electrochemical setup 

The photocurrent developed by irradiating the photoanode (TiO2) with either 

UV or visible light was recorded by a microIII Autolab potentiostat/galvanostat 

(EcoChemie, The Netherlands) using an unconventional three-compartment 

cell (see sketch in Fig. 4.23). It was equipped with two counter electrodes (CE), 

both consisting in a Pt wire parallel to the working electrode, a saturated 

calomel electrode as reference (RE), a Luggin capillary in order to minimize the 

ohmic drop, and a TiO2 film located in the middle of the cell as working 

electrode.  

 
Figure 4.23. Sketch of the electrochemical cell used to record photocurrent transients 

(chronoamperometric analysis following linear sweep voltammetries as pre-screen). 

Different aqueous electrolytes were used with spontaneous pH: NaCl, NaOH 

and NaClO4 at the concentration of 0.1 M (selected as the best one). Besides 
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these, the influence of a hole acceptor (10-3 M aq. oxalate) in the presence of 

the best selected inert electrolyte (NaClO4) was studied.  

The photoanode was alternatively exposed to dark and light, from the 

electrode-electrolyte side, using either UV or visible lamp. All the 

measurements have been carried out in N2 atmosphere, after degassing the 

cell with nitrogen flow for at least 10 minutes. Stirring and N2 bubbling are 

avoided during the tests in order to eliminate any noise in the signal. 

Preliminary linear sweep voltammetries (LSV) have been recorded in the same 

experimental conditions at a scan rate of 50 mV s-1 in order to evaluate the 

potential at which the photocurrent is constant to be chosen as working 

potential for the chronoamperometric tests. The photocurrent-time behavior 

under constant electrode polarization was then obtained with hand-chopped 

light. Before recording the transient, the applied potential was kept constant 

in the dark for 600 s in order to establish dark current equilibrium122 and 

nitrogen was flown into the cell. Afterwards, N2 bubbling was stopped and the 

electrodes were exposed to light for 200 s. During this time, the current 

transient was recorded. A 100 s dark exposition followed after a new exposure 

to light. The dark/light alternation was repeated for at least 6 times, in order 

to obtain reproducible transient patterns.   

These conditions were successfully applied for the characterization of selected 

doped samples and seem a viable and fast route to investigate the dynamics 

of charge carriers in a thin films, under either visible or UV illumination. An 

exception is represented by Ag doped titania samples, as explained in the 

following. 

Overall, with this optimized method, suitable conditions to compare doped 

and undoped TiO2 powders, deposited as films, which showed different 

morphological features (i.e., specific surface areas and pore volumes in the 

range of 95-170 m2 g-1 and 0.10-0.31 mL g-1, respectively, for N- and Pr- TiO2 

samples) were designed.  

As a general rule, the photocurrent response of the titania electrodes was first 

studied by linear sweep voltammetry to examine charge-carrier characteristics 

at the semiconductor/electrolyte interface and to evaluate the optimized 

potential at which the photocurrent was the highest or remained constant. 

LSV in a dark room showed minute current in the 10-7–10-6 A cm-2 range from 
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0 V up to approximately + 1.0 V (SCE). LSV performed by irradiating the system 

with UV or visible light, starting from negative potentials, presented a very 

similar shape to that obtained in the dark, just shifted to higher current in the 

positive potential range, in the presence of an inert electrolyte (0.1 M 

NaClO4), as can be appreciated in Fig. 4.24a.  

In the case of other electrolytes (NaCl, NaOH), the photocurrent increased 

incessantly moving to positive potentials, not saturating completely below 1.0 

V: an optimized depletion layer was not fully formed. The increase of 

photocurrent enlightened the effective charge separation because the 

recombination of photoinduced electron–hole pairs was inhibited by the 

increase of positive potential. According to Poznyak et al.,75 in the case of 

nanostructured electrodes, the photocurrent is almost independent of 

potential in a rather wide range of potential values and starts to change 

sharply just near the onset potential (i.e., flat band potential/quasi-Fermi level 

under irradiation). Thus, chronoamperometry measurements were recorded 

at +1.0 V (SCE), except for the experiments conducted in aqueous NaOH; in 

such cases, the potential was set at +0.4 V (in basic media the flat band 

potential is shifted because of the Nernstian dependence with pH).  
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Figure 4.24. Linear sweep voltammetries (LSV) recorded for a selected sample 

(undoped TiO2, T) under dark and illumination before performing the 

chronoamperometric test (a); the arrow indicates the potential chosen for the 

chronoamperometric measurements. Typical example of photocurrent transients 

(sample T) with the normalized plot of current-time dependence in inset (b). 

 

Then, the photocurrent–time response of the semiconductor electrode was 

evaluated by chronoamperometry under a constant potential using hand 

chopped light. The typical output of the experiment, in the case of a proper 

inert electrolyte, is shown in Fig. 4.24b.  

Notably, in all plots the photocurrent value rapidly decreases to zero as soon 

as the irradiation is switched off, but it does not always come back to a 

constant value when the light is switched on again, especially in the case of 

doped titania samples.  

In this work, the numerical value of τ is extracted by at least three transient 

peaks (from 700 to 1550 s after switching the lamp on), and an average value 

is given for each sample. The choice of the same transients for quantitative 

elaborations allows to make a reasonable comparison among all samples. In 

the literature, no clear details on the data point used to extract the transient 

time constants are provided. Dholam et al.117 adopted transient time 

constants from chronoamperometric measurements on the time scale of 

tens/hundred of seconds to exploit the recombination behavior of multilayer 

Cr-doped TiO2. 

However, in the normalized plot of current–time dependence, the choice of 

the time range for quantitative extrapolation is not straightforward and varied 

for different samples. Moreover, it has been found that some authors 

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400 1600 1800

I 
/ 

µ
A

t / s

b)12

10

8

6

4

2

0

I/
 µ

A
 

t / s 
0      200    400     600    800   1000  1200  1400  1600  1800  

0              5            10            15

-0.2

-0.5

-0.8

ln
D

t / s

R2 = 0.996



 

201 4.     Electrochemical Characterizations 

compare the photocurrent absolute intensity of different systems without 

taking into account every intrinsic or experimental differences that lie in the 

home-made semiconductor electrodes: Zhang et al.23 showed the 

photocurrent transient generated under chopped UV irradiation for ZnO 

nanowires, multiwalled carbon nanotubes (MWCNTs), and a composite 

system in which the nanowires were adhesively grown on the MWCNTs; they 

commented on the very weak photoresponse of the MWCNTs and made 

comparison on the numerical values obtained for each device though the 

thickness of each deposited system was not the same. 

The linear behavior observed for all the tested materials indicates that the 

decay mechanism is only due to surface recombination leading to a first-order 

kinetics in electron surface concentration, as found by Dholam et al.117 for Cr- 

TiO2 and asserted by Tafalla and coauthors.127  

All measurements have been carried out in nitrogen atmosphere allowing the 

achievement of more reproducible data. Thus, the cell was deareated avoiding 

the presence of oxygen which plays the role of electron acceptor. Byrne et 

al.76 also reported that when oxygen is present in the anode compartment, 

the photocurrent response is smaller than when oxygen is absent from both 

compartments or present only in the cathodic one. Moreover, the quenching 

of anodic photocurrent, due to the presence of oxygen in the anode, is said to 

occur even at positive potentials up to 1.0 V, as previously observed also by 

Rensmo et al. and Hagfeldt et al.122,128 They hypothesized that since the 

conduction band electrons at the surface of a relatively thick TiO2 film have a 

finite distance to travel before reaching the substrate, adsorbed oxygen 

actively scavenges such electrons from the oxide surface preventing them 

from reaching the substrate and a reduction in the anodic current is observed. 

Since semiconductor particles in a nanostructured film are surrounded by 

electrolyte and photoelectrons may be trapped by an electron acceptor in the 

electrolyte during the time they need to reach the back contact, the 

probability of such process would grow as the distance from the substrate 

increases. Therefore, the thickness of the films has been kept nearly constant 

(about 1–2 µm, measured by DekTak 150 step-profilometer) by depositing the 

same amount of TiO2 suspension (8 layers). 

Film thickness is a tricky parameter to vary; this is the reason why, in this 

context, no dependence studies on the film thickness have been done, while a 

certain thickness has been kept constant for a proper comparison among 
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different samples. Below a certain thickness the photocurrent usually 

decreases drastically.129 On the other hand, Dholam et al.117 affirmed that the 

reduced thickness of their Cr-doped TiO2 film, deposited on ITO, significantly 

contributed to reduce the charge recombination rates. This occurs because 

the generated photoelectrons, traveling into TiO2 film of limited thickness, 

rapidly enter the space charge interface of the ITO- TiO2 films from where they 

are instantaneously injected into the ITO layer and then removed towards the 

cathode of the photo-electrochemical cell. Then again, when their multilayer 

film was exposed to visible light, they observed an increase of the 

photocurrent as a function of the number of bilayers. The enhanced 

photocurrent was attributed to both higher absorption of visible light by Cr-

doped- TiO2 and to the number of space charge ITO/ TiO2 interfaces in 

multilayer films. 

 

Open circuit potential 

The open circuit potential (OCP) is a mixed potential of all the redox potentials 

in the solution, at the surface and at the interface, and it is related to changes 

of the surface of the electrode. A drop down to much more negative values 

upon illumination found for most of the analyzed samples can be regarded as 

a result of the sudden generation of electron-hole pairs. After some seconds 

under irradiation, a steady state between generation and depletion of 

photogenerated charge carriers is reached. If a hole scavenger, such as 

chloride or oxalate ion, is present, OCP values recorded upon illumination shift 

to even lower values as the concentration of the hole scavenger increases, 

due to consumption of holes and the accumulation of negative charged 

electrons on the electrode.74,130 This statement was confirmed comparing the 

result obtained when using an inert electrolyte containing a low concentration 

of oxalate, to that recorded with NaOH as the sole electrolyte. OPC, 

thererefore, can be regarded as an overall index of the electronic situation in 

the electrochemical cell. Beside a preliminary investigation of the different 

values obtained with different experimental parameters, the OCP was 

recorded before starting a new measurement to ensure the absence of any 

possible alteration of the cell atmosphere during the measurements, e.g., the 

presence of oxygen. 
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The role of electrolyte type and concentration 

Photogenerated electrons and holes are quickly trapped at surface states in 

nanocrystalline TiO2 films;75 in this way they can participate independently in 

surface reduction and oxidation processes, respectively, involving redox-active 

species in solution.  

The response of the electrode in the presence of different electrolytes (see 

the above experimental section) has been deeply analyzed with the aim of 

comparing the most used systems in the literature.  

Acidic conditions were avoided on the grounds of literature evidences.131,132 

Chuang et al. reported that even though a slightly higher photocurrent was 

observed in the acidic electrolyte (0.1 M HNO3) due to the fact that the 

mobility of H+ ions was much higher than that of OH- ions, under irradiation of 

both UV and visible light in 0.1 M HNO3, the utilization of doped TiO2 

nanoparticle thin films as a photoelectrodes became unsuitable.131 Wang et al. 

in their study on a commercial titania sample found out that the charge 

decreases with the proton concentration in the solution.132  

 

Chloride and idroxide anions 

Chloride ion may be adsorbed on the positively charged photoanode, where it 

might be oxidized by the photogenerated holes.130,133  

TiO2–Clads + Cl  Cl2 + TiO2 + e   (eq. 5.0) 

This process has been investigated for its great economical and technological 

interest: chlorine is widely used in many kinds of commercial applications, 

ranging from industry to the disinfection of drinking water, and Zanoni et al.133 

have proposed the use of titania electrodes biased at +1.0 V (SCE) - a voltage 

selected to increase electron-hole lifetime - and upon UV illumination to 

reduce costs of chlorine production and decrease undesired products 

generated from side reactions. 

Charge carrier recombination can be strongly affected by the concentration of 

chloride ion: at concentration below 0.1 M.130 chloride ions might reach the 

electrode surface controlled by mass transfer and electron-hole pairs might 

recombine preferentially, while at higher chloride concentration it is likely 

that adsorption effects predominate, avoiding recombination. In this situation, 

the photocurrent was probably limited by the electrode-solution interfacial 
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reaction and by the photogenerated hole capture process. In the same paper, 

the behaviour in NaNO3 solution was also investigated (see the comparison in 

Fig. 4.25): nitrate might absorb the UV photons, which results in the decrease 

of light intensity on the electrode. Therefore, this setup was not considered in 

the present research. 

 

Figure 4.25. Photocurrent response upon UV irradiation in 0.25 M NaCl, NaClO4 and 

NaNO3 solutions at applied potential equal to 0.5 V (SCE); taken from ref [130]. 

 

One of the first attempts to increase the photocurrent intensity in this 

research was carried out by the means of an electrolyte containing chloride; 

however, it is possible to observe that no photocurrent decay is noticeable 

and a final rise without a satisfactory steady-state photocurrent appears in the 

transient obtained with NaCl (Fig. 4.25), as also reported by Xiao et al.130 in the 

case of TiO2/Ti nanotube electrodes, even if the type of lamp used was a 

different one. In other words, the anodic photocurrent spike is not sharp and 

almost equal to the stable photocurrent, and, at the same time, 

recombination is not responsible for this, since a steeper decay is obtained 

with the same sample but different electrolyte. The reason of this 

unsatisfactory behavior might be found in the strong interaction between the 

electrolyte and the semiconductor film, as outlined above. Such situation does 

not seem promising for the aim of exploring the nature of electron transport 

in semiconductor films. 
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It has to be noted that, in the literature case reported in Fig. 4.25, also 

photocurrent transients recorded in NaClO4 do not show a significant decay 

but that could be due either to no substantial recombination of the analyzed 

system or to experimental conditions not properly suited to enhance the 

intrinsic recombination decay of the semiconductor oxide. 

Fig. 4.26 displays the chronoamperometric tests registered when the home-

made titania electrode is in contact with either NaCl or NaOH.  

 
Figure 4.26. Selected examples of photocurrent responses obtained for undoped 

titania spin coated electrodes in 0.5 M NaCl, 1.0 V (SCE) (grey line) and 0.1 M NaOH, 

0.4 V (SCE) (black line) recorded up on UV-visible illumination. 

 

It is possible to observe that a minor photocurrent decay is noticeable in the 

latter case and a final rise without a satisfactory steady-state photocurrent 

appears in the transient obtained with NaCl, as also reported by Xiao et al. in 

the case of TiO2/Ti nanotube electrodes.130 As a hole acceptor, chloride ions 

can lead to deviations in transient shapes due to modification of the 

photoanode surface according to the following adsorption phenomena:130  

TiO2–h+ + Cl-  TiO2–Clads    (eq. 5.1) 

Moreover, because of this ability in scavenging holes, chloride ions may 

promote the separation of electron-hole pairs. Then, at chloride 

concentrations lower than 0.1 M, the electron/hole pairs generated at a 

steady-state rate can recombine preferentially since chloride ions are weakly 

adsorbed onto the semiconductor electrode. However, at higher 

concentrations of chloride, it is likely that the adsorption effect would 
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predominate, avoiding charge recombination, as Zanoni et al. suggested.133 In 

our work, this fact results in transients with the same order of photocurrent 

values as those obtained with other electrolytes and a disadvantageous profile 

of the photocurrent decay. 

Thus, on the basis of the present results, 0.1 M NaClO4 is chosen as the best 

inert electrolyte.  

 

Oxalate as hole acceptor 

In the literature the experimental set-up is sometimes more complex than 

that presented in this work and it is quite common to use a hole acceptor 

other than the bare electrolyte.  

Methanol, oxalate, chloride and iodide ions are probably the most used 

chemicals to enhance the photocurrent response. In the case of iodide, as for 

instance, Beranek and Kisch demonstrated that recombination can be 

suppressed: the reacting holes can escape recombination more easily since 

the oxidation of iodide (E0 = 1.3 V) is thermodynamically more favorable than 

water oxidation (E0 = 2.0 V). This suggests that, in absence of iodide, the 

photogenerated holes preferentially undergo fast relaxation to deep surface 

states and to a lesser extent oxidize water.20  

Among all possible hole scavengers, oxalate can be considered a good 

candidate because its electrochemical oxidation occurs via an irreversible 

process involving two electrons, without the production of intermediate 

species and yielding carbon dioxide as the only product, as established on a 

pyrolitic graphite electrode.76  

A great increase in the photocurrent intensity is expected, due to a 

phenomenon known as current doubling generated in presence of oxalate and 

other organic species.76  

OOC–COO + h+  COO + CO2  2CO2 + e   (eq. 5.2) 

Such mechanism is said to further increase by the use of a porous electrode. 

This results in a high surface area available and enables a significant oxalate 

adsorption, that decreases recombination rates.115  

In particular, prior to illumination, due to strong adsorption, oxalate ions 

penetrate the whole TiO2 particulate layer. When irradiation starts, adsorbed 

oxalate ions are oxidized rapidly by holes at the porous TiO2/solution interface 
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and photogenerated electrons diffuse through the layer to the contact, 

producing the high initial anodic spike. After that, the transient shape seems 

to depend on the concentration of oxalate:115 at a concentration around 5  

10-2 M, oxalate ions are quickly replaced by pore diffusion, and, consequently, 

the photocurrent does not decay. At lower bulk concentrations, instead, the 

oxalate concentration in the electrolyte within the film is depleted, leaving 

oxalatedepleted regions with a high concentration of surface trapped holes 

which can recombine with electrons hindering them to reach the contact, 

hence resulting in the photocurrent decay with time. Therefore, very different 

behaviors are expected at variance with the concentration of oxalate, as 

shown by both Byrne et al. and Krysa et al.115,134 (Fig. 4.27). As a final result, 

the signal depends on a balance between adsorption assisted by the positive 

potential applied, and photocatalytic removal (thus depletion in the 

surroundings of titania nanoparticles) upon irradiation.  
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Figure 4.27. Photocurrent density vs time behaviour of Evonik P25 film at 0.8 V (SCE) 

for oxalic acid concentrations 5  10
-2

, 10
-3

 M (a), and 10
-4

 M (b); adapted from ref 

[115]. Idem for panel (c), with two different concentrations of oxalate (5  10
-3

, 5  10
-

3
) and TiO2 anode biased at 800 mV; adapted from ref [134]). 

 

Adding a low concentration of oxalate (10-3 M) to the inert electrolyte used in 

the present work (NaClO4 0.1 M) yielded, as expected, a larger photocurrent 

intensity as compared to the system with the inert electrolyte alone (see Fig. 

4.28). When using this setup and tailored light-dark periods115 necessary to 

maintain a steady concentration of oxalate in the surrounding of the 

electrode, a satisfactory transient behavior was found for the undoped 

sample. However, notwithstanding the enhanced photocurrent density, the 

adopted dark-light periods which differ from previous analyses in the 

presence of a different electrolyte composition might lead to deviations in 

transient shapes (as expected, considering how dark-light periods affect the 

local concentration of oxalate).  
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Figure 4.28. Photocurrent transients recorded for the undoped oxide (sample T) with 

or without a hole acceptor (oxalate) using aqueous 0.1 M NaClO4 as electrolyte. 
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Overall, dark-light periods in presence of oxalate seem to affect the final 

response: the shape of the photocurrent decay does not present a constant 

behavior in all the transients used for the quantification of the time constant, 

thus not allowing a reliable elaboration of the data.  

Compared with compact polycrystalline and single-crystal electrodes, porous 

nanocrystalline TiO2 films considerably have a stronger dependence of their 

photoelectrochemical properties on the presence of electron and hole 

acceptors in solution.75 Indeed, an efficient hole acceptor in the solution is 

able to minimize direct electron-hole recombination in the film,3,135 thus 

altering the intrinsic behavior - tendency to recombination - of the analyzed 

semiconductor.  

Poznyak et al.75 also found some difficulties in explaining the influence of the 

hole acceptors taking into consideration only the increase in the efficiency of 

the removal of the photogenerated holes and stated that the dissolved 

substances hinder photoanodic oxygen formation on the electrode surface, 

thereby sharply reducing the effect of recombination via 

photoelectrochemical reaction products which is essentially characteristic of 

nanostructured electrodes. 

The depletion of the photocurrent signal is inversely proportional to the 

concentration of oxidizable species, but for film thicknesses in the range of 1-2 

µm or above, this effect is superimposed by the relatively slow response to 

irradiation.74 This photocurrent depletion has been postulated76 as being due 

to a depletion of the Helmholtz layer in oxalate after an initial current spike; 

therefore, the oxidation of water and the electron-hole recombination 

become more probable, thus decreasing the probability of electrons reaching 

the back contact.  

Moreover, considering the different oxalate adsorption phenomena on the 

oxides samples depending on the specific surface areas (chapter 3), 

comparison among the samples has been performed in the absence of oxalate 

in solution, since those factors affect the evaluation of the intrinsic charge 

recombination properties of each sample. 

 

Role of the illumination source  

Fig. 4.29a compares the photocurrent recorded on T sample under UV or 

visible irradiation. The higher photocurrent obtained when using UV light 

could be attributed to extra photogenerated charge carriers at the 
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semiconductor/electrolyte interface, which would even result in the increase 

of the electric field produced in the depletion layer in case of bigger 

semiconductor particles. Moreover, in the case of UV irradiation the 

photocurrent decay is steeper, probably due to the fact that the electronic 

levels involved are different from those populated by visible light excitation. 

However, the trend of the transient time constants obtained for a set of 

samples is maintained when using the two types of irradiation sources. It has 

to be noted that the so called “visible light” is produced by a lamp presenting 

a spectrum that shows a residual emission in the UV-A region (see Fig. 4.29b) 

and extends until the IR region – however, this radiation emission is cut 

whenever working with a thermostatted reactor which is surrounded by 

circulating water. 

 

 
Figure 4.29. Example of photocurrent transients recorded under UV or visible light (a); 

emission spectra of the two lamps employed during electrochemical measurements 

(b). 
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4.7. Home-made undoped and doped-TiO2 

In order to properly characterize doped TiO2 samples which exhibit a marked 

absorption in the visible region (as discussed in chapter 3), possibly due to 

intra-gap states leading to a shrinking of the apparent bandgap, visible light 

photocurrent measurements have been recorded. Recalling some distinctive 

features of doped titania samples already exposed in the previous chapter, 

while Pr-TiO2 samples show lower surface areas and pore volumes than N-TiO2 

ones, both dopants lead to titania with similar phase composition (anatase as 

main poly-morph and brookite as the secondary one). The crystallite size is 

only slightly higher for T_Pr. Note that, in this context, N-doped and Pr-doped 

TiO2 are labeled T_N and T_Pr, respectively. The effect of doping on charge 

carriers’ recombination can be considered twofold: it is said to be detrimental 

due to the introduction of sites in the lattice — or electronic levels in the 

bandgap — that accelerate the rate of electron–hole recombination, or 

positive, owing to the creation of sites which can selectively trap charge 

carriers. As a final balance, it depends on the position of electronic levels 

introduced by doping in the bandgap, on the amount of doping, on the 

photocatalytic reaction, and on several other factors involved in it.119,132  

Whenever keeping the same parameters used to elaborate data relative to 

the undoped sample also to analyze doped ones, some difficulties arose 

concerning unsatisfactory steady photocurrent and enhanced noise. This fact 

could be ascribed to the different specific surface areas of the photoanode 

(which affect the kinetics of oxalate oxidation on the electrode) or to the 

polydispersity and heterogeneity of the doped powder.  

By analyzing each photocurrent transient (Fig. 4.30a), a less steep decay is 

obtained for our N-doped and Pr-doped samples. As derived by the 

normalized plot of current–time dependence (Fig. 4.30b), both doped oxides 

show a higher τ, thus a slower recombination rate, than the undoped one: 

values of (10.1 ± 0.2) s, (22.8 ± 0.1) s, and (22.0 ± 0.5) s are obtained for T, 

T_N, and T_Pr, respectively. It should be noted that the standard deviations 

reported here are lower than those presented in the following for the series of 

Pr-TiO2 samples. Also the τ value of the undoped samples is slightly different 

in the two cases, even though the trends and the conclusions are unaltered. 
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These two observations are the consequence of a higher level of precision 

reached in the final measurements (data reported here above) after several 

experiments. 

 

 

Figure 4.30. Comparison of photocurrent transients for doped and undoped titania 

samples (a); normalized plot of current-time dependence for the same samples (b). 

 

By performing timeresolved laser flash photolysis on colloidal aqueous TiO2 

suspensions, Bahnemann et al.103 showed that deeply trapped holes (i.e., 

surfacebound hydroxyl radicals) are rather long-lived and unreactive, while 

shallowly trapped holes are in a thermally activated equilibrium with free 

holes and exhibit a very high oxidation potential. Further, according to 

Grabtchak et al.,136 much of the information on the form of the density of 

states over an energy range of up to 0.5 eV depth is contained in the detailed 

form of the initial decay of the photocurrent on a timescale <10-10 s in which 

only the shallowest traps are expected to have an effect. Our time scale is 

definitely larger so that all types of electrons/holes traps can be active.  
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Liu and coworkers noticed a distinctly different photocurrent response from 

undoped and nitrogen doped mesoporous TiO2,
125 as reported in Fig. 4.31. The 

far slower photocurrent increase rate upon light irradiation and decay rate in 

dark of N-TiO2 than those of undoped TiO2, consistent with the more 

abundant surface states in the former, suggested that the abundant surface 

states play a vital role in trapping carriers and prolonging the lifetime of 

carriers. Due to the nature of localized surface states, the mobility of trapped 

carriers in the surface states can be greatly hindered.137 Therefore, the 

transfer and diffusion of carriers and hence the photocurrent must be 

significantly retarded due to the trapping. This is because when carriers are 

trapped in the surface states, electrons and holes are localized so that the 

spatial overlap of the charge carriers is reduced to retard their 

recombination.137 

 

 

Figure 4.31. Photocurrent vs time profiles of undoped (a) and nitrogen doped (b) TiO2 

thin films under UV–Vis irradiation (0.1 M Na2SO4 electrolyte at 0.3 V vs SCE and 

illumination intensity of around 100 mW cm
-2
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As evidenced by both PL spectra and photocurrent response, the prolonged 

lifetime of trapped carriers in abundant surface states could be as the main 

reason for an enhanced UV-vis photocatalytic activity of N- TiO2.  

An unusual study about multilayer films with different numbers of ITO/Cr-

doped-TiO2 layers to lower the charge recombination rate is presented by 

Dholam et al.117 The ITO/TiO2 stack film is able to partially limit the 

recombination of photo-generated electrons and holes because the 

conduction band edge of ITO (located at about - 4.5 eV) is at an energy value 

lower than that of TiO2 (about - 4.0 eV) thus making favorable for the 

electrons injection from the later into the former. Thickness of doped-TiO2 

layer (125 nm) in each bilayer may be lower than the total thickness of the 

space charge layer of the pertinent interface. Thus photoelectrons generated 

are already in space charge region where the electric field provides them the 

driving force to instantaneously inject into the ITO layers. When 

semiconductors having different energy bands are brought in contact with 

each other, a band bending occurs near the interface to make Fermi level 

equal on both sides. This band bending generates an interface space charge 

layer, having thickness of several tens of nanometer, where a large electric 

field is developed. When photoelectrons are generated in this interface region 

(or very near) they are instantaneously pushed out to the adjacent 

semiconductor due to the driving force provided by the electric field and the 

electron-hole separation is definitely obtained, a process well known in pen 

semiconductor junctions. In the above mentioned ITO/TiO2 system, the 

interface region presents electrical features that are similar to p-n junction 

thus providing an efficient route for the electron-hole separation. Hence by 

adopting a multilayer structure, Dholam and coworkers were able to produce 

many interfaces of ITO/TiO2 which establish fast transport channels along with 

efficient electron-hole separation. 

4.7.1. N doping 

Preliminary conclusions on the effect of N doping on the recombination of 

photogenerated charge carriers has been already exposed in the previous 

paragraph. Hereafter, a trend of τ of all triethylamine doped samples at 

increasing the initial N amount is reported (Fig. 4.32). The reliability of the 
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computed transient time constants seems to be affected by the type of the 

nanopowder: even though the same experimental setup and sample 

pretreatment have been adopted for the series of N-doped titania, the 

standard deviations differ quite much (see Fig. 4.32). This is not surprising 

considering the fact that doping induces relevant modification in nanoparticle 

size and surface area (see characterizations’ results reported in chapter 3). 

Trends observed in charge recombination rate, as directly connected with the 

electronic structure of the material, can give an insight into the nature and 

location of nitrogen dopant ions, also investigated by DFT calculations and 

structural investigations (XRP and EXAFS analyses). According to previous 

results (reported in chapter 3), the interstitial or substitutional location of the 

nitrogen introduces different electronic levels. However, in the former case, 

these intragap levels brought in by the dopant act as efficient recombination 

centers. As it was assessed that the nitrogen interstitial location is present 

over a certain initial N/Ti molar ratio, the experimentally found decrease of τ, 

thus a higher charge carriers’ recombination rate, perfectly match with the 

first conclusions. Then, the presence of oxygen vacancies must be seriously 

taken into account. Indeed, comparisons with theoretical calculations allowed 

to assert that vacancies are more numerous than N doping centers in the 

present samples. In conclusion, the effects of N-doping sites may be manifold, 

as they act not only as electron scavengers, but also as stabilizers of the color 

centers. 

 

Figure 4.32. Dependence of the transient time constant (average on two or more 

samples for the same type of nanopowder) on the initial N/Ti molar ratio. 
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4.7.2. Pr doping 

To the best of the author’s knowledge, no photoelectrochemical properties of 

the Pr-doped materials are reported in literature, although they are of basic 

importance when studying photocatalysis. Thus, charge recombination was 

studied by photocurrent kinetics curves117 also for the series of Pr-doped 

titania samples with different Pr amount.  

The shape of the curves of the different samples is comparable except for the 

absolute values of the photocurrent maxima, as shown in Fig. 4.33 (sample 

TPr_0.3 as a representative one). Nevertheless, the decays of the 

photocurrent within a few seconds are steeper in the case of the undoped 

oxide, meaning that this sample is more affected by recombination of the 

photogenerated charges. Surprisingly, such an effect is just the result obtained 

when incorporating foreign ions into the TiO2 lattice,119 given the formation of 

defects sites. The presence of points defects (such as oxygen vacancies) and 

their predominance in a specific type of TiO2 sample could not be a priori 

supported. Fig. 4.33b shows a comparison between sample T (undoped 

titania) and TPr_0.3 as for lnD vs time plot. The linear behavior117,127 indicates 

that the decay mechanism should be only due to surface recombination, 

leading to a first-order kinetics in electrons surface concentration; the same 

functional behavior seems to occur for all the samples tested, though it is 

more evident in the case of the undoped one. The transient time constants 

reported in Table 4.5, for the Pr-doped samples are greater (18-25 s) than 

both that of the undoped sample (15 s) and most of those observed for 

compact singlecrystal or polycrystalline titania electrodes in the 

literature.117,138  
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Figure 4.33. (a) Photocurrent transient curve for a selected sample (TPr_0.3). (b) 

Normalized plot of current-time dependence for the same doped sample (circles) 

compared to the undoped one (triangles).  

 

Sample τ / s 

T 15 
TPr_0.2 18 

TPr_0.3 25 

TPr_0.5 21 

TPr_0.7 19 

Table 4.5. Transient time constants (photocurrent measurements) for Pr-doped TiO2. 

The standard deviation is 2 s for all samples.  

About this issue, it must be said that the shape of the photocurrent transients 

and the time constants themselves could be strongly affected by several 

parameters such as the concentration of the electrolyte, the presence of a 

certain hole acceptor, the light-dark cycles duration, and so on76,115 (see 

above). They all play an important role on the local concentration of 

electrons/holes acceptors. However, this dependence is not problematic since 

the main interest lies in the comparison among a series of samples, keeping 

constant all experimental parameters.  

Eventually, the chronoamperometric measurements suggest that the Pr-

doped titania can either favor charge separation or suppress recombination 

processes or give both such effects. In this respect, they could be considered 

promising materials for photocatalytic remediation.  
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Pr doping benefits and Pr location  

From the optical experimental results it was found that Pr doping significantly 

modifies the DR spectra of the final material in the visible region (see Fig. 

3.33) and improve electron-hole separation, increasing the estimated τ (see 

Tab. 4.5). These two experimental findings not only witness TiO2 doping has 

occurred, but also prove that the final materials definitely got some benefit 

from the presence of praseodymium.  

However, the reason of this enhancement was initially not clear and a debate 

could be opened on several factors, such as the chemical nature of the doping 

centers, their role on the band structure modifications of the solid and, 

consequently, the mechanism of photoactivation. 

Only after the electrochemical and structural measurements performed in this 

work, complemented by periodic DFT calculations, it was possible to have a 

complete understanding of photoelectrochemical features and performances.  

Specifically, by comparing DFT and DRS results, it can be asserted that Pr 

atoms are hosted in a Ti substitutional fashion within the present samples. In 

this case, the visible light absorption enhancement is due to electronic 

transitions from valence band states or shallow d Pr orbitals to the f Pr empty 

orbitals just below the conduction band (see Fig. 4.12, left-handed panel, U >3 

eV).  

From a purely structural perspective, also theoretical calculations suggest that 

the dopant ions introduced into the TiO2 lattice could be mainly located as 

substitutional for titanium, since no major structural effects are obtained by 

substitutional doping versus the interstitial one, in agreement with the XRPD 

analysis. Moreover, Pr could be considered randomly present in both anatase 

and brookite TiO2 polymorphs and its manifest effect also lies in a progressive 

increase of the average lattice distortion.  

Since the generated mid-gap levels are finally 4f states, and their location is 

quite close to the conduction band, the above mentioned electron transitions 

could easily happen, causing the absorption peaks in the visible region 

detected by the optical measurements of diffuse reflectance.  

On the contrary, it has been computationally found that the presence of 

localized mid-gap states is much more prominent in the Pr interstitial case. 

Such levels can promote the recombination processes of the photogenerated 

charge carriers; thus, the interstitial Pr arrangement is not consistent with the 
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estimated τ increase with respect to the dopant amount found by 

photocurrent measurements. 

Since also in the case of substitutional Pr there are new electronic levels 

present in the bandgap, morphological aspects of the home-made samples 

have to be considered as well. Accordingly, at increasing the dopant amount, 

the specific surface areas of the powders gradually decreased. This means that 

less accessible surface and a smaller amount of morphological defects, acting 

as possible charge carrier traps, exist in the doped samples. Also the τ 

estimates are found to be higher, therefore suggesting a lower importance of 

the recombination processes.  

4.7.3. Ag doping 

When considering home-made Ag-doped titania, namely doped samples other 

than N- and Pr-TiO2, the selected applied potential of +1.0 V vs SCE was not 

the proper condition to record the photocurrent without affecting the sample 

features. On this topic, Chuang and coworkers131 stated that, to avoid the 

oxidation of Ag cores to Ag+ ions when recording photocurrent 

measurements, the bias was applied mainly in the range of negative potential.  

Here a negative potential was avoided not to reach the flatband potential, 

otherwise conditions would have been different. According to the Pourbaix 

diagram, known as a potential/pH diagram which maps out possible stable 

(equilibrium) phases of an aqueous electrochemical system, different 

potentials in the range 0.2-0.4 V (SCE) – besides +1.0 V, which is the potential 

chosen for all other reported samples – were tested to record photocurrent. 

However, it was not easy to find a proper compromise between a sufficiently 

high potential to obtain a decent signal (low noise) without reaching values 

forbidden by the Pourbaix diagram. Additionally, it was challenging to analyze 

Ag-doped samples because of the nominal/actual oxidation state of silver 

itself: chemically reduced samples should contain only Ag(0) species, while the 

samples which have not undergone the reductive step may present allegedly 

Ag+ ions. This should allow photocurrent measurements to be recorded at 

higher potentials, back to values comparable to the one selected for all other 

tests (+1 V vs SCE). The Ag-doped sample with the lower Ag amount (Ag/Ti 

molar ratio = 1 %) shows a transient time constant of (18 ± 3) s, while for the 

corresponding reduced sample a value only slightly higher with a larger 
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standard deviation was obtained, namely (19 ± 9) s. This latter value definitely 

cannot be considered indicative of the sample recombination processes due 

to the very large standard deviation. In the case of TAg_0.05 (Ag/Ti molar ratio 

= 5 %), there is a larger gap between the reduced samples and the “not 

reduced” one: a τ of (11 ± 5) s was found for the former, whereas (44 ± 10) s 

was obtained for the latter. Again standard deviations are excessively large, 

but denote a different trend, that is a more marked divergence passing from 

the bare Ag-TiO2 to the chemically reduced sample.  

Examples of photocurrent measurements on titania samples containing Ag 

species are totally absent in the literature. The only case of a multi-

exponential dynamic model employed to described the photocurrent decay is 

that of “2D-ordered dome films” of nano-titania, both undoped (2D-TiO2) and 

doped with Ag2+ (2D-Ag-TiO2), prepared by RF magnetron sputtering by Jin and 

coworkers.126 It should be noted that the system is pretty different here: 

experiments are performed with titania films sensitized by a dye. Two 

components are identified for the 2D-TiO2 film, involving recombination of 

electrons with the cationic dye radicals, from either TiO2 conduction band or 

level associated with oxygen vacancies. When doping with silver ions, a new 

longest lifetime component appears, owing to electrons trapped by new 

bands composed of Ag 4d and Ti 3d orbitals in the bandgap.139 
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Development of materials for photo-oxidation and photocatalysis in general 

has followed an evolutionary pathway from conventional bulk metals and 

semiconductors to colloidal materials (in the size range of 10–1000 nm) and 

even to strictly nanosized materials or clusters (<10 nm). The differences 

among these classes of materials reflect themselves in how physical 

properties depend on surface area and its relation to electronic and 

photocatalytic behavior, as already exposed in paragraph 1.2. Indeed, the 

photocatalytic results are strongly material-dependent. 

As with other treatment technologies not discussed in this contest, the design 

of a photocatalytic experiment is governed by several factors, which range 

from experimental tunable parameters to intrinsic issues of the pollutant(s) to 

be degraded, such as the influent/effluent contaminant concentration, 

background water quality parameters (i.e., pH, alkalinity, bromide 

concentration, etc.) or type and concentration of gaseous pollutants, and so 

on. The main key design parameters for AOPs, as well as photocatalysis, 

include chemical dosages and ratios with other chemicals, reactor contact 

time, and reactor configuration. The optimum dosages, reagent ratios, and 

contact time are specific for each treatment scenario. Very often, for large 

scale applications, they are determined through pilot studies, using the water 

matrix of interest in the case of liquid pollutants. As can be expected, higher 

chemical dosages and contact times are typically expected to result in higher 

removal rates; however, increasing dosages results in higher costs and 

possible by-product formation. However, in some cases, the formation of by-

products can be limited by higher chemical ratios. 

In this study, photocatalytic tests were performed on both pristine TiO2 and 

doped samples, with a main aim of focusing on the pollutants (scantily studied 

in the literature of photocatalysis) in the former case, whereas, in the latter, 

to evaluate the performance of the photocatalyst.  

Hereafter, all photocatalytic experiments sorted by the different pollutants 

are described. First, a brief background of the pollutant is given; then, the 

photocatalysts employed are presented; finally, the experimental set-up and 

photocatalytic results are displayed. 

A great part of the characterization results is devoted to N-doped TiO2, 

whereas photocatalytic tests on such samples had been already performed 

and reported in a previous work2 which almost covers my master thesis 
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activity.1 Ethanol degradation experiments were performed to test only 

selected N-doped oxides also to evaluate the differences between “fresh” and 

“old” samples (see paragraph 5.3). 

All reactants employed in this thesis were purchased by Sigma-Aldrich and 

used without any other purification treatment; doubly distilled water passed 

through a Milli-Q apparatus (Millipore Corporation) was used to prepare 

solutions and suspensions.  

5.1. Methylene blue 

The pollutant 

Methylene blue (MB) is a heterocyclic aromatic chemical compound with 

the molecular formula C16H18N3SCl. It has many uses in a range of different 

fields, mainly biology (as a fungicide) and chemistry (as a dye). It is a potent 

cationic dye with maximum absorption of light around 670 nm. The specifics 

of absorption depend on a number of factors, 

including protonation, adsorption to other materials, and metachromasy (the 

formation of dimers and higher-order aggregates depending on concentration 

and other interactions). Such an heterocyclic aromatic compound is deeply 

used as coloring paper agent, temporary hair colorant, dye for cottons and 

wools, coating for paper stock, etc.  

Moreover, methylene blue is widely used as a redox indicator in analytical 

chemistry. Solutions of this substance are blue when in an oxidizing 

environment, but will turn colorless if exposed to a reducing agent. The 

reduced form of MB is called “leucomethylene blue”  (LMB).  

MB is also a photosensitizer used to create singlet oxygen when exposed to 

both oxygen and light: it is used in this regard to make organic peroxides by 

a Diels-Alder reaction which is spin forbidden with normal atmospheric triplet 

oxygen. 

In biology methylene blue is used as a dye for a number of different staining 

procedures. As these are temporary staining techniques, MB can also be used 

to examine RNA or DNA under the microscope or in a gel. It can even be used 

as an indicator to determine if a cell such as yeast is alive or not. The blue 

indicator turns colorless indicating living cells - however, if it stays blue it 

doesn't necessarily mean that the cell is dead or there are no cells. Methylene 
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blue may be regarded as a model compound of flavin co-enzymes, and its 

reactions in solution are interesting from a biochemical viewpoint.3  

At pharmacologic doses MB has reducing agent properties: it is owing to this 

reason that methylene blue is employed as a medication for the treatment. 

However, several texts indicate that, at (much) higher doses, it has oxidizing 

agent properties. 

In the literature, the removal of methylene blue as a model compound for 

basic dyes is very often proposed.   

The photocatalyst 

Titanium dioxide samples prepared by microemulsion-mediate route (see 

paragraph 2.3) were employed in the photocatalytic degradation of MB on the 

“dry” TiO2 film. This is an unusual way to evaluate MB degradation, as it is 

often performed in aqueous media.  

TiO2 films were prepared by drop casting on glass supports (100 cm2) a fixed 

amount of the powder (40 mg) dispersed in 2-propanol (5 mL) and by 

successive evaporation of the solvent (40 °C). The powders were finely 

grinded before the deposition to improve the homogeneity of the final layers. 

Phtotcatalytic set up 

The TiO2 film was impregnated by 500 µL of methylene blue (MB), giving a 

(60±5) cm2 stain, in ethanol solution (0.02 M) and allowed to dry. The films 

were subsequently irradiated in air for 7 h at room temperature; the position 

of the lamp (35 cm from the TiO2 stained film) was selected such as to 

produce an irradiated area matching the MB stain one. The MB mineralization 

was followed by COD (chemical oxygen demand) determinations after 

extraction of MB from the scratched powder with a fixed amount of HCl 

solution. COD analysis enables to assess the amount of oxygen required to 

oxidize the organic compound to carbon dioxide and water. COD values 

(reported as mineralization percentage) are normalized with respect to both 

the specific surface area of the oxide and the initial MB (non-irradiated) COD 

value, that is (730±10) mg L-1. 

Photocatalytic results 

The molecule can be either transformed into LMB through reduction by 

electrons in the conduction band or oxidized, by interactions with the valence 
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band holes or native hydroxyl species, starting with a demethylation step to 

be finally mineralized. For long reaction times also LMB can be further 

degraded and mineralized. Spectrophotometric measurements can 

numerically assess the discoloration of the MB stain, but such measurements 

themselves cannot verify if discoloration is the result of LMB formation or of 

the actual molecule mineralization. Instead, this confirmation can be achieved 

by COD determinations at the end of the reaction. Table 5.1 reports, for each 

sample, the mineralization percentages, which were calculated using the 

following equation:  

                 
         

    
          (eq. 5.1) 

where COD0 and CODt represent the initial COD value and the COD at time “t”,  

respectively.   

All home-made samples are more active than commercial P25 (Evonik) but 

less than the other commercial TiO2 used as reference, HOMBIKAT UV 

100 (Sachtleben). It seems that samples obtained with the use of surfactant 

LUTENSOL TO389 could reach a slightly higher mineralization degree than 

those obtained by TWEEN 80. No literature data exist at all about the 

photocatalytic activity of titania samples obtained with the use of such 

surfactants. Then, T_TX1.2, obtained by TRITON X-100 definitely shows the 

highest mineralization among all home-made oxides, namely 80 %, which is 

very close to that achieved by commercial HOMBIKAT UV-100. 

Overall, a high performance toward the degradation under UV irradiation of a 

complex molecule like methylene blue was achieved, since all sample 

overwhelm the P25 undisputed benchmark and reached over 50 %  

mineralization. 

Further, it can be recalled that, as a result of a previous work,2 sample 

TN_TEA_0.10 produced the best MB mineralization (above 90 %) among all 

triethylamine-doped titania samples using the same photocatalytic 

experiment. That sample, highly discussed throughout this thesis, also shows a 

complex XPS pattern2 with also substitutional N sites and the largest content 

of edge dislocations.  
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Sample Mineralization % 

P25 33 

HOMBIKAT UV-100 83 

T_L0.3 53 

T_L0.6 78 

T_L0.9 63 

T_TW0.9 45 

T_TW0.6L 53 

T_TW0.8L 58 

T_TW0.09L 50 

T_TX1.2 80 

Table 5.1. Mineralization percentage by COD determinations for all titania samples 

obtained by microemulsion-mediate route. 

5.2. Advanced oxidation processes 

Oxidation reactions that produce radicals are usually followed by additional 

oxidation reactions between the radical oxidants and other reactants (both 

organic and inorganic) until thermodynamically stable oxidation products are 

formed. According to their ability to initiate chemical reactions in terms of 

oxidation potential, the most powerful oxidants are fluorine, hydroxyl radicals 

(OH), ozone, and chlorine with oxidation potentials of 2.85, 2.70, 2.07 and 

1.49 eV, respectively.4  

Advanced oxidation processes (AOPs) combine ozone (O3), ultraviolet (UV), 

 hydrogen peroxide (H2O2) and/or catalyst to offer a powerful water treatment 

solution for the reduction (removal) of residual organic compounds as 

measured by COD (chemical oxygen demand), BOD (biochemical oxygen 

demand) or TOC (total organic carbon).  All AOP are designed to produce in 

situ hydroxyl radicals,5 which are the responsible species to effectively destroy 

organic compounds, even when highly recalcitrant ones are concerned.6-8 

Indeed, OH radicals are extraordinarily reactive species with the rate 

constants of reactions with the majority of organic molecules in the order of 

106-109 M-1 s-1.  
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Thus, AOPs are successfully used to decompose many hazardous chemical 

compounds to acceptable levels, without producing additional hazardous by-

products or sludge which require further handling.  

AOP can act on organic compounds in water in several ways. Primarily, they 

convert one compound into another (conversion), or, alternatively, conversion 

is reached along with a reduction in toxicity and mineralization (breaking the 

organic down to CO2 and inorganic salts).    

The versatility of AOPs reflects in different options for production of OH 

radicals, depending on the requirements of the specific treatment. The AOPs 

are characterized by a variety of radical reactions that involve combinations of 

chemical agents (i.e., O3, hydrogen peroxide H2O2, transition metals, and 

metal oxides) and auxiliary energy sources (i.e., UV-VIS radiation, electronic 

current, γ-radiation and ultrasound). Other examples of AOP include H2O2/UV, 

Fenton (Fe2+/H2O2), photo- and electro-Fenton, chelating agent assisted 

Fenton/photo-Fenton, heterogeneous photo-oxidation using titanium dioxide 

(TiO2), γ-radiolysis, and sonolysis.9  

The main advantages of AOPs consist in their rapid reaction rates, small foot 

print, and excellent potential to reduce toxicity and possibly complete 

mineralization of organics treated. Moreover, they generally do not produce 

wastes with high concentrations for further treatments and do not need 

dangerous additives: they cause remediation and disinfection in one 

treatment; eventually, most advanced oxidation processes are scalable from a 

few to many millions of liters per day. Also, their lack of selectivity is an 

advantage when dealing with highly contaminated waters.  

As for photolytic oxidation based processes, it has to be underlined that they 

operate at room temperature and offer the possibility to effectively use 

sunlight or near UV for irradiation, which could result in considerable 

economic savings especially for large-scale operations.  

However, the implementation of AOPs and the determination of their 

effectiveness are difficult for several reasons. As with all treatment 

technologies, the effectiveness of AOPs will be largely determined by the 

specific water quality matrix of the contaminated water. However, in the case 

of AOPs, the effects of background water quality on contaminant removal are 

much less well understood than for other technologies. In general, most of the 

technical difficulties associated with AOPs stem from the fact that oxidation 

processes are non-selective with the potential for significant interference. To 
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compensate for these limitations, more energy or higher chemical dosages 

may be required, potentially resulting in higher costs.  

As a consequence, AOPs can be definitely considered capital intensive, besides 

their need of a complex chemistry to be tailored to specific applications. Due 

to the usage of expensive reactants such as H2O2 and O3, AOPs should not, 

therefore, replace the more economic, biological treatment.10  

Moreover, AOPs can be installed either as tertiary treatment after the 

biological (secondary) treatment of wastewater, or as pre-treatment stage in 

order to enhance the biodegradability of trace organic contaminants. In the 

latter case, the usage of AOPs for partial oxidation of trace organic 

contaminants might not be an appropriate approach in the cases where other 

organic matter is predominantly present, since the oxidant requirement can 

be exceedingly high in order to achieve effective degradation of trace 

organics. 

In this thesis, single (ozonation, photolysis, photocatalysis) and combined 

(photocatalytic ozonation) AOPs have been employed to promote the 

mineralization of 4-cumylphenol (4-CP). A complete mineralization is a desired 

outcome since intermediate oxidation products of alkyl phenols may exert an 

endocrine activity even higher than that of the parent compound.11  

The tested AOPs were chosen also on the grounds of their plant scale 

feasibility. Ozonation is commonly employed in commercial water treatment 

plants. On the other hand, there are currently no plant-scale applications of 

TiO2 photocatalysis, although this technique has proven to degrade efficiently 

numerous recalcitrant organic pollutants. This is possibly due to the fact that a 

plant scale application of photocatalysis would require to solve the problems 

related to the use of TiO2 powder suspensions. 

5.2.1. 4-cumylphenol  

The pollutant 

Like bisphenol A, 4-cumylphenol is considered an endocrine-disrupting 

chemical (EDC), thus representing environmental hormones that can interfere 

with the function of the endocrine system. EDCs disturb the normal endocrine 

system, affecting the reproductive and hormonal control of development of 

animals. 
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Alkylphenols (APs), EDCs with estrogenic effects, are very common in aqueous 

environments, as already mentioned in the case of BPA. APs are generated 

mainly from the biodegradation of alkylphenol ethoxylates (APEOs), which are 

non-ionic surfactants widely used as emulsifiers in paints and pesticides as 

well as in industrial and household detergents.12 They tend to bioaccumulate 

in lipids of living organisms.13 APs have been linked to physiological and 

reproductive effects in fish and other wildlife.14,15 and to effects on human 

fertility via the food chain (bioaccumulation).16 These findings have raised 

public concern over the effects of EDPs on the environment in general and 

human health in particular.17  

Among all APs, 4-cumylphenol has been recognized as one of the most 

important pollutants of the alkyl phenol family. It has a wide range of 

anthropogenic sources: it is commonly employed as an antioxidant and in the 

manufacture of plastics, surfactants and fungicides. Furthermore, it is a key 

by-product in the phenol production process and a non-ionic detergent 

metabolite. Such a widespread use, together with very low biodegradability18 

have led to an increasing environmental distribution of this pollutant. 4-CP has 

been identified as a component of atmospheric particulate matter19 and as a 

contaminant in sea water20 and drinking water wells.21 Its adsorption on 

sediments is significant (log Kow = 3.8) and concentrations as high as 70 000 

mg kg-1 of sediment has been reported.22  

4-CP endocrine disruptor ability has been clearly proved.23,24  

A recent study has also reported the pollutant capability of inducing multiple 

renal cysts in neonatal rats.25  

Despite the wide environmental distribution and great health concerns 

related to its toxicity, 4-CP removal techniques are almost not investigated in 

the literature. The relatively high partition coefficients of alkylphenols lead to 

their significant adsorption onto sludges of biological wastewater treatment 

plants.26 However, since 4-CP has a very low biodegradability, biological 

treatment does not lead to a degradation of the contaminant, which is merely 

adsorbed onto the biological sludge.26,27 Therefore, 4-CP is simply transferred 

from one phase to the other and biological sludges need to be disposed of as 

hazardous waste. No other remediation procedure for 4-CP removal could be 

found in the literature. 
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The photocatalyst 

The commercial sample P25 (Evonik) was employed as photocatalyst (see 

chapter 3 for details).  

Also in this second type of photocatalytic test, TiO2 was deposited on a 

support. However, in this case, the degradation reaction occurs in a liquid 

medium. Titania films were used instead of suspension in order to eliminate 

the main problems encountered with powdered slurries: 1) the need of 

expensive and time-consuming separation and filtration procedures at the end 

of the treatment to remove the catalyst, 2) the difficult use in continuous-flow 

systems, 3) the alteration of the powders’ activity as a consequence of 

aggregation phenomena,28-30 4) the need of powerful sources to activate the 

photocatalytic process since the amount of adsorbed light is reduced by the 

cloudiness of the suspension.31 Related to this latter issue, the use of TiO2 

immobilized as thin films is of paramount importance for the plant-scale 

applicability of the process, especially if a low intensity irradiation source, 

such as solar light, is to be exploited. 

Thin TiO2 films were deposited by a specific procedure in order to obtain 

photocatalytically active films with high surface area and good mechanical 

stability. An Al lamina was employed as a cheap and reusable support, with a 

native oxide (Al2O3) that improves the adhesion of the TiO2 particles to the 

metallic support, which had been previously sand blasted and etched in oxalic 

acid 10% in order to increase the surface roughness. The aluminum lamina 

was washed and sonicated in water and 2-propanol for 1 hour in order to 

remove all the used powder before performing the final polishing treatment 

with oxalic acid. Such a prolonged sonication time was essential and gave 

evidence of the strong adhesion of the particles to the lamina. Thus, the as-

deposited TiO2 nanopowders would have a good physical stability if used in 

water treatment plants, since the rough investigation of their physical stability 

via sonication as a sort of disruption technique represented the worst case 

scenario. The good physical stability of the photocatalyst is crucial as it would 

ensure the synergistic effect of adsorption-solar photocatalysis processes. 

Titania thin films were deposited by drop-casting a suspension of P25 (0.2 g) in 

2-propanol, on both sides of the aluminum plate (total geometric area: 170 

cm2). The suspension stability was improved by adding sodium dodecyl sulfate 

(SDS). However, the surfactant was not used all the times the photocatalyst 

was immobilized on a support because of the problems related to its removal, 
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though a simple calcination at 400 °C under stationary air is sufficient to burn 

it completely. Finally the films were calcined in air at 300 °C for 2 h in order to 

both remove the surfactant and improve the adhesion between the TiO2 

particles and the metallic substrate. 

As-deposited films showed optimal stability, also ascertained by no 

appreciable weight variation of the coated Al laminas after the degradation 

experiments. 

The Al lamina and TiO2 films were morphologically characterized by Scanning 

Electron Microscopy (SEM) equipped with energy-dispersive X-ray 

spectroscopy (EDX), and by Atomic Force Microscopy (AFM). SEM and AFM 

photographs were acquired by LEO 1430 and by NT-MDT Solver PRO-M, 

respectively.  

As appears from both Fig. 5.1 and 5.2, the films exhibit high surface 

roughness. SEM image (Fig. 5.1a) of the bare Al foil after the surface 

treatments clearly shows high roughness on the micron scale. In the SEM 

image (Fig. 5.1b) of the coated layer, the individual nanometric particles can 

be appreciated; a homogeneous distribution of spherical aggregates without 

cracks and cleavages was achieved by drop-casting deposition of the above-

mentioned suspension. AFM  images (Fig. 5.2), especially in the 3D 

representation (Fig. 5.2b), give an estimation of the average roughness of the 

TiO2 coating, occurring in the range 0–200 nm. A semi-quantitative elemental 

analysis of the TiO2 film was obtained by EDX analyses, which revealed the 

presence of low percentages (around 1%) of Al in the TiO2 film, possibly as 

result of thermal diffusion of Al ions from the native Al2O3 oxide into the 

titania film.  
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Figure 5.1. SEM images of (a) the bare aluminum lamina after the surface treatments 

and of (b) the final TiO2 layer.  

 

 
Figure 5.2. AFM 2D (ca) and 3D (b) images of the TiO2 film. 
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Photocatalytic set up 

All 4-CP degradation tests were carried out in batch at 25 °C and at 

spontaneous pH (the experimental set-up is presented in Fig. 5.3). A 600 mL 

cylindrical jacketed glass reactor was utilized.  

Tests of photolysis, photocatalysis and photocatalytic ozonation were 

performed under UV-A irradiation. The photon sources were provided by two 

UV lamps (see the Appendix for details).  

The initial concentration of the 4-CP solution was varied in the range 0.2-0.4 

mM, while  a constant O3 concentration of 3 mg L-1 was employed. 

During ozonation and photocatalytic ozonation tests, an ozone generator 

(Ozono Elettronica Internazionale S.r.l.) was employed to produce the ozone 

feed from pure oxygen. In photocatalytic ozonation, the ozone feed was 

started 90 min before switching on the lamp in order to allow a complete 

ozone solubilization. The ozone flow rate (30 L h-1) was maintained through all 

the duration of the degradation test  in order to keep a constant dissolved 

ozone concentration of 3 mg L-1 (determined by iodometric analyses).   

The progressive disappearance of 4-CP was monitored by measuring the 

absorbance at 275 nm using a Beckman DU 640. The degree of mineralization 

was instead determined by means of chemical oxygen demand (COD) analysis 

kit (Spectroquant Merck).  

Blank experiments performed with pure oxygen instead of O3 showed no 

significant improvement with respect to plain photocatalysis. Also the effect 

of photolysis on mineralization was negligible. 

 

 
Figure 5.3. Experimental set up employed for 4-cumylphenol degradation tests. 
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Intermediate products of 4-CP oxidation during photocatalytic ozonation were 

identified by high  performance liquid  chromatography-mass spectrometry 

(HPLC/MS) determinations on solutions  sampled at different reaction times 

and by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

(ATR-FTIR) analyses of the used catalyst at the end of the reaction. The 

HPLC/MS analyses were performed using an Agilent 1100 chromatographic 

system (quaternary pump, autosampler, thermostatted column holder) 

equipped with a diode array detector and a Bruker ion-trap Esquire 3000+. 

The column was a Supelco Ascentis-Express (50 x 4.6 mm, 2.7 µm). A two 

phase mixture was used as the mobile phase with a flow-rate of 1 mL min-1 in 

gradient mode. Phase A was Milli-Q water containing 0.05 % (v/v) TFA or 10 

mM ammonium acetate in the case of ESI+ or ESI- respectively; phase B was 

Acetonitrile (LC-MS grade), containing 0.05 % TFA only in the case of ESI+. The 

adopted gradient was the following: from 5 % B to 95 % B in 6 min, washing at 

100 % B for 1 min, equilibration at 5 % B in the next 3 min. Peak UV detection 

was carried out at 220 and 254 nm (reference at 500 nm, 40 nm bandwith). 

Mass spectrometry was performed with an electrospray ionization (ESI) 

source in either positive or negative mode with the following parameters: 

detection  in the 50-2000 m/z range with alternating MS/MS, capillary voltage 

± 3500 V, drying gas temperature 365 °C, nebulizer pressure 50 psi, drying gas 

flow 10 L min-1. All other tuning parameters were optimized with the standard  

tuning mix provided by Bruker for a generic detection in the above mass 

range.  

The chemical structure of organic compounds adsorbed on the used TiO2 

surface was analyzed by using a Jasco 4200 FTIR, accessorized with an ATR 

module.  

Photocatalytic results 

The different tested AOPs present very different efficiencies in terms of 

mineralization degree at the end of the degradation tests, as shown by 

numerical values reported in Tab. 5.2 (first three rows). The mineralization 

percentages were calculated in the same way as for methylene blue 

degradation (see eq. 5.1).   
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Process 
[4-CP]0 
(mM) 

CODin  
(mgO2 L

-1) 
CODfin  

(mgO2 L
-1) 

mineralization 
% 

Photocatalytic 
ozonation 

0.2 1.3 0 100 

0.3 151 21 86 

0.4 186 56 70 

Ozonation* 0.3 151 127 16 

Photocatalysis 0.3 151 123 19 

Table 5.2. Mineralization data of separate and combined tests after 180 min (* tfin = 

90 min) for different initial 4-CP concentrations. Combined treatments involve 90 min 

of initial O3 equilibration step and 90 min of photocatalytic ozonation. 

 

Ozonation leads to a 16% mineralization after 90 min of treatment. 

Photocatalysis is by far less efficient since it requires a 2.5 longer time to 

obtain a comparable mineralization (18% of mineralization after 240 min 

instead than 90 min). These results are in agreement with the literature 

concerning the degradation of other EDCs.32  

Combining photocatalysis and ozonation leads to a much higher 

mineralization. Before testing the combined process, the solution was treated 

with O3 for 90 min to allow a complete ozone solubilization. An 86 % 

mineralization was achieved at the end of the combined test (including 16 % 

mineralization during the initial ozonation step and 70 % of the degradation 

during 90 min of photocatalytic ozonation)for the intermediate concentration 

([4-CP]0 equal to 0.3 mM). 

At varying the initial 4-CP concentration, a relevant final mineralization was 

achieved in all cases (100, 86, 70 % for c(4-CP)0 = 0.2, 0.3, 0.4 mM, respectively), 

showing that no accumulation of stable intermediates takes place even at high 

4-CP concentrations. When [4-CP]0 is equal to 0.2 mM, a complete 

mineralization is achieved after less than 90 min of the combined treatment. 

Analogously, fig. 5.4 reports the disappearance of the 4-CP along with the 

proceeding of the reaction.  
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Figure 5.4. 4-CP removal as a function of the irradiation time during photocatalytic 

ozonation tests with different initial pollutant concentrations (initial 4-CP 

concentration 0.2-0.4 mM, ozone concentration 3 mg L-1, initial ozone equilibration 

step 90 min). 

 

The disappearance of the pollutant as a function of time shows a good linear 

correlation for the three reported initial concentrations, as can be appreciated 

from Table 5.3. However, the slope varies with increasing 4-CP content, 

suggesting the occurrence of a complex kinetic pattern, which necessarily 

implies surface reaction steps.  

Process [4-CP]0 (mM) CODin (mgO2 L
-1) CODfin (mgO2 L

-1) 

Ozonation 0.3 151 127 

Photocatalysis* 0.3 151 123 

Photocatalytic 
ozonation 

0.2 
0.3 
0.4 

103 
151 
186 

0 
21 
56 

Table 5.3. Mineralization data of separate and combined test (tfin= 90 min; * tfin = 240 

min). 

The high efficiency of photocatalytic ozonation can be related to highly 

synergistic effects occurring between ozonation and TiO2 photocatalysis. 

Indeed, an initial ozone attack on 4-CP generates highly hydrophilic species, 

which can be more easily adsorbed onto the TiO2 surface and mineralized. 

Furthermore, decomposition of O3 at the TiO2 surface leads to the formation 
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of OH and OOH species, which are active oxidizing species. Additionally, the 

electron transfer of photogenerated electrons from TiO2 to O3 is much faster 

than the corresponding process to O2. This effect may enhance the quantum 

efficiency of the photocatalyst by slowing down the recombination of 

photogenerated electrons and holes at the TiO2 surface.6  

Complete degradation of CP to CO2 is obtained after very short reaction times, 

at room temperature, by the combination of ozone and photocatalytic 

treatments. The success of the process is largely due to the presence of 

sandwiched TiO2 layers deposited onto an Al lamina. The stable, purposely 

rough, TiO2 surface offers a large number of adsorption sites for both the 

pollutant and ozone thus promoting synergistic, highly oxidizing reaction 

steps. The optimal mineralization, the simplicity of the process and, most of 

all, the absence of suspended solids or sludges, make the present process an 

excellent candidate for a CP degradation treatment plant. 

 

Degradation mechanisms  

Intermediate products of 4-CP oxidation during photocatalytic ozonation were 

identified by HPLC/MS determinations on 4-CP solutions (intermediate 

concentration, namely [4-CP]0 = 0.3 mM) sampled at different reaction times 

and by ATR-FTIR analyses of the used catalyst at the end of the reaction. 

Related to these latter investigations, the FTIR spectrum of the titania film 

after photoreaction show no trace of the 4-CP characteristic peaks (Fig. 5.5a). 

On the contrary, the spectrum presents a peak at about 1700 cm-1 attributable 

to COOH/CHO moieties and a peak centered at 1550 cm-1 that can be 

attributed to double bonds.33  
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Figure 5.5. ATR-FTIR spectra of (a) pure 4-CP molecule, (b) TiO2 sampled at the end of 

the O3 + TiO2 + UV run (0.3 mM starting 4-CP concentration, the curve of bare TiO2 

was subtracted). Peaks are labeled as follows: * aromatic ring,  C–OH,  alkenes, and 

 CHO/COOH. 

Fig. 5.6 presents a 4-CP degradation mechanism by photocatalytic ozonation 

that can be proposed on the grounds of the reaction intermediates identified 

by HPLC-MS and FTIR analyses.  
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Figure 5.6. Proposed reaction pathway for the degradation of the 4-CP molecule.  
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In the HPLC/MS spectra (Fig. 5.7) the peak at the retention time of 5.6 min can 

be attributed to 4-CP by comparison with the pure 4-CP mass spectrum. The 

chromatographic peaks at a retention time of about 4.5 min certainly 

correspond to a mixture of oxidation products of 4-CP. Even when the polarity 

of the eluent was changed, it was not possible to obtain a better separation 

for the corresponding compounds. The attribution of the HPLC peaks at about 

4.5 min  was performed using the method of the internal calibration by 

addition of a known compound (bisphenol A). The peak at 4.6 min can be 

attributed to bisphenols bearing the second hydroxyl group on the non-

phenolic aromatic ring, such as bisphenol A (BPA). The peak at 4.4 min can 

instead be attributed to isomers of BPA bearing the second hydroxyl group in 

orto or para positions with respect to the 4-CP hydroxyl group. This attribution 

is based on the proximity of this peak to the one of BPA-type compounds and 

on the grounds of spectrophotometric considerations. In both cases, the 

attribution of precise chemical structures was not feasible since several 

isomers might occur. In addition to the previously described degradation 

products, few minor chromatographic peaks were also observed. Because of 

the very low retention time, these compounds certainly corresponded to 

smaller and more polar molecules such as acids or aldehydes, as confirmed by 

FTIR analyses and in agreement with literature results on other ECDs.34  
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Figure 5.7. a) HPLC peaks for different retention times and b) relative mass spectra of 

0.4 mM 4-CP solution at the end of the combined ozonation and photocatalysis.  
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The occurrence of bisphenols as reaction intermediates suggests a 

degradation mechanism starting with an initial attack of an hydroxyl radical on 

one of the aromatic rings. The possible attack of the hydroxyl radical on the 

phenolic ring may be favored by the presence of the former –OH group of the 

4-CP molecule. The proximity of two hydroxyl groups may lead more easily to 

ring opening products. Two possible open ring intermediates are proposed in 

Fig. 5.6 on the grounds of both FTIR and HPLC/MS results.  

5.2.2. Bisphenol A 

The pollutant 

Bisphenol A is a controversial organic compound since it exerts weak, but 

detectable, hormone-like properties, raising concerns about its presence in 

consumer products and foods contained in such products.  

For this reason, it is said to be an endocrine disruptor, or, more appropriately, 

an endocrine modulator, as it does not show any reproducible evidence of 

adverse effects as a result of hormone-like properties.  

Having two phenol functional groups, it is a key monomer in production 

of epoxy resins and in the most common form of polycarbonate plastic.35 This 

means it is used primarily to make plastics in a wide variety of commercial 

products; some of these include digital media (e.g., CDs, DVDs), electrical and 

electronic equipment, automobiles, airplanes, construction material, sporting 

goods, food and drink can liners, dental sealants, and so on. Products using 

bisphenol A-based plastics have been in commercial use since 1957.  At least 

3.6 million tonnes (about 8 billion pounds) of BPA are used by manufacturers 

yearly.  

Several governments questioned its safety, prompting some retailers to 

withdraw polycarbonate products, especially from 2008. A 2010 report from 

the United States Food and Drug Administration (FDA) raised further concerns 

regarding exposure to fetuses, infants, and young children.36  

Endocrine disruptors  or modulators such as bisphenols, alkylphenols, and 

phthalates are pollutants that have raised great concern not only because of 

their their potential health effects but also for their high resistance to 

traditional wastewater treatments.  

Since conventional water and wastewater treatment plants may be 

inadequate for substantially removing many organic contaminants like the 
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above mentioned ones, a type of advanced oxidation process, namely the 

combination of ozonation and photocatalysis by TiO2 for the degradation and 

final mineralization of BPA, has been adopted in this thesis work. 

The aim of this work is to degrade BPA producing its best mineralization to 

CO2 since intermediate products might be as toxic as the starting compound 

or even more hazardous. It will be shown in the following that the 

combination of ozonation and photocatalysis by nano-TiO2 does not require 

any filtration or separation of the oxide slurry and it leads to the complete 

pollutant mineralization in short reaction time (90 min). 

 

The photocatalyst  

Thin TiO2 films made of P25 (Evonik) nanoparticles were employed as in the 

case of 4-cumylphenol. The same deposition procedure was adopted.  

Photocatalytic set up 

BPA degradation was carried out at atmospheric pressure and 25 °C in a 600 

mL cylindrical jacketed glass reactor. Different initial BPA concentrations were 

tested, namely 1.5, 0.8, 0.6, 0.3, 0,1 mM; 0.3 mM initial BPA concentration 

was employed for further mechanistic studies. The ozone feed was produced 

from pure oxygen using an ozone generator (Ozono Elettronica Internazionale 

S.r.l.). Before testing the combined processes, the solution was treated with 

O3 for 90 min to allow a complete ozone solubilization. The ozone flow rate 

(30 L h-1), determined analytically ex situ as reported by Oyama et al.,37 was 

maintained throughout the duration of the degradation test in order to keep a 

constant dissolved ozone concentration of 3 mg L-1. Photon sources were 

provided by two UV lamps (see the Appendix for details) symmetrically placed 

with respect to the Al/TiO2 lamina (see the sketch of the experimental setup in 

Fig. 5.8). The emission of the lamp was checked by measuring its actual 

intensity inside the Pyrex jacketed glass reactor thermostatted at room 

temperature by water recirculation so that both the glass and the water filter 

effects were also taken into account. 
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Figure 5.8. Experimental O3/photocatalytic setup. 

The initial concentration of BPA solution (spontaneous pH) was varied in the 

range 0.1-1.5 mM and pH was maintained between 4 and 5 by the addition of 

diluted HN O3 and KOH. Degradation tests were performed with the lowest 

BPA concentrations, which are commonly utilized in the literature, while the 

highest concentrations were selected in order to more readily identify the 

reaction intermediates. These latter are typically higher than those found in 

natural water. However, industrial effluent discharges and landfill leachates 

can be much more concentrated: concentrations as high as 17200 g L-1 have 

been reported.38  

The mineralization degree of BPA was determined by total organic carbon 

(TOC) analyses (TOC 5000 A Shimadzu carbon analyzer). 

Possible intermediate oxidation products were identified by HPLC/MS and 

FTIR, using the same instrumental equipment as reported for the study on 4-

CP. 

Photocatalytic results 

Different AOPs (UV photolysis, TiO2 photocatalysis (TiO2 + UV), and ozonation) 

were tested independently to study the BPA degradation. Numerical results 

are summarized in Tab. 5.4.  

Test % mineralization S 

Single 
experiments 

UV <3 - 

TiO2 + UV  6 - 

O3 6 - 

Combined 
experiments 

O3 + UV 13 1.2 

O3 + TiO2 15 1.5 

O3 + TiO2 + UV 55 4.1 

Table 5.4. Mineralization percentage of the separate and combined tests. UV = 

photolysis; TiO2 + UV = photocatalysis (TiO2); O3 = ozonation. 
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Considering that no appreciable BPA stripping by the ozone flux was observed, 

in agreement with the low Henry’s constant of the pollutant, the sole 

treatment by O3 produces a 6 % BPA removal after 90 min. The mineralization 

is not as efficient since only about one half of the degraded molecules is 

actually mineralized. TiO2 photocatalysis leads to an equal BPA removal but, in 

this case, all the degraded molecules are actually mineralized. Instead the sole 

irradiation by UV-A seems not to be effective in the adopted conditions (<3 % 

removal). In Tab. 5.5, the percentages of BPA removal and mineralization are 

separately shown for an initial BPA concentration of 0.3 mM.  

Test  
(tfin = 90 min) 

% BPA 
removal 

% BPA 
mineralization 

photolysis 2 - 

photocatalysis 6 6 

ozonation 12 6 

Table  5.5. % BPA removal and % mineralization of the separate tests. c(BPA)0 = 0.3 mM. 

During ozonation treatments, ozone is transferred from the gas to the liquid 

phase. Several aspects concur to the actual activity of ozone: its dissolved and 

saturated concentration and its self-decomposition.39  

Three different types of combined experiments were then performed and 

compared: O3 + TiO2 in the dark, O3 + UV irradiation, and O3 + TiO2 + UV 

irradiation. In all these combined tests, a simple ozonation step of 90 min was 

initially performed to allow a complete ozone solubilization. After this “pre-

treatment”, 90 min combined treatment was applied. The pollutant 

mineralization achieved with the combined methods is higher (in the case of 

0.3 mM bisphenol A) than those obtained by individual treatments, since 

photolytic ozonation and catalytic ozonation lead to 13 % and 15 % removal, 

respectively. Fig. 5.9a reports the results for the three different experiments. 

Results of degradation experiments for several initial BPA concentrations, in 

the range 0.1–1.5 mM are reported in Fig. 5.9b. In the case of initial BPA 

concentration equal to 0.1 mM, an almost complete mineralization is achieved 

after only 90 min of the combined treatment (ozonation coupled with 

photocatalysis by TiO2); even for the higher tested concentration, the 

mineralization is still appreciable after such a short reaction time. However, a 

far more promising mineralization degree is obtained with the “O3 + TiO2 + 
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UV” process (55 %) in the case of an initial BPA concentration equal to 0.3 

mM. 

 

 
Figure 5.9. Disappearance of BPA molecule in the case of combination of ozone (first 

90 min) with 1) UV light (photolysis), 2) TiO2 powders (dark experiment) and 3) TiO2 + 

UV (photocatalysis). [BPA]0 = 0.3 mM, [O3] = 3 mgL
-1

 (a); case 3) is considered for 

increasing starting BPA concentration (b). 

This finding is explained by the occurrence of highly synergistic effects, 

evaluated by the following parameter (Table 5.4, 4th column), on the grounds 

of what reported by Torres et al.:40 
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where % mincombined represents the mineralization percentage or total organic 

carbon removed, for a combined process - subtracting the initial 

mineralization due to the sole ozonation, 6 % - while % minUV, % minozone, and 

% minphotocatal correspond to the total organic carbon removed by the 

independent photolysis, ozonation, and photocatalysis, respectively. If S is 

equal to 1, additive effects take place, but S values higher or lower than 1 

indicate synergistic or antagonistic effects, respectively, among the combined 

processes. In our case, an S value of 4.1 is obtained for the combination of 

ozone and TiO2 photocatalysis, indicating the occurrence of synergistic effects 

much higher than those occurring with the other combined techniques 

investigated.  

This achievement can be related to the interactions between ozone and the 

nanosized titania surface. Decomposition of O3 at the TiO2 surface should lead 

to the formation of OH and OOH species, which are active oxidizing species 

able to promote BPA degradation. Furthermore, ozone may act as an electron 

scavenger for photogenerated electrons from TiO2. Such effect may slow 

down the recombination between photo-generated electrons and holes at the 

TiO2 surface, thus promoting the oxidation of BPA and of its intermediates. 

Specifically, the electron transfer from TiO2 to O3 generates one hydroxyl 

radical for each trapped electron through the formation of ozonide radicals.6,41 

Previous results by Rivas et al.42 showed a synergistic effect of the combined 

UV light and ozone treatment, but in that case, a powerful UV-C source was 

employed. Indeed, at wavelength lower than 300 nm, ozone is photolyzed to 

highly reactive O (1D) species, which in turn generate OH radicals, thus 

increasing the process efficiency. On the other hand, when near UV irradiation 

is employed, O3 photolysis generates the much less active H2O2.
6  

Reaction kinetics 

During  the sole ozone treatment, at constant O3 flux, the rate of BPA 

degradation is best represented by a zero order reaction. This can be the 

result, on one side, of the high initial concentration of BPA accompanied by 

low degradation, and, on the other side, of the invariant ozone content in the 

reacting mixture due to the continuous O3 fluxing. Instead, The rate of the 

homogeneous reaction of BPA disappearance is observed to increase with the 

ozone concentration. These results are in agreement with data by Lee et al.,43 
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who found that the rate of BPA degradation was sensitive and proportional to 

the ozone feed rate, but insensitive to pH and the concentration of BPA.  

In the case of the sole photocatalytic degradation of BPA several authors 

adopted the Langmuir-Hinshelwood (LH) model to interpret the rate of the 

process.44 This equation applies in all cases in which heterogeneous catalytic 

processes control the kinetics of the reaction: 

   
  

  
 

   

    
   (eq. 5.3) 

where r represents the rate of reaction proceeding in time (t),  the 

degradation rate constant, and K the adsorption equilibrium constant. When 

KC<<1 the equation turns into a pseudo-first order decay kinetics where app = 

K. 

During the present combined O3 + TiO2 photocatalytic treatment, the 

heterogeneous degradation process may involve reactions between the 

organic solute adsorbed onto the TiO2 surface and the semiconductor holes, 

O3 and OH radicals. At the same time, also O3 itself may provoke reactions 

onto the adsorbed molecules. 

In agreement with most part of literature results, the best empirical equation 

for the present lower initial BPA concentrations was actually found to follow a 

pseudo-first order kinetics, according to the LH model. At higher 

concentrations a reaction order of 0 was found. This is still consistent with the 

mechanism implied by eq. 5.3, i.e., a decomposition governed by a surface 

reaction between the adsorbed reagent and O3/OH; with increasing BPA 

concentrations KC becomes in the order of unity and the dependence of the 

rate on BPA is better represented by a reaction order 0. In other words, it can 

be said that the active sites for the degradation reaction remain the same for 

all BPA concentrations. Almost no inhibition of the catalyst occurs45 when the 

BPA initial concentration is low. However, as the BPA initial concentration 

increases, more and more BPA molecules (and their by-products) are 

adsorbed on the surface of TiO2 film. The accumulation of BPA molecules at 

the titania surface may result in adsorption competition for the active sites 

between BPA molecules. The surface area of the photocatalyst becomes the 

rate limiting parameter for the reaction leading to an apparent zero order rate 

with respect to the BPA concentration (Tab. 5.6). 
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Test app x 106 (M s-1) 

Single 
experiments 

UV - 

TiO2 + UV 2.6 ± 0.2 

O3 8.5 ± 0.9 

Combined 
experiments 

O3 + UV 10.5 ± 0.6 

O3 + TiO2 8.7 ± 0.8 

O3 + TiO2 + UV 36.7 ± 0.4 

Table 5.6. “Apparent” kinetic constants for the separate and combined tests. UV = 

photolysis; TiO2 + UV = photocatalysis (TiO2); O3 = ozonation. 

Degradation mechanisms  

The mechanisms of BPA degradation during ozonation and photocatalysis, as 

separate treatments, have already been widely investigated in the literature. 

The principal pathway of BPA oxidation by ozone is reported to be its direct 

reaction with the contaminant.32,46 In particular, ozone can act as a direct 

oxidant or decompose to •OH radicals, especially in alkaline conditions. A large 

fraction of these radicals, which are much less selective and much more 

reactive than ozone, are scavenged by the water matrix.32 Due to its 

electrophilic character, ozone commonly reacts with aromatic rings by 

electrophilic substitution.34  

In the case of the sole TiO2 photocatalytic treatment, Watanabe et al.47 

showed that the reaction pathway, followed an initial attack of OH and OOH 

radicals on the two methyl groups and the subsequent cleavage of the methyl 

moieties to produce simple aldehydes, acids and carbon dioxide.  

HPLC-MS measurements were performed at the end of the present combined 

O3 + TiO2 + UV experiments, in order to assess the nature of the 

intermediates. Data relative to 1.5 mM BPA after 180 min (incomplete 

mineralization) are reported in Fig. 5.10. In addition to the most intense peak 

centered at 4.4 min, attributable to BPA molecule, several peaks at different 

retention times (from 2.6 to 4.0 min) can be observed. On the grounds of the 

mass values, the peaks at 4.0 and 2.6 min can be attributed to the compounds 

labelled as B1 and B2, respectively (Fig. 5.10).  
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Figure 5.10. HPLC peaks for different retention times (a) and b relative mass spectra 

(b) of 1.5 mM bisphenol A (BPA) solution at the end of the combined ozonation and 

photocatalysis. The chemical structures of compounds corresponding to the 

attribution of fragmentation peaks for compound B2 are also reported. The first step 

of the oxidation reaction leads to compound B1 which further degrades to opened ring 

products (e.g., B2), and finally to CO2 and water. 

Thus, a possible BPA degradation route, starting with the OH direct attack at 

the aromatic ring is proposed. The nature of the intermediate products 

observed by HPLC-MS support the first formation of compound B1 as the 

result of the attack of OH to the aromatic ring in orto position with respect to 

the former OH group. The progressive oxidation of the intermediates may 

lead first to the progressive loss of CO2 (B2) and to the final formation of 

aromatic ring opening intermediates, as depicted in Fig. 5.11. 
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Figure 5.11. Proposed reaction pathway for the degradation of the BPA molecule. 

 

FTIR determinations were performed in order to gain information on the 

nature of intermediate reaction species adsorbed onto the photocatalyst.48,49 

Fig. 5.12 reports vibrational modes of TiO2 exhausted samples withdrawn 

from the reacting mixture at the end of the reaction. The blank curve relative 

to the pure oxide, was subtracted. The spectrum of the pure BPA (a) is also 

reported for the sake of comparison; two curves pertaining to different BPA 

concentrations (curve b: 1.5mM and curve c: 0.3 mM) are reported. 

Appreciable amounts of un-reacted BPA molecules are present in the case of 

the higher starting concentration; while for the 0.3 mM BPA the spectral 

region at about 1700 cm-1 shows the presence of possible adsorbed carbonylic 

species, which support the formation of compounds like B2, as in the proposed 

mechanism. 
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Figure 5.12. ATR-FTIR spectra of pure bisphenol A (BPA, a) molecule and P25 (Evonik) 

titania sampled at the end of the O3 + TiO2 + UV run in the case of 1.5 mM (b) and 0.3 

mM (c) starting BPA concentrations. For each oxide, the curve of the relative bare TiO2 

was subtracted. The residual presence of carbonyl moieties can be appreciated in the 

case of the highest BPA concentration in the range 1650–1750 cm
-1

. 

5.3. Cr(III) and Cr(VI) 

The pollutant 

Unlike most organic pollutants, metals are particularly problematic for the 

environment since they are not biodegradable and can accumulate in living 

tissues, thus becoming concentrated throughout the food chain. While they 

are essential at low doses as micronutrients, in higher doses they can 

detrimentally  affect the health of most living organisms.50-52 As a 

consequence, the presence of heavy metals in wastewaters causes great 

environmental damages and human health problems.  

Among hazardous metal ions, hexavalent chromium, widely used in several 

industrial processes (metal plating, leather tanning, paint making, etc.),53-55  is 

one of the highly harmful pollutant due to its toxicity and easy migration. 

Moreover, it is a strong oxidizing agent that is carcinogenic and mutagenic and 

diffuses quickly through soil and aquatic environments. Since it does not form 

insoluble compounds in aqueous solutions, separation by precipitation is not 

feasible. However, Cr(III) cations are not as mobile and toxic for the 

environment as Cr(VI) oxyanions. Like many metal cations, Cr(III) forms 
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insoluble precipitates. Thus, reducing Cr(VI) to Cr(III) simplifies its removal 

from effluent and also reduces ts  toxicity and mobility.   

Therefore, the removal of Cr(VI) is a general concern not only for the problem 

of its removability, but also for its difficult analytical speciation and 

determination. Thus, the experimental work has been twofold, since both its 

determination and its removal are relevant debated issues.  

Traditionally, spectroscopic measurements (FAAS, GF-AAS, ET-AAS and ICP-

tandem), chromatographic systems (HPLC, GC and IC), chemiluminescence 

methods and mass spectrometry are the most commonly used techniques to 

monitor chromium species. Although such techniques provide low detection 

limits (at the ng L-1 or µg L-1 level), they are time consuming, need expensive 

equipments and laborious sample pretreatments.56 Also electroanalytical 

determinations by DPAdSV (Differential Pulse Adsorptive Stripping 

Voltammetry) at the HMDE (Hanging Mercury Drop Electrode) are reported57-

59 as alternative methods to follow Cr(VI) species by using an electroactive 

probe, mostly pyrocatechol violet (PCV). Because of the several disadvantages 

of HMDE due to its toxicity, contamination and difficult handling, despite its 

good performances, in this work it has been replaced by a commercially 

available and environmentally friendly Bi-SPE (bismuth screen-printed 

electrode) in a square wave voltammetric determination. This method offers 

many advantages: besides being a mercury-free analytical technique 

performed without stripping, thus lowering analysis time, Bi-SPEs are portable 

- permitting on-site analysis - cheap and disposable, avoiding surface 

contamination and difficult polishing steps. The new analytical method also 

shows negligible matrix interferences and has proved to reach high sensitivity 

and low detection limits (in the range of µg L-1, around 0.01 µM).  

The two techniques are compared in the Cr(VI) determination by means of 

pyrocatechol violet using Square Wave Voltammetry (SWV) for the Bi-SPE case 

and Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) for the 

HMDE case.  

From the chromium abatement point of view, conventional chemical methods 

to reduce Cr(VI) to Cr(III) lead to the precipitation of noxious hydroxide 

sludges that are difficult to handle and to remove.60,61 Recently, many efforts 
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have been devoted to the development of alternative removal processes such 

as photocatalysis assisted by TiO2 nanoparticles.60,62-64 Besides the more 

simple photolysis and electrocatalytic removal, also photoelectrocatalytic 

tests have been recently reported in the literature.65  

In this context, the photocatalytic performances of different titania films, 

obtained by electrophoretic deposition (EPD), towards the Cr(VI) reduction 

have been studied. Besides, an innovative and environmentally friendly 

electroanalytical determination of chromium species in solution has been 

adopted. 

The photocatalyst 

Three different types of titania powders were chosen for photocatalytic tests 

and deposited as films on Ti grids: two commercial samples, P25 (Evonik) and 

Hombikat UV 100 (Sachleben), and a home-made sample, labelled as “T” (see 

paragraph 2.1.1).  

High purity Ti grids (10 mm × 50 mm × 1 mm) were sand blasted and etched in 

oxalic acid 10 % at 80 °C for 60 min, followed by immersion in an ultrasonic 

bath with acetone and rinsing with water. Electrophoretic deposition was 

used to deposit the thin TiO2 layers starting from a suspension of the TiO2 

powder (3.5 g L−1) in acetylacetone, for a fixed time (90 s). Two depositions at 

20 V were performed followed by a final calcination (500 °C for the first layer 

in order to enhance the adhesion between the TiO2 layers and the Ti supports, 

and 300 °C for the second layer to preserve the surface area of the particles). 

SEM pictures of the grids, taken by LEO 1430, show that the morphology of 

the powders at nanoscale remained unaltered (Fig 5.13). The TiO2 film 

thickness on the Ti grid is estimated to be about 10 µm. 
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Figure 5.13. SEM image of the titania layer employed in Cr(VI) photo-reduction. 

 

Photocatalytic tests 

Materials 

Cr(VI) solutions were prepared by dissolving the appropriate amount of 

potassium dichromate (Fluka ≥ 99.5 %) in water. Adequate quantities of 

chromium(III) nitrate nonahydrate were dissolved in water to obtain Cr(III) 

solutions. Pyrocatechol violet (PCV, Fluka) and N-(2-Hydroxyethyl)-

ethylenediamine-N,N’,N’-triacetic acid (HEDTA, Fluka ≥ 98.0 %) were used as 

chelating agents, dissolved in water. Acetate buffer (pH = 4.7) was obtained by 

dissolving acetic acid (Fluka >99.8 %) and sodium acetate (anhydrous, ≥99.0 

%) in water. Potassium nitrate solution was prepared from potassium nitrate 

powder (J.T. Baker >99.0 %). 2-Propanol, nitric acid (Fluka 65 %) and 

acetylaceton ReagentPlus were employed for photocatalytic experiments.  

The starting solutions were prepared by dissolving potassium dichromate 

(0.01 mM), isopropyl alcohol (50 mM) and nitric acid in ultrapure water, at a 

pH around 4. The isopropyl alcohol was chosen as scavenger in order to avoid 

the electrons-holes recombination. The photocatalytic reduction was 

conducted in a Pyrex jacket glass cylindrical reactor (V = 200 mL), 

thermostatted at (30 ± 1) °C by continuous water recirculation during the runs 

(reaction time = 90 min). The photon source was provided by a UV lamp (see 

the Appendix for details) fixing the distance from the reactor at 30 cm. At the 

end of the photodegradation tests, the used TiO2 powders immobilized onto 

Ti grids were sonicated in ultrapure water in order to perform XPS analyses  
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Photocatalytic results 

The whole work done in the group laboratories on this topic comprises both 

the photocatalytic reduction of Cr(VI) and its analytical estimation in solution. 

The analytical part allows the fine trace estimation of Cr(VI) during the 

photocatalytic degradation. In the following, the main focus will be kept on 

the photocatalytic part. Details and supplementary electrochemical 

experiments, such as those performed to test the possible interference by 

Cr(III) - the reduced species formed during the photocatalytic tests - can be 

found elsewhere.66  

Once optimized the electroanalytical determination parameters, having 

reached a detection limit (calculated according to IUPAC rules) of 0.01 µM and 

excellent relative linearity behavior, photocatalytic experiments were 

performed on the electrodeposited commercial and home-made titania 

nanopowders. Since the reduction potential of Cr(VI) to Cr(III) is pH dependent 

and the thermodynamic driving force decreases with increasing pH, the 

reduction is favoured at very low pH, typically around 2.61,64,65 Here, to meet 

environmental concerns, a slightly acidic condition (pH 4) was adopted. 

Provided that the addition of organic additives can act as hole scavengers to 

limit the electron-hole recombination,53-55,67 in the present case 50 mM 

isopropyl alcohol (IPA) was used as sacrificial molecule. 

Hombikat UV 100 commercial nanopowders in slurry and electrodeposited 

onto titanium grid by EPD definitely showed different performances towards 

Cr(VI) photoreduction. Fig. 5.14 shows the comparison between the obtained 

results, normalized by the weight of the photocatalyst. Surprisingly, the 

photoreduction in the case of immobilized titania particles is markedly greater 

than that of suspension powders, reaching the  total removal of Cr(VI) in 

around 60 min. This result is not trivial, since opposite trends are present in 

the literature concerning the limited photocatalytic activity of titania 

deposited layers with respect to suspended particles. Many authors 

demonstrate that the resulting efficiency of the Cr(VI) photocatalytic 

reduction is substantially lower than that with a TiO2 powder suspension, 

because of the relatively small surface area of thin film. Yoon et al.68 reported 

that with an initial concentration of Cr(VI) as low as 2 mg L-1, the complete 
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photoreduction of Cr(VI) to Cr(III) over TiO2 nanotubes costed as long as 120 

min.  

Our TiO2 films are deposited onto grids with a large exposed surface area, thus 

preserving the active adsorption sites of the nanopowders. Moreover, as 

reported in a previous work from the group,69 strong adhesion is achieved by 

an optimized heat treatment: 500 °C for the first layer in order to enhance the 

adhesion between the TiO2 layers and the Ti supports, and 300 °C for the 

second layer to preserve the surface area of the particles. As a consequence, 

the best degradation in the case of TiO2 thin films can be explained on the 

grounds of the total absence of turbidity, which is a typical drawback of the 

slurries; in these conditions the actual irradiation power of the lamp is 

preserved. 

 

 
Figure 5.14. Comparison between the Cr(VI) reduction performances of Hombikat 

powders in slurry or electrodeposited on Ti grids. Inset: SEM image of the titania layer. 

 

Additionally, the adhesion of the titania particles on the Ti grids is good. The 

stability of the film was verified by performing reused tests on the catalyst 

also by washing and UV-irradiating regeneration. The photodegradation loss 

of the used film was about 20 % and 30 % for the first and second run, 

respectively. The regeneration test slightly increased the final photocatalytic 

reduction (about 5 %) with respect to the used catalyst. 

Fig. 5.15 displays the percentage of Cr(VI) disappearance as a function of the 

reaction time for the studied photocatalysts.  
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Figure 5.15. Results of the photocatalytic tests for photolysis, adsorption and 

photocatalysis  of  Hombikat, P25 and T.  

 

The direct photolysis of Cr(VI), by using a UV-A lamp, is negligible (<10 %). In 

the absence of irradiation, the depletion by adsorption of Cr(VI) at the titania 

surface after 90 min reaction time reaches different values (see Table 5.7), 

proportionally to the specific surface area of the samples. All the tested 

samples, both commercial and home-made, show excellent photocatalytic 

behavior. The photoreduction sequence follows the relative adsorption 

features: the best performance is obtained in the case of the Hombikat, 

having the higher surface area, while a similar photoactivity occurs for P25 

and T sample, even if after 60 min the home-made one achieves the total 

Cr(VI) reduction. 

Sample Adsorption (%) after 90 min 

P25 25 

T 31 

Hombikat UV100 58 

Table 5.7. Adsorption percentage of all tested electrodeposited samples after 90 min 

(dark tests). 
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Determination of chromium speciation 

In order to evaluate the speciation of chromium at the end of the 

photocatalytic tests, the used TiO2 powders, scratched by the metal grid and 

subsequently dried, were submitted to XPS analyses. High resolution scan of 

Cr 2p multipeaks (Cr 2p3/2 and 2p1/2) is shown in Fig. 5.16 for P25 as a 

representative sample. The best fit procedure yields the presence of three 

components for each doublet attributable to Cr (VI), Cr(III) and Cr(0).70 The 

presence of metallic chromium, thermodynamically inexpiable on the basis of 

the relative TiO2 and Cr(III)/Cr(0) potentials, can be justified only by the 

occurring of possible redox reaction between the scavenger radicals (2-

propanol, in the present case, see Experimental Section) and Cr(III)71 adsorbed 

at the TiO2 surface.64 

 

Figure 5.16. Cr 2p1/2 (BE >580 eV) and Cr 2p3/2 (BE <580 eV) XPS components in the 

case of P25 used sample at the end of the photocatalytic test (90 min).  

Tab. 5.8 reports the binding energies of Cr(VI), Cr(III) and Cr(0), from the fitting 

elaboration of the Cr 2p3/2 peak, for the adopted samples; the atomic ratios 

between each  component and the total chromium is also evaluated. The 

presence of a considerable amount of Cr(III) adsorbed at the titania particles 

confirms the efficient photoreduction process for all the samples, as above 

mentioned. Moreover, in the case of the two commercial powders Cr(0) is 

appreciable; this occurrence could be justified by the interplay between the 

scavenger radicals, produced by the photocatalysis and the different physico-

chemical features of the nanosized powders during the photocatalytic tests.64  

P25

Cr VI

Cr III

Cr 0

B.E. / eV
592             588             584             580            576             572
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Sample 
B. E. Cr 2p3/2 (eV) 

CrVI/Cr CrIII/Cr Cr0/Cr 
CrVI CrIII Cr0 

P25 579.2 576.8 574.6 0.27 0.59 0.14 

T 580.1 577.1  0.31 0.69  

Hombikat UV100 579.4 576.5 574.2 0.28 0.55 0.17 

Table 5.8. Binding energies and ratios of Cr(VI), Cr(III) and Cr(0) on Cr 2p3/2 fitting. 

 

Reaction kinetic 

To obtain the rate constant (k) values for the different catalysts (Tab. 5.9), 

concentration ratios in a logarithmic scale were plotted against time, with k 

values obtained by the linear slopes. All the graphs present good linearity and 

follow closely the photocatalytic sequence, previously discussed (P25 < T < 

Hombikat).  

Fig. 5.17 reports the case of P25, as example. For all the samples the reaction 

kinetics can be described by a pseudo-first order rate equation. This finding is 

not in accordance with what reported by Kajitvichyanukul et al.72 for TiO2 

deposited layers, since they statistically found reaction rates following a zero 

order kinetic model. When comparing Cr(VI) reduction using thin TiO2 film and 

P25, they reported a first order kinetics for the powder. A detailed study on 

chromium(VI) photocatalytic reduction has been performed by Gimenz and 

coworkers using a continuous flow system.73 In their work, the kinetics and 

the influence of catalyst concentration and pH on the reaction rate have been 

analyzed and supported by data from electronic microscopy and adsorption 

techniques. Kinetic results showed a half-order reaction at pH lower than 4, 

and a first-order reaction for pH above 4. In the latter case, deactivation of 

titania was found to occur, due to the fouling of titania caused by chromium 

hydroxides. Their proposed model for catalyst deactivation described the 

performance of the catalyst at the different experimental conditions tested.  
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Figure 5.17. Logarithmic plot adopted to obtain the rate constant for P25 by applying 

a first-order rate equation. 

Sample k × 102/ min-1 R2 

P25 2.5 ± 0.2 0.97 

T 3.0 ± 0.2 0.98 

Hombikat UV100 4.8 ± 0.3 0.98 

Table 5.9. Rate constants for P25, T, and Hombikat obtained by applying a first-order 

equation. 

 

Then, in order to corroborate our results, the k values together with the 

adsorption percentage in the dark of Cr(VI) after 90 min are plotted as the 

function of the surface area (Fig. 5.18); unexpectedly a very similar behavior 

occurs, suggesting that, notwithstanding the use of immobilized catalysts, the 

adsorption mechanisms of Cr(VI) at the surface of the oxide during the 

photoreduction removal is the rate determining step of the process. This 

observation indicates that the present reaction is favoured by small 

crystallites and large surface area. Wang et al.74 found that the photocatalytic 

reduction of Cr(VI) under UV irradiation and in the presence of titania 

dispersion, was dependent on both specific surface area and crystalline 

structure of TiO2 in the absence of any organic compounds, but was 

dominated by the specific surface area of TiO2 in the presence of organic 

compounds, acting as scavenger molecules. 
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Figure 5.18. Linear trends of pseudo-first order kinetic constants and adsorption in the 

dark after 90 min as a function of surface area of the different TiO2 samples. 

Efficiency of HMDE and Bi-SPE in photocatalytic analyses 

For the electroanalytical determination Cr(VI) in solution during the 

photocatalytic tests, the HMDE method was also employed for comparison, 

showing that bismuth screen-printed electrodes offer similar or even better 

results, being less affected by interferences of this complex matrix. 

To compare the efficiency of both methods in a practical situation, analyses 

were performed on the same samples derived from T photocatalytic tests with 

HMDE and Bi-SPE. As Fig. 5.19 shows, HMDE and Bi-SPE results are in good 

accordance, but HMDE is affected by photocatalytic matrix interferences, 

giving scattered values. To the contrary, the complex matrix has not a great 

influence on the Bi-SPE.  
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Figure 5.19. Cr(VI) disappearance in photocatalytic test with sample T monitored by 

HMDE and Bi-SPE. 
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5.4. Ethanol 

The pollutant 

Even if ethanol is one of the best tools we may have to fight air pollution from 

vehicles, it has been calculated that ethanol would end up dumping more 

ozone into atmosphere than gasoline does. Indeed, ethanol is an important 

atmospheric pollutant: it is a commonly used industrial solvent and a fuel 

additive, besides being produced by breweries and bakeries. Moreover, 

atmospheric concentrations of this pollutant are expected to rise in 

consequence of the use of ethanol as biofuel in the automotive sector 

(bioethanol). Even if ethanol itself has a limited toxicity, its main degradation 

intermediate, acetaldehyde, is far more toxic and plays a crucial role in photo-

oxidative smog processes. Besides, acetaldehyde is an important indoor 

pollutant (acetaldehyde concentrations are very often higher indoors than 

outdoors), released by some building materials such as rigid polyurethane 

foams, and some consumer products such as cigarettes, adhesives, coatings, 

lubricants, inks, and nail polish remover.  

The photocatalyst  

In the following two types of photocatalytic tests will be exposed. The first 

one was performed in liquid media, employing N-TiO2 photocatalysts in 

powdery form (as a slurry), and monitored by total organic carbon analysis. 

On the contrary, the second one involved Ag- and N,Ag-TiO2 samples 

deposited on a glass substrate, and gas phase ethanol degradation was 

followed by gas chromatography. 

N-TiO2 

Photocatalytic set up 

To test the photoactivity of the N-doped samples, both as-prepared and after 

being stored several days in the dark, the degradation of ethanol in aqueous 

media was monitored at 308 K in a custom-made Pyrex glass batch reactor.  

The initial concentration of ethanol was set at 1 mM, corresponding to a value 

of about 25 ppm of organic carbon as read by TOC analysis. Fresh ethanol 

solutions were prepared before each test. N-TiO2 powders were finely ground 

in a mortar and used with a concentration of 1 g L-1 as slurry in 670 mL of the 

above mentioned ethanol solution. Photolysis experiments (in the absence of 
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photocatalyst) and dark tests were performed to evaluate the possible 

degradation of the organic molecule and the correspondent adsorption, 

respectively. Both types of experiments led to a 10 % of mineralization. The 

reproducibility of the results was checked by repeating the tests and was 

found to be within acceptable limits (5 %). 

The proceeding of the reaction was followed by TOC analyses using a 

Shimadzu TOC-V CPN total organic carbon analyzer. FTIR (Fourier transform 

infrared) spectra on the powders before and after photocatalysis were 

recorded by a Jasco 4200 accessorized by attenuated total reflectance (ATR) 

module, in the region 1000–4000 cm-1.  

 

Photocatalytic results 

Ethanol degradation tests under UV and visible irradiation were performed for 

all these N-doped samples. The concentration of this pollutant was 

quantitatively monitored in time using TOC. In the degradation curves, the 

experimental points were interpolated by linear regressions with high 

correlation coefficients (R2 >0.984) to obtain the kinetic rate constants. From 

such results, ethanol breakdown seemed to follow a zero order kinetics. 

However, in the literature a first order reaction has also been reported for 

ethanol photocatalytic oxidation in the gas phase,75 probably due to the 

competition in adsorption between ethanol and its main degradation 

intermediate, acetaldehyde.76-79 This byproduct is supposed to deeply affect 

the rate determining step of the reaction. Since it strongly adsorbs to the 

titania surface, the catalyst poisoning could partially occur: it can’t be 

excluded that acetaldehyde somehow saturates the active sites of the 

photocatalyst thus eventually inhibiting a faster proceeding of ethanol 

degradation. Moreover, TOC analysis merely evaluates organic carbon based 

on the number of C atoms in the molecule, not discriminating between 

ethanol and acetaldehyde. This could account for the decay of ethanol 

concentration following a trend which is not steep exponential. Indeed, as 

already stated, the ethanol concentration decreased steadily over the whole 

reaction time. 

Dark test, photolysis and both UV and visible photocatalysis by using a freshly 

prepared selected sample (TN_NH3) are compared in Fig. 5.20. It can be 

immediately observed that TN_NH3 shows relatively poorer photocatalytic 

activity under visible light than under UV (about 23% and 57% after 6 h, 
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respectively), while adsorption and photolysis account for a very small part of 

ethanol mineralization. It should be noted that the final mineralization in the 

case of visible photolysis is slightly higher with respect to the UV case due to 

the higher effective power of the lamp (see the Appendix).  

 

 

Figure 5.20. Ethanol mineralization curves indicating the performances of TN_NH3 

sample freshly prepared: photocatalysis under UV and visible light, photolysis under 

both types of illumination and dark experiment for comparison.  

TN_NH3 sample has been selected as a representative case of all our N-doped 

samples. It has to be underlined that the activity under visible light, though 

relatively low, is however not poor since the mineralization and not only the 

pollutant disappearance has been evaluated. In Table 5.10 the final ethanol 

mineralization percentages are reported for all “fresh” N-doped samples 

under either UV or visible irradiation.  

 

Sample % mineralization  UV % mineralization  vis 

TN_TEA 65 20 

TN_urea 63 17 

TN_NH3 62 24 

Table 5.10. Photocatalytic results expressed as ethanol mineralization percentage for 

all “fresh” N-doped samples under UV and visible irradiation.  
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Apparently, for each irradiation source all values are very similar and no 

appreciable differences can be noticed. Different nitrogen sources introduce 

relevant differences in the material features, but in our case do not lead to 

striking dissimilarities in the photocatalytic performance of the samples since, 

presumably, different factors tend to counterbalance each other. This is why 

all N-doped samples do not show a distinct final mineralization, converging 

more or less to the same values. Moreover, from the structural point of view, 

all N-doped titania samples show high tendency for crystallization, no increase 

in crystal size due to any specific dopant and a fairly equivalent predominance 

of the anatase polymorph, which is known to be more reactive in 

photocatalytic processes.72,80 The chemical structure of the organic 

compounds adsorbed on the oxide surface was analyzed using FTIR in the 

attenuate reflectance mode. Yu and Chuang79 found out that the adsorption 

of ethanol on the TiO2 surface at room temperature forms both molecularly 

adsorbed and dissociatively adsorbed ethanol (adsorbed ethoxy), which they 

reported to exhibit similar bands of C–H stretching vibrations at 2971 and 

2931 cm−1, as well as a C–O stretching vibration at 1052 cm−1. We could not 

clearly observe such bands in our spectra. However, the main peaks refer to 

adsorbed acetaldehyde and reaction intermediate species (acetic acid, 

formaldehyde and formic acid), as also reported by Yu and Chuang79 and 

illustrated in Fig. 5.21 (a selected range of the spectrum obtained for TN_NH3 

by subtracting the curves of the as prepared samples from the spectra of the 

used catalyst is displayed). More specifically, adsorbed acetaldehyde gives rise 

to the presence of a peak at 1718 cm−1. Also adsorbed acetic acid (CH3COOHad) 

could be present, owing to the peak found at about 1684 cm-1. The products 

of complete mineralization also give characteristic bands (CO2,ad at 2363 cm−1 

and H2Oad at 1651 cm−1). Other authors have also suggested that organic 

species may displace the adsorbed water from the catalyst surface.76,77,79,81  
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Figure 5.21. FTIR-ATR spectra of the same sample after the whole time of reaction (6 

h) under UV light. The curve of the as prepared catalyst was subtracted. 

 

Fig. 5.22 highlights the difference between the photocatalytic activity under 

UV for “fresh” and “old” samples, for all doped materials, as for the 

photocatalytic degradation of the organic compound (“Δmin” values obtained 

as the difference in ethanol mineralization between “fresh” and “old”  two 

months  samples, at each time “t”). It can be clearly seen that the ammonia 

doped oxide exhibits the larger split between the “fresh” sample tested after 

24 hours from the calcination and the same sample calcined about one or two 

months (40 up to 60 days) before. 

 

 
Figure 5.22. Difference between “fresh” and “old” sample performance in ethanol 

mineralization (Δmin) for TN_urea, TN_NH3 and TN_TEA under UV illumination.  
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The rate constants at room temperature in the UV case were calculated 

according to the zero order reaction law and listed in Table 5.11. It can be 

noticed that the main difference lies between “fresh” and “old” samples 

performances, while the rate constants of the three “fresh” doped oxides 

mainly level off to very similar values, in the range 32-36   10-3 mg L-1 min-1. 

Sample 
k   103 

(mg L-1min-1) 

TN_urea 32 

TN_urea_old 33 

TN_NH3 36 

TN_ NH3_old 27 

TN_TEA 36 

TN_TEA_old 31 

Table 5.11. Kinetic constants of the same photocatalytic oxidation for all doped 

samples. 

All the N-doped samples degraded about 50 % of the initial ethanol 

concentration in 6 hours. The freshly prepared TN_urea, which has the highest 

specific surface area among the N-doped samples, does not show the highest 

rate constant (Table 5.11), even though all values for the “fresh” samples are 

very similar to each other. On the other hand, the adsorption phenomena, 

evaluated in the dark on the same time scale as the photocatalytic tests for all 

these oxides, take place according to their specific surface areas.  

When comparing Fig. 5.22 with the EPR intensity decay for “aged” samples, it 

should be noted that the photocatalytic tests remarkably follow the trend 

obtained by EPR for the concentration of the paramagnetic species, indicating 

a clear decay for TN_NH3. This means that such sample contains a number of 

paramagnetic species which after about two months from the synthesis and 

calcinations is less than half the initial value. Also within a much shorter span 

of time the amount of paramagnetic centers is diminished with respect to that 

measured on the as-synthesized sample. Consequently, if the photocatalytic 

activity of N-doped titania is directly or indirectly related to the presence of 

paramagnetic species,82,83 it should be expected not to be favoured in the case 

of our ammonia-doped sample tested after one or two months from the 
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synthesis. Indeed, Δmin is much higher for TN_NH3 than for TN_TEA and 

TN_urea. As for these other two N-doped samples, the former exhibits a very 

low intensity of the paramagnetic signal even immediately after the 

preparation, while the latter has the peculiarity of a nearly constant amount 

of paramagnetic species. Accordingly, TN_TEA and TN_urea samples do not 

display a pronounced photocatalytic advantage in using the “fresh” sample 

instead of the “aged” one (Fig. 5.22). 

Curiously, TN_TEA, though presenting a much lower concentration of 

paramagnetic species –already as a “fresh” sample – and a lower surface area, 

is as active as TN_NH3. This superior photocatalytic activity of TEA-doped 

titania has been reported elsewhere by our group2 and other authors.84,85 

Kometani et al.84 reported that the most efficient N-doping could be 

accomplished by the batch treatment with a small amount of TEA; the as-

obtained catalyst showed the highest photocatalytic activity for both the 

reduction of Ag+ ions and the degradation of methylene blue under visible 

light irradiation. This result is justified by the authors in view of the small bond 

dissociation energy of about 231 kJ mol–1 for TEA (3   EC–N), which is far lower 

than that for ammonia (about 1.170 kJ mol–1, 3   EN–H). Thus, the authors also 

affirm that the highest dissociation energy for ammonia leads to the lowest 

efficiency of nitrogen doping, though, in any case, the thermal energy 

required to generate N atom is considerably large, resulting in the low 

efficiency of nitrogen doping in general. By comparing titania systems doped 

with three different organic sources, Ananpattarachai and coworkers found 

out the mineralization ability towards 2-chlorophenol in the order 

diethanolamine > triethylamine > urea > undoped TiO2.
85 Thus, once again 

TEA-doped titania turned out to be better performing than urea-doped, which 

the authors reported to be very homogeneous in particle size distribution 

(contrary to the case of TEA-TiO2 powders which presented aggregates 

consisting of smaller – 100 nm – to larger – 500 nm – particles). 

In our case, the above mentioned collapse of the total pore volume for 

TN_TEA and the hindered accessibility of the pores with smaller diameter 

owing to the adsorbed species in the micropores for TN_urea are different 

reasons which both limit the photocatalytic activity. It could be argued that   

the accessibility of the inner surfaces of these catalysts, doped with organic N 

sources, is mainly blocked.  
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TiO2 synthesised with organic materials under air atmosphere at same 

temperature also provided no significant absorption in the visible light region. 

This information suggests that organic materials introduced the nitrogen to N-

doped TiO2 under the nitrogen atmosphere reaction and visible light 

absorption ability is mainly dependent on the type of nitrogen dopant. Among 

the three different nitrogen sources, the urea dopant definitely leads to the 

most active doped titania even after 2-month aging. 

Ag-TiO2 and N,Ag-TiO2 

Photocatalytic setup 

28 mg of powdery oxide were suspended in 5 mL 2-propanol and sonicated for 

15 min. Then, the suspension was drop-casted and dried onto a circular glass 

substrate.  

The as-prepared TiO2 film was positioned inside the jacketed reactor (a Pyrex® 

glass cylindrical reactor with a capacity of 7.5 L and a diameter of 22 cm). 5 µL 

of ethanol were injected with a (10 ± 0.1)l syringe inside the reactor, which 

was kept at 40 °C during the photocatalytic tests. After 20 min of dark 

equilibration, a measurement cycle under illumination was started. 

Photocatalytic tests in controlled air were performed in batch conditions. The 

sample could receive light irradiation owing to a UV-transparent window on 

the top of the reactor, with the UV lamp positioned just over it, at about 50 

cm from the sample. The photocatalytic reaction was followed for 1 h using an 

Agilent 7820A gas chromatograph, with a measurement every 7 min. The 

reactor was filled with the gaseous mixture from cylinder. Before every 

measurement dry gaseous mixture from cylinder was flown inside the reactor 

for about 30 minutes in order to substitute atmospheric air (this step was 

considered completed when the CO2 peak measured by the gas 

chromatograph disappeared).  

Photocatalytic results 

The concentrations of ethanol, acetaldehyde and carbon dioxide were 

measured during the entire photocatalytic test. No other peaks were 

detected. Indeed, acetaldehyde has widely been acknowledged as the main 

gaseous intermediate in ethanol degradation. Several authors found lower 

concentrations of other products, such as acetic acid and formaldehyde. 
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However, acetic acid and formic acid are scarcely detectable by the gas 

chromatographic technique, as they are less volatile than acetaldehyde and 

tend to adsorb onto the catalyst surface. For this reason, they are more easily 

detectable analyzing the catalyst surface using FT-IR or with a solid-liquid 

extraction of the used catalyst. Carbon dioxide and water are invariably the 

final products of the oxidation over TiO2. Accordingly, the final plateau in the 

CO2 curve shows that the reaction went to completion. 

A typical photocatalytic test gives the curves shown in Fig. 5.23. Difference can 

be noted between Fig. 5.23a and Fig. 5.23b, relative to TNAg_0.01 and 

TNAg_0.05, respectively: in the latter case ethanol total degradation is 

reached at longer times than for the former sample, CO2 production rate is 

slower, and acetaldehyde saturates without disappearing at the end of the 

reaction. This finding will be rediscussed in the following. 

  

Figure 5.23.  Species detected by gas chromatographic analysis during the 

photocatalytic oxidation of ethanol over TiO2 as a function of time: the disappearance 

of ethanol was followed along with the formation of carbon dioxide as final product 

(total mineralization) and acetaldehyde as reaction intermediate. Samples TNAg_0.01 

(a) and TNAg_0.05 (b). 

However, the curves reported in Fig. 5.23a show that the reaction goes to 

completion. Indeed, the acetaldehyde concentration decreases under the 

detection limit and the CO2 concentration is compatible with a complete 

mineralization of acetaldehyde. 

Ethanol degradation shows a good linear ln(c0/c) vs t correlation for all 

samples (see Fig. 5.24 for a representative sample, TNAg_0.01), which usually 

indicates a pseudo-first order kinetics. However, in some cases (samples TN, 

Tag_0.05, and TNAg_0.05), linearity gets lost after the first 20-30 min of 
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reaction proceeding. Since an initial dark period was spent for equilibration of 

the system (the initial gas-phase ethanol concentration was lower than the 

nominal introduced concentration due to adsorption phenomena), the initial 

points of the ‘concentration vs time’ curve were considered for the 

determination of the rate constant of ethanol degradation (see Fig. 5.24). 

  
Figure 5.24. Ethanol degradation expressed as concentration vs time and ln(c0/c) vs 

time to evaluate the kinetic constant (sample TNAg_0.01 as representative for all 

doped and codoped titania, at least in the first 15-30 min of reaction proceeding). 

Experiments with different initial concentration of the pollutant would be 

needed if one aims at confirming or excluding a first order kinetics or to assess 

if the reaction actually follows a Langmuir-Hinshelwood kinetics (linear 

correlation in a kt=0 vs 1/C0 graph). This consideration is related to the issue of 

a possible competition for adsorption among ethanol, acetaldehyde and other 

reaction intermediates and products. Results herein reported can be 

interpreted as deriving from a competitive adsorption of several species on 

the titania surface.  

As a matter of fact, different catalysts have different adsorption properties, 

resulting in diverse initial amounts of ethanol adsorbed, and different 

mineralization percentage (see Table 5.12). Note that ethanol degradation is 

reported “after 15 min” because at the end of the reaction all samples 

produce a 100 % ethanol degradation. On the contrary, CO2 production is 

reported “after 45 min”. Hereafter (Table 5.12, 3rd column) the kinetic 

constants for ethanol photo-oxidation over tested samples are also reported. 

It appears that they follow quite closely the trend of ethanol degradation 

percentages.   
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Sample 
EtOH degrad. % 

(after 15 min) 
k30 (mg L-1min-1) 

CO2 production % 

(after 45 min) 

T 60 0.039 34 

TN 68 0.042 47 

TAg_0.01 73 0.078 70 

TAg_0.01_R 76 0.100 79 

TAg_0.05 49 0.044 11 

TAg_0.05_R 57 0.080 36 

TNAg_0.01 77 0.097 87 

TNAg_0.01_R 78 0.106 88 

TNAg_0.05 53 0.050 13 

TNAg_0.05_R 62 0.101 21 

Table 5.12. Ethanol degradation after 15 min, CO2 production after 45 min, and kinetic 

rate constants for ethanol degradation – evaluated after 30 min of reaction – for 

(N,)Ag-doped titania samples. 

The highest photocatalytic performance was reached by TNAg_0.01_R, that is 

a codoped sample with chemical reduction treatment. Samples with a higher 

Ag percentage (Ag/Ti molar ratio equal to 5 %) lead to a lower photocatalytic 

activity than the reference TN (TiO2 doped with only nitrogen deriving from 

urea source). However, also in this series, the beneficial effect of both the 

presence of codopants and the chemical reduction are appreciable. 

Nonetheless, oxides with Ag/Ti = 0.05, although degrading all ethanol amount 

at the end of the experiment, show limitations towards acetaldehyde 

evolution (which reaches a plateau) and mineralization (slower rate of CO2 

production).  

Furthermore, the photocatalytic efficiency depends on the nominal oxidation 

state of the metal dopant, i.e., allegedly metallic Ag seems to give a higher 

performance with respect to the oxidized Ag(I) specie.86  

It has to be noted that TNAg_0.01 performed better than TAg_0.01, even 

though the latter has a higher surface area (see Tab. 3.16). This means that 

codoping leads to a slightly improvement in the photocatalytic activity despite 

the decrease in surface area. Such a result implies that the gain in 

photocatalysis cannot only be attributed to the increase in the interfacial 

charge transfer rate and efficiency due to the specific surface area increase. 
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He et al., studying Ag-doped titania towards the degradation of methylene 

blue in aqueous media, invoked electronic effects:87 as the Fermi level of TiO2 

is higher than that of Ag, electrons would transfer from TiO2 film to metallic 

Ag particles spreading on the TiO2 film resulting in a space charge layer at the 

boundaries between Ag and TiO2, which enhance the photogenerated 

electron-hole pair separation and inhibits their recombination. Unfortunately, 

photocurrent measurements to evaluate recombination rate have proved to 

be problematic and highly challenging on titania promoted with silver, as 

reported in chapter 4. Thus, future work will be devoted to elucidate these 

aspects.  

As evident from Tab. 5.12, codoping does not a priori lead to a high 

performance, but it seems to induce a synergistic effect with the Ag dopant. 

Indeed, N,Ag codoped samples do not show the highest photocatalytic activity 

among all samples, but both TNAg_0.05 and TNAg_0.01 exhibit better results 

than the correspondent Tag_0.05 and TAg_0.01. Literature evidences88 

pointed out that high dopant concentrations favor segregation phenomena of 

the dopant itself to the thin film surface, both of which is stated to be 

detrimental to the photocatalytic activity. 

Photocatalytic tests with selected (N,)Ag-doped titania photocatalysts were 

also performed upon visible-light irradiation (see the Appendix for details 

about the lamp utilized), keeping unvaried all other experimental conditions. 

It should be noted, however, that in this way ethanol degradation takes place 

much more slowly. Thus, the total reaction time has been set to 210 min, 

instead of the 45 min considered for UV experiments. Preliminary results are 

reported in Tab. 5.13. It is immediately clear that kinetic constants, evaluated 

after 90 min of reaction, are lower than those obtained upon UV-light 

irradiation. It is here underlined that the effective power of the visible-light 

lamp is considerably lower than that of the UV-light lamp at the same working 

distance (9 and 64 mW cm-2, respectively, see the plot in the Appendix). 

Moreover, the trend of the four samples reported in Tab. 5.13 is not the same 

as that found under UV light, with TAg_0.01 resulting the best photocatalyst 

when operating under visible light. TN and TAg_0.01, the two best performing 

samples, also show a nearly 100 % ethanol degradation (Table 3.12, 2nd 

column), while TNAg_0.01 only reaches 53 %. Degradation percentages after 

90 min of reactions (not reported in the Table) are 65, 74, 62, 36 for TN, 
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TAg_0.01, TAg_0.01_R, and TNAg_0.01, respectively. As for carbon dioxide 

production at the end of the reaction, TNAg_0.01 does not exhibit even 10 % 

mineralization, whereas the other single doped samples lead to a final 

mineralization percentage in the range 10-16 (Table 5.13, 4th column). 

Sample EtOH degrad. %  k90   10-2  
(mg L-1min-1) 

CO2 production %  

TN 99 1.18 16 

TAg_0.01 99 1.87 13 

TAg_0.01_R 91 1.10 10 

TNAg_0.01 53 0.52 4 

Table 5.13. Ethanol degradation, CO2 production (both considered at the end of the 

test, namely after 210 min), and kinetic rate constants for ethanol degradation – 

evaluated after 90 min of reaction – for selected (N,Ag)-doped titania samples. 

Photocatalytic ethanol degradation in batch reactors has been investigated by 

several authors. Then, some studies explored in details the influence of 

experimental conditions on the breakdown mechanism and kinetics. However, 

no general agreement on the reaction mechanism and the related kinetic 

description has been reached yet. Sauer and Ollis can be annoverated among 

the first authors carrying out a study on ethanol photodegradation.89 They 

proposed that ethanol reacts to acetaldehyde, which then forms CO2 both 

directly and through a formaldehyde intermediate. To provide closure on the 

carbon mass balance, they hypothesized the presence of other intermediates, 

namely acetic acid and formic acid, which desorb from the illuminated 

portions of the catalyst and reversibly collect on the dark TiO2. The authors 

suggested that acetic acid and formic acid react quickly on illuminated TiO2 

and therefore are present only in low concentrations for a fully illuminated 

reactor. They developed a kinetic model for the ethanol photocatalytic 

oxidation assuming a single-state Langmuir Hinshelwood rate equation, where 

the oxidation intermediates compete with ethanol for adsorption. Then, some 

authors employed a complex mechanism of ethanol degradation,90 whereas 

some others proposed two step mechanism.91,92 As already mentioned above 

for photocatalytic tests on ethanol in aqueous medium, Muggli and co-

workers hypothesized a mechanism based on the presence of two types of 
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ethanol adsorption sites with weak and strong adsorption,77 as confirmed 

later on by other authors.93  

However, to draw a possible photocatalytic reaction mechanism is outside the 

scope of this work.  

Several literature studies point out that the exact reaction pathway and 

kinetics may be influenced by a series of parameters, such as sample 

characteristics, like surface acidity,78 surface hydration79 and the presence of 

dopants. As for this latter case, literature examples of Ag-doped TiO2 

photocatalysis are not abundant. Zhang et al. reported about freshly prepared 

silver-coated TiO2 with a 20 % higher photocatalytic activity than uncoated 

TiO2.
94 However, the photocatalytic performance decreased with an increase 

in UV exposure time and the deactivated sample changed into brownish-gray 

color. The authors suggested that deactivated silver-coated TiO2 photocatalyst 

can be easily reactivated by ambient light illumination. The process converts 

Ag0 to Ag(I) in the form of Ag2O. When the activated catalyst is used in 

photocatalysis, Ag(I) would be eventually reduced to Ag0 forming fresh non-

aggregated silver nanoparticles on TiO2. The Ag+ ions can definitely oxidize the 

partially degraded species adsorbed on the catalyst during the photocatalytic 

process and help to regenerate a clean surface. Yuan et al. prepared Ag,N-

codoped TiO2 with antibacterial properties.95 Among all their samples, a 

1% Ag-N-TiO2 (which presents the same dopant concentration as the best 

performing sample presented in this work) had the highest antibacterial 

activity under fluorescent light irradiation. Finally, Wan and coworkers tested 

the photoelectrocatalytic performance of Ag/TiO2-xNx nanotubes obtaining 

encouraging results under both UV and visible light.96  
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Dye-sensitized solar cells (DCSs) can be considered as photoelectrochemical 

systems where dye molecules are chemisorbed (attached) to a wide-band-gap 

mesoporous metal oxide (i.e., TiO2) film. Photon absorption leads to excitation 

of the dye (photoactive component), followed by electron injection from the 

dye into the conduction band of the metal oxide, leaving the dye in the 

oxidized state. This latter has to be reduced by the electrolyte in order to start 

a new cycle. After charge separation has occurred, electron transport takes 

place. This is the typical case of n-type behavior of the inorganic 

semiconductor, which preferentially implies that holes are injected into the 

electrolyte. Within this picture, electrons have to reach the back contact and 

flow through an outer electric circuit in order to get the effective current out 

of the solar cell. 

In the search for low-cost photovoltaic (PV) devices, DSCs surely are 

considered promising, even though much research has still to be conducted to 

optimize their efficiency. Indeed, the estimated and actual manufacturing 

costs for DSCs are minor to the projected costs of other PV technologies. 

Significant progress has been made in the transition from glass substrates to 

plastic foils and from batch to continuous processing. Important 

improvements reached by using solid state electrolytes or hole conductor 

layers make new types of DCSs on the verge of commercialization.1,2  

6.1 Solar cells’ characterization  

The key parameters used to characterize a DSC are the open circuit voltage 

(VOC), the short circuit current density (JSC), the fill factor (FF) and the 

efficiency (η), which ultimately indicates the electrical output power of the 

solar cell. They are all measured under a set of standard conditions,3 which 

essentially specify that the temperature of the cell should be 25 °C and the 

solar radiation incident on the cell should have a total power density of 1000 

W m-2, with a spectral power distribution characterized as AM 1.5. Air mass 

1.5 global (AM 1.5G) illumination is part of the standard test conditions for PV 

cells and indicates the intensity of incoming light equivalent to the sun shining 

through the atmosphere to sea level, with oxygen and nitrogen absorption, at 

an oblique angle 48.2 deg from the zenith. 
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The open circuit voltage represents the voltage that can be generated in such 

device and depends on the difference of the redox potential of the electrolyte 

and the quasi-Fermi level of TiO2. However, the VOC was found to depend also 

on the recombination rates, to the sensitizer and its adsorption mode. Indeed, 

the sensitizers adsorption geometry induces substantial downshift of the 

conduction band energy of the metal oxide thereby reducing the VOC.4 

Moreover, the necessity of a thermodynamic driving force to achieve charge 

separation reduces the maximum voltage that can be generated.5  

The short-circuit current is the current through the solar cell when the voltage 

across the solar cell is zero (i.e., when the solar cell is short circuited). To 

remove the dependence of the solar cell area, it is more common to list the 

short-circuit current density (JSC) rather than the short-circuit current (ISC). In 

this thesis it will be done this way since the active area of the solar cells is 

always smaller than 1 cm2. Such parameter is due to the generation and 

collection of light-generated carriers. For an ideal solar cell at most moderate 

resistive loss mechanisms, the short-circuit current and the light-generated 

current are identical. Therefore, the short-circuit current is the largest current 

which may be drawn from the solar cell. It is closely linked to the absorption 

spectrum of the dye and to how finely this matches the solar spectrum; then, 

in order to have a good light harvesting, a high TiO2 surface area is needed so 

that the dye can more easily adsorb and also charge separation can be 

facilitated. The short-circuit current is also affected by other factors such as 

the number of photons (i.e., the power of the incident light source – direct 

dependence), the optical properties (absorption and reflection) of the solar 

cell, and its collection probability, which, in turn, depends chiefly on the 

surface passivation and the minority carrier lifetime. Indeed, when comparing 

solar cells of the same type of material, diffusion length and surface 

passivation represent the most critical material parameters. In a cell with a 

perfectly passivated surface and uniform generation of charge carriers, the 

short-circuit current depends strongly on the generation rate and the diffusion 

length. As excitons need to be transferred to the vicinity of an interface to be 

charged-separated, the exciton diffusion length (LXD) – see definition in 

paragraph 6.2 – can be a limiting factor to device performance. 

The fill factor of the solar cell is a measure of decrease in photocurrent with 

increase in photovoltage and could be qualitatively determined by the 

“squareness” of the I–V curve. Ideally, the power generated within the cell 
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should dissipate at the external circuit. Parallel current paths, like charge 

recombination and electron back transfer within the device are possible 

causes of poor fill factor. 

The conversion efficiency of the solar cell (η), is defined as the ratio of the 

maximum power output (Pmax) to the power input (Pin) to the cell, defined as 

the total radiant energy incident on the surface of the cell: 

η  
    

   
 

         

   
   (eq. 6.1) 

i.e., higher JSC, VOC, and FF for lower solar irradiance are the key for increased 

η.  

Maximum efficiency is obtained when power delivered to the load is Pmax. 

Incident optical power is normally specified as the solar power on the surface 

of the earth which is approximately 1 mW mm-2. JSC is directly proportional to 

the incident optical power Pin; but VOC also increases logarithmically with the 

incident power. So the overall efficiency of the solar cell is expected to 

increase logarithmically with the incident power. However, at high sunlight 

concentration thermal effects and electrical losses in the series resistance of 

the solar cell limit the efficiency enhancement that can be achieved. As a 

result, the efficiency of practical solar cells peaks at some finite concentration 

level. 

The mesoporous metal oxide network directly influences all the above 

mentioned parameters. Thus reducing the losses in the inorganic 

semiconductor network, improvements in the efficiency of the solar cell could 

be achieved.   

As shown in Figure 6.1, solar cell efficiencies vary from 6 % for amorphous 

silicon-based solar cells to 40.7 % with multiple-junction research lab cells and 

42.8 % with multiple dies assembled into a hybrid package.6  
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Figure 6.1. Reported timeline of solar cells energy conversion efficiency (from 

National Renewable Energy Laboratory, USA). 
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A solar cell may be represented by the equivalent circuit model shown in 

Figure 6.2, which consists of a light-induced current source (IL), a diode that 

generates a saturation current, a series resistance (Rs), and a shunt resistance 

(Rsh). The series resistance is due to the resistance of the metal contacts, 

ohmic drops in the front surface of the cell, impurity concentrations, and 

junction depth. The main impact of series resistance is to reduce the fill factor, 

although excessively high values may also reduce the short-circuit current. 

Ideally, the series resistance should be zero; thus, it should be minimized. The 

shunt resistance represents the loss due to surface leakage along the edge of 

the cell or to crystal defects. It should be ideally infinite and thus maximized in 

a real device. 

 

Figure 6.2. Idealized equivalent circuit of a photovoltaic cell. 

A variety of measurements are used to characterize solar cells performance, 

including its output and its efficiency. This electrical characterization is 

performed as part of research and development of photovoltaic cells and 

materials, as well as during the manufacturing process.  

Among the techniques mainly used to characterize DSCs in this thesis work, 

photoelectric current (I–V) measurements and incident photon to conversion 

efficiency (IPCE) have been used. 

 

Current-voltage measurements and incident photon to current conversion 

efficiency (IPCE) measurements  

Typical voltage-current characteristics, known as the I-V (or J-V, according to 

the density of current considered instead of the current intensity) curve of a 

diode without illumination is shown in Fig. 6.3. Without illumination, no 

current flows through the diode unless there is an external potential applied. 

With incident sunlight, the I-V curve shifts up and indicates that there is an 

external current flowing from the solar cell to a passive load. 
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Figure 6.3. The progression of the solar cell I-V curve as the incident light increases. 

Short circuit current, ISC, flows with zero external resistance (V=0) and is the 

maximum current delivered by the solar cell at any illumination level. 

Similarly, the open circuit voltage, VOC, is the potential which is developed 

across the terminals of the solar cell when the resistance is very large. Note 

that no power is generated when open circuit voltage or short circuit current 

is measured. Thus, the power delivered to the load is zero at both extremes 

and reaches a maximum (Pmax) at a finite load resistance value. In Fig. 6.4, Pmax 

is shown as the area of the shaded rectangle (which is the largest one under 

the I-V curve). 

 
Figure 6.4. Typical forward bias I-V characteristics of a PV cell. 

The overall light-to-electricity conversion efficiency (η), fill factor (FF), open-

circuit voltage (VOC), and short-circuit current density (Jsc) were obtained 

through the current-voltage characteristics of a solar cell at room temperature 

and in ambient atmosphere. Measurements were performed using a Keithley 

2400 source-meter and a Newport solar simulator (model 91160) giving light 
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with AM 1.5G spectral distribution, which was calibrated using a certified 

reference solar cell (Fraunhofer ISE) to an intensity 1000 W m-2.  

Incident photon to current conversion efficiency (IPCE) - also known as 

external quantum efficiency (EQE) - spectra were recorded using a computer-

controlled setup consisting of a xenon light source (Spectral Products ASB-XE-

175), a monochromator (AB301-T), and a Keithley 2007 multimeter. 

It has to be underlined that it is not correct to assume linearity for current 

measured and light intensity. If not otherwise stated, J-V and IPCE are 

recorded with a different light intensity (i.e., 1000 W m-2 and 100 W m-2, 

respectively) in standard conditions.  

Photovoltaic performance was measured by using a black mask which was 1 

mm wider than the active area of the cell to avoid significant additional 

contribution from light falling on the device outside the active area. During 

characterization, the solar cell devices were pressed together with clamps. 

Data listed in the following represent the average values of best cells for each 

type studied.  

In an illuminated solar cell under equilibrium open-circuit conditions, charge 

carrier separation rate at the hetero-interface equals the recombination rate. 

When switching off the illumination source a new equilibrium involving the 

recombination of charge carriers will be established. This process can be 

monitored following the decay of the open circuit voltage. Thus, open-circuit 

photovoltage (VOC) decay measurements were carried out on a computer 

controlled white LED in combination with a DAQ multi-meter used to read out 

the voltage decay of a solar cell device after turning off the illumination 

source.  

Light absorption and charge separation 

The fraction of light absorbed by the active component(s) is the light 

harvesting efficiency (LHE). The internal quantum efficiency (IQE) includes all 

the processes that lead to the generation of separated charge carriers. The 

product of LHE and IQE is referred to as the external quantum efficiency (EQE 

or IPCE, incident photon-to-current conversion efficiency), which is the 

fraction of photons incident on the device that are converted into electrons 

flowing in an external circuit. As the EQE is commonly determined under 

short-circuit conditions, the integrated EQE spectra should correspond to JSC. 
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The IPCE is a wavelength-dependent parameter which is used to describe the 

conversion efficiency from incident photons to electrons, and it can be 

obtained by the current density generated by a solar cell under 

monochromatic irradiation Pspec (spectral photon flux Фspec) according to the 

following equation:  

          
      

Ф       
 

  

 
 

      

          
 

           

        
   (eq. 6.2) 

Along with the working principles of the DSC (chapter 1.3.1), the IPCE can be 

also expressed as the product of the light harvesting efficiency (LHE), the 

charge injection efficiency (ηinj), the charge collection efficiency (ηcoll) and the 

regeneration efficiency (ηreg), which is summarized in equation 6.3: 

                            (eq. 6.3) 

The IPCE is often measured at short circuit by recording the current generated 

by the solar cell during monochromatic irradiation. In dye sensitized solar cells 

the IPCE spectrum should resemble the absorption spectrum of the employed 

sensitizer dye.  

 

Recombination of charge carriers: losses in DSCs 

Losses due to charge recombination between the electrons in the 

semiconductor and the oxidized species in the redox electrolyte limit the DSC 

efficiency by lowering the charge-collection efficiency and, therefore, the 

photocurrent. In a paper published in 2010, Snaith reviewed the electrical and 

optical losses in the dye-sensitized system.7 He specifically highlighted the 

main losses in potential from the conversion of an absorbed photon at the 

optical bandgap of the sensitizer to the open-circuit voltage generated by the 

solar cell. For the best performing DSCs with current technology, the ‘‘loss-in-

potential’’ from the optical bandgap to the open-circuit voltage is around 0.75 

eV, which leads to a maximum power-conversion efficiency of 13.4 % with an 

optical bandgap of 1.48 eV (840 nm absorption onset). Means by which the 

loss-in-potential could be reduced to 0.4 eV are discussed; a maximum 

efficiency of 20.25 % with an optical bandgap of 1.31 eV (940 nm) is possible if 

this is achieved. 

For a photovoltaic device with minimal losses, the ideal optical bandgap for 

maximizing the solar-to-electrical power conversion efficiency is 1.1 eV.8 
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However, dye-sensitized solar cells (DSCs) do not have negligible electronic 

losses and the system is considerably different from a p–n junction solar cell.  

Nevertheless, as the loss-in-potential is reduced, the optimum optical 

bandgap moves to lower energies, and with losses reduced to 0.2 eV a 

maximum power conversion efficiency of 26 % is achievable with an optical 

bandgap of around 1.1 eV. Due to disorder and heterogeneous charge 

generation processes in dye-sensitized solar cells, there can be a tradeoff 

between open-circuit voltage and photocurrent generation.9 All these 

calculations are for single junction devices, and further increases inefficiency, 

which are not addressed here, can be expected by incorporating more 

advanced, tandem, unconverting, or down-converting concepts. It should also 

be possible to recuperate at least 0.3 eV loss from the hole regeneration, by 

moving from a multistep dye-regeneration mechanism to a single hole-

transfer process, possibly by replacing the iodide/triiodide redox couple with a 

hole transporter.7  

6.2 Hybrid solar cells 

The type of solar cells mostly investigated in this thesis can be generally 

classified as hybrid solar cells (HSCs). This definition encompasses a wide 

range of solar cell devices with different assembling materials and 

architectures which have been established as a new and challenging research 

area.  

HSCs are conceptually related to both organic solar cells and dye-sensitized 

solar cells, and, as the latter, combine inorganic and organic semiconducting 

materials.10 The inorganic component, namely TiO2, is involved in the 

interfacial charge separation and charge transport but does not contribute 

significantly to the light harvesting efficiency. In analogy with organic solar 

cells, photons are often harvested in the bulk of an organic component 

leading to the formation of strongly-bound excitons. Charge separation 

requires a built-in asymmetry in the whole devices that drives electrons and 

holes in opposite directions. In the dark, solar cells exhibit the characteristic 

current density-voltage (J-V) curve of a diode, as shown in Fig. 6.3. Solar cells 

can be operatively described by the Schockley equation, which expresses the 
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current density J extracted from the cell as a function of the applied potential 

Va: 

      
 

  
  
   

            
       

    

 

     
  

    
    (eq. 6.4) 

where A is the area of the device, e the elementary charge, kB the Boltzmann 

constant and T the temperature. Rs and Rsh are the series resistance and the 

shunt resistance, respectively. The dark saturation current density j0 is the 

leakage current through the diode in the absence of illumination. The ideality 

factor n is related to the type of recombination processes in the device. It is 

thought to be related to both exciton and charge carrier recombination in 

organic and dye-sensitized solar cells.11  

Under illumination, the whole J-V curve is shifted by the amount of 

photogenerated current density. 

Analysis of the dark J-V behavior of solar cells, as well as of the analogous 

photoresponse, gives important information for optimization of each 

component of the complete device. 

Bilayer HSCs are the simplest devices of this type and, for such reason, are 

usefully used to explore new material combinations and to evaluate specific 

parameters which characterize the device. Efficiencies for bilayer HSCs are 

typically in the range 0.1-0.6 %.12-14 

While HSCs often employ polymers as the organic compounds, also small 

molecular semiconductors such as merocyanines and porphyrins are 

sometimes used. Among the latter, a triphenylamine (TPA) based compound 

has been adopted to build the solar cells investigated in this thesis. It basically 

plays the role of a bulk-light harvesting material. The TPA unit, a common 

functionality in hole transporting materials in opto-electronic devices,15-16 

introduces a peculiar 3D geometry that only allows some specific molecular 

organizations. A long-range order in bulk light absorbing materials can results 

in anisotropic exciton and charge transport.16 High hole mobility has been 

measured in some of these compounds.17  

Eventually, the devices investigated herein can be considered solid state dye-

sensitized solar cells with the traditional “transparent” hole conductor such as 

spiro-MeOTAD replaced by a hole transporting dye. Thus, all the types of 

devices built and analyzed in this thesis can be generically - but not incorrectly 

- referred to as “dye-sensitized solar cells”. 
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Energy transfer: exciton diffusion  

Exciton diffusion can be considered an energy transfer process of vibrationally 

relaxed excited dye molecules transferring their excitations energy to nearby 

molecules. It is assumed as the fundamental mechanism for energy transfer in 

this type of hybrid devices. Thus, a valuable parameter to take into account 

for such excitonic solar cells is the exciton diffusion length (LXD), which is 

defined as the distance D over which an exciton can diffuse during its lifetime 

τx:  

         
 

    (eq. 6.5) 

Very often exciton diffusion to a charge-separating interface represents a 

limiting factor for energy conversion in excitonic solar cells. Molecular 

compounds without long-range order typically have an LXD in the order of 10 

nm.18 In the simplest configuration of bilayer solar cells, the exciton diffusion 

length can be evaluated with varying thickness of the light harvesting 

component on the quenching substrate, as it has been done for devices 

considered in this thesis. The absorption coefficient used in the equation was 

determined from dye layer thickness measured by DekTak profilometry. Thus, 

the LXD evaluation was affected by the  uncertainty on such measurements. LXD 

determined from the analysis of the IPCE at 380 nm using α(380nm) = 1.7  107 

m-1. 

When dealing with exciton diffusion, the first step to be considered is light 

absorption, which results in exciton formation for the devices considered 

herein. The absorption coefficient of a solid samples, α(λ), reflects the 

probability for an electronic transition to occur at a particular wavelength in 

the material considered. Such parameter allows the determination of the 

thickness of a light harvesting material (e.g., a dye) from the sample 

assorbance and is also needed to model the exciton diffusion length. 

Viceversa, the absorption coefficient can be derived by the above mentioned 

parameters, if known. A property directly related to α is the light penetration 

depth (α-1), which is the thickness of the material where approximately 67 % 

of the incident light has been absorbed. Electronic transitions occur between 

discrete energy levels in dye molecules, giving rise to an absorption spectrum 

with maxima and minima (e.g, the one reported in Fig. 6.5).  
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Figure 6.5. Absorption spectra of a) dyes TDCV-TPA, ([tris(dicyano-vinyl-2-

thienyl)phenyl]amine, and b) D35 ((E)-3-(5-(4-(Bis(20,40-dibutoxybiphenyl-4-

yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid.  

 

Organic semiconductors possess larger absorption coefficients than inorganic 

semiconductors, such as silicon, thus requiring less material to achieve the 

same light harvesting efficiency. However, Frenkel-type excitons are 

generated following light absorption in organic semiconductors: since they 

have a stronger binding energy, an energetic offset is needed to obtain charge 

separation. 

6.3. Comparison of spray-pyrolyzed and spin-coated TiO2 for 

hybrid solar cells 

Aim of the work 

The motivation for thoroughly characterizing two types of thin TiO2 films 

prepared by two different deposition procedures has arisen from a striking 

difference noticed in the IPCE (incident photon-to-current efficiency) spectra 

of solar cells built with spray pyrolyzed or spin-casted TiO2 underlayer. This 

finding is displayed in Fig. 6.6.  
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Figure 6.6. IPCE spectra of solar cell devices built with spin-TiO2 (triangle) and spray-

TiO2 (circle), respectively. 

The devices prepared with the spray-TiO2 substrates exhibited a similar shape 

to those previously reported for this compound for thick dye layers,19 whereas 

the spin-TiO2 samples gave a response more resembling the absorbance 

spectrum of the dye indicating that these devices are less limited by exciton 

diffusion. Distinct differences in the spectral response of the EQE and in 

device performance could have been explained by either a difference in the 

conduction band or a different morphology, mainly at the nanometer scale, of 

the prepared titania layers. 

Thus, various experimental methods (SEM, AFM, XRD, XPS, UV-Vis 

spectroscopy with an integrating sphere, linear scanning voltammetry and 

Mott-Schottky measurements) have been employed to characterize titania 

films prepared using the two different preparation routes and to highlight the 

differences between them. 

First, optical and electronic properties of the titania film are presented. 

Secondly, structural and morphological features of the films investigated by 

XRD, SEM and AFM will be compared. In the last section solar cell devices 

were built to characterize the photovoltaic performance of the titania 

substrates obtained by the two alternative preparation routes as acceptor 

layer in hybrid solar cells.  

 

Deposition procedure 

Thin layers of titania on conducting fluorine doped tin oxide (FTO) glass 

substrates (TEC15, Pilkington, substrate thickness 2.3 mm) were prepared by 

either spray pyrolysis12 or spin-coating.12,19  
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Spray-pyrolysis 

A TiO2 precursor was prepared under nitrogen by adding drop-wise 2.4 mL of 

Ti(IV)-tetraisopropoxalate to 3.6 mL acetylacetone (Fluka) resulting in a bright 

yellow liquid containing diisopropoxy-Ti(IV)-bis(acetoacetonate) which could 

be stored in a sealed flask at 8 °C until further use. Prior to deposition the 

precursor was diluted 1:9 with ethanol to give a ca 1.2 M solution. FTO glass 

substrates were heated to 450°C on a high temperature Titan hotplate (PZ 28-

3 TD temperature controller, Harry Gerstigkeit GmbH) covered by a Robax 

glass plate to avoid direct deposition of TiO2 onto the hotplate. The aerosol 

deposition was carried out in 12 spray cycles (one cycle consisting in a single 

movement of the spray nozzle over the substrate) with a commercial hand-

held air brush (distance ∼6 cm, speed ∼5 cm s-1) using nitrogen as a carrier 

gas (1.5 bar).19  

TiO2 formation occurs by reaction of the organo-titanate with atmospheric 

oxygen at the hot substrate surface. By this deposition method the metal 

oxide film grows about 10 nm per spray cycle. 

 

Spin-coating 

Alternatively, the spin-cast TiO2 layers were prepared according to the route 

described by Goh et al.:12 1.4 ml of titanium-tetraisopropoxide was stirred for 

15 minutes with 8 ml of an ethanol blend containing small quantities of 

deionized water and hydrochloric acid. Then, 20 μl cm-2 of the sol-gel solution 

were spin-cast onto FTO substrates at 2000 rpm for 30 s, left to condense at 

120 °C overnight and calcined at 450 °C on a hotplate (PZ 28-3 TD temperature 

controller, Harry Gerstigkeit GmbH). 

TiO2 formation takes place during the blending of the precursor and storage at 

120 °C. In this step, Ti(OH)x crystallites are formed through hydrolysis of the Ti 

precursor followed by water and alkoxide condensation reactions. 

 

Device fabrication 

The small molecular semiconducting dye [tris(dicyano-vinyl-2-

thienyl)phenyl]amine (TDCV-TPA, structure shown in Fig. 6.7) was purchased 

from Aldrich and used as received. It was developed by the group of Jean 

Roncali in Angers, France, and it is now commercially available. It was spin-

cast at 4000 rpm for 30 s (after 3 s at 2000 rpm) from methylene-chloride 

solution. The conducting polymer poly(3,4-ethylenedioxy-thiophene):poly-
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(styrene-sulfonate) (PEDOT:PSS, Aldrich) was spin-cast at 4000 rpm for 20 s 

(after 3 s at 2000 rpm). To remove solvent residues, the samples were first 

heated to 120°C and then evacuated (10-5 mbar, 30 min). A piece of double-

sided self-adhesive foam tape (Tesa, mounting tape) with a round hole 

(standard hole punch, hole diameter of 5.5 mm) was attached to the sample. 

Electrical contact was established by compressed graphite powder, and 

electric contact was finally established with a second piece of conducting 

glass.20 The active area of the test devices was 0.19 cm2.  

 
Figure 6.7. Chemical structures of dye TDCV-TPA. 

6.3.1. Optical and electronic properties 

Mott-Schottky plot and linear sweep voltammetries 

To estimate the conduction band position of the prepared titania the flatband 

potential, Vfb, of both types of TiO2 thin films was evaluated by measuring the 

capacitance, C, at the TiO2/Na2SO4(aq) interface in dependency of the applied 

potential, Va. Mott-Schottky plots for the measurements of spray-TiO2 (solid), 

spin-TiO2 (dashed) and FTO (dotted) are displayed in Fig. 6.8 and are based on 

equation 4.5. Herein also the geometric area, A, of the substrate (1 cm2) and 

the roughness factor, R, of the substrate were taken into account.  

The response of the FTO alone has been shown as a reference along with the 

curves of both types of titania films, each deposited on FTO. The junction 

capacitance of the semiconductor/electrolyte was derived from the the real Z’ 

and imaginary part Z’' of the impedance measured in aqueous solution at 1 

kHz.21  

The spray-pyrolyzed TiO2 film exhibits a characteristic behaviour for a low-

doped semiconductor film with C-2 saturating at positive applied potentials 



 

303 6.     Solar cells 

when the space charge region extends throughout the film to the conducting 

back contact.22 Extrapolating the steep part of the curves to the potential axis, 

the flatband-potential Vfb and doping densities ND were determined and are 

summarized in Table 6.1, 2nd and 3rd column, respectively. For the spray-TiO2 a 

Vfb value of -0.27 V vs NHE was determined which is in close agreement with 

other values found in literature at pH 3.22 Assuming a nernstian shift of 0.059 

V per pH unit,23 this value corresponds to -0.5 V vs NHE at pH 7.  

The TiO2 films prepared by spin-casting were found not to be blocking charge 

transfer with the underlying FTO substrate in electrochemical measurements 

using a ferrocene containing electrolyte (inset of Fig. 6.8, triangles).  Therefore 

it was not possible to determine the Vfb and doping densities ND for these films 

as the Mott-Schottky relation does not apply.24 Instead, the data can be 

rationalized in terms of an FTO substrate which is covered with a porous 

titania layer.25 Since for highly doped films, such as FTO, the Helmholtz 

capacitance has to be taken into account in the determination of the flatband 

potential,24 a value of 10 μF cm-2 was used.26 When analyzing in more details 

the behavior of the spray-pyrolyzed film, it can be noticed that a transition in 

the Mott-Schottky plot at Vtr (indicated in Fig. 6.8) occurs when the width of 

the space charge region in the TiO2 film extends through the FTO back contact. 

At more positive applied potentials the TiO2 layer acts as a dielectric layer with 

the capacitance Cd
25

 which is a function of the film thickness t and interfacial 

roughness R:27  

   
      

 
   (eq. 6.6) 

From the capacitance at Vtr the roughness R of the TiO2 substrate can be 

estimated from equation 6.6 using the thickness t of the spray-pyrolyzed TiO2 

film determined from the SEM cross section measurements shown in Fig. 6.12 

and a relative dielectric constant r,TiO2 of 5428 for TiO2. The surface roughness 

factor R for the spray-pyrolyzed TiO2 substrates was determined to be 2.9. 

From the slope in the Mott-Schottky plot, the ND of spray-pyrolyzed TiO2 was 

determined to be 1.2  1017 cm-3.  

Apparently, the slopes associated with the capacitance of FTO between the 

uncovered FTO and the spray-pyrolyzed FTO differ by a factor of (1.7)2 which 

is similar to the difference found in the Rrms by AFM measurements for these 

two substrates (Table 6.1). The different slopes are therefore ascribed to a 

change in surface roughness upon deposition of the TiO2 layer. The roughness 
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factor for the uncoated FTO substrate should be accordingly 4.9. Using a 

dielectric constant for FTO of 9,25 the ND is determined to be 4.1  1019 cm-3. 

This is comparable to values found for FTO substrates by Cameron et al.26 who 

took R into account, but it is lower than values obtained when R was not 

accounted for.25  

The inset of Fig. 6.8 shows Tafel plots of linear sweep voltammetry 

measurements for spray-TiO2, spin-TiO2 and FTO with a ferrocene containing 

redox couple. Unlike the spray-TiO2, the spin-cast TiO2 layer on FTO film was 

found not to be a blocking layer for the oxidation of ferrocene as exchange 

current densities were in the same order of magnitude as the FTO substrate. 

Hence, the deposited TiO2 film does not act as a barrier and the Vfb cannot be 

determined reliably from Mott-Schottky plot (corresponding values are 

however reported in italic in Table 6.1, but have to be taken with care).  

 
Figure 6.8. Mott-Schottky plot of spray-TiO2 (circles), spin-TiO2 (triangles) and FTO 

(squares) in Na2SO4 (1 kHz, pH 3). For the spray-pyrolyzed titania film a transition at Vtr 

a transition of the TiO2 from a space charge capacitance to a dielectric capacitance 

occurs. Inset: Tafel-plot of linear sweep voltammetry (10 mM ferrocene, 0.1 M 

TBAPF6, in acetonitrile). 

 

DRS 

In Fig. 6.9a the optical transmittance T and reflectance R of the spray-

pyrolyzed (solid) and spin-cast (dashed) titania films are compared with the 

FTO substrate (dotted). Because of the high refractive index and the thickness 

of doped tin oxide coatings, it is not surprising that the absorption spectrum – 
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taken with the light beam perpendicular to the surface – exhibits an 

interference pattern. The different interference of the films could be 

rationalized with a different titania layer thickness and porosity of the films. 

The indirect bandgap Eg of spray-TiO2 and spin-TiO2 was determined by 

plotting (αhυ)1/2 versus hυ (Fig. 6.9b). The as-obtained values are summarized 

in Table 6.1 (6th column) and are slightly larger than bulk TiO2 (3.2 eV). They 

are found to be similar for the spin-cast and spray-pyrolyzed samples and also 

to values previously found for nano-sized titania films.  

 

 
Figure 6.9. a) Transmittance T and Reflectance R of spray-pyrolyzed TiO2 (solid), spin-

coated TiO2 (dashed) and FTO substrate (dotted). b) Indirect bandgap of spray-

pyrolyzed (squares) and spin-cast (circles) TiO2 films. 

 

XPS 

To investigate the valence band and bandgap states of the titania films, XPS 

measurements using synchrotron radiation were performed at MAX-

lab, Lund University. The valence band edge for the two samples may be 

approximated using a linear fit of the valence band and the extension of this 

line to the baseline. The valence band edge EVB vs the Fermi level EF in TiO2 

was found to be similar for the two titania samples (Table 6.1, 5th column). At 

binding energies lower than the valence band edge, in the band gap of the 

two samples, it is possible to observe a finite density of states for both 

samples. States in this binding energy region are often referred to as bandgap 
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states, since they are located between the valence and conduction band 

edges. As shown in Fig. 6.10, the samples exhibited slight differences in the 

density of bandgap states which can be due to a difference in the defect 

structure or amount of surface-adsorbed species. Comparing the bandgap 

states, which  are generally considered to originate from Ti atoms with a 

strong Ti 3d character, some small differences were noticeable between the 

two films. The detailed explanation of the bandgap states of TiO2 have been 

investigated previously.29-31 More bandgap states lay at higher binding 

energies for the spray-pyrolyzed TiO2 compared to the spin-cast TiO2, whereas 

a higher density of bandgap states is located at lower binding energies for the 

spin-cast TiO2 compared to the spray-pyrolyzed TiO2. As a consequence, 

differences in the defect structure or in the amount of surface adsorbed 

species exist for these samples. Although these differences are small, they 

may partly be a reason for the slightly different optical properties of these 

films. 

Assuming a density of states NC of 1019 cm-3 the conduction band ECB can be 

estimated to be 112 mV more negative than the flatband potential Vfb using:  

             
  

  
    (eq. 6.7) 

 

 

Fig. 6.10. Photoelectron spectroscopy signal intensity versus binding energy (Eb) of 

spray-pyrolyzed (solid) and spin-cast (dashed) titanium dioxide on FTO.  

 

Eb / eV

I /
  a

.u
.



 

307 6.     Solar cells 

 

Sample Vfb 
 (V vs NHE) ND  (cm-3) R EVB 

 (eV) Eg 
 
 (eV) 

spray-TiO2 -0.26  1.3  1017 1.7 3.2 3.35 

spin-TiO2 -0.25 1.8  1019 - 3.2 3.40 

Table 6.1. Electronic and optical properties of TiO2 films: flatband potential Vfb, doping 

density ND and roughness factor R determined from Mott-Schottky plot at pH 3, 

valence band energy Evb vs Fermi level Ef in TiO2 (XPS analysis), band-gap Eg from 

optical measurements.  

6.3.2. Morphological and structural properties 

SEM 

Top-view SEM images displayed in Fig 7.11 represent a first tool to show the 

difference in film morphology. The spray-pyrolyzed TiO2 gives rise to a surface 

morphology that seems to consist of bigger grains. This is probably due to 

preferential growth on certain crystal surfaces of the underlying FTO substrate 

during the spray deposition. The TiO2 substrate prepared by spin-coating 

appears more “even”; at higher magnification crystallites are visible. 
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Figure 6.11. Top-view SEM images of the surface of the bare FTO (top - previous page 

- 200k magnification), spray-TiO2 (center, 200k magnification), and spin-cast TiO2 

(bottom, 400k magnification). 

 

However, not fairly clarifying information can be obtain by this sort of 

analysis.  

Figure 6.12 compares the cross-section SEM images of the spray-pyrolyzed 

TiO2 (a) and spin-cast TiO2 (b), witnessing that the spray-pyrolyzed and spin-

cast TiO2 films have a rather dissimilar appearance. The spray-pyrolyzed TiO2 

film (slightly darker shade of grey in Figure 6.12a) seems to have grown on top 

and intimately connected to the underlying FTO. The TiO2 film seems to be 

rounding off the sharp edges of the FTO surface but adapting to the surface 
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topography of the FTO layer. In contrast, the spin-cast TiO2 film (Fig. 6.12b) 

appears more like a separate layer lying on top of the FTO and the sharp edges 

of the surface of the FTO substrate are visible. As expected from the quite 

obscure top-view SEM image, the spin-TiO2 film is composed of smaller 

particles forming a relatively even layer on top of the FTO substrate. The 

thickness of the deposited TiO2 layers was determined from these SEM cross-

section images and are summarized in Table 6.2 (2nd column). The surface of 

the spin-cast TiO2 film, as revealed by the cross-section image, is more smooth 

compared to the spray-pyrolyzed TiO2 film and less affected by the underlying 

FTO substrate. 

 

 

Figure 6.12. Cross-section scanning electron microscopy (SEM) images of spray-

pyrolyzed TiO2 (a) on FTO and spin-coated sol-gel TiO2 (b) on FTO. 
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AFM 

The two different types of TiO2 films were also analyzed using atomic force 

microscopy. The AFM images are compared in Figure 6.13. The underlying FTO 

crystals appear as larger domains in the order of 150 to 300 nm (Fig. 6.13a). 

From the analysis of the AFM images the average height hav and root-mean 

square surface roughness (Rrms) of the titania films were determined and are 

included in Table 6.2, 3rd and 4th column, respectively. In comparison to the 

Rrms of the FTO substrate, the TiO2 layer deposited by spray-pyrolysis 

decreases the surface roughness by a factor of 1.7. TiO2 films prepared by the 

spin-casting route have a lower Rrms and have, as also apparent in the SEM 

cross-section images (Fig. 6.13b), a more smooth surface. 

While AFM analysis gives valuable information on the surface topography of a 

sample, it does not provide any interesting insight into the sample porosity. 

However, what can be firmly concluded by the help of the used microscopies 

is that both for the spin-cast and spray-pyrolyzed TiO2 films small particles in 

the order of 20 nm are distinguishable both in the AFM and SEM image.  
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Figure 6.13. Atomic force micrographs of the surface morphology of spray-pyrolyzed 

(a) and spin-coated (b) TiO2 on FTO glass substrates (c). Note the difference in 

magnitude for the z-scales and also for the x-y coordinates relative to the FTO sample. 

XRD 

In Fig. 6.14 the X-ray diffraction spectra of the spin-TiO2 (trace a) and spray-

TiO2 (trace b) layers on FTO (trace c) substrates are shown. Compared to the 

FTO two additional peaks at 2θ of ca 25° and 48° can be distinguished for the 

TiO2 samples. These can be assigned to the anatase (101) and (200) peaks 

showing that the prepared TiO2 films are crystalline and predominantly 

anatase. As the (101) peak is partly obscured by the underlying FTO, the (200) 

peak was used to determine the crystallite size B of the TiO2 films using the 

Scherrer equation: 

  
  

      
   (eq. 6.8) 

Assuming spherical particles, a value of the 0.9 was used for the shape factor 

K. L is the full width at half maximum of the (200) peak, θ the Bragg angle and 

λ the X-ray wavelength of the Cu Kα radiation used for the measurements. The 

determined crystallite sizes are summarized in Table 6.2 (5th column).  
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Figure 6.14. X-ray diffraction patterns of spray-pyrolyzed (a) and spin-cast (b) 

titanium dioxide on FTO (c). 
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Sample t (nm) hav
 (nm) Rrms (nm) dA

200 (nm) 

spray-TiO2 85 ( 20) 54 16 26 

spin-TiO2 130 ( 20) 11 4 25 

FTO 330 ( 20) 79 29 - 

Table 6.2. Morphological and structural data of TiO2 films and of the substrate (FTO): 

crystallite size determined from XRD (200) peak, film thickness determined from 

cross-section SEM (such a low thickness did not allow to properly measure with the 

DekTak profilometer and compare the results obtained with the two techniques), 

root-mean-surface roughness and average height determined from AFM surface 

analysis. 

 

From the XRD analysis, both types of TiO2 were found to contain crystallites in 

the order of 25 nm. AFM and SEM images suggest that for the spray-pyrolyzed 

TiO2 films these crystallites built up the titania films in a densely fused 

manner, while for the spin-cast TiO2 films the crystallites are more loosely 

connected. It can be inferred that these films may exhibit a nanoporosity. 

The differences in the TiO2 film morphology is a consequence of the different 

conditions in the preparation routes employed. As for what they look like, 

titania samples prepared by spray-pyrolysis in 12 spray cycles had an even, 

faint yellowish colour due to interference effects for titania films with 

thickness in the order of 100 nm on FTO. Spin-casting gave rise to films with 

even colouring throughout most of the film. 

Then, spray-pyrolysis deposition results in compact TiO2 films grown layer by 

layer adapting to the surface morphology. In particular, droplets produced at 

the end of the jet possess a wide size distribution. The droplets vaporize 

partially or entirely during their way to the substrate (heated at 450 °C) 

relieving the stress in the films and depressing the shrinkage. Partially dried 

droplets having a variable shape become flat droplets when they impact the 

substrate. If one spray cycle could lead to poor connection among particles, 

the following ones definitely improved connections among 

particles/aggregates, as depicted in Fig. 6.15.  
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Figure 6.15. Spray-pyrolysis deposition of a colloidal metal oxide suspension on a 

substrate. 

In the spin-casting preparation route titania crystallites are likely to form 

during storage at 120 °C during which the TiO2 alkoxide hydrolyzes. Small TiOx 

crystallites form which are subsequently fused together during sintering at 

450 °C. The resulting titania films consist of TiO2 nanocrystallites forming a 

nanoporous structure, whereas in the spray-pyrolyzed samples the TiO2 

particles are intimately fused together. 

In Table 6.2 the morphological and structural properties of the films are 

summarized and compared. The spin-casting route leads to films that were 

slightly thicker compared to the spray-TiO2. The surface appears to be less 

rough as it seems less affected by the morphology of the underlying FTO. 

These data only provide information on the surface morphology and not 

strictly on the porosity of the prepared films. Nevertheless, from SEM analysis 

the spin-cast TiO2 films appear more porous and less dense than the spray-

pyrolyzed films. 

6.3.3. Dye deposition  

The thickness d of the small molecular semiconducting dye (TDCV-TPA) layer 

was varied by spin-casting the dye from solution of different concentrations. 

The amount of deposited dye can be estimated from absorption 

measurements. Fig. 6.16 shows the absorption A at absorption maximum of 

the dye of deposited dye layer in dependency of the dye solution 

concentration. For concentrations c <5 mM the amount of deposited dye on 

spray-pyrolyzed TiO2 substrates (Fig. 6.16, red circles) linearly correlates with 

the solution concentration. TDCV-TPA deposited on spin-coated substrates 

Small size droplet

Big size droplet

TRANSPARENT CONDUCTIVE SUBSTRATE

2° cycle



 

314 6.     Solar cells 

(Fig. 6.16, blue triangles) resulted in higher sample absorbance, almost twice 

the value relative to spray-TiO2 for the same solution concentration. The 

relatively larger amount of TDCV-TPA deposited on spin-cast TiO2 substrates 

can be interpreted as a “soak-in” effect: the small-molecular semiconductor 

infiltrates the nanoporous spin-cast TiO2 films. Moreover, the sample 

absorbance A was correlated to the effective dye layer thickness d via 

profilometry measurements of reference samples on microscope glass slides 

(inset of Fig. 6.16). A linear correlation factor of α’ = 0.0146 nm-1 between A 

and d was found. The absorption coefficient α of TDCV-TPA at 520 nm was 

determined to be (3.2  0.2)  107 m-1 which is slightly lower than previously 

reported by the Hagfeldt group19 but larger than the value mentioned 

elsewhere.32  

SEM-cross section images were acquired for samples prepared with both 

types of substrates and a dye layer, deposited from a 20 mM solution of 

TDCV-TPA in dichloromethane. In comparison with the absorbance of these 

samples the thickness of the dye layer found for the spray-pyrolyzed TiO2 

substrates were in the same order as the dye layer visible in the SEM cross 

section. For the spin-cast TiO2 layer the thickness of the overstanding TDCV-

TPA layer was found to be about 17 nm thinner than expected from the 

sample absorbance. This is another indication that the dye infiltrates the 

porous TiO2 films prepared by spin-casting. 

 
Figure 6.16. Sample absorbance A at 520 nm in dependency of the solution 

concentration c of TDCV-TPA on spray-TiO2 (circles) and spin-TiO2 (triangles) 

substrates. Inset: absorption A vs dye layer thickness d. Trend-lines were added as a 

guide to the eye. 

c / mM

d / nm
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6.3.4. Dark characteristics of bilayer solar cell samples 

To analyze the diode properties of the solar cell devices, the dark current 

density, JD, was measured as a function of applied potential, Va. Figure 6.17 

shows plots of ln(|JD|) vs Va for devices built with both types of TiO2 

substrates for various dye layer thicknesses and reference diodes where the 

TiO2 layer was directly contacted with PEDOT:PSS (d = 0 nm). The dark diode 

properties of the solar cell devices were analyzed using the Shockley equation 

(6.4) in its logarithmic form taking into account both the series Rs and shunt 

resistance Rsh of the solar cell devices:33  

            
   

      
            

      
    

 

     
  

   
    (eq. 6.9) 

Spray-pyrolyzed titania substrates directly contacted with PEDOT:PSS exhibit 

Rsh in the order of 104 
 cm2 which increases by one order of magnitude when 

a dye layer is added. The junction formed between the spin-cast titania 

substrates and PEDOT:PSS exhibits Rsh in the order of 103  cm2 and no 

rectification. This can be rationalized with short circuits as the TiO2 films 

prepared by spin-casting are not pin-hole free. These films are thus not 

suitable to be used as blocking layers in electrochemical and solid state solar 

cell devices.  
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Figure 6.17. Tafel plots of dark current-density vs voltage of solar cell devices with 

varying dye layer thickness (indicated in Figure) for spray-pyrolyzed (a) and spin-cast 

(b) titanium dioxide electrodes.  

 

The term I·RS in the logarithmic form of Shockley equation has the dimensions 

of a potential and can be interpreted as a constant potential offset at regimes 

where a small, constant current flows through the device. This parameter 

affects both the dark exchange current density and the shunt resistance of the 

devices. Furthermore the dye layer thickness d influences the ideality factor of 

the devices.  

In Fig. 6.18 n, j0, and Rsh parameters from the analysis of the dark J-V curves 

are shown for devices built with spray-pyrolyzed (circles) and spin-cast 

(triangles) titania substrates as a function of the dye layer thickness.  

The exchange current density and ideality factor were determined from the 

extrapolated linear part of the ln|JD| plot at negative Va.  
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Figure 6.18. Ideality factors n, dark current density j0  and shunt resistance Rsh derived 

from the dark current-voltage measurements for devices built with spray-pyrolyzed 

titania (circles) and spin-cast titania substrates (triangles).  

The comparison illustrates that the spray-pyrolyzed TiO2 substrate acts as 

sufficient blocking layers and rectifying contacts. The spin-cast TiO2 layers 

exhibit an increase in Rsh and decrease in j0 with increasing d (namely with the 

amount of spray cycles for spray-TiO2), which means that the dye layer itself 

can act as an insulating layer between the electron and hole selective contacts 

and functioning solar cell diodes can be achieved once the dye layer is thick 

enough to prevent electrical shorts. The spray-pyrolyzed TiO2 layers give 

hybrid solar cell devices with more consistent characteristics while there is 

much more spread in the values attained for the spin-cast TiO2 layers. The 

larger variation in these latter experimental values shows that spin-cast TiO2 

films probably exhibit differences in blocking ability and pinholes among 

individual samples. Due to their apparently lower adhesion to the underlying 

FTO substrates these films might also be more prone to partial destruction 

during sample preparation.    

 

Mott-Schottky on bilayer solar cells  

Mott-Shottky measurements (in the dark) on the bilayer devices built with 

spin-cast titania samples led to results reported in Fig. 6.19. The flatband 
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potential, or built-in potential, correlates well with the VOC attained for the 

devices. One might be able to determine the relative dielectric constant εr for 

dye TDCV-TPA by plotting the measured capacitance as a function of the 

reciprocal dye layer thickness and taking the slope into account (inset of Fig. 

6.19). It came out a value of 1.29, which is reasonable for an organic material.  

 
Figure 6.19. Mott-Schottky plot derived from measurements on the assembled solar 

cells built with spin-TiO2 at varying dye layer thickness. Inset: capacitance values as a 

function of the reciprocal of dye layer thickness.  

6.3.5. Hybrid solar cells under illumination 

Cameron and Peter26 had a very similar aim about TiO2 blocking layers for 

solar cells and found out that titania prepared by spray pyrolysis are n-doped 

but are not degenerately doped like the FTO substrate. The electron density at 

the TiO2-electrolyte interface will depend on doping density and on the band 

bending in the TiO2 film, which is controlled by the photovoltage in the DSC. 

Under strong illumination at open circuit or on load, the TiO2 blocking film is 

driven toward the flatband condition, so that electron transfer to the 

electrolyte becomes possible and the films can no longer be described as 

“blocking”. Their complete DSCs were comprised of a spray-pyrolyzed TiO2 

layer with a thickness in the range 56-118 nm (measured by spectroscopic 

ellipsometry) acting as blocking layer and a nanocrystalline TiO2 layer of about 

4-5 µm. 
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In the present work, current density - voltage (J-V) measurements under 

simulated AM1.5 illumination (1000 W m-2) were performed to compare the 

solar energy conversion efficiency  of the two different types of titania 

substrates. Selected J – V curves are shown in Figure 6.20a for spray-pyrolyzed 

(circles) and spin-cast (triangles) titania substrates for devices comprising a 

TDCV-TPA layer of approximately 8 nm and 80 nm thickness, respectively. In 

Figure 6.20b the corresponding IPCE of these devices is shown.  

 
Figure 6.20. Current-density vs voltage (a) and IPCE spectra (b) of devices with dye 

layer thickness around 80 nm and 8 nm (as indicated in Figure) for spin-TiO2 (triangle) 

and spray-TiO2 (circle), respectively.  

 

Bilayer solar cell devices comprising TDCV-TPA and spray-pyrolyzed TiO2 

(spray-TiO2) substrates exhibit similar trends as previously reported19 but the 

overall conversion efficiencies obtained herein are higher, reaching 0.47 %. 

This difference could be also ascribed to the different dye batches employed. 

Solar cell devices prepared using the spin-cast TiO2 substrates often exhibited 

short-circuits or low performance for devices comprising dye layer thicknesses 

d < 20 nm. The efficiency of a sample comprising 10 nm TDCV-TPA (Fig. 6.20, 

dotted) was low (<0.1 %) compared to the device built with spray-TiO2 of 

comparable d (Fig. 6.20, solid). For thicker d the spin-cast TiO2 devices 

outperformed the spray-TiO2 devices with η up to 0.6 % (Fig. 6.20, dash-dot). 

The asymmetric shape of the EQE can be explained with a more efficiency 

harvesting of higher energy excitons in this device geometry.19  

The spectral response of the solar cell devices appears significantly different 

for devices comprising spin-cast and spray-pyrolyzed TiO2 substrates for thick 

TDCV-TPA layers (Fig. 6.20b). The mismatch between the EQE of TDCV-TPA 

and the corresponding light harvesting efficiency, LHE, of the device has been 
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observed previously and is due to a more efficient exciton harvesting for the 

higher energy excitons in TDCV-TPA created at 380 nm.19 This effect is only 

apparent if the dye layer thickness exceeds the exciton diffusion length, LXD, 

for the lower energy transition. The lack of the distortion of the EQE spectrum 

for devices built with the spin-cast TiO2 substrates indicates that excitons are 

generated within the LXD of the lower energy excitons. This indicates that the 

nanoporosity of the spin-cast TiO2 films is on the same length scale or smaller 

than the LXD of TDCV-TPA.    

In Figure 6.21 the d-dependency of the EQE, the open circuit voltage, VOC, and 

fill factor, FF, is compared for all devices investigated in this study. From the d-

dependency of the EQE the exciton diffusion length, LXD, can be determined.  

 
Figure 6.21. Comparison of a) the IPCE at absorption maximum of dye TDCV-TPA (520 

nm), b) open circuit voltage VOC and c) fill factor FF in dependency of the dye layer 

thickness d for hybrid solar cells prepared with spray-pyrolyzed (circles) and spin-cast 

(triangles) TiO2. Trend-lines in the d-dependence of VOC (b) and FF (c) were added as a 

guide to the eye. For the spray-pyrolyzed TiO2 substrates, the IPCE dependency on d 

could be fit to an exciton diffusion model. 

 

It has to be underlined that the exciton diffusion models employed herein 

assume planar interfaces which is not necessarily given in bilayer devices, as 
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already shown. However, the exciton diffusion length of TDCV-TPA was 

determined to be 6.5 nm for an interfacial charge transfer efficiency, ηCT, of 52 

% assuming a non-quenching PEDOT:PSS interface and planar interfaces.18,19 

Assuming a quenching PEDOT:PSS contact and allowing for ηCT = 100 % the LXD 

was determined to be 3.3 nm. This is slightly higher than reported 

previously,19 which is partly due to the different absorption coefficient used in 

this study but also to the higher overall performance of the devices. This 

finding illustrates that experimentally determined exciton diffusion lengths 

are often dependent on the conditions under which they were determined34 

and the commonly-made assumption of planar interfaces might be invalid for 

most experimental devices. For the spin-cast TiO2 no systematic dependence 

of the IPCE on the dye layer thickness d was found as devices with thin d were 

not functional.  

The VOC exhibited a similar d-dependency for the devices built with spray-

pyrolyzed TiO2 substrates as reported previously.19 The shift in the VOC and 

voltage onset in the dark can be rationalized with TDCV-TPA acting as a 

dielectric layer between the two electric contacts. The spin-cast electrodes 

exhibit short circuits for thin dye layers. At thicker d the VOC appears to reach a 

limiting value of 0.95 V for both types of substrates. As in organic solar cells, 

the VOC in hybrid solar cell devices is expected to be limited by the difference 

in the quasi-Fermi level for electrons in the n-type TiO2 and the quasi Fermi 

level for holes in TDCV-TPA. For thin dye layers, however, the VOC is influenced 

by the contact between TiO2 and PEDOT:PSS and the limiting VOC can only be 

established for dye layers thick enough to efficiently prevent a direct contact 

between TiO2 and PEDOT:PSS. At low dye coverage the flatband potential / 

quasi-Fermi level in TiO2 might also be influenced by the acidity of 

PEDOT:PSS.35 The similar limiting VOC for both types of TiO2 substrates 

supports the hypothesis that the Vfb of the titania films is similar for both 

types of substrates. 

The fill factor for the spray-pyrolyzed TiO2 substrates was found to decrease 

from about 0.7 to about 0.3 with increasing d. This was previously rationalized 

with a limitation in the hole transport through the TDCV-TPA layer with 

increasing d.19 For the spin-cast TiO2 layers the FF is around 0.3 even for small 

d. This can be ascribed to higher recombination losses which is also apparent 

in the low shunt resistance (Rsh) and dark saturation current density (j0) 

observed in the dark J-V measurements (Fig. 6.18).  
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Photovoltage (VOC) decay measurements were carried out to gain insight into 

the recombination processes in the solar cell devices. After illumination for 10 

s with an LED with an approximate light intensity of 1 sun, the light source was 

switched off and the voltage decay recorded over time. Figure 6.22 displays 

the VOC decays for devices built with the spin-cast TiO2 (a) and spray-pyrolyzed 

TiO2 (b). The former samples exhibit a much faster voltage decay (note the 

difference in time-scales) and the recombination kinetics becomes slower with 

increasing dye layer thickness. Devices built with spray-pyrolyzed TiO2 

substrates initially show a progressively slow VOC decay with increasing dye 

layer thickness. However, for dye layers exceeding 40 nm the VOC decays faster 

(see the curved arrow in Fig. 6.22). For a better understanding of the results, 

VOC decays of samples with TiO2 layers of different thicknesses are shown in a 

semi-logarithmic plot in Figure 6.22c. 
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Figure 6.22. Top (previous page): photovoltage decay (VOC) for a) spin-coated TiO2 and 

b) spray-pyrolyzed TiO2 solar cell devices with increasing dye layer thickness (solid ca. 

2 nm, dashed ca. 8 nm, dotted ca. 20 nm, dash-dot ca. 40 nm and dash-dot-dot ca. 80 

nm). Bottom: Semi-logarithmic plot decays for bilayer solar cells built with spin-cast 

TiO2 (triangles) and spray-pyrolyzed TiO2 (circles) films of different thicknesses 

(indicated in figure).  

The voltage decay was found to be multi-exponential, and this can be 

rationalize considering the charge carrier behavior at the interfaces. In the 

devices investigated herein up to four recombination pathways have to be 

considered, as indicated in the energy level diagram (Fig. 6.23). Process (1) is 

the recombination of electrons in TiO2 with holes in the dye layer and (2) the 

recombination of electrons in TiO2 with holes in PEDOT:PSS. If the titania layer 

is not sufficiently blocking the FTO, pathways (3) and (4), which represent 

recombination processes via interfaces of either the dye or PEDOT:PSS with 

the FTO substrate, have to be considered.  

 
Figure 6.23. Illustration of recombination pathways at the different interfaces in the 

solar cell device. 
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As already noticed, devices built with spin-cast TiO2 substrates exhibit faster 

VOC decays on shorter time scales compared to devices built with spray-

pyrolyzed TiO2 substrates. For thin d no considerable device voltage was 

measurable as all charges were lost rapidly through recombination. With 

increasing d the recombination kinetics of the spin-cast titania devices 

becomes slower. This is another indication that the dye layer acts as a barrier 

between the FTO and PEDOT:PSS interfaces. For thicker dye layers we could 

therefore build functioning solar cell devices with the spin-cast titania even 

exceeding the performance of devices built with spray-pyrolyzed TiO2. 

On the contrary, for bilayer solar cells built with spray-pyrolyzed TiO2 the VOC 

decay occurred on a longer time scale. In these devices recombination 

pathways to the FTO (paths 3,4 of Fig. 6.22) can be neglected. Increasing the 

dye thickness from thin layers to about 20 nm, the VOC decay becomes slower 

indicating that recombination events become less frequent with increasing 

dye layer thickness. The faster VOC decay for d >40 nm may be due to a less 

sufficient extraction of photogenerated holes from the TDCV-TPA layer.  

Considering the more porous appearance of the spin-cast TiO2 substrates in 

SEM and AFM analyses and the soak-in effect observed for the dye deposition 

(Fig. 6.16), the higher photocurrent can be interpreted to be a consequence of 

a larger interfacial area for charge separation. From SEM cross-section of spin-

cast TiO2 samples with deposited TDCV-TPA (fig. 6.24), the visible 

overstanding dye layer was about 17 nm thinner than expected from the 

sample absorbance. This corresponds to about 72 % of the light harvested in 

the interpenetrated dye/TiO2 region. As the distance to the nearest TiO2 

interface can be expected to be small, excitons are harvested very efficiently. 
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Figure 6.24. SEM cross-section of spray-pyrolyzed (top) and spin-cast (bottom) TiO2 

films with a layer of TDCV-TPA deposited from a 20 mM dye solution. For the spray-

TiO2 film the layer of TDCV-TPA is marked in red. For the spin-TiO2 the red band the 

dye layer infiltrates into the porous TiO2 layer. 

The effect of the preparation route of the titania might be negligible in 

comparable HSC devices comprised of polymers12,36 but to the author’s best 

knowledge a systematic comparison of TiO2 substrates prepared using 

different preparation routes has not been reported. 

The efficiencies for the bilayer devices comprising TDCV-TPA and spin-cast 

TiO2 films reported herein compare favourably with bilayer HSCs using TiO2 
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films prepared in a similar manner in combination with the well-known poly-3-

hexylthiophene (P3HT).12 Thus, TDCV-TPA is an interesting compound to be 

used in hybrid solar cell devices and the smaller molecular dimensions might 

prove to be beneficial when realizing nanostructured hybrid solar cells as the 

dimensions of the organic compound affect the infiltration into the scaffold of 

a porous inorganic acceptor.37  

 

 

The second part of this chapter deals with the fabrication and test of dye-

sensitized solar cell devices with a main focus of the effectiveness of titania 

pastes. 

 

 

Three different types of solar cells were studied with home-made 

nanostructured TiO2: hybrid solar cells (HSCs), solid-state dye-sensitized solar 

cells (SS-DSCs) and dye-sensitized solar cells with a liquid electrolyte (DSCs). 

All of these are made of different components, as depicted in Fig. 7.1 and 

explained much in details in the following paragraphs. The counter electrodes 

range from graphite (for HSCs) to silver (for SS-DSCs) to platinum (for DSCs). 

Whereas dye for HSCs is the same used for HSCs studied in the previous 

chapter (TDCV-TPA), dye D35 ((E)-3-(5-(4-(Bis(20,40-dibutoxybiphenyl-4-

yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid), quite commonly adopted 

in literature, has been used for both SS-DSCs and DSCs with a liquid 

electrolyte. This latter component consists in the previously mentioned 

PEDOT:PSS or in the well-known spiro-OMeTAD ((2,2’,7,7’,-tetrakis(N,N-di-p-

methoxyphenyl-amine)-9,9’,-spirofluorene) for HSCs and SS-DSCs, 

respectively. Then, titanium dioxide, as the mainly investigated component, is 

present as both a compact “blocking layer” on top of the underlying FTO 

substrate and purposely nanostructured. A blocking layer is particularly 

required for both types of devices made with a solid-state electrolyte, while in 

the third type of solar cells (traditional DSCs) other expedients are adopted to 

build a functioning device, with the use of different TiO2 layers (see Fig. 6.25). 
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Figure 6.25. Schematic picture of the main components of solar cell devices presented 

in this chapter: hybrid solar cells (left), solid-state dye-sensitized solar cells (middle), 

dye-sensitized solar cells with a liquid electrolyte (right), namely a cobalt bipyridyl 

redox complex compared with the traditional triiodide/iodide.  

6.4. TiO2 pastes  

Design and refinement of TiO2 pastes has presented challenges also to several 

authors in the literature, as witnessed by the abundant papers on the topic. 

The importance of “knowing what you have” cannot be stressed enough. As a 

matter of fact, both preliminary and optimization studies require a synergistic 

combination of several types of characterization techniques.  

For synthetic improvements one needs to know the average particle size, 

degree of dispersion, surface chemistry as well as the combination of these 

properties that lead to desirable features for the entire device. Scanning 

electron microscopy is the formidable technique that has mostly helped 

throughout all the work on the topic. It proved useful in the main stages of 

paste optimization for monitoring important effects such as particles 

aggregation and size, complete coverage of the support and homogeneity of 

the final porosity. In contrast to SEM, TEM cannot probe surface morphology 

and could, at times, be misleading because the largest particles in an 

ensemble are most easily imaged and can be overrepresented in “typical” 

images. However, both these electron microscopy techniques are limited in 

terms of truly revealing the entire three-dimensional geometry of a single 

particle and do not statistically rely on a significant number of particles.  

At a first stage, the most simple and at the same time effective way to deposit 

TiO2 layers by spin-coater on top of the FTO substrate was thought to be the 

following. Starting from commercial or home-made titania nanopowders, they 
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were suspended in 2-propanol, sonicated and spin-coated (taking the 

surnatant suspension in case a conspicuous powdery amount was left on the 

bottom of the beaker).  

However, SEM analyses showed a disappointing TiO2 coverage of the 

underlying substrate, thus negating the initial conjecture. Even the addition of 

acetylacetone (acac) and/or -terpineol to the suspension did not improve 

substantially the deposition: in Figure 6.26, a representative titania deposition 

of Degussa (Evonik) P25 powder at two different magnification is reported. 

The spin-coated suspension consisted in TiO2 and 2-PrOH, terpineol, acac (ca. 

10:10:1 v/v). It is evident that the nanoparticles do not form unfavourable 

aggregates but succeed in covering less than half of the FTO surface, even 

though two TiO2 depositions were performed on the same substrate. The 

same happens for “T” powder when suspended in 2-propanol, even at the 

optimized amount (see Fig. 6.27). Although a fine nanoporous nanoparticolate 

system is obtained, in the film finally consists of big aggregates not 

homogenously deposited on the substrate, leaving it pretty extensively 

uncovered.  
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Figure 6.26. SEM images of a dispersion of Degussa (Evonik) P25 deposited on the 

substrate for hybrid solar cells at two different magnifications. Both TiO2 

nanoparticles (white spots) and the uncovered substrate (spray-pyrolyzed TiO2 on top 

of FTO) are visible. 

 
Figure 6.27. SEM images of a dispersion of Degussa (Evonik) P25 deposited on the 

substrate for hybrid solar cells at two different magnifications. Both TiO2 

nanoparticles (white spots) and the uncovered substrate (spray-pyrolyzed TiO2 on top 

of FTO) are visible. 
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Reached the awareness that such a simple route to disperse TiO2 

nanoparticles starting from a powdery habit was not effective in the context 

of DSCs, different procedures to obtained home-made titania slurries/pastes 

have been adopted from the literature or ex novo designed and optimized 

starting from either TiO2 powders or sols.  

A commercial world-wide used TiO2 paste (Dyesol, DSL 18NR-T) was used at 

different dilutions with -terpineol as reference for hybrid solar cells. 

Hereafter the experimental procedures of selected titania materials employed 

in HSCs are reported. All of them were deposited by spin-coater on an FTO 

substrate. It is underlined that, when using home-madeTiO2 as powdery raw 

material, it is highly important to grind well using pestle and mortar for 

several minutes. 

All surfactants were purchased by BASF Company (USA) or obtained by their 

courtesy. 

 

o According to the pioneering procedure reported more than 20 years 

ago by O’Regan and coworkers,38 TiO2 colloid solutions were prepared 

by hydrolysis of titanium(IV) isopropoxide (62.5 mL) in 2-propanol (10 

mL) with 375 mL of water under vigorous stirring. Within 10 min of 

the alkoxide addition, 2.85 mL of 65 % nitric acid was added to the 

hydrolysis mixture, which subsequently was stirred for 8 h at 80  °C. 

The 2-propanol (and some water) was allowed to evaporate during 

this time. The sol was even more concentrated at the rotary 

evaporator (about 20 min). Crystallization occurred during the 

refluxing, the initial TO2 precipitate being amorphous.  

The as-prepared sol was named “O’Regan_sol”. The titania 

morphology at the nanoscale can be appreciated in Fig. 6.28. 
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Figure 6.28. SEM image of the titania layer deriving from “O’Regan sol” 

deposited for hybrid solar cells.  

 

o A procedure adapted from Ahn et al.39 consisted in the following: 3.75 

g P123 [poly(ethyleneoxide)20-poly(propyleneoxide)70-

poly(ethyleneoxide)20]  was dissolved in 10 g of acetylacetone 

(acac)by stirring for 90 min. Then, 4.7 g of titanium(IV) isopropoxide 

mixed with 5 g of acac was added with vigorous stirring. Finally, the 

sol solution was stirred at room temperature for 90 min until a 

uniform bright yellow TiO2 sol was obtained.  

The as-prepared sol was named “Ahn_sol”. The titania morphology at 

the nanoscale can be appreciated in Fig. 6.29. 
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Figure 6.29. SEM image of the titania layer deriving from “Ahn sol” deposited 

for hybrid solar cells at two different magnifications.  

 

o Using surfactant a Pluronic surfactant, a template TiO2 sol was 

obtained. The Pluronic PE type surfactant are low-foaming, nonionic 

surfactants. They are triblock copolymers in which the central 

polypropylene glycol group is flanked by two polyethylene glycol 

groups. They conform to the following structural formula reported in 

Fig. 6.30, with x,y,z standing for the numbers of PEO, PPO and again 

PEO units (PEO = polyethylene oxide and PPO = polypropylene oxide). 

 

 
 

Figure 6.30. Chemical formula of Pluronic PE surfactants. 

 

A solution of 0.1 mol of Ti(OC3H7)4 in 38 mL of 2-propanol was stirred 

for 10 min at 300 rpm at 25 °C. Then, 180 mL of water was added, 

dropwise, fast, to the alkoxide solution, to obtain a water/alkoxide 

molar ratio of 100 and a water/2-propanol molar ratio of 20. The 

slurry was stirred for 90 min to complete the hydrolysis. 

Subsequently, hydrochloric acid (HCl 37 %) was added to peptize the 

hydroxide precipitate to obtain a homogeneous milky suspension. The 
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mixture was maintained under reflux at 80 °C for 5 h. Then, Pluronic 

PE10400 surfactant was added to the sol after being liquefied in 2-

propanol (as it is a white waxy solid at room temperature) in such an 

amount that the optimized ratio between the number of ethoxy units 

and the number of titanium moles (EO/Ti) was equal to 0.5. The 

mixture was maintained  under stirring for 3 h at 50 °C. This modified 

template synthesis allows to control the morphology of the colloidal 

titania: the sol-gel synthesis leads to TiO2 aggregates; the use of HCl 

enables smaller particles to be obtained; Pluronic PE 10400  induces 

self-assembly with titania nanoparticles and its removal by a thermal 

treatment (when the sol deposited on the FTO glasses is placed for 2 

hours on the hotplate at 450 °C) allows the formation of mesopores in 

the titania structure. 

The as-obtained TiO2 sol was named “PE10400_sol”. For SS-DSCs, such 

sol was further concentrated at the rotary evaporator in order to 

obtain a more dense sol with the aim of depositing a thicker TiO2 

layer. 

Different magnifications of SEM images reported in Fig. 6.31 allow to 

discuss different aspects of the paste resulting from template TiO2 sol. 

From the first image of the group represented in Fig. 6.31, it is pretty 

evident that the titania layer is still smeared with unburnt surfactant. 

This is, in principle, an inconvenient issue, which could lead to 

obstruction of the pores of the inorganic TiO2 scaffold. However, the 

second image does not confirm such a pessimistic hypothesis, 

showing a nanometer scale homogeneous porosity. The other two 

images grouped in Fig. 6.31 highlight the same issue (i.e., the coverage 

of the substrate) at two different magnification levels: it is clearly 

visible from the former (third image of Fig. 6.31) that the substrate is 

partially covered by big TiO2 aggregates and partially not. The latter 

image lets appreciate that some small TiO2 nanoparticles are spread 

here and there over the underlying bigger grains of the spray-

pyrolyzed TiO2 layer covering the FTO. 
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Figure 6.31. SEM images of the nanoporous titania layer deposited from “PE10400 

sol” paste to be used for hybrid solar cells. Four different magnifications are reported 

to illustrate several aspects (see the main text). 
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o Two different titania pastes were formulated starting from either 

Degussa (Evonik) P25 powder or the home-made “T” powder (see 

paragraph 2.1.1 for the synthetic route) adopting the procedure 

described by Ito et al.40 2 g of TiO2 nanopowder were stirred in diluted 

nitric acid (0.3 mL of 65 % HNO3 in 40 mL of H2O) under heating at 80 

°C for 8 h and dried in a rotary evaporator to reach a powdery aspect 

of the dispersion. Thus, HNO3 resulted adsorbed on the TiO2 surface 

(TiO2/NO3
-). Nitric acid plays the role of enhancing dispersion of TiO2 

particles and also to increase surface area and porosity of the 

resulting TiO2 film. The titania paste was prepared by Ito and 

coworkers mixing 0.8 g of TiO2/NO3
-, 4 mL of H2O, 0.25 g of 

polyethylene glycol (a porosity-increasing material) and 0.08 g of ethyl 

cellulose (as a thickener). Instead of this procedure, different 

materials in different amount have been finally used, after having 

tested that literature recipe. The optimized route consisted in the use 

of P25/NO3
-, -terpineol, 2-propanol, and acetylacetone (1:28:15:4 

w/w). The beaker containing the whole mixture was sonicated and 

then heated on a hotplate at ca. 100 °C for about 1h letting most of 

the solvent evaporate.  

The as-prepared TiO2 pastes were named “P25/NO3
-” and “T/NO3

-”. 

The titania morphology at the nanoscale can be appreciated in Fig. 

6.32. 
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Figure 6.32. SEM images of the nanocrystalline titania layer deposited from the 

optimized “P25/NO3
-
” paste to be used for hybrid solar cells. Four different 

magnifications are reported to illustrate several aspects (see the text).  

o One among all the doped-TiO2 powders reported in chapter x has 

been used in another different procedure to obtained a suitable TiO2 

material for deposition on FTO. The titania slurries were consisted of 



 

339 6.     Solar cells 

0.25 g of nitrogen-doped titania (the not calcined powder was used), 2 

g of 2-propanol, 0.4 mL of acetylacetone, 3 ml of -terpineol. 

The as-prepared TiO2 pastes was named “TN_TEA_pre”. The titania 

morphology at the nanoscale can be appreciated in Fig. 6.33. 

 

Figure 6.33. SEM images of the “TN_TEA_pre” titania deposited to be used for hybrid 

solar cells at two different magnifications. In both images the underlying substrate 

(spray-pyrolyzed TiO2 on top of FTO) is visible as bigger grains. 
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o The procedure reported by Karthikeyan et al.41 was adapted to 
obtained a quite viscous titania paste. First, 1 g of home-made T 
powder was sonicated in ethanol for 30 min. Then, 4 mL of the 
supernatant system containing fine titania was taken and 0.1 g of 4-
hydroxy benzoic acid and 8 g of ethanol were slowly added during 
mixing. The mixture was stirred until a homogeneous paste was 
obtained (about 50 min). Ethanol was left to evaporate yielding a 

compact powder. 3.5 g of 5 % ethyl cellulose in -terpineol was added 
to the compact powder and allowed to mix well. After obtaining a 
homogeneous system, 4 g of α-terpineol was added to the dispersion 
and mixing was continued until a homogenous paste was obtained.  
As shown in Figure 6.34, the nanoscale morphology of the starting 
material has been preserved (see the right-handed image), but the 
problem of not covering homogenously the underlying FTO has not 
been overcome (see the left-handed image).  
The as-prepared TiO2 pastes was named “T_Karthik”.  
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Figure 6.34. SEM images of the porous titania nanocrystalline film obtained from 

T_Karthik” paste at two different magnifications. At lower magnification (left-handed 

image), both TiO2 and the uncovered substrate (FTO) are visible. 

6.5. Device fabrication and materials used  

HSC 

After cleaning the FTO substrates (TEC15, Pilkington, 2.3 mm thickness, 15 

Ω/square sheet-resistance), a dense TiO2 blocking layer is deposited onto the 

conductive glass to constitute the working electrode. Such blocking layer 

should prevent a direct contact between the hole conductor and the FTO, 

otherwise short-circuiting the cell.  

Mesoporous layers of TiO2 on FTO glass substrates were prepared by spin-

casting a paste of titania nanoparticles (commercial or home-made). Different 

pastes were tested (O’Regan_sol, Ahn_sol, PE10400_sol, P25/NO3
-, T/NO3

-, 

TN_TEA_pre) and presented in details in paragraph 6.4. Samples were 

sintered using a standard sintering procedure (180 °C, 10 min; 320 °C, 10 min; 

390 °C, 10 min; 500 °C, 30 min). 

The small molecular semiconducting dye [tris(dicyano-vinyl-2-

thienyl)phenyl]amine (TDCV-TPA, structure shown in Fig. 6.7) was spin-cast 

(30 s, 4000 rpm) from a methylene-chloride solution with varying 

concentrations (0.1-30 mM). 
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The conducting polymer poly(3,4-ethylenedioxy-thiophene):poly-

(styrenesulfonate) (PEDOT:PSS) was applied by spin-coating. Solvent residues 

were removed in vacuum (2.5 10-5 mbar). Ideally, during spin-coating, the 

solution fills the TiO2 pores and the solvent is allowed to evaporate, thus 

enabling the hole conductor (as it also happens in the case of spiro-MeOTAD, 

see the following) to be in contact with the metal oxide both within the pores 

and on top of it, as a further layer.  

A square hole (punch, Fisher, 0.19 cm2) or round hole (one-hole punch, 0.24 

cm2) was punched out of a piece of double-sided tape (Stokvistapes, Clas 

Olson) and mounted onto the sample. 

The back contact was finally established by compressed graphite powder and 

a second conducting glass slide (schematically shown in Figure 6.25). Silver 

tape was applied to establish contact points to the solar cell. The active area 

of the devices was 0.19 cm2. 

As for all the other types of solar cell devices, two samples of each 

configuration were prepared, exhibiting reproducible results. 

 

SS-DSC 

All devices were assembled on FTO (TEC 15, Pilkington). A dense layer of 

titanium dioxide was deposited on these substrates by spray pyrolysis, while a 

thicker mesoporous TiO2 layer was spin-coated at 2500 rpm for 30 s and 

subsequently sintered at 450 °C for 45 min. Different pastes were tested; two 

of them (PE10400_sol, and T_Karthik) were selected and presented in details 

in paragraph 6.4. Then, the electrodes were soaked for 30 min in an aqueous 

solution of 40 mM TiCl4 at 70 °C and heated again at 450 °C for 45 min. Dye 

D35 (see the structure in Fig. 6.35) adsorption onto the TiO2 working 

electrodes was carried out by dipping the warm(∼100 °C) substrates into a 3 × 

10−4 M ethanolic solution of the dye. The choice to operate at that 

temperature sprang from the need to minimize adsorption of impurities from 

moisture in the ambient air. The substrates were stored in the dye solution for 

16 h and were rinsed with EtOH before use, to remove non-chemically 

attached dye molecules. For complete solar cell devices a fresh solution of    

spiro-OMeTAD (2,2’,7,7’,-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9’,-

spirofluorene, Merck KGaA, as received) was used as hole-conductor. 

Specifically, a solution of 120 mM spiro-OMeTAD, 60 mM 4-tertbutylpyridine 

and 15 mM LiN(CF3SO2)2 in chlorobenzene was applied to the films, let 
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penetrate into the films for 1 min and then spin-coated for 30 s at 2000 rpm 

with an initial step of 3 s at 1500 rpm.  

On top, a 100 nm silver layer was deposited by thermal evaporation in a 

vacuum chamber (Leica EM MED020) with a base pressure of about 10-5 mbar. 

The active area of the device was equal to 0.20 cm2. 

 

Figure 6.35. Chemical structures of dye D35 (top) and of the hole conductor spiro-

MeOTAD (bottom).  

 

Liquid electrolyte DSC 

The working electrode was prepared according to the following procedure. 

First of all, FTO glasses were deterged in an ultrasonic bath for 15 min, and 

then rinsed with water and ethanol. An ozone treatment was applied for 18 
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min and followed, for selected samples, by immersion in a 40 mM aqueous 

TiCl4 solution at 70 °C for 30 min and then washed with water.  After rinsing 

again with water and ethanol, TiO2 paste was screen printed and dried on the 

hot plate at 125 °C for 6 min. This step was repeated three times in order to 

get an optimal film thickness in the order of 10 µm. The electrodes were then 

heated under airflow to 325 °C (5 min), 450 °C (15 min) and up to 500 °C (15 

min). Furthermore, one layer of a TiO2 paste made of 400 nm particles (JEC 

PST-400C) was applied to selected electrodes. A “post-treatment” with TiCl4 in 

water was also applied to selected samples. Three different final thicknesses 

of the TiO2 layers were obtained, namely 6, 14, and 19 µm. The electrodes 

were finally heated again at 500 °C for 30 min before use. After cooling to 80 

°C, the TiO2 electrodes were immersed in a dye bath containing 0.2 mM D35 in 

ethanol at room temperature for at least 12 h. After washing with ethanol to 

remove the excess dye and drying under an air flow, the sensitized titania 

electrodes were assembled with thermally platinized counter electrodes 

(prepared starting from a 4.8 mM H2PtCl6 solution in ethanol) using a thin 

thermoplastic frame (Surlyn). The liquid electrolyte was composed of 0.8 M 1-

methyl-3-propylimidazolium iodide, 0.5 M 1-methylbenzimidazole, 0.1 M 

guanidium thiocyanate and 0.03 M I2 in acetonitrile. For comparison, DSCs 

were also prepared using bis(2,2’-bipyridine) cobalt hexafluorophosphate as 

the redox couple, that is 0.22 M Co(bpy)3(PF6)2, 0.033 M Co(bpy)3(PF6)3 (see 

the structure of the redox complex in Fig. 6.36), and additionally 0.1 M LiClO4, 

0.2 M 4-tert-butylpyridine (TBP) in acetonitrile. The electrolyte was introduced 

under vacuum through a prefabricated drilled hole in the CEs. The hole was 

sealed with a 50 mm thermoplastic frame and a glass plate. The active area of 

the cells was 0.25 cm2.  

 
Figure 6.36. The chemical structure of cobalt bipyridyl redox complex. 
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6.6. Hybrid solar cells’ results 

For all hybrid solar cell devices, the dye TDCV-TPA - not properly soluble in 

chlorobenzene - was dissolved in acetonitrile. Actually, this was not the best 

solvent for dye deposition because of its very high evaporation rate. Such 

feature played a crucial role during the deposition of the dye by spin-coating 

onto the underlying TiO2. Instead, a slightly higher time should probably have 

given to let the dye penetrate into the inorganic semiconductor. 

The concentration of the dye was already optimized by Prof. Hagfeldt’s 

research group, paying attention not to work at high dilutions, in order to 

avoid an insufficient infiltration in TiO2 pores. 

A drawback of TDCV-TPA was found to be a low efficiency in regeneration of 

the dye (injection process). 

Generally speaking, by increasing the interfacial area for charge separation, 

hybrid solar cell performance can be theoretically increased. A direct way to 

dispose of a higher interfacial area is the use of nanostructured metal oxides. 

Indeed, their morphology affects the exciton harvesting efficiency, the charge 

collection efficiency and the charge recombination. 

Titania surface area and pore size are concepts strictly related. However, pore 

volume and shape distributions have to be carefully taken into account since 

small/large pores and cylindrical/spherical/bottle-neck pores have a very 

different and peculiar influence on the device performance. Indeed, this latter 

is deeply affect by the pore filling fraction, which very often represents a 

limiting factor to high efficiency of the cell.42,43 Actually, a high pore filling 

fraction can facilitate the separation of geminate electron-hole pairs.43  

Different VOC and JSC values were obtained depending on the TiO2 paste (Table 

6.3). 

It seems that the commercial Dyesol paste and titania pastes made from sols 

adapted from two literature works (as mentioned in the experimental 

procedure of the paste) give rise to a slightly higher short circuit current. 

However, also TN_TEA_pre presents a similar values. As a matter of fact, the 

JSC increases as the amount of dye increases. In turn, the amount of dye-

loading is mainly affected by the surface area of TiO2 films. This means that 
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the amount of “working dye” adsorbed onto TiO2 electrodes of the above-

cited cells is slightly higher with respect to other samples. This finding is not in 

contrast with all reported SEM images, which show a TiO2 layer covering the 

all substrate surface only in the cases corresponding to cells with higher JSC.  

Exceptionally high VOC and best performing devices were obtained when 

titania pastes “O’Regan sol” and “TN_TEA_pre” were employed. Dyesol cell 

efficiency is the highest of all, though not at all a highly out-of-range value. 

The device containing the “PE10400 sol” titania paste showed intermediate 

values of JSC, VOC, FF, and η. The quite low FF value (Table 6.3, to be compared 

with the other values) is consistent with what stated above: it could be due to 

the bigger unwanted aggregates that can retard the transport of electrons and 

result in higher recombination rate.  

Working electrode VOC (V) JSC (mA cm-2) FF η (%) IPCE (%) 

Dyesol (1:9 terp.) 0.850 1.02 0.424 0.37 14 

O’Regan sol 0.960 1.11 0.450 0.45 13 

Ahn sol 0.848 1.11 0.315 0.30 11 

PE10400 sol 0.870 0.72 0.516 0.32 9 

P25/NO3
- 0.740 0.54 0.430 0.20 9 

T400/NO3
- 0.825 0.74 0.322 0.20 9 

TN_TEA_pre 0.870 0.91 0.630 0.50 11 

Table 6.3. Current-voltage characteristics and IPCE values for solar cells devices 

sensitized with the small-molecular semiconducting dye TDCV-TPA employing the 

conducting polymer PEDOT:PSS and graphite powder. 

 

Unfortunately, with a high pore volume titanium dioxide, it might be possible 

that the middle of the pore would not contribute to the light absorption by 

the dye. This could be valid for almost all the titania pastes presented herein. 

Morphology control is an essential aspect of optimization of solar cell devices. 

It is highly important to achieve a pore size of the inorganic scaffold in order 

to properly interpenetrate organic and inorganic phases. The pore size should 

be in the order of the exciton diffusion length, and, at the same time, it is 

desirable to get efficient charge carrier transport in the respective phase. 

Samples “P25/NO3
-” and “T/NO3

-”, both derived from HNO3 treatment of the 

bare TiO2 powders, exhibited the lowest JSC and FF. It seems that the 

apparently beneficial effect of nitric acid was washed out. This is in contrast 
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with literature results: Park and coworkers, who also studied the effects of 

HNO3 treatment of TiO2 nanoparticles on the photovoltaic properties of DSCs, 

found an increased adsorption amount of the dye and consequently increased 

short circuit current and efficiency of the devices. Moreover, the authors 

reported that XPS analysis attested an increase of the Ti3+ content in the 

material (Ti 2p peak shifted at higher binding energies).44  

In the present situation, as in a general case, a low JSC could depend on a low 

concentration of dye in TiO2 layer, or directly to a low quality TiO2 layer. 

Alternatively, it may be due to degraded dye molecules or to the presence of 

water adsorbed on the TiO2 layer or in the electrolyte. Last but not least, a 

poorly sealed cell or defective construction (shorts, electrolyte coverage, and 

leaks) could be the culprit of low JSC values.  

Notwithstanding the low performance, SEM analysis of the P25/NO3
- 

electrode was very promising high magnification, as can be appreciate in Fig. 

6.37. The home-made P25 dispersion after HNO3 treatment looks very similar 

in size and shape to the Dyesol nanoparticulate electrode. The major problem 

resides in the highly inhomogeneous coverage of the substrate (see Fig. 6.32). 

 
Figure 6.37. SEM images of two different titania electrodes: comparison between the 

commercial Dyesol paste and the home-made nanoporous titania layer deriving from 

an optimized paste (P25/NO3
-
, terpineol, 2-PrOH, acac 1:28:15:4 w/w).  

As displayed in Fig. 6.38, the driving force for electron injection from the dye 

LUMO to the TiO2 conduction band is comparatively low.19 In principle this can 

lead to a slow injection from the dye to TiO2. The scenario is, however, more 



 

348 6.     Solar cells 

complex as indirect effects may play a role in the energetic of the system. 

Indeed, besides light harvesting, the dye could influence cell performance by 

altering the surface recombination kinetics and band edge energetics of the 

TiO2 film.45 Such a shift of the conduction band edge increases VOC and reduces 

the driving force for electron injection (-∆G) associated with a decreased TiO2 

density of states (because it should be considered that the density of states in 

the TiO2 conduction band increases with energy.). This is not always valid: Jang 

et al. found no evidence that the organic dye contributed to the high voltage 

by shifting the band edges to more negative electrode potentials.46 

Nevertheless, on the grounds of DFT calculations, they claimed that steric 

shielding of the electrons in the TiO2 by the organic dye was important in 

reducing recombination.  

Nevertheless, a quite large variation in VOC values could be partially ascribed 

to some sort of slight modification of the TiO2 conduction band position. 

 
Figure 6.38. Energy level diagram of the bilayer hybrid solar cell devices derived from 

electrochemical and spectroscopic data for all the components.  

 

N-doped TiO2 based HSC 

In the context of this thesis, a separate discussion is worth for the solar cell 

device based on N-doped TiO2. 

When dealing with the TiO2 conduction band position, in the case of the 

titania nanopowder doped with triethylamine, proper measurements have 

been performed to evaluate both the flatband potential and the quasi-Fermi 

level (paragraph 4.4.1). The result was a not significant variation of the 
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conduction band edge position. However, no doubts that TN_TEA_pre is a 

highly defective sample. Surface states cannot be a priori excluded and the 

abundance presence of oxygen vacancies has been attested by more than one 

method (see chapter 3). Thus, electrons in the increased surface states 

(charge trap sites) experienced more trapping/detrapping events, causing the 

increase of residence time in the trap sites. On the other hand, photocurrent 

measurements on the bare N-doped titania electrode (i.e., not assembled in 

the whole cell) have shown a lower electron-hole recombination rate 

(paragraph 4.7.1), that, of course, has a beneficial effect also in the solar cell 

device.  

Unlike the countless literature works both on nitrogen-doped titania and on 

dye-sensitized solar cells, DSCs based on the N-TiO2 electrodes are not 

frequently studied.  

In the following, a brief review of the main papers focusing on such joint topic 

will be given. 

Starting from one of the most relevant and recent works, Guo et al.47 

investigated the effect of varying amounts of N dopant (aqueous ammonia) on 

the performance of DSCs based on N-TiO2. The use of high energy ball milling 

was introduced to overcome the problem of a poor adhesion between the 

TiO2 film and FTO, which initially led to low JSC and efficiency, at the expense 

of the collapse of nanochannels and meso-macroporous structures. As 

suggested by Su et al. and Shao et al.,48,49 such a hierarchical structure of 

uniform macrochannels with mesoporous walls of nanoparticles would have 

been formed by self-assembly during the synergistic packing of the 

nanoparticles and rapid release of alkanol molecules. At increasing N amount, 

the short-circuit current and efficiency of the devices increased, with a top 

efficiency of 7.95 %, which is much higher than that of undoped TiO2-based 

DSCs, namely 4.80 %. The optimal N dopant amount for the N-doped TiO2 

electrodes was 0.40 %, on the basis of the XPS results. That amount exactly 

coincides with the value provided by elemental analysis (CHN) for the N-TiO2 

powder characterized in paragraphs 3.4, 4.4.1, 4.7.1 and used for the paste of 

the tested solar cell device and It is here recalled that that sample was doped 

with triethylamine using a nominal N/Ti molar ratio of 0.1. Instead, survey XPS 

analysis on that sample provided a value of 0.022 N/Ti atomic ratio. 

Comparing with undoped TiO2, by adding different amounts of ammonia in N- 

TiO2 photoelectrodes, the authors speculated that the pH-dependent ζ 



 

350 6.     Solar cells 

potential and thereby the isoelectric points of N-doped TiO2 changed. The 

isoelectric points of TiO2 have an effect on the dye-loading; as for instance, 

surfaces with higher isoelectric points are preferable for the attachment of 

dye with acidic carboxyl groups.50,51 Moreover, the hydrolysis of TTIP in 

deionized water formed the aggregations of the undoped TiO2 nanoparticles, 

which also decreased the dye-loading amount of undoped TiO2 films. In 

previous papers, Guo et al.52,53 reported that the faster electron transport in 

the N-doped DSCs contributed to the enhanced JSC. Thus, they concluded that 

the synergistic effect of higher dye uptake, N dopant amount, and faster 

electron transport contributed to the enhanced JSC of N-doped DSCs. The N 

dopant amount apparently affected both the charge transfer resistance and 

electron lifetime. 

In a very recent work, Tian and coworkers54 dealt with the preparation of N,B-

codoped TiO2 electrodes for dye-sensitized solar cells by a facial modified sol–

gel method. Impedance spectra showed that the enhanced electron lifetime 

could be attributed to the formation of an O–Ti–B–N bond in the oxide, which 

retards electron recombination at the photoelectrode/electrolyte interface. 

The authors reported a high efficiency of 8.4 % under 0.2 sun illumination, 

probably ascribable to the ideal combination of retarded electron 

recombination and superior energy band structure from the unique N,B–TiO2 

particle structure. 

In a previous paper, Tian et al.55 noticed that doping TiO2 with nitrogen 

successfully retarded charge recombination at the TiO2/electrolyte interface. 

If, on one hand, the increase of titania crystallite size affected the N719 dye 

adsorption, with a decreased JSC, on the other hand back electron transfer was 

found to be suppressed, retarding the dark current and improving VOC and FF. 

The introduction of N replaced the O deficiency in the titania crystal lattice, 

with an O-Ti-N structure that could be the reason of the enhanced electron 

lifetime and retarded dye degradation. A negative point was the weakening of 

the driving force for the photoelectron injecting ensuing from a shift of the 

flat-band potential to the negative direction, but overall the devices built with 

N-TiO2 showed higher stability (1 sun light soaking, 70 °C, more than 1000 h) 

than those consisting of undoped TiO2. 

On the contrary, Zhang et al.56 found out N-TiO2 to have a lower conduction 

band edge than TiO2, which is helpful for electron injection. Moreover, by N 
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doping, the growth of particle size was inhibited, and the best match of 

components was achieved with N719/P3HT, giving η = 2.34 %). 

Single-cycle dip-deposited N,S-TiO2 thin films (with thiourea as precursor for 

codoping) were obtained by Prabakar et al. as visible light harvesters as well 

as blocking layers for DSCs (η = 5.88 %).57  

An efficiency slightly lower (η = 4.86 %) was reported by Kang and 

coworkers,58 owing to the increase of light absorption in the near-vis and 

partially to the morphological characteristics of the N-TiO2 film. However, a 

lower electron diffusion coefficient was ascribed to trap states and disorder in 

the lattice.    

          

6.7. Solid state dye-sensitized solar cells’results 

Dye D35 ((E)-3-(5-(4-(Bis(20,40-dibutoxybiphenyl-4-yl)amino)phenyl)thiophen-

2-yl)-2-cyanoacrylic acid) was prepared by researchers of the Department of 

Organic Chemistry at KTH University (Stockholm) according to the published 

procedure.59 D35 is an organic sensitizer based on triphenylamine (TPA) 

donors.60 The chemical structure is shown in Figure 6.35. The dye D35 shows a 

great performance when combined with the cobalt redox couple. This dye, 

however, cannot absorb any light beyond 620 nm. Nowadays, a co-

sensitization method61,62 is often carried out to optimize the light absorption 

on the working electrode in order to improve significantly the current density, 

and, consequently, the efficiency of the device. 

Since the presence of hole transporting materials in ss-DSCs involves hole 

hopping among molecules, several essential conditions must be met:63 (i) a 

compatible energy level layout with the dye-TiO2 functioning as a typical p–n 

junction for dye regeneration through hole transfer; (ii) efficient deposition 

within the mesoporous TiO2 film, good pore filling ability, and stable interfacial 

contact with the dye-TiO2; (iii) sufficient hole mobility; (iv) thermal and 

photochemical stability; and (v) no strong absorption in the visible spectrum 

to avoid competition with dye molecules. The first two requirements directly 

deal with the TiO2 component; thus, they have to be taken more seriously into 

consideration. 
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Solar cells were assembled using the well-established spiro-OMeTAD hole-

conductor instead of the promising Poly-(3-hexylt hiophene-2,5-diyl) (P3HT) 

because photo-induced absorption measurements performed by the Hagfeldt 

group in a recent work64 suggested that the regeneration of the same dye and 

the polymer infiltration are not complete using P3HT, while spiro-OMeTAD 

regenerates the dyes efficiently. However, the TiO2/D35/P3HT system showed 

rather high energy conversion efficiency and electrochemical oxidation of the 

dyes on TiO2 indicates that D35 have an efficient dye to dye hole conduction. 

Therefore, the dye hole conduction was considered to be of significant 

importance for optimizing the energy conversion in such hybrid 

TiO2/dye/polymer systems.  

The highest efficiency (η = 0.85 %) was obtained for the PE10400conc sample. 

In general, a negative effect could be induced by a too high concentration of 

the spiro-OMeTAD solution and by the too few amount of dye loaded, 

according to UV-vis absorbance measurements, which is presumably due to 

too thin TiO2 films. Indeed they were below the optimal thickness of 2 µm. 

However, concentrating the sol rich in surfactant in order to increase the 

thickness of the metal oxide layer, then there would be probably too much 

surfactant, not easy to remove by the simple sintering step.  

An interesting case is that reported by Jiang et al. who fabricated a TiO2 film 

from a binder-free nanoparticle-TiO2 paste at room temperature:65 they found 

that an increase of the TiO2 film thickness from 0.35-0.55 to 0.9-1.1 µm led to 

the decrease of JSC from 4.74 to 3.45 mA cm-2 and FF from 0.65 to 0.48, and 

the resulted IPCE decreased from 2.60 % to 1.40 %.  

Actually, a thin TiO2 layer configuration was purposely sought in the present 

study because of the difficulty in completely filling the pores of the TiO2 films 

with spiro-MeOTAD66 and the relatively fast recombination kinetics,67 SSDSSCs 

are limited to thinner dye-covered films68,69 that often lead to poor light-

harvesting properties.70 Then, it should not be forgot that, to achieve high SS-

DSSC performance with TiO2 films thinner than those for DSCs, dyes with high 

absorption coefficient are a necessity. 

Low IPCE values (see Table 6.4) with increasing redox potential of the redox 

mediator may be the result of slow regeneration kinetics. Note that the redox 

potential of the I3
-/I- couple in the liquid electrolyte is about 0.4 V (vs NHE), 

whereas the one-electron oxidation potential of spiro-MeOTAD+/spiro-

MeOTAD couple is about 0.82 V (vs NHE).71  
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Working electrode VOC (V) JCS (mA cm-2) FF η (%) IPCE (%) 

T_Karthik 0.703 0.64 0.45 0.19 10 

PE10400_sol_conc 0.790 1.7 0.55 0.85 16 

Table 6.4. Current-voltage characteristics and IPCE values for two types of solar cells 

devices with different TiO2 pastes sensitized with D35 using spiro-OMeTAD as hole 

transporting material and silver as counter electrode.   

 

The low performance of both types of devices reported in Table 6.4 could be 

generally due to the high oxidation potential of the redox shuttle which is 

perhaps too close to the oxidation potential of the dye resulting in slow dye 

regeneration; therefore, low current was obtained, especially under full sun. 

This finding is quite surprising but not confirmed by the literature. 

Nevertheless, even a small difference in oxidation potential can result in a 

drastically lower device performance,72 pointing towards the conclusion that a 

driving force of less than 100 mV for dye regeneration can be insufficient.   

A direct contact between the FCO and Spiro-OMeTAD will result in carriers 

lost since holes can also move towards and inject into the cathode. This fact 

contributes to lower both JSC and VOC values. Such a situation could be valid for 

T_Karthik, since the substrate is partially uncovered, as revealed by SEM 

images (Fig. 6.34). 

6.8. Liquid electrolyte dye-sensitized solar cells’results 

Liquid electrolytes: iodide/triiodide versus Co-based redox mediators 

Since transparent conductive oxide (TCO) substrates, such as FTO, exhibit 

insufficient electron transfer kinetics for I3
-reduction, a thin layer of Platinum 

(Pt) is coated onto the TCO substrate (platinized cathode) and is used to 

catalyze the cathodic reduction of I3
- ions, i.e., redox couple regeneration.73 

However both these components of DSCs suffer from their inability in long-

term reliability. The I3
-/I- based electrolyte is corrosive, yellow in color and 

dissipative towards light absorption, while platinized cathode is subject to 

corrosion, sensitive to side products formation, and liable to become 

inactivated with ageing, apart from being uneconomical. These are major 

attributes which may limit the use of I3
-/I- based electrolytes and Pt in some 
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cases. Nevertheless, hardly any electron outer-sphere redox couples have 

shown a power conversion efficiency comparable to the I3
-/I- based redox 

couples, to complement its use. This occurred until the very last years. Indeed, 

after the seminal work on the use of cobalt electrolytes in DSCs,74 much 

attention has been given to polypyridyl cobalt redox complexes in recent 

times.60,75-77 In early 2010, Feldt et al.60 published a paper reporting a DSC with 

an efficiency of 6.7 % under full sun illumination with a cobalt tris-bipyridine 

redox shuttle combined with an organic dye. This breakthrough report 

demonstrated the feasibility of using outer-sphere redox couples to produce 

high efficiency DSCs through combined optimization of dye and redox couple. 

A recent review was published in 2011 by Hamann and Wondersma.78  

The attempts to replace the I3
-/I- redox shuttle by cobalt polypyridine 

complexes was not only limited to their low visible light absorption but also 

due to their higher redox potential and noncorrosive nature towards cathode. 

Moreover, the VOC of a iodide/triiodide system solar cell is restricted by the 

large driving force in the dye regeneration process. On the contrary, the 

cobalt redox couple needs a smaller driving force in the dye regeneration 

process, thereby generating a larger VOC compared with iodide/triiodide. 

For many one-electron, outer-sphere redox couples, faster recombination and 

shorter electron lifetimes have been measured compared to devices 

incorporating iodide/triiodide, and this is thought to be the main limitation to 

these alternative redox systems.60,79-81 Another significant drawback of the 

relatively bulky cobalt complexes (compared to I3
-/I-) is the slow mass 

transport through the mesoporous electrode.82-84 At full sun (AM 1.5 GM) the 

performance of cobalt complexes as redox shuttles is diffusion limited and 

also a faster back reaction of photo-injected electrons with the oxidized 

species is expected. Thus, an additional asset is the overall good reversibility 

of oxidation of such redox shuttle. 

However, in two of their papers, Tsao and coworkers have also demonstrated 

a device efficiency of 10 % with dye Y123 and 

[CoIII(bpy)3](B(CN)4)3/[CoII(bpy)3](B(CN)4)2 redox couple.85,86  

If the usage of Co-based redox mediators has led to the partial overcome of 

electrolyte diffusion limitations, and the overpotential for dye regeneration 

has been reduced, further improvements can lead to increased photocurrent 

densities and/or photovoltages.87 One issue that needs to be addressed, 

however, is the stability of these redox shuttles. For example, a 10–15 % 
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decrease in the efficiency was reported following 220 h of exposure to full 

sunlight at 30 °C.88 While this decay was attributed to loss of the volatile 

acetonitrile solvent, the stability of the cobalt complex electrolyte was not 

established. To the best of the author’s knowledge, no long term stability 

studies have been carried out, which will certainly be necessary if these redox 

shuttles are to serve as real replacements for I3
-/I-. 

 

Counter electrode: the use of platinum 

Concerns over platinum’s cost and stability have led to a plethora of studies, 

primarily with the iodine-based mediator, examining alternative catalysts such 

as CoS,89 polymers,90 and carbon nanomaterials including carbon black,91,92 

carbon nanotubes,93,94 and reduced graphene oxide.95-97 The floppy carbon 

layer can increase the active surface area of the counter electrode, thereby 

reducing the charge transfer resistance of the counter electrode.  However, up 

to date, there have been no reports of an alternative catalyst to platinum that 

can match − or exceed − this precious metal’s performance with multiple 

redox couples.  

 

Devices with home-made TiO2 pastes 

A quite unsuitable dark J-V behavior was found for almost all the DSCs built 

with the cobalt redox couple at high voltage values, as shown in Fig. 6.39: 

beyond 0.5 V the current stops rising and reaches a plateau. This finding could 

be ascribed to either inhomogeneity of the counter electrode or to dye 

dissolution. However, in the range of high voltage no particular significance 

should be addressed to the reaction rate at the counter electrode. Thus, a 

third possible explanation could refer to the concentration of the redox 

mediator. Indeed, Co(bpy)3(PF6)2+/3+ occasionally shows diffusion problems, 

as a typical issue of Co complexes in general. In the present case where more 

than one semiconductor layer is involved, more difficulties in mass transport 

could arise.  

Perhaps the situation could have been even more extreme and complicated if 

additional specific blocking layers had been added (even though the “pre” 

treatment with TiCl4 is thought to block the contact with FTO and inhibit 

recombination, enhancing the performance of the colloidal film as a dye-

sensitized photoanode is improved by deposition of TiO2 from aqueous TiCl4 

solution.98 Indeed, to avoid the problem of faster recombination and shorter 
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electron lifetimes of outer-sphere redox couples, a number of groups have 

applied thin, insulating blocking layers to the TiO2 surface.99-101 While this had 

been shown to reduce the charge recombination and increase the 

photovoltage obtained, the electron injection kinetics may be affected, 

leading to a reduction in photocurrent. Klahr and Hamann demonstrated that 

although a blocking layer does not significantly affect the photovoltaic 

performance of DSSCs containing some redox shuttles (e.g., [Co(t-

Bu2bpy)3]
3+/2+ and I3

-/I-), it is crucial for others (e.g., [Co(Me2bpy)3]3+/2+ and 

[Co(bpy)3]
3+/2+) and should be employed when new redox couples are 

investigated.102  

 

Figure 6.39. Dark current density vs applied potential curves for DSCs sensitized with 

D35 employing a Co(bpy)3(PF6)
3+

/
2+

 based electrolyte. Comparison among three 

different configurations of TiO2 layers. 
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Figure 6.40. Spectra of incident photon to current efficiency (IPCE) for DSCs sensitized 

with D35 employing I3
-/I- as redox mediator and a platinized counter electrode. 

Different configurations concerning the TiO2 layers are compared (see the text for 

labels).  

 
Figure 6.41. Spectra of incident photon to current efficiency (IPCE) for DSCs sensitized 

with D35 employing Co(bpy)
3
(PF

6
)

3+
/

2+
 as redox mediator and a platinized counter 

electrode. Different configurations concerning the TiO2 layers are compared (see the 

text for labels).  
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The DSCs with liquid electrolyte presented in this thesis consisted of materials 

similar to those used in the landmark paper by Feldt et al. on codesigning the 

dye and cobalt redox couple,60 which can be considered the complementary 

components of DSCs with respect to TiO2 as the one mainly studied herein.  

As fast recombination between the conduction band of TiO2 and cobalt 

mediators has limited DSSC performance for devices using traditional dyes 

such as N719, a dye with bulky side chains (D35) was used in this study. 

Butoxyl chains on D35 sterically hinder the interaction of cobalt complexes 

with TiO2, reducing the recombination .  

Results obtained for two types of liquid electrolytes, iodide/triiodide and 

cobalt based, are reported in Tables 6.5 and 6.6, respectively. In turn, for each 

of these two categories, four types of different devices were built. Based on a 

home-made “T_400” nanopowder paste, cells “T” were prepared as the 

simplest ones; then, some electrodes were pretreated by immersion in an 

aqueous TiCl4 solution (“T+preTiCl4”), some others were also covered by a 

light-scattering TiO2 layer on top of the mesoporous TiO2 film 

(“T+preTiCl4+scat”), and the “most complete” cells (“T+pre&postTiCl4+scat”) 

comprised a second “post” treatment by TiCl4 solution too. It has to be 

underlined that since the home-made mesoporous TiO2 films showed 

themselves a quite scattering behavior, solar cells both with and without a 

scattering layer were built, as mentioned in the device preparation procedure. 

The need of a scattering oxide layer has been demonstrated by optimization 

studies.103-105 Even if the scattering layer itself did not bring a sharp advantage 

in the present case, among the iodide/triiodide based devices the one with 

both the light-scattering layer and “pre” and “post” TiCl4 treatment showed 

the highest efficiency. Likewise, Feldt et al.60 found that the best efficiency 

was still obtained for quite thick films because of the increased light-

harvesting efficiency, i.e., two layers of TiO2 and one light-scattering layer 

giving a total thickness of 15 µm (12 + 3 µm). Contrary to these results for Co-

based electrolyte and although mass transport problems were shown to be 

avoided in the DSCs employing [Co(bpy)3]
3+/2+, the highest efficiency was 

obtained for cells without any additional “pre” or “post” TiCl4 treatment, nor 

scattering TiO2 layer. This point will be discussed in the following. 
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Working electrode VOC (V) JSC (mA cm-2) FF η (%) IPCE (%) 

T 0.775 7.0 0.74 4.0 63 

T+preTiCl4 0.798 6.7 0.75 4.0 57 

T+preTiCl4+scat 0.783 6.6 0.75 3.9 53 

T+pre&postTiCl4+scat 0.785 7.1 0.74 4.1 74 

Table 6.5. Current-voltage characteristics and IPCE values for solar cells devices with 

different configurations of TiO2 layers sensitized with D35 employing I3
-
/I

-
 as redox 

mediator and a platinized counter electrode. 

 

Working electrode VOC (V) JSC (mA cm-2) FF η (%) IPCE (%) 

T 0.885 8.5 0.61 4.6 81 

T+preTiCl4 0.865 7.8 0.63 4.3 72 

T+preTiCl4+scat - - - - - 

T+pre&postTiCl4+scat 0.850 7.7 0.55 3.8 84 

Table 6.6. Current-voltage characteristics and IPCE values for solar cells devices with 

different configurations of TiO2 layers sensitized with D35 employing 

Co(bpy)3(PF6)
3+/2+

 as redox mediator and a platinized counter electrode. 

 

Actually, the scattering layer is supposed to increase JSC and give a gain 

especially in the high-wavelength part of the IPCE spectrum. 

As illustrated in Figures 6.40 and 6.41, the fabricated cells exhibit broad 

incident photon-to-current conversion efficiencies (IPCE) almost plateau-like 

from 450 to 550 nm with high IPCE maxima up to 84 % (for cells with Co-based 

redox shuttle) and slightly lower for cells with I3
-/I- (74 %, in the best case). The 

highest profile is shown by the most complete devices, namely the ones with 

the addition of “pre” and “post” TiCl4 treatment, and a scattering TiO2 layer; 

the lowest values are reached by the cells with the addition of a scattering 

layer without post-TiCl4 treatment, whereas cells without any additional 

treatment and those with just a pre-TiCl4 treatment lie in between, either 

overlapping or the latter resulting slightly lower (Fig. 6.40). With an IPCE 

approaching 100 %, light harvesting efficiency and injection efficiency can be 

theoretically close to unity (which is actually possible for D35-sensitized solar 

cells). 

As a matter of fact, Co-based mediator stained the titania films with an 

enhanced photocurrent response, which, according to the literature60 [Feldt 

JACS] should be a response centered in the spectral range 390–470 nm 
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compared to the I3
-/I- based system due to lower absorption coefficients in the 

blue region, and reasonably gave rise to higher VOC, IPCE, and, consequently, 

higher efficiency.  

 

 
Figure 6.42. Schematic energy diagram for a nanostructured TiO2 electrode sensitized 

with D35 employing either [Co(bpy)
3
]

3+/2+
 or I3

-
/I

-
 based electrolytes. Re-drawn from 

ref [106]. 

 

The only failure concerns the fill factors, which unaccountably fell in the range 

0.55-0.61. Actually, the fill factor is influenced by many factors. If we assume a 

bias-independent charge-generation efficiency,9 then the non-ideality of the 

fill factor can be due to recombination losses under electrical bias70 or simply 

resistive losses in the device and external circuit. In an optimized DSC typical 

fill factors of 0.7–0.75 are obtained,107,108 occasionally higher. 

For the present devices containing I3
-/I-, lower VOC values have been found. 

Besides the intrinsic limitation due to the redox potential of I3
-/I-, which is less 

positive than that of [Co(bpy)3]
3+/2+ (0.4 V vs 0.56 V - E0(D35) = 1.1 V, see Fig. 

6.42), a possible reason for a low VOC could be that the electrolyte can 

infiltrate the cathode film including pores which are too small for the cobalt 

redox couple to access. This would shift the electrolyte concentration in the 

active part of the solar cell and could influence the electrolyte redox potential, 

and eventually VOC of the device.  

A low JSC could be due, at least in part, to a not negligible light absorption by 

the mediator.  

In order to estimate the driving forces for dye regeneration in a real device, 

the difference between the redox potential of the redox couple in solution 

and the dye absorbed onto a TiO2 film must be known. Feldt et al.106 

determined the regeneration halftimes, regeneration efficiencies and driving 

TiO2

D35

I-/I3
-

Co(bpy)3(PF6)2

E vs NHE
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forces - calculated as the difference between E0(redox) and E0(dye) - for D35-

sensitized DSCs employing either iodide/triiodide or [Co(bpy)3]
n+ as redox 

couple. In the former case the parameters resulted: 0.79 eV, 15 µs, 0.95; 

whereas for the latter mediator: 0.55 eV, 19 µs, 0.94.  

Interestingly, for DSSCs using an iodine-based electrolyte, solar cell 

performance improved markedly over the first day, as found by Roy-Mayhew 

and coworkers.109 Components of the electrolyte such as 4-tertbutylpyridine 

(TBP) and iodine may be adsorbing to the porous electrodes during this 

time.110 Likewise, it may take time for the electrolyte to fully infiltrate the film, 

so that, over time, more surface area would be accessible to catalyze the 

reduction of triiodide.  

However, most of the devices of all sorts presented in this thesis showed the 

highest activity shortly after fabrication (when IPCE and I-V measurements 

have been resorted to).  

The best PV performance using the Co-based mediator showed a short circuit 

photocurrent density of 8.5 mA cm-2, an open circuit potential of 0.885 V and 

a fill factor of 0.61 resulting in 4.6 % power conversion efficiency at standard 

global AM 1.5 solar irradiation (Table 6.6), which is also the highest value 

among all those reported herein. Surprisingly, this was obtained for cells 

without any additional “pre” or “post” TiCl4 treatment, nor scattering TiO2 

layer. On the basis of these results, since a scattering layer usually doubles the 

current, it can be concluded that the present TiO2 pastes (indicated as “T”) 

possess some sort of scattering features themselves, maybe owing to particle 

aggregates in the range of 200-400 nm - actually confirmed by granulometric 

analysis on the pristine titania nanopowder. On the other hand, resistivity 

generally increases as the number of scattering interactions of charge carriers 

increase, and is greatest in the thinner films.111 In other words, resistivity will 

be higher as long as the ratio of film thickness to the mean free path of 

conductors (e.g., electrons) is not large. This is a reminder to the minimum 

TiO2 thickness - around 5 µm - for such DSCs with liquid electrolyte. 

Under the same conditions adopted for DSC with Co-based electrolyte, the cell 

with paste “T” and the iodide/triiodide redox couple under-performed: the 

efficiency dropped to 4.0, which is however not too low if compared to the 

results given by the other cells, in the range 3.9-4.1 %, as reported in Tab. 6.5. 

Efficiencies for the cells with [Co(bpy)3]
3+/2+ lie in a broader range: 3.8-4.6 % 

(see Tab. 6.6).  
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The lower performance exhibited in the current work compared to that of 

Feldt et al.106 is likely due to the use of TiO2 with a smaller primary particle 

size, on one side. This explanation is consistent with the finding by Yella et al. 

that smaller pores impede the transport of the relatively large cobalt 

complexes and decrease device efficiency.88 On the other side, poor adhesion 

of TiO2 with the underlying FTO or a not complete coverage of the substrate 

could have had a deep negative impact on the overall performance of the 

cells. 

Although VOC is reasonably high, FF and JSC are quite low, probably owing to a 

high charge transfer resistance (which, indeed, is true in the case of platinum 

counter electrodes). 

Here it is confirmed what affirmed by Feldt and coworkers:60 dye D35 

efficiently suppresses recombination when used with a cobalt redox couple 

that possesses a more positive redox potential than the iodide/triiodide one. 

However, contrary to the present results, Feldt et al. reported that the short-

circuit photocurrent in the DSCs decreased with increasing redox potential of 

the complexes, owing to the slow regeneration kinetics, fast recombination 

kinetics and/or diffusion limitations. In contrast, DeVries et al.112 did not find a 

clear correlation between photocurrent and redox potential in their study, but 

it should be noted that they obtained only low photocurrents of about 0.2 mA 

cm-2. 

The regeneration efficiency could also be affected by the different 

counterions used; for instance, Pelet et al. observed faster dye regeneration 

for iodide/triiodide using cations in the electrolyte that adsorbed to the TiO2 

surface.113 

An application of photocurrent transient measurements (see chapter 4) is 

found just in this context. The effect of mass transport in DSCs can be 

investigated by monitoring photocurrent transients using a large modulation 

(on/off) of the incident light, as Feldt and coworkers shown in their work.106 

The observed decrease in photocurrent with time was a result of slow 

diffusion of Co(III) to the counter electrode.  

The diffusion of the oxidized form of the redox couple to the counter 

electrode completes the circuit and this mass transport flux is in series with 

other charge transport processes. the decay at early times is attributed to 

diffusion limited photocurrent densities.82,84 The diffusion limiting current 

density is proportional to the film porosity, the diffusion coefficient, the 
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concentration of the oxidized form of the redox shuttle, [Co3+], and inversely 

proportional to the electrolyte diffusion distance.114  

6.9. General remarks 

Of course with the proper choice of the dye and the redox couple the above-

mentioned device performance can be improved. Indeed, an excellent 

performance should also be due to a perfect match between the oxidation 

potential of the dye and the redox shuttle.  

However, this section of the thesis - as in its whole meaning - is mainly aimed 

at studying TiO2 system. 

When focusing on the study and optimization of one component (TiO2) of the 

whole device (solar cell), one ends up in acquiring knowledge of the other 

components and on how some parameters are unavoidably affected by more 

than one sole chemical entity.  

As for instance, electron lifetimes in DSCs usually only reflect the electron 

recombination between TiO2 and the oxidized form of the redox species in the 

electrolyte, but in case of slow regeneration of the oxidized dye, also the 

effect of electron recombination to the oxidized dye will affect the measured 

lifetime, thus involving TiO2, the dye and the electrolyte. 

The electron transfer rate is also expected to depend on the structure of both 

the dye and the redox mediator, since the size of the donor and acceptor 

should affect the reorganization energy and electronic coupling.106  

Then, as another example, the VOC does not depend on the dye, as a first order 

approximation, whereas the maximum current is directly dependent on dye, 

which, in turn, is deposited onto the inorganic semiconductor according to 

specific features of TiO2 itself. If this appears to be a general statement, then a 

plethora or specific cases of parameter-dependent effects contribute to make 

the picture highly complex and challenging and intriguing at the same time.  

As a general note, it has been observed that a few samples performed 

significantly worse than the rest of the data set; thus, to prevent skewing of 

data with outliers, they have not been included in the average tabulation.  

The results presented are indicative of what we can be achieved as a mere 

preliminary study. Although there is no certainty why a minority of cells 

behaved poorly, it could be due to variations in the processing of the film.  
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Several aspects of pristine and doped nano-titania are logically gathered in 

this thesis and analyzed from different points of view. The main emphasis has 

been placed on electronic and structural characterizations of the metal oxide.  

Three different synthetic routes have been adopted to obtain nanostructured 

and mesoporous titania with tailored physico-chemical characteristics. A 

classical sol-gel synthesis has been integrated on one side by doping with both 

metal and non-metal heteroatoms and on the other side by a hydrothermal 

growth step using monomeric (DPC) or dimeric gemini-like (GS3) surfactants 

as template directing agents. Furthermore, a microemulsion-mediated route 

has been employed to accurately control the synthesis of bare titanium 

dioxide nanocrystals grown in nanoreactors by the confinement in aqueous 

droplets. Starting from these three different synthetic paths, crystalline TiO2 

nanopowders with high specific surface areas (up to 196 m2g-1) and small 

crystallite sizes (approximately in the range 7-40 nm) were obtained. 

N-doped TiO2 has been the mostly investigated material, being a many-sided 

topic. Different nitrogen sources, namely urea, ammonia, and triethylamine, 

have been employed to obtain photocatalysts characterized by visible-light 

absorption. The role of the aging time after the calcinations of the powders 

(from “freshly prepared” to “old” samples) both on the intensity of the optical 

features and on the bulk paramagnetic nitrogen concentration (as measured 

by EPR) was considered for all N-doped samples. Among the three different 

nitrogen sources, the urea dopant led to the most active doped titania even 

after 2-month aging. Apparently, the lifetime of the induced defects (Ti3+ 

and/or oxygen vacancies) at room temperature and ambient pressure 

depends on the specific structure and chemical environment of the defect 

itself.  

Even though titanium dioxide is one of the most commonly adopted 

semiconductors in photocatalysis, univocal conclusions on the Fermi energy 

levels and related charge transfer processes versus dopant concentration 

were still missing. In this thesis, the electronic effects induced by the presence 

of N or Pr impurities in the TiO2 nanocrystals were investigated. Both 

photovoltage and impedance experiments in conjunction with theoretical DFT 

calculations allowed us to outline a comprehensive picture of the electronic 

structure of N-doped nanoparticles. From both photovoltage and impedance 

measurements, one can appreciate that, in the present case, quasi-Fermi 

energy levels and flatband potentials are invariant under N-doping and slightly 
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pointing towards negative values for Pr-TiO2. These findings are rationalized 

by assuming that, in the N-TiO2 case, the position of the conduction band is 

not affected by the doping, and these considerations can be extended to the 

Fermi energy level. Then, comparisons with theoretical calculations allowed to 

assert that vacancies are more numerous than N doping centers in the home-

made samples and that the electron transfer from Ti3+ 3d orbitals occurs only 

in part, keeping the Fermi energy pinned at the bottom of the conduction 

band. At least, this is the case for the synthetic route adopted here.  

Therefore, the introduction of a dopant leads to final material with different 

features with respect to the undoped oxide, and, even though both Pr and N 

concur in extending the absorption to the visible region, they induce a 

different effect on the (quasi-)Fermi energy location. 

Moreover, a joint EXAFS and DFT analysis has unequivocally identified the 

substitutional N locations at low dopant concentrations and clearly proved the 

generation of oxygen vacancies by N doping. Interestingly, the presented 

procedure can be used for the characterization of many doped materials. 

Analogously, experimental and theoretical investigations enabled a conclusive 

evaluation of the nature of the Pr-dopant inclusion in bulk titania. Indeed, the 

generated midgap levels in Pr-TiO2 are found to be 4f states by DFT 

calculations, and electron transitions from the valence band or shallow d Pr 

orbitals to the f Pr empty orbitals (just below the conduction band) could 

easily happen, causing the absorption peaks in the visible region detected by 

the optical measurements of diffuse reflectance.  

In addition, both these Pr-TiO2 samples and N-doped ones have proved to 

suffer from charge carriers recombination much less than undoped titania. 

This finding was achieved by means of optimized electrochemical analyses 

based on chronoamperometry with chopped light. Actually, the use of 

photocurrent measurements for the characterization of semiconductor thin 

film electrodes was not straightforward due to the lack of a widely accepted 

experimental procedure and the several parameters involved in this type of 

analysis (layer reproducibility, choice of extrapolation time range, photoanode 

modification during analysis, etc.). For this reason, an optimization of 

experimental parameters was performed to achieve a reliable insight into the 

relation between the type/concentration of a dopant and charge carriers 

recombination rate under either visible or UV illumination. Since no literature 

examples exist with this specific aim, such a tool can be proposed as a helpful 
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prescreen of semiconductor oxides both in powdery form and deposited as a 

film.  

Then, on one hand photocatalytic experiments were performed to merely test 

selected home-made powders and judge their performance towards a certain 

pollutant. In this context, ethanol was employed in both aqueous and gaseous 

media, whereas methylene blue was successfully degraded directly on the 

“dry” TiO2 film. On the other hand, specific environmentally hazardous 

compounds were chosen as targets for photocatalytic application of TiO2 films 

deposited on proper substrates. With this aim, a combination of two 

advanced oxidation processes, ozonation and photocatalysis by nano-TiO2, 

was successfully applied to the degradation and final mineralization of 

bisphenol A and 4-cumylphenol. The use of TiO2 immobilized in thin films is of 

paramount importance for the plant-scale applicability of the process, 

especially if a low intensity irradiation source, such as solar light, is to be 

exploited. The coupling of ozonation and photocatalysis has led to 

pronounced synergistic effects, which might arise from interactions between 

ozone and the oxide surface. To this end, the oxide layer 

morphology/roughness may play a key role due to the large number of 

reactive surface sites. 

Good  photocatalytic performances  of  titania  layers  have been achieved in  

the  reduction  of  the  highly  toxic Cr(VI),  which  constitutes  a  general  

environmental  concern. Total Cr(VI)  disappearance  was  obtained  by means 

of both  commercial  and  home-made  TiO2 nanoparticles deposited  on  Ti  

supports  by  an  electrophoretic  deposition  method.  During  the  

photoreductive  removal,  the  rate  determining step  of  the  process  is  the  

Cr(VI)  adsorption  at  the  oxide  surface,  indicating  that  the  reduction  is  

favored  by  small  crystallites  and  large surface  area.  Furthermore,  the  

monitoring  of  the  photocatalytic  process  following  the  Cr(VI)  

disappearance  from  the  solution  was  efficiently performed  by  a  novel,  

environmentally  friendly,  ad  hoc  voltammetric  technique,  employing  

innovative  bismuth  screen-printed electrodes,  instead  of  mercury  ones. 

Moving from photocatalytic to photovoltaic applications of TiO2, different 

types of dye-sensitized solar cells (DSCs) were explored at two levels of 

research. Firstly, two different routes for the preparation of flat titanium 

dioxide layers as “blocking layers” in hybrid (dye-sensitized) solar cells were 

widely investigated. In this field the issue of charge recombination comes 
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again as a serious drawback of TiO2-based systems. Such  titania films 

prepared by either spray-pyrolysis or spin-coating exhibited marked 

differences in morphology, and electrochemical measurements proved that 

spin-coated TiO2 films were not dense. The small-molecule semiconductor dye 

employed in the tested devices infiltrated the spin-coated TiO2 layers, which 

led to the conclusion that the spin-coating preparation route results in 

nanoporous TiO2 films. These observations were found to bear a more general 

meaning not restricted to the specific case of bilayer hybrid solar cells. Then, 

different types of both solid-state dye-sensitized solar cells and DSCs with a 

liquid electrolyte were tested making use of the above-mentioned spray-

pyrolyzed TiO2 as “blocking layer” and optimizing home-made nanostructured 

titania pastes. As conspicuous studies are devoted to optimization of both the 

dye and the redox mediator components and new strategies of co-

sensitization and conjugation are continuously coming out at the stage of 

academic research, future efforts could be, instead, devoted to the 

improvement of the inorganic semiconductor component of DSC devices.  
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Instruments, methods and accessories 
 

Illumination sources 

The illumination sources employed in this thesis have been two distinctive 

ones, because of the aim of irradiating the samples either in the UV (mainly 

UVA) or in the visible region of the electromagnetic spectrum. UV light and 

visible light were generated by a 500-W UV halogen lamp (Jelosil HG 500, iron 

halides) and by a LOT-Oriel lamp (Lamp Housing LSH302) emitting in the range 

315-400 nm and 400-950 nm, as shown in the following Figure.  

 
Emission spectra of the two lamps employed for both photocatalytic experiments and 

electrochemical characterizations.  

The effective power (measured by Thorlabs S314C, see the following) was 

evaluated at different distances d from the source, as reported in the Figures 

below. 
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Effective power of the utilized UV (a) and visible (b) lamps as measured by Thorlabs 

S314C at different distances d from the source both directly (“without glass”) and with 

the presence of a Pyrex glass placed between the lamp and the power-meter, to 

simulate the conditions of experimental measurements under illumination. 

Exceptions are the illumination sources employed for solar cell 

characterizations: current-voltage (J-V) curves were recorded using a solar 

simulator (Newport model 91160), whereas IPCE measurements were 

performed with a xenon light source (ASB-XE-175).  

 

Light source power measurements 

The PM100A Handheld Optical Power Meter is designed to measure the 

optical power of laser light or other light sources. It has been used to 

determine the effective power at different distances from the source (see the 

above Figure) of the two lamps employed for characterization purposes and 

photocatalytic tests. Ambient light, with or without artificial indoor 

illumination, was detected to be about 250 mW cm-2. Numerical values 

reported in the Figure were obtained by dividing the output value (in mW) by 

the active geometrical area of the power-meter (2 cm-2). 

When measuring very small power levels, dark current of photodiode sensors 

or zero voltage on thermal sensors will have an influence on the measurement 

result and must be compensated by the zero adjustment. Photodiode sensors 

emit small current levels, even when no photons hit the active area – the so 

called dark current, that is temperature dependent and in the region of some 

nA for silicon and InGaAs sensors and up to some µA for germanium sensors. 

To perform an accurate measurement it is necessary to enter the operating 

wavelength of the light to measure so that the power-meter can calculate the 
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light source power from the measured photocurrent and the right response 

value from the wavelength calibration table.   

 

Chapter 3 

BET-BJH analyses 

Specific surface areas were determined by multipoint BET method using the 

adsorption data in the relative pressure (p/p0) range of 0.05–0.3. Data were 

acquired from Coulter SA 3100 apparatus. Desorption isotherms were used to 

determine the pore size distribution using the Barret–Joyner–Halander (BJH) 

method with cylindrical pore size. 

 

SEM measurements 

Scanning electron microscopy (SEM) photographs were acquired by a LEO 

1430 with energy-dispersive X-ray spectroscopy (EDX) which enabled the 

possibility of a semi-quantitative elemental analysis.  

 

HR-TEM measurements 

HR-TEM investigations were carried out employing a JEOL 3010-UHR 

instrument (300 kV acceleration potential; LaB6 filament) equipped with an 

Oxford INCA X-ray energy dispersive spectrometer (EDS) with a Pentafet Si(Li) 

detector. Samples were ‘‘dry” dispersed on lacey carbon Cu grids. 

 

DRS measurements 

Optical measurements in the UV-visible range were performed using a Perkin-

Elmer, Lambda 35 spectrophotometer, equipped with a Labsphere RSA-PE-20 

diffuse reflectance accessory. A TiO2 thin film was placed in the sample holder 

on integrated sphere for the reflectance measurements. A “total white” 

Perkin-Elmer reference material was used as the reference. 

 

XRPD analyses 

- Template TiO2, microemulsion-mediate TiO2, and (N,)Ag-TiO2 

samples. Room-temperature X-ray powder diffraction (XRPD) patterns 

were collected with a Siemens D500 diffractometer over the 2θ range 

10°–80°, with a step scan of D2θ = 0.02°, and a Cu Ka radiation. 

Rietveld refinement has been performed using the GSAS software 
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suite and its graphical interface EXPGUI.1,2 The broadening due to the 

instrumental contributions was taken into account by means of a 

calibration performed with a standard Si powder. Components of 

peak broadening due to strain were not varied in the fitting 

procedure. The backgrounds have been subtracted using a shifted 

Chebyshev polynomial. The diffraction peak’s profile has been fitted 

with a pseudo-Voigt profile function. Site occupancies and the overall 

isotropic thermal factors have been varied. The average diameter of 

the crystallites was estimated from the most intense reflection of the 

anatase (101) and rutile (110), when present, TiO2 phases using the 

Scherrer equation. 

- N-TiO2 samples. High-resolution XRPD data were collected on the 

ID31 beamline at the ESRF, Grenoble, from 2° to 75° 2θ at 2° 2θ min-1 

in Debye-Scherrer capillary geometry using a wavelength of 

0.3999284 Å and a multi-detector system.3 Wavelength was calibrated 

using the NIST SRM 640b Si standard, while the instrumental 

resolution function was parameterized on the pattern of the NIST 

SRM 660a LaB6 powder. Phase identification was done with the X’Pert 

Highscore 2.2 software (PANAlytical b.v., Almelo, The Netherlands) 

and phase quantification via the Rietveld method as implemented in 

the TOPAS 4.2 software (Bruker AXS, Karlsruhe, Germany). The PM2K 

software4 implementing the WPPM was used for the microstructural 

analysis. 

- Pr-TiO2 samples. X-ray powder diffraction (XRPD) experiments were 

performed on the freshly prepared nanostructured TiO2 samples to 

evaluate the amount of their brookite content and possible changes in 

the lattice parameters, crystallite size and lattice strain as a function 

of the doping extent. The diffraction profiles were recorded at room 

temperature by a Philips PW 3710 Bragg-Brentano goniometer 

equipped with a scintillation counter and 1° divergence slit, 0.2 mm 

receiving slit and 0.04° soller slit systems. A graphite-monochromated 

Cu Kα radiation at 40 kV x 40 mA nominal X-rays power was employed. 

The same data collection strategy was applied to all the specimens. 

More in detail, θ:2θ scans between 20° to 90° with step size 0.08° 

wide was performed for a total counting time of 4 hours. A 

microcrystalline Si-powdered sample was used as a standard to 
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correct for instrumental line broadening effects. The XRPD patterns 

were analyzed with the Rietveld method as implemented in the GSAS-

EXPGUI program suite. The background was described by power series 

in Q2n/n! and n!/Q2n and a surface roughness correction for 

microabsorption effects was also applied.5 Line profiles were fitted 

using a pseudo-Voigt function.6 Preferred orientation of crystallites 

was taken into account by a spherical harmonic model.7,8 In the last 

cycles of the refinement, scale coefficient(s), cell parameters, 

positional coordinates and thermal factors were allowed to vary, as 

well as background and profile coefficients. All the attempts made to 

exactly locate the Pr ions in the unit cell from the experimental XRPD 

patterns were unsuccessful, probably because the low doping extent 

and the inherently disordered nature of the dopant ions.  

XPS analyses 

XPS measurements were taken in an M-probe apparatus (Surface Science 

Instruments). The source was monochromatic AlK radiation (1486.6 eV). A 

spot size of 200 mm  750 mm and a pass energy of 25 eV were used. The 

energy scale was calibrated with reference to the 4f7/2 level of a freshly 

evaporated gold sample, at (84.00 ± 0.1) eV, and with reference to the 2p3/2 

and 3s levels of copper at (932.47 ± 0.1) and (122.39 ± 0.15) eV, respectively. 

The binding energies (BE) were corrected for specimen charging by 

referencing the C 1s peak to 284.6 eV, and the background was subtracted 

using Shirley’s method. The accuracy of the reported BE can be estimated to 

be ± 0.2 eV. The C region was fitted into two or three peaks, depending on the 

tail shape. The deconvolution was performed using only Gaussian line shapes. 

The peaks were fitted without BE or full width at half maximum (FWHM) 

constraints. 

The same experimental setup was used for determination of chromium 

speciation on TiO2 films by XPS analysis (results reported in chapter 5). 

 

EPR measurements 

Electron paramagnetic resonance spectra have been collected at room 

temperature by means of a Bruker Elexsys spectrometer at the working 

frequency of about 9.4GHz. The magnetic field intensity has been accurately 

tested by an ER035M Bruker Teslameter accessory and the microwave 
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frequency has been measured by the HP 5340A frequency counter. The 

spectral simulations were obtained by the Bruker SimFonia program.  

 

X-ray absorption spectroscopy (XAS) and extended X-ray absorption fine 

structure (EXAFS) 

Ti K-edge XANES and EXAFS data were collected at room temperature in 

transmission mode at the BM01B beamline of ESRF (European Synchrotron 

Radiation Facility, Grenoble, France). A Si (111)-monochromated beam was 

employed to probe the nanostructured samples in the 4.9-5.4 (pristine TiO2) 

and 4.9-5.8 keV (N-doped TiO2) energy ranges. To avoid thickness effects, 

sample tablets suitable for recording XAS spectra were prepared by carefully 

diluting the too absorbing titania with CaCO3. The Horae suite of programs,10 

based on the IFEFFIT library11 was used throughout for data processing and 

fitting. As samples contained a variable non-negligible fraction of brookite, 

backscattering paths belonging to both anatase and brookite crystal structures 

were explicitly took into account. In regard to the anatase phase, three Δr 

parameters were independently refined corresponding, respectively, to the Ti-

O first-shell equatorial, Ti-O first-shell axial, and Ti-outer shell distances. To 

maintain the total number of parameters below the upper limit set by the 

Nyquist theorem (N free =2ΔkΔr/π + 1), back-scattering paths involving bulk N 

atoms were never introduced explicitly. Rather, the effect of dopant N atoms 

was indirectly inferred from the distortions of the average axial and equatorial 

Ti-O bond distances in the Ti first coordination shell.  

More details on the EXAFS data refinement, namely statistics and agreement 

factor s, together with the statistical assessment of the fitting model 

employed to interpret experimental data, can be found in the Supplementary 

Materials of ref [12]. 

 

Chapters 6 & 7 

Spin-coater 

A Chemat Technology KW-4A spin-coater was used for any type of compound 

(TiO2, dye, PEDOT:PSS) to be spun for characterization or preparation of solar 

cell devices. In all other cases, a Spin150 spin-coater (SPS, ATP GmbH) was 

employed to deposit titania films. 
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Profilometry 

The Sloan DekTak 150 profilometer was used to measure the height of 

mesoporous TiO2 films above a thickness of 500 nm. Typically, a cantilever was 

scanned across the surface of a sample registering height differences.  

 

XRD 

Room temperature X-ray diffraction was measured on a Siemens 

Diffraktometer D5000.  

 

SEM  

SEM images were recorded on a Zeiss Leo 1550 scanning electron microscope 

located in the clean-room facility of the Ångström laboratory at Uppsala 

University. Top view and cross section images were acquired on titania 

samples on FTO glass. For the latter type of measurements the samples were 

scribed with a diamond-tip from the glass-slide and cracked prior to SEM-

imaging in a 90° sample holder. To some extent also the infiltration of organic 

compounds into a porous inorganic material can be investigated in this 

manner.  

 

AFM 

Atomic force microscopy measurements were performed in tapping mode 

with a NanoScope III (Physics department, Ångström laboratory at Uppsala 

University) using a silicon cantilever which has a tip radius better than 10 nm. 

Image analysis was carried out using Nanotec WSxM 5.0 software.13  

 

Absorbance, transmittance, and reflectance measurements 

The transmittance and reflectance of the prepared titania films were 

measured on a Cary 5000 spectrometer equipped with an integrating sphere. 

Instead, an Ocean Optics, HR2000 fiberoptic spectrometer was used to 

measure the sample absorbance (before and after dye deposition) and 

consequently estimate the dye layer thickness, using the TiO2 coated 

substrates without the dye as reference. The dye was spin-cast onto the TiO2-

covered FTO substrates from dichloromethane with varying solution 

concentrations.  
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XPS 

Analysis on bare titanium dioxide for dye-sensitized solar cells were 

performed using synchrotron light at the undulator based BL I411 at the 

Swedish national laboratory MAX in Lund.14  

The take-off angle used was 70° and the angle between polarization and  

photoelectron direction was 0°. The photon energy used in the PES 

experiments was 100 eV. 

 

Electrochemical measurements  

Electrochemical measurements were carried out on a CH-Instruments 660 

potentiostat. Titania films on the fluorine-doped tin oxide (FTO) were used as 

the working electrode (area: 1 cm2). Flatband potentials Vfb and doping 

densities ND were determined from Mott-Schottky plots derived from 

impedance-voltage measurements at 1000 Hz in aqueous 0.1 M Na2SO4 

(Merck) acidified to pH 3 with H2SO4. A Pt-wire was used as the counter 

electrode and Ag/AgCl as reference electrode. The potential was varied 

between +0.6 and –0.6 V (vs Ag/AgCl). To evaluate whether the prepared TiO2 

layers act as blocking layer preventing any contact between the conducting 

FTO and electron acceptors linear sweep voltammetry was carried between –

0.6 and +0.6 V at a scan-rate of 0.01 V s-1 on substrates in contact with 0.01 M 

ferrocene and 0.1 M tetrabutylammonium hexafluoro-phosphate (TBAPF6) as 

supporting electrolyte in acetonitrile. 

 

For IPCE (EQE) and J-V measurements recorded on all types of solar cell 

devices, see chapter 6 (paragraph 6.1). 
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