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Figure 28: Kaplan-Meier curves according to the IFN metagene status in basal, ERBB2+ and luminal tumors. 

 

Expression of IFN genes was protective in ERBB2+ tumors whereas the prognosis of the more 

aggressive basal tumors was not modified by IFN metagene expression levels. This suggests that 

ISGs may have opposite effects on tumor progression according to the specific biological 

background of each distinct molecular subtype, bestowing metastatic potential on luminal tumors 

while being protective for ERBB2+ tumors and irrelevant for basal ones.  

 ISGs are not only part of antiviral pathways but are also involved in tumor-immune cells 

interactions. Several studies have indicated a prognostic value of immune-function genes.  

The paradoxical role of the immune system during cancer development (131) and 

metastatization (132) has been extensively documented for various tumors, but here we speculate 

based on our results that one possible explanation for the opposite effects of immune genes on 

prognosis may be related to the specific biological background of each distinct molecular 

subtype, like it happens in the case of the IFN metagene. The occurrence of genes related to 

immune response among prognostic genes predicting metastasis in ER+ tumors has already been 

reported (133).  

In addition to eliciting anti-viral response through induction of ISGs genes, interferons are also 

key regulators of adaptive immunity and have emerged as central coordinators of tumour–

immune-system interactions. Given the frequent involvement of immune response related genes 

in published breast cancer signatures with prognostic value, we analyzed, in the above defined 

breast cancer subtypes, the prognostic impact of a T-cell metagene (Table 13) in comparison 

with our IFN metagene.  
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Table 13: T-cell metagene 

 

T-cell metagene was composed by 22 genes (ARHGAP15, CCL5, CD2, CD247, CD27, CD3D, 

CD48, CD53, CORO1A, EVI2B, GZMA, GZMK, HCLS1, IL10RA, IRF8, ITK, LPXN, LTB, 

PLAC8, RAC2, SELL, SH2D1A), 13 of which involved in different aspects of innate and T-cell 

mediated adaptive immunity such as CD3/T cell receptor complex (CD3D, CD247) of T-

lymphocytes, serine protease components necessary for lysis of target cells (GZMA, GZMK) by 

cytotoxic CD8+ T lymphocytes and natural killer (NK) cells and surface antigens providing 

costimulatory signals (CD2, CD48). Other molecules involved T cells and/or NK immunity are 

those encoded by CD48, CD27, Coro1A, IRF8 and finally CCL5 that, although described to 

have in given contexts pro-tumorigenic activity, is a potent chemotactic factor for inflammatory 

cells where it exerts major regulatory effects on CD4+ and CD8+ T cell-mediated immunity. 

Other genes included in the T-metagene like EVI2B have been poorly characterized and to date 

their function remains unknown. 

Rody et al (134) observed that a T cell gene module was prognostic in patients with ER- tumors 

and with ER+/ERBB2+ tumors, which means that the protective effect of T cells seems to be 

confined to highly proliferating tumors only. In that dataset, B cell gene modules did not 

associate with the risk of metastasis, whereas a B-cells metagene did instead play an important 

role in highly proliferating tumors from distinct datasets analyzed by Schmidt (135). An immune 

module with prognostic relevance confined to ER- tumors was also reported by Teschendorff 

(136) who analyzed three different datasets highlighting that not all ER- tumors have a poor 

prognosis, and that down-regulation of a seven-gene module in such tumors attributes a doubling 

in metastatic risk. An IFN gene (STAT1 module) positively associated with positive clinical 

Gene Probesets Gene Probesets Gene Probesets Gene Probesets
CCL5 213958_at CD52 205798_at LTB 213603_s_at CD6 204923_at
SPOCK2 202524_s_at IL10RA 204661_at CORO1A 204057_at PRF1 216250_s_at
HCLS1 203879_at SASH3 34210_at CD247 210031_at LPXN 203416_at
CD53 213915_at GZMA 207339_s_at SH2D1A 38149_at PLAC8 204912_at
PIK3CD 214617_at IL7R 206337_at ITK 206666_at CD52 202957_at
IRF8 205488_at CD2 204563_at EVI2B 211339_s_at ARHGAP25 209083_at
CD48 1405_i_at CD27 219014_at CD3D 204118_at
SELL 204655_at CCR7 206150_at RAC2 205831_at
CCL5 210116_at GZMK 211742_s_at NKG7 213539_at

T-cell cluster
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outcome of basal tumors (ER-/ERBB2-) was instead reported by Abraham et al (137) using an 

approach based on gene sets rather than single genes.  

In the validation dataset the T-cell metagene expression was associated to a reduced risk of 

distant metastases (Fig.29) both in ERBB2+ (HR=0.54, 95% CI 0.37-0.80, P=0.019) as well as 

in ER+ERBB2- tumors (HR=0.71, CI 0.56-0.89, P=0.0030). 

 

 

Figure 29: forest plots showing the HRs of the DMFS univariate Cox regression analyses for the T-cell metagene in 

the different molecular subtypes and in the overall population. 

 

 As also confirmed by life table analysis (Fig.30), high T-cell metagene expression was not able 

to affect the short DMFS in women with basal tumors (P=0.89, log-rank test, N=123), but it was 

associated with a longer DMFS in patients with ERBB2+ (P=0.0051, log-rank test, N=104) and 

with luminal tumors (P=0.0035,log-rank test, N=467). 

 Therefore, results suggest that T-cell and IFN metagenes impact similarly on prognosis in 

patients with basal and ERBB2 tumors, but they play instead opposite roles in luminal tumors.  
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Figure 30: Kaplan-Meier curves according to the T-cell metagene status in basal, ERBB2+ and luminal tumors. 

 

To directly compare the roles of these two metagenes, we performed multivariate analysis for 

T-cell and IFN metagenes in the three subtypes of tumors (Table 13). Only in women with 

luminal tumors the two metagenes maintained an independent but opposite prognostic relevance 

on outcome; the T-cell metagene was found to be associated to 1.6-fold reduction in metastasis 

risk (95% CI 0.50-0.80, P=0.001) and the IFN metagene was associated to 1.3 increased risk of 

relapse (95% CI 1.12-1.55, P =0.001). 

 

 

Table 14: IFN and T-cell metagenes multivariate Cox analysis. 
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Such result is in agreement with the different pattern of correlation between these two metagenes 

according to molecular subtype, with a stronger correlation in basal and ERBB2+ tumors 

(r=0.50, r=0.52) and weaker one in luminal (r=0.35), where high expression of the IFN 

metagene, but low expression of T-cell genes was observed, as reported in Figure 31. The 

combined effect of T-cell and IFN metagene on DMFS is reported in Figure 32. 

Figure 31: Scatter plots showing correlation between IFN metagene and T-cell metagene in basal, ERBB2+ and 

luminal tumors in a combined dataset derived from three publicly available datasets of node negative tumors 

(GSE2034; GSE7390;GSE11121). 

 

As expected, in patients with basal tumors the 10-year DMFS was not affected by the expression 

of such metagenes, conversely in women with ERBB2+ and luminal tumors a high expression of 

T-cell metagene was associated with a longer DMFS, however if the T-cell metagene scored 

low, the outcome was in fact affected by the IFN metagene expression. The metastatization risk 

was reduced in ERBB2 tumors expressing high levels of IFN genes, but was increased in women 

with luminal tumors. 

 

Figure 32: Kaplan-Meier curves according to the T-cell metagene and IFN-metagene status in basal, ERBB2+ and 

luminal tumors. 
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When T-cell metagene is expressed at low levels, high expression of the IFN metagene drives 

the bad prognosis. IFN-related genes seem therefore to play a metastasis promoting role only in 

luminal tumors in which T-cell related genes are scarcely expressed. At difference with previous 

reports however we do not support a role for innate and adaptive immunity in ER- tumors. This 

discordant result may be explained on the basis of wide variations, from one study to another, of 

gene signature composition. 

To understand the biological basis for the different prognostic role of IFN metagene expression 

in distinct molecular subtypes, we selected from the validation dataset tumors with high (>4th 

quartile) versus low (<1st quartile) expression of IFN metagene and ran a class comparison 

analysis separately for each molecular subtype and for luminal tumors with low T-cell metagene 

expression.  

Probesets both up- and down-regulated showing a fold change >1.5 and a FDR <1% were 

selected as differentially expressed (Table 15) and canonical pathways enriched in the 

differentially expressed genes compared with all tested genes were identified using Ingenuity 

Pathway Analysis. 

 

Subtype 
# of samples 

IFN+ 

# of samples 

IFN- 
DE probesets DE genes 

Basal 42 17 392 286 

ERBB2 25 12 263 181 

Luminal 104 142 744 557 

Luminal T-cell 65 138 631 469 

 

Table 15: IFN multivariate Cox analysis. 

 

 By comparing the enrichments in all subtypes taken in account, we noticed that almost all 

enriched pathways included genes involved in adaptive and innate immunity (Fig.33) as already 

seen in our correlation data (Fig.31). However, most of such pathways were no more found 

among the significantly enriched gene terms when the analysis was limited to luminal tumors 

with low T-cell metagene expression. Interestingly, in the latter subgroup of tumors, where a 

high IFN gene expression predicts a worse distant metastases free survival (DMFS), genes 
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differentially expressed between tumors characterized by low or high IFN metagene expression 

showed an enrichment in a proliferation-related pathway ‘Mitotic Roles of Polo-Like Kinase’, 

which was in fact also present among the enriched terms of luminal tumors, and a DNA damage 

pathway ‘Cell Cycle: G2/M DNA Damage Checkpoint Regulation’ (Fig.33). This suggest once 

again the well known role of proliferation as driver of bad prognosis in luminal tumors, but also 

indicating that the trigger of that proliferative modulations may be the microenvironment with a 

still to be clarified molecular mechanism. 

 

 

Figure 33: heatmap reporting P values referring to enrichment for selected canonical pathways as determined by 

IPA for genes found to be differentially expressed between tumors with high (>4th quartile) versus low (<1st quartile) 

IFN metagene expression. 

 

Results from this part of study add therefore to the discordant data already reported in the 

literature, underlining the fact that the role of immune gene modules in breast cancer is far from 

being clear. Some confusion may derive from heterogeneity in treatments, from the use of meta-
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analytical approaches in the literature, but also from the different methods used to identify 

molecular subtypes.  

For instance in case of ERBB2 patients, the protective role of immune module in this subgroup 

(generally uniformly assigned to bad prognosis), appears only in those studies where ERBB2 

positive patients were identified based on amplification of the gene rather than based on 

clustering techniques which do in fact fail to identify all HER2 cases, (138;139). Indeed in our 

analysis of the public datasets where HER2+ patients were identified based on ERBB2 gene 

expression, immune gene module expression was associated with a protective effect exactly 

opposite to what happens in the pure luminal (luminal tumors not contain any ERBB2+ cases) 

subclass.  

Altogether our data confirm that it is of pivotal importance to analyze the contribution of 

prognostic variable in homogeneous patients subgroups taking into account the molecular 

subtype. 

It is also important to underline that despite the 1:1 ratio between poor prognosis and good 

prognosis patients and the similar distribution of classical prognostic factors among the two 

groups, the poor prognosis clinical phenotype (IFN+, T cell–luminal tumors) associates to genes 

that are not directly involved in the metastatic process but track it indirectly due to a correlation 

with proliferation. On the contrary the good prognosis clinical group (IFN+, ERBB2+) is 

characterized by a strong activation of immune response pathways.  

Results from our prognostic study lead to the paradoxical situation in which the same signature 

has opposite prognostic roles depending upon the molecular subtype. If we consider our IFN 

gene signature as an immune signature, the paradoxical role on the prognosis is not surprising, 

and we are supported by literature data reporting different effects of the immune axis according 

to the molecular subtype. However ISG genes can be induced in many different cell types and 

very different ways, and do not necessarily represent an activation of immune response. We 

therefore reasoned that it might be important to further characterize our profiled tumors with 

respect to the microenvironment to better understand the origin of the ISG signature.  

Different cell types belonging to the stroma and the tumor microenvironment are known to 

produce opposite effects on tumorigenesis as summarized in the Table reported below.  
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Table 16: noncancerous cells of the Tumor Organ, Egeblad M. et al (140). 

 

This prompted us to investigate directly on our clinical samples characterizing by IHC the 

leucocytes infiltrate, and attempting complementary in vitro co-culture experiments between 

cancer cell lines representative of the different subtypes and different type of fibroblasts. 

 

i. Clinical evidence: infiltrating lymphocytes 
 

To investigate if expression of the IFN metagene was associated to lymphocyte infiltration we 

performed a lymphocyte infiltration (LI) score on all samples.  
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There was no correlation between the LI score as determined on histological sections and the 

IFN metagene expression (P=0.6025, Kruskal-Wallis test, N=86). Luminal tumors with higher 

LI were more frequently metastasis free (P=0.1365, 2 test, N=86).  

 To establish the identity of cells expressing ISGs the subset of luminal tumors with the highest 

(3rd tertile) expression of the IFN metagene was stained for MX-1, ISG15, OAS2 and IFIT3 

protein expression and also for STAT 1. This is involved in upregulating genes due to a signal by 

either type I, type II or type III interferons STAT1 forms a heterodimer with STAT2 that can 

bind the ISRE (Interferon Stimulated Response Element) promoter element. In either case, 

binding of the promoter element leads to an increased expression of ISG (Interferon Stimulated 

Genes). 

MX1 was almost always expressed by a higher percentage of tumoral cells compared to stromal 

cells, and only in 3 cases the stromal expression prevailed (Fig.34). 

 

 

Fig.34: Strong positivity for MX1 in neoplastic cells in a case of breast invasive carcinoma, ductal type. Note the 
difference between cancer cells and immune cells of the stroma stained positively (left). Difference between percent 
of tumor and of immune cells stained positively for MX1 in FFPE sections from luminal tumors with high IFN 
metagene expression (3rd tertile) (right). 

 

To further investigate the mechanism responsible for IFN stimulated gene up-regulation we 

performed IHC characterization of the different lymphocyte and myeloid sub/populations 

infiltrating tumor and tissue surrounding the tumor lesion to understand if particular sub-
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populations with the leukocyte infiltrate could be positively correlated with the IFN metagene 

expression. 

We used following antibodies: anti CD3, antigen expressed by T-cells and NK cells; anti CD4 

expressed by T-helper lymphocytes, anti CD 8 expressed by cytotoxic T-lymphocytes; anti CD 

68 expressed by monocytes and macrophages; anti CD56 expressed by T-cells and NK cells; anti 

CD57 expressed by NK cells; anti FOXP3 expressed by regulatory T-cell; anti CD45 expressed 

by T-cells and B-cells; anti CD20 expressed by mature B-cells; anti Granzyme expressed by T- 

cytotoxic cells and NK cells and anti HLADR for T-helper cell and B-cells.  

By unsupervised analysis of IHC data, 4 clusters were identified with different expression 

pattern. For these clusters we evaluated the association with available clinic-pathological 

features. A significant association was found between the over-expression of HER-2 and the 

cluster 2, characterized mainly by the sub-population of CD8 (cytotoxic T-lymphocytes). 

However, expression of IFN metagene was not associated with any of the sub-groups of 

leukocyte cells (Fig.35). 

 

 

Fig.35: unsupervised analysis of IHC data. 
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We therefore conclude that genes are primarily expressed by the epithelial component of tumor 

and that none of the analyzed leukocyte sub-populations seen to implicated in their regulation. 

We therefore decided to further analyze the interaction with the stroma looking fibroblast in in-

vivo models using different combination of fibroblasts and cancer cells representing the three 

main molecular subtypes. 

 

ii. Experimental evidence: 
 
Stroma plays a critical role in epithelial proliferation and organization through production of 

extracellular matrix, paracrine signalling and direct cell contact-mediated effects. 

Fibroblasts are a major component of stroma and their numbers are greatly enriched in tumors. 

Cancer associated fibroblast (CAFs) are different from normal tissue fibroblasts and can promote 

tumors progression affecting: proliferation, angiogenesis and metastasis by secreting a large 

number of growth factors, cytokines and extracellular matrix components. Breast CAFs can 

directly interact with cancer cells and immune cells, or indirectly interact with those cells 

through paracrine interactions. Such interactions can be reproduced in vitro in an artificially 

reconstituted microenvironment using heterotypic cell cultures. 

The aim of this part of experiments was to study the interactions between epithelial and stromal 

cells growing in direct contact or simply interacting though secretion of soluble factors. 

We used different in vitro models to stimulate tumor-stroma interaction by co-cultivating breast 

cancer cells with stromal fibroblasts of different origin. The biological effects that we proposed 

to evaluate were:  

1. proliferation; 

2. induction of IFN;  

3. release of cytokines. 

Initially, to simulate stroma-tumor interaction, the Transwell (Costar, Corning Life Science, NY, 

USA) co-culture system was used, testing two different conditions: 

1. co-culture with direct contact between fibroblasts and epithelial cancer cells, 

2. co-culture in which interaction is only mediated by secretion of soluble factors. 

The effects of CAF and NAF were investigated in cell lines representative for the different breast 

cancer molecular subtypes. 
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We therefore focused our experiments on three different breast cancer cell lines: luminal MCF7, 

ERBB2+ SkBr3 , claudin-low MDA MB231. All cell lines were co-cultivated with fibroblasts of 

different origin: CCL-171 lung, HTB 125 breast stroma, HNDF normal derma and B-CAF 

MS132 (α-Sma+) isolated in our laboratory from clinical breast tumor. Molecular 

characterization of the isolated fibroblast is reported in (Fig.36). 

 

 

Figure 36: molecular characterization of B-CAF MS132 fibroblasts. 

 

To investigate the possible roles of soluble factors or direct cell-cell contact in triggering the 

interferon response (observed in clinical tumors and associated to likelihood to develop distant 

metastases), we tested the ability of conditioned medium obtained from each co-culture to induce 

the response in a monoculture of the relative epithelial cell. 

Real time PCR was performed to assess the expression of some interferon-stimulated genes 

(ISG), OAS 2(2’-5’-oligoadenylate synthetase 2), IFIT 3 (interferon induced protein with 

tetratricopeptide repeats 1), MX1 (gene encoding the mixovirus resistance proteins 1) and also 

STAT 1, an activator of transcription. All data were referred to co-culture control sample: 

epithelial cell/epithelial cell. 

MDAMB 231 that represent an aggressive breast cancer cell line, showed an increased 

expression of ISG when in contact with all fibroblasts, except for HTB 125. ISG induction was 

stronger when cells were in direct contact. 

MS132 New 

CTR
L 

0.515% 77.1% 

98.45% 100% 100% 
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For MCF7 instead, the two types of co-culture showed the same effects, in particular co-culture 

with HNDF determined a stronger up-regulation of ISG expression. 

Indirect interaction between SkBr3  and HTB125 induced an up-regulation of ISG, while a 

down- regulation was observed with HNDF; the contact with B-CAF MS132 induce their down-

regulation. On the average the effects observed with this Her2+ cell line were very variable 

compared to the luminal and the claudin-low cell lines. 

 

 

 
 

Figure 37: expression of interferon-stimulated genes (ISG) respect to different co-cultures. 

Co-culture without contact                  
Co-colture with contact 
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We then investigated the conditioned medium after 96 h of co-culture using Bio-Plex Human 

Cytokine Assay to evaluate the cytokines reported in Fig.38a. 

Unsupervised hierarchical clustering of samples according to cytokine content showed that in the 

MDA MB 231 cell line the cytokines expression pattern was not influenced by the type of 

fibroblasts. On the contrary, in the other two cell lines, cytokine expression appeared to be more 

fibroblast-dependent. Finally, cytokine expressions were very similar in two types of co-culture 

(Fig.38b).  

From this first screening of cytokines, we identified four cytokines that showed a variation in all 

three epithelial cell lines, regardless of the type of fibroblast: IL-6, IL-8, HGF, SCF. These 

cytokine are known to be implicated in tumor progression and metastatization (34;34)(141;142). 

 

 

 

Figure 38: a. List of Bio-Plex Human Cytokine panel Assay ; b. Unsupervised hierarchical clustering between 
co-culture and cytokine expression.  

 

a 

b 
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Tumor invasion is a multi-step process. Tumor cells need to leave the primary site and get into 

contact with the normal environment. To maintain its normal tissue microenvironment, the body 

will mobilize various defensive measures to inhibit tumor growth and invasion. Through the 

direct contact with surface molecules or the indirect effects of cytokine secretion, tumor cells 

induce a shift in normal cells, which interferes with their ability to inhibit the tumor progression, 

and even allows to promote tumor growth and invasion (50;143). 

The functional effect of co-culture conditioned medium (C.M.) on the migration and invasion 

activity of epithelial cells was tested by Transwell migration and invasion assay. Migration 

capacity was evaluated after 48 h of incubation, while invasion both after 48 h and 72h. Each test 

was performed in technical duplicate. The data were calculated as area pixel/µm.  

We assayed three types of conditioned media: 

1. condition medium obtained only from epithelial cells culture after 96 h. 

2. condition medium obtained from epithelial cells co-cultivated with stromal cells for 96 h. 

3. condition medium obtained only from stromal cells culture after 96 h. 

 

Not unexpectedly, the picture of results that we obtain was complex, reflecting the different 

abilities of normal and malignant cells to respond to extrinsic signals. 

Luminal MCF7, are known to have a small invasion and migration capacity in vitro, but several 

study, like Chen and co. (144) reported that chemokines released in the culture medium can 

promote the migration of this human breast carcinoma cell lines. 

Our preliminary experiments confirmed on the average that migration and invasion capacity of 

epithelial cells, both MCF7 and SkBr3  was stimulated by factors released with fibroblast 

presence.  

These early experiments suggested that after 48h MCF 7 migration was higher in presence of 

HNDF conditioned medium; similarly, invasion (evaluated at 72h), was more stimulated by 

C.M. derived from co-culture MCF7+HNDF. We can speculate that probably the presence of 

epithelial cancer cells contribute for activation of normal fibroblast, NAF that in turn start to 

release cytokines promoting this way the invasion process. 

 
Also in the case of SkBr3  migration was more stimulated by CM of HNDF, while invasion 

(evaluated at 72 hrs) was stimulated by CM derived from co-culture of SKBR3 + CCL171. 
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Figure 39: migration and invasion analysis 
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iii. Experiments in progress 
 
To identify the best experimental setting that could respond to our question to study the 

interactions microenvironment-stroma, we began to evaluate and test new co-cultures 

approaches, also taking inspiration from the different systems that are showing in the literature 

(144-146). 

Moreover, we decided also to evaluate a new experimental CAF- line dyed with PLVX-DS 

RED-EXPRESS2-N1 vector (CLONOTECH, Mountain View, CA, USA) a cell line derived 

from activated fibroblasts isolated from a patient. With the migration/invasion co-culture 

systems we evaluated the following setting: 

1. MCF +HNDF. 

2. MCF7 +B-CAF Red.  

After 72h of starvation we evaluated:  

a. the migration and invasion on the membrane filters used for the assay. 

b. 4 cytokines (IL-6, IL-8, HGF, SCF) chosen based on the wide cytokine spectrum Bio-

plex test; in the culture media. 

c. Proliferation capacity of epithelial cells stimulated for 72h with media derived from co-

culture experiments. 

 

MCF7 migratory and invasive capacity was higher with HNDF fibroblast and such biological 

effect was paralleled by an increased secretion of IL-6, and IL 8 in the conditioned medium 

deriving from heterotypic co-cultures compared to homotypic cell cultures.  

SCF and HGF were more stimulated with HNDF and this confirms the literature data. In fact co-

culture with human breast cancer cells in a Transwell system induced NAF to secret HGF as well 

as to promote tumorigenicity (141). 

The pattern of cytokines concentration in the conditioned media was similar between 

experiments run to evaluate migration and those run in the conditions used to evaluate invasion. 

The result is not surprising as the two types of experimental settings differ only for the presence 

of Matrigel. 

 

 

 

 



RESULTS AND DISCUSSION 

  

 

119 

 

MIGRATION/INVASION CO-CULTURE  
 
MCF7 
 

 

  
              
Figure 40: cytokine concentration evaluated with ELISA assay of conditioned medium and migration end invasion 
analysis of MCF7 stimulated by conditioned medium obtain from migration/invasion co-cultures. 
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In this type of experiment the direct contact between the fibroblasts and the tumor cells which 

exists in the clinical tumor is not taken in account. Therefore it is impossible to evaluate a 

possible effect on the proliferation. For this reason we will evaluate a further system of co-

cultures defined flask co-cultured, in which the epithelial and stromal cells will be put in contact 

in the absence of serum for 72 h. The conditioned medium product will be evaluated in terms of 

cytokines present, and also used to stimulate the proliferation, migration and cell invasion.   

 

Extracellular matrix is a key regulator of normal homeostasis and tissue phenotype (147). 

Important signals are lost when cells are cultured ex vivo on two-dimensional elastic substrata, 

many of these crucial microenvironmental cues be restored using three-dimensional (3D) 

cultures. Thus provides a more physiologically relevant approach to the analysis of gene function 

and cell phenotype ex vivo. 

MCF7 transfected with GFP and fibroblast HNDF were co-cultivated to apply this new cell 

culture approach and after 10 co-culture days, the experiment was starved and with the ELISA 

assay we evaluated the concentration of IL-6 and IL-8 (Fig.41). We evaluated only these two 

cytokines because the media volumes were very low (~400µL). 

Literature describes two 3D co-cultured types: “on top” assay, in which cells are sow on top of 

thin Matrigel matrix, and “embedded” assay in which cells are cultured embedded in Matrigel. 

The concentration of the two tested cytokines was similar in the two types of 3D co-culture 

systems. With confocal microscope it was possible to trace the cell morphology, interactions and 

the cells number (Fig.42). 

 

Figure 41: cytokine concentration evaluated with ELISA assay of conditioned medium of 3D co-cultures. 
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Figure 42: 3 D co-culture confocal microscope images 
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4.2 PREDICTING TREATMENT SENSITIVITY 
 

4.2.1 EMERGING CHEMOTHERAPY RESPONSE PREDICTORS 
 

The clinical importance of predicting who will or will not respond to chemotherapy is 

intuitively obvious. If a test could predict who will respond to a given drug, the treatment could 

be administered only to those patients who will benefit from it, and others could avoid 

unnecessary treatment and its toxicity. However, the practical development of chemotherapy 

response prediction tests poses several challenges. There are theoretical limits to the accuracy of 

any response predictor that measures the characteristics of the cancer only. Host characteristics 

that are not easily measured in cancer tissue, including the drug metabolism rate, can have an 

important impact on response to therapy. Also, there is considerable uncertainty as to what level 

of predictive accuracy would be clinically useful. In fact, different levels of predictive accuracy 

may be required for different clinical situations. For instance, the clinical utility of a 

chemotherapy response prediction test that has a 60% PPV (i.e., a 60% chance of response if the 

test is positive) and an 80% NPV (i.e., a 20% chance of response if the test is negative) will 

depend not only on these test characteristics but also on the availability and efficacy of 

alternative treatment options, the frequency and severity of adverse effects, and the risks of 

exposure to ineffective therapy (i.e., rapid disease progression with life-threatening 

complications). A test with the above performance characteristics may be of limited value in the 

palliative setting, when alternative treatment options are limited and generally ineffective. 

Patients and physicians may want to try a drug even if the expected response rate is only 10% 

(well within the range of test-negative cases), particularly if side effects are uncommon or 

tolerable. On the other hand, in the setting of potentially curative therapy, when multiple 

treatment options are available, a test with the same performance characteristics may be helpful 

in selecting the best regimen from the several treatment options. In addition, a test that was 

developed to predict response to a given treatment in previously untreated patients may not 

predict response sufficiently accurately when the same drug is used as second- or third-line 

treatment. 

Considering these complexities, many of the recent predictive marker studies that use 

high-throughput analytic tools have not surprisingly focused on the pre-operative (neoadjuvant) 

treatment setting in breast cancer. Neoadjuvant chemotherapy provides a unique opportunity to 
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identify molecular predictors of response to therapy. Pathologic complete response (pCR) to 

chemotherapy indicates an extremely chemotherapy-sensitive disease and represents an early 

surrogate of long-term benefit from therapy. Histologic type, tumor size, nuclear grade, and ER 

status all influence the probability of response to neoadjuvant chemotherapy, and these clinical 

variables can be combined into a multivariable model to predict the probability of pCR 

(http://www.mdanderson.org/care_centers/breastcenter/dIndex.cfm?pn=448442B2-3EA5-4BAC-

98310076A9553E63). However, these clinical variables lack regimen-specific predictive value 

and represent features of general chemotherapy sensitivity. 

Several small studies have provided “proof-of-principle” that the gene expression profile 

of cancers that are highly sensitive to chemotherapy is different than that of tumors that are 

resistant to treatment (148). The largest study so far included 133 patients with stage I–III breast 

cancer who received preoperative weekly paclitaxel and 5-fluorouracil, doxorubicin, 

cyclophosphamide (T/FAC) chemotherapy (149). The first 82 cases were used to develop a 

multigene signature predictive of pCR, and the remaining 51 cases were used to test the accuracy 

of the predictor. The overall pCR rate was 26% in both cohorts. A 30-gene predictor correctly 

identified all but one of the patients who achieved pCR (12 of 13) and all but one of those who 

had residual cancer (27 of 28) in the validation set. It showed significantly higher sensitivity (92 

vs. 61%) than a clinical variable-based predictor that included age, nuclear grade, and ER status. 

The high sensitivity indicated that the predictor correctly identified almost all of the patients 

(92%) who actually achieved pCR. The PPV of the pharmacogenomic predictor was 52% (30–

73%); however, the lower bound of the 95% confidence interval did not overlap with the 26% 

pCR rate observed with this regimen in unselected patients. Thus, the predictor could define a 

patient population more likely to achieve pCR than unselected patients. The NPV of the test was 

also high at 96% (82–100%), indicating that <5% of test-negative patients (i.e., those predicted 

to have residual disease) achieved pCR. The NPV was similar to and the PPV better than those 

seen with ER immunohistochemical analysis or HER2 gene amplification as predictive markers 

for endocrine or trastuzumab therapies, respectively. However, to what extent this genomic 

predictor of sensitivity is specific to T/FAC therapy rather than being a generic marker of 

chemotherapy sensitivity has yet to be determined. 
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4.2.2 A THIRD TYPE OF MARKER: CONTEXT –SPECIFIC MARKER  

 

Context specific markers provide information on time to event outcome in patients who receive a 

well-defined therapy (“context”) without taking into account the distinction between prognostic 

and predictive contribution. The obvious question is whether we can derive predictive markers 

using time to event outcome in homogenously treated patients. There is not any difficulty in 

distinguishing benefit from non benefit, but things get more complicated when we aim at 

answering the question of whether a specific marker is predictive. Ideally we would like to be 

faced with a situation as described in the figure below (Fig.43). 

 

 

Figure 43: Can we derive predictive markers from time to event outcome in homogenously treated patients? 

 

Which means we have a maker able to distinguish the time-based outcome. But the real problem 

is whether it is possible to derive such a time of marker using time to event outcome in 

homogeneously treated patients, which is the type of data sets that are available in our 

retrospective trials. In such a situation, like in the example referring to ER+ pts treated with 

chemotherapy and tamoxifen, it is very easy to be misled as show in the following example 

where we can erroneously think that a low genomic grade index (GGE) predicts a better 
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response. However if we look at the data stratified in a neoadjuvant context as residual cancer 

burden, (used to quantify pathological response) we clearly see that on the contrary it is the high 

GGI group that shows a better outcome.  

 

Figure 44: modified from Liedtke et al. (150) 

 

This example clearly explains the difficulty of obtaining pure predictive markers in exploiting 

prospective-retrospective clinical trials. 

The correct way for solving the problem is to perform a test for interaction between treatment 

and marker by stratifying the data according to the marker of interest. 

 

Figure 45: “Prospective-retrospective” clinical trial design. Test interaction between treatment and biomarker. 
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i. Available datasets for answering the clinically relevant questions 
 

In this thesis we followed two approaches searching for a gene signature predictive of 

development of distant metastases in node negative patients receiving loco-regional treatment 

only, and trying to develop a genomic signature in the control arm (untreated) of node positive 

patients belonging to a historical chemotherapy trial run in our institution and setting the 

standards for future treatments worldwide. In such study of the early ‘70s the effects of CMF 

(cyclophosphamide, methotrexate, and fluorouracil) chemotherapy were evaluated as adjuvant 

treatment in 386 patients with operable breast cancer and histologically positive axillary lymph 

nodes (151). This pivotal randomized trial was the first to prove the benefit of adjuvant systemic 

treatment in breast cancer which was confirmed at 30 years’ follow-up (152) and prompted the 

beginning of great improvement in breast cancer care. Adjuvant CMF administration benefit was 

confirmed also in a randomized trial included women with ER negative, node-negative disease 

(153).  

In the attempt to improve the results of adjuvant CMF in patients with nodes positive breast 

cancer, two randomized studies introducing the use of the anthracycline doxorubicin were 

activated in the 1980’s. In one of the studies restricted to patients with one to three positive 

axillary lymph nodes, a regimen of intravenous CMF for 12 cycles was compared to CMF for 8 

courses followed by Doxorubicin for four courses on a total of 552 cases (154). 

The studies of control versus CMF and the later study of CMF versus sequential 

administration of CMF and Doxorubicin have several interesting features that make them 

attractive for developing therapeutically relevant classifiers. 

Both studies were conducted in a single institution and tumor specimens were collected 

and stored according to the same standard procedure. Patients were sufficiently homogeneous for 

stage of disease and standard category of risk, and were uniformly treated according to the same 

criteria for dose reduction, intervals of treatments and periodicity of follow-up. No adjuvant 

treatment other than chemotherapy was allowed (in particular, none of the patients received 

adjuvant tamoxifen). Either trials has been already used successfully for study conventional 

potential predictive biomarker (155;156). Moreover, a very long-term follow-up (157) confirmed 

quantitatively and qualitatively the initial findings, a feature that would allow for the generation 

of predictors of both short term and long term relapse. Finally the superior quality of the clinical 

data-base is internationally recognized.  
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Despite the strong reasons supporting the need of a control arm, which as described could 

only be available in the early pioneering studies, we run into a technical hurdle which was 

unfortunately an unresolved challenge. Historical samples in our Institution were fixed in Bouin, 

a picric acid fixative which preserves very well the histological morphology, but induces 

dramatic changes in the molecular structure of nucleic acids which appear degraded into small 

fragments and chemically modified interfering with the ability to retrotranscribe the RNA. 

 

ii. The raise of a technical issue: Bouin  
 
For preservation of tissue samples formalin fixation followed by embedding in paraffin has been 

the method of choice for decades. Other fixatives like Bouin have been quitted due to the poor 

performance in immunohistochemical reactions. With the development of molecular biology 

techniques there was a growing interest in the use of the vast archives of fixed paraffin-

embedded (FFPE). 

From a chemical point of view fixation induces degradation but also a chemical modification 

with the addition of methylol groups to the RNA bases (99).  

This affects:  

•  RNA amplification yields. 

•  Length of cDNAs derived from chemically modified RNA. 

•  Performance of qPCR . 

Despite these problems technical improvements and protocol amendments have allowed 

acquisition of biologically relevant gene expression data also from archival formalin-fixed 

paraffin-embedded (FFPE) tumors. Scanty data are instead available on Bouin-fixed paraffin 

embedded tumors (BFPE).  

Since in our Institution Bouin fixation had been routinely used until 15 years ago, we attempted 

to develop protocol amendments which would allow the use of BFPE samples with results 

similar to those obtained in FFPE samples. 

A great effort was spent on technical feasibility of the project especially concerning the 

possibility to obtain adequate RNA of a sufficient quality for obtaining non biased gene 

expression profiles.   

The process of fixation and embedding itself, but also the long-time storage of tissue blocks in 

sub-optimal conditions, had a great impact on the quality of RNA affecting negatively the 
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outcome of GEP studies. We therefore addressed the two problems separately developing 

strategies to cope with fixation-induced artifacts and testing how far could we go with old 

samples without losing biological meaningfulness. 

 

This was achieved through 3 consecutive steps: 

  in step one we fixed good quality RNA extracted from MCF7 cells with either Bouin or 

buffered formalin and studied the effect of RNA chemical de-modification protocols on 

following technical endpoints. 

  RNA amplification yields. 

  Length of cDNAs derived from chemically modified RNA. 

  Performance of qPCR; 

 in step two the same technical endpoints were evaluated for 20 RNAs from 30-years old 

BFPE breast tumors and for 6 RNA samples obtained from paired FFPE and BFPE 

tumors. 

 Finally in step three the data quality and biological meaningfulness of gene expression 

profiles obtained with Affymetric U133 2.0 Plus chips and with the Illumina DASL assay 

were assessed. 

 

Step 1: restoration of ad hoc fixed RNA  

Fixation of isolated RNA with Bouin reduced RNA amplification yield by more than 90%, while 

fixation with formalin dropped the yield to about 50% of the control, unfixed isolated RNA 

treated with heat only (95°C), to mimic RNA degradation in the absence of chemical 

modification. 

Heat treatment (60°; 70°; 80°C) with increasing temperatures for different time lengths (20 or 40 

min) completely restored RNA amplification yields in the case of formalin fixation, while in the 

case of Bouin fixation the chemical de-modification protocol allowed only a partial restoration of 

amplification yields up to 50% of the control. 

The size of the cDNA fragments obtained with the amplification protocol was measured using 

the RNA chip with the Agilent Bioanalyzer.  

Fixation with Bouin dramatically reduced the cDNA product length which dropped to less than 

40 nt, while it was around 100 nt after formalin fixation. The chemical de-modification protocol 

did not significantly improve cDNA length of Bouin fixed RNA, while it allowed the synthesis 
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of cDNA product similar in length to those obtained from heat-degraded unfixed RNA in the 

case of formalin fixation.             

 

 

Figure 12: cDNA size: Bioanalyzer 2100, RNA chip 

                 

RNA fixed with formalin or with Bouin was used for carrying out TaqMan assays of highly 

expressed housekeeping genes. Amplification primers were chosen in order to obtain short 

amplification products, ie less than 80 bp. 

The simple heat degradation (95°C) increased Ct values by about 1 cycle, formalin fixation 

caused  approximately a 2 Ct increase, while under the same condition fixation with Bouin 

increased the Ct values by 12 cycles compared to heat-degraded RNA. The chemical de-

modification protocol reduced Ct value, but never reached values comparable to those obtained 

on formalin-fixed RNA. Conversely, with short amplification products formalin fixed RNA did 

not “need” the chemical de-modification treatment. 

            

fix 60°C  70°C  80°C   Deg

Bouin

Formalin
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Figure 47: Ct variation for HK genes. 

 

Chemical de-modification protocol based on heat treatment of RNA completely restores 

formalin-fixed RNA, but only partially restores Bouin fixed samples.  

 

Step 2: Application of ‘restoration’ protocol to archived samples (30 years old BFPE breast 

tumors and 20 years old matched FFPE and BFPE samples). 

When BFPE and FFPE matched samples were used for qPCR assays, Ct values were consistently 

lower for FFPE samples compared to BFPE samples, but again heat treatment did not always 

trigger a significant drop of Ct values. 

Application of the chemical de-modification protocol to 30-year old samples did not allow a 

decrease of Ct values in all samples.  

T 
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Figure 48: Ct variation after chemical de-modification. 

 

Therefore, heat-treatment is not successful in restoring RNA obtained from old samples. 

 

Step 3: Gene expression profile from BFPE samples  

Sixteen RNA samples obtained from BFPE tissue and two samples from FFPE tissues were heat 

treated (80°C) and samples single-stranded c-DNA generated by WT-Ovation FFPE System 

(NuGEN) were optimal when hybridized on U133 2.0 Plus chips from Affymetrix (Fig.49a). 

Despite the very low intensity values of the signal, controls gave good results indicating that the 

hybridization performed well. The two FFPE samples were characterized by higher present call 

percentages compared to BFPE samples. None of the Bouin fixed samples had however present 

calls above 8%, a value by far too low to obtain biologically meaningful results (Fig.49b). 

The table summarizes the data. 
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Figure 49: a. Present-Call of 18 samples hybridized on Affymetrix chip; b. hybridization quality control. 

 

We therefore tried to us an alternative technical approach specifically designed for degraded 

samples: Illumina’s cDNA-mediated annealing, selection, extension, and ligation assay-

shortened to DASL is part of a powerful gene expression solution designed to generate 

reproducible gene expression profiles from degraded RNA samples. In twelve BFPE samples 

gene expression was determined with DASL and compared with the technical performance 

achieved on unfixed samples and in FFPE samples. These were characterized by correlation 

between duplicates around 0.9, while in BFPE samples R2 values ranged from 0.2 to 0.9. In 

a 

b 
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FFPE samples the number of detected probes ranged between 300 and 900, while for BFPE 

samples it was less than 300 and could be predicted by Ct values of housekeeping genes. 

 

                       FFPE                                                                  BFPE 

Figure 50: 13 HK Ct vs detected probes 

 

A closer look at the quality of data obtained with DASL using BFPE samples revealed 

dramatically dissimilar intensity signals (Fig.51a) and following unsupervised clustering many 

duplicates did not cluster together (Fig.51b). 

 

 

 

a 
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Figure 51: a. box plot of DASL intensity; b. unsupervised clustering of DASL data. 

 

Furthermore, BFPE samples did not yield biologically meaningful results as can be seen from the 

fact that genes expected to be differentially expressed between samples with different ER status, 

did not differ significantly. This was also confirmed by cluster analysis which did not separate 

ER positive from ER negative samples (Fig.52). 

 

                                                                                  

Figure 52: clustering analysis (left) and genes differentially expressed between ER+ and ER- (right). 

 

These through experiments allowed us to conclude that while most of FFPE samples are suitable 

for gene expression analysis BFPE samples are of limiting value for gene expression analysis. 
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Partial restoration can be achieved by chemical de-modification protocol, but older samples do 

not allow obtaining neither technically satisfactory results nor biologically meaningful gene 

expression data by Affymetrix as well as by DASL. 

 As it was clear from our technical feasibility checks that aged BFPE samples are not suitable for 

obtaining GEPs, the project was redesigned in order to exploit a more recent trial where samples 

were fixed in formalin. In our preliminary experiments we had indeed demonstrated that 

formalin generates chemical modifications and crosslinks which do not interfere in reverse 

transcription, amplification and hybridization protocols used for obtaining a reliable expression 

profile.  

 

iii. The ECTO data set  
 
ECTO (European Cooperative Trial in Operable Breast Cancer) designed in 1996 is a 

multicenter, international, open-lab, three-arm, randomized phase III study conducted in 31 

European centers. 

It was designed to assess the effects of adding paclitaxel to an anthracycline-based regimen in 

patients with operable breast cancer, and to compare the same regimen given preoperatively and 

postoperatively. 

A total of 1,355 patients with newly diagnosed unilateral, operable breast cancer larger than 2 cm 

at diagnosis, enrolled from November 1996 to May 2002, were randomly assigned to one of 

three treatments:  

1.  Arm A:  surgery followed by adjuvant doxorubicin (A) (75 mg/m2), every 3 weeks for 4 

cycles, followed by cyclophosphamide, methotrexate, and fluorouracil (CMF) on days 1 

and 8 every 4 weeks, for 4 cycles;  

2. Arm B: surgery followed by adjuvant paclitaxel (T)(200 mg/m2) plus doxorubicin 

(60mg/m2), every 3 weeks for 4 cycles followed by CMF, on days 1 and 8 every 4 weeks, 

for 4 cycles; 

3. Arm C: paclitaxel (200mg/m2) plus doxorubicin (60mg/m2) every 3 weeks for 4 cycles 

followed by CMF, on days 1 and 8 every 4 weeks, for 4 cycles and then surgery. 

This study had two co-primary objectives:  

1) to assess the effects on relapse-free survival (RFS) of the addition of paclitaxel to 

postoperative chemotherapy (arm B vs arm A); 



RESULTS AND DISCUSSION 

  

 

136 

 

2) to assess the effects of the primary chemotherapy versus adjuvant chemotherapy (arm B vs 

arm C). 

 

 

Figure 53: ECTO clinical trial design. 

 

The ECTO study concluded that doxorubicin plus paclitaxel followed by CMF was well-

tolerated as adjuvant or as primary chemotherapy. The addition of paclitaxel to adjuvant 

doxorubicin followed by CMF significantly improved RFS compared with adjuvant doxorubicin 

alone followed by CMF (hazard ratio (HR),0.73; P=0.03). 

There was no significant difference in RFS when the paclitaxel/doxorubicin/CMF chemotherapy 

was given before surgery compared with the same treatment after surgery (HR, 1.21; P=0.18). 

Finally when paclitaxel was given as primary systemic therapy it allowed breast-sparing surgery 

in the majority of patients without increasing local recurrence or compromising survival (158). 

Based on our premises it appears clear that for a true individualized treatment it must be possible 

to predict the high probability to survive from standard cancer treatments. In line with such a 

concept the main purpose of the multifaceted work of this thesis was to define genomic 

predictors of survival following the actually best standard of treatment (Taxane antracycline 

chemotherapy followed by hormonetherapy), it means define a pure context-specific predictor 

to be able to  

 identify patients who will do well with standard treatments;  

 identify patients who should receive more intense treatments or new drugs. 

As explained it is therefore important to consider both pure prognostic aspects as well as specific 

drug sensitivity markers.  
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                vi. New technical challenge 
 

Formalin fixation and paraffin embedding is the standard procedure used to preserve 

tissue morphology and for tissue archiving. Samples collected and preserved during decades of 

work are an extremely rich source of material for clinical studies. On the contrary few 

repositories exist where frozen samples have been collected. 

Processing of FFPE samples is however affected by many confounding factors linked to 

the extreme variability in the tissue handling and fixation times. The obtained RNA is highly 

degraded and chemically modified by the chemical cross linking promoted by formalin. Most of 

times short RNA fragments lack the polyA tail and are not very efficient templates for reverse 

transcription.  

Additional variability derives from the length of storage with older samples usually 

yielding worse results.  

Despite all the listed problems, formalin, according to our preliminary results, did not generate 

such chemical modifications and cross-links as observed with Bouin, which were limiting for the 

reverse transcription, amplification and hybridization protocols used for obtaining a reliable 

GEP. If successful, the development of a technical protocol to obtain reliable GEPs from FFPE 

would open the access to many other patient series (beyond the one analyzed for the purpose of 

our study) accelerating biomarkers discovery not only in breast cancer, but also in other tumor 

types.  

Nonetheless, attempting to obtain clinically useful GEPs from archived samples over 10 years 

old and multicenter collected not an easy task and therefore we went through an extensive 

technical assessment by comparing different microarray platforms, by running a pilot study on a 

limited number of samples and by assessing the biological reliability of our samples. 
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4.3 TECHNICAL INSERT 

4.3.1 EXPLORATIVE STUDY TO ASSESS FEASIBILITY OF MEASURING 
GENE EXPRESSION ON FFPE SAMPLES WITH ARRAY PLATFORMS 

 

As frozen samples represent the golden standard in array methods our initial assessment 

focused on 10 matched fresh frozen (FF) and FFPE samples. Frozen samples were processed 

with the Illumina platform (HT12, 48,000 genes), and compared to FFPE paired samples 

processed with either the specific low quality/low input RNA approach DASL (Cancer Panel, 

allowing assessment of the expression levels of 502 cancer genes) or processed with the standard 

Illumina Ref8 assay allowing assessment of 24,000 genes following linear amplification with the 

NuGEN WT- Ovation FFPE V2 kit. 

 

 

 

Figure 54: scheme of 10 samples study. 

 

In the FF samples the probe detection rate ranged from 0.45 to 0.55, while with FFPE 

samples it hardly reached 0.35. Clustering analysis with 6074 probes common between frozen 

and FFPE samples (analyzed with the Ref 8 Illumina platform), yielded the expected separation 

between estrogen receptor positive (ER+) and ER negative (ER-) samples only for FF samples 

and not for FFPE samples. On the average the correlation between gene expression evaluated 

with the two methods was rather low (median value=0.31). 
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Figure 55: a. clustering analysis for frozen samples after hybridization on Ref8 Illumina platform; b. clustering 

analysis for FFPE samples after hybridization on Ref8 Illumina platform. 

 

On the contrary, when FFPE samples were processed with the DASL arrays the two ER- 

samples clustered together either based on the expression of 999 DASL probes or based on the 

expression of 198 genes in common between all three tested procedures. 

 

Figure 56: clustering analysis for FFPE samples after hybridization on DASL Illumina platform. 

Frozen: Illumina 

FFPE-NUGEN- Illumina 

FFPE-DASL Illumina 

a 

b 
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Despite the suboptimal results obtained with the Illumina platform with respect to the DASL 

platform, the DASL was discarded due to a low dynamic range (data not shown), and a second 

experiment was run using 12 breast cancer samples where only FFPE blocks were available. The 

samples were chosen in order to have 6 ER+ and 6 ER- cases to allow class comparison analysis, 

as this could be useful for choosing between different technical approaches based on the 

obtained DE genes. The figure below reports the experimental design.  

 

 

Figure 57: scheme of 12 samples study. 

 

As can be seen RNA was amplified and labelled using two distinct strategies to be used with the 

Illumina platform and the Affy HG U133 Plus chips. The Affymetrix chips were chosen as they 

represent the most commonly used gene expression chips in clinical studies with frozen samples 

and therefore, obtaining GEPs on this platform would assure a better comparability of the data 

with the literature. 

Clustering results are reported hereafter using 6535 probes from the Illumina platform. 
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Figure 58: clustering analysis for FFPE samples after hybridization on DASL Illumina platform. 

 

Despite the fact that samples were FFPE, using the Illumina platform it was possible to separate 

the samples according to the ER status. However, some of the probes raised concerns, like the 

BCL2 and the GATA3 genes, expected to be strongly correlated to ESR1, and showing instead a 

correlation R2= 0.05 and R2=0.19 respectively. This suboptimal performance was also noticed 

looking at the genes DE between ER+ and ER- samples. Some of the genes expected to be DE 

(GATA3, BCL2) did not reach statistical significance. 

 
 

 

Table 17: different expression genes between ER+ and ER- samples. 

 

GENE P-val 

ESR1 0.0496 
GATA3 0.2649 
SCUBE2 - 
BCL2 0.1120 
PGR - 
RERG 0.0643 
GREB1 0.0024 
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Affymetrix data were also extensively evaluated. The box plots indicated low signal intensities 

and some variability among the samples. The present calls were rather low on the average, 

ranging from 17% to 40%. The same type of variability was confirmed by the degradation plots 

which suggested that some samples did not pass quality controls. 

In order to set up a pre-analytical quality control for future studies, the obtained Present Calls 

(PC) were correlated with a Ct value obtained with a standard protocol for qPCR of the RPL13a 

gene on a small aliquot of sample after the first step of the amplification procedure.  

As can be seen in the graphs below there was a good correlation between the two measures (Ct 

and PC) and we arbitrary chose the Ct value of 37 as cutoff for sample pre-assessment as 

samples with Ct values higher than 37 had PC% under 20%. 

 

Figure 59: scatter plot of RPL13a qPCR as a function of present call 

 

Also after removing samples of bad quality, the clustering analysis did not allow to separate ER+ 

(dotted blue line) from ER- (solid red line) samples.  
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Figure 60: clustering analysis for FFPE samples after hybridization on Affymetrix platform. 

 

However, in the case of GEPs obtained with the Affymetrix platform correlations between 

expression of genes expected to be correlated were higher compared to those reported for 

Illumina (GATA3 vs ESR1, R2=0.61; RERG vs ESR1, R2= 0.56; BCL2 vs ESR1, R2= 0.31). 

The genes expected to be DE among the two ER subgroups were actually found and were 

statistically significant. On the average looking only at the 8 samples which passed QC, 134 

probes were found to be DE at p<0.01 and the top genes were biologically reasonable. 

Due to its better performance and to its wide use in clinical studies, we chose to use the 

Affymetrix U133 2.0 plus chips for our further analyses. 

 

4.3.2 THE PILOT STUDY 
 
The pilot study was carried out to: 

1. assess on a testing series of adequate size the proportion of retrospectively clinical 

samples effectively suitable for GEPs with our standardized protocol; 

2. evaluate the quality and biological meaning of the derived GEPs by comparing these 

results (e.g. comparison between ER+ and ER-) with those expected with similar GEPs 

derived from frozen samples (confirmatory analysis) 

with the final aim of applying the technically and biologically verified protocol on samples 

collected within a clinical trial. 
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Sixty clinical samples from patients with breast cancer who underwent radical mastectomy at the 

Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, and were treated with adjuvant 

chemotherapy (A→CMF) similarly to the ECTO I patients approximately in the same time lapse 

(1998-2002) were used to estimate the proportion of successful GEPs. Sixty-five % of patients 

were ER+.  

After pathological assessment to assure that the tissue blocks were representative 5 samples 

(8.3%) were lost. RNA was extracted from 2 sections (20µm each) and quantified. Mean yields 

were 17±9 µg/ sample. 

A pre-analytical sample assessment was implemented to avoid to profile bad quality RNA on 

expensive chips. It consisted in two steps: qPCR for the housekeeping gene RPL13A and 

capillary electrophoresis of the obtained aDNA to remove samples with too short amplicons. 

The size of the aDNA was found to be very critical for obtaining high present calls with the 

Affymetrix chips and had to be considered in association to the Ct value cutoff already 

described. In fact samples with similar cutoff values could still yield variable present calls once 

hybridized on the chip.  

An example is reported for 6 samples with the same Ct value but with  

 

 

Figure 61: output of bioanalyzer analysis  

 

Therefore based on the two combined criteria further 7 samples were excluded from the analysis, 

and thus a total of 55 amplified samples were hybridized on Affymetrix U133 2.0 Plus chips.  
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A post hybridization QC reveled that 2/46 samples presented abnormal intensity levels as shown 

in the box plot and the same samples clustered separately showing low correlation with the rest 

of the samples. They were therefore excluded.  

 

   

Figure 62: quality control of data from 46 FFPE samples. Box plot (left) and reciprocal correlation of samples 

(right). 

 

The remaining GEPs which passed the quality control showed a uniform distribution of 

intensities and a relatively high PC rate (median PC=30%). 

 

Figure 63: distribution of percentage of Present Call 

 

In order to check if the type of information provided by GEPs obtained from FFPE samples was 

comparable to that of frozen samples, a set of 8 genes consistently found to be differentially 

Median = 0.30
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expressed between ER+ and ER- samples was used to cluster our samples. Tumors separated into 

two groups according to the ER status. Only two samples were incorrectly classified.  

Such results confirm the technical feasibility to produce gene expression profiles technically 

reliable and biologically meaningful on about 75% of unselected FFPE archival material from 

patients enrolled in clinical trials using the developed protocol. As expected the use of archival 

material leads to loss of part of the samples:  

 8% due to poor pathological sampling during preparation of tissue blocks; 

 13% due to poor quality RNA which interferes with the amplification process.  

 Finally, as estimated on the basis of this series, an additional 2% of gene expression 

profiles obtained may be unreliable due to low PC. 

A sample pre-assessment step is mandatory to identify critical samples not worth to hybridize on 

chips.  

 

4.3.3 BIOLOGICAL RELIABILITY OF FFPE DATA 
 
Our pilot study, allowed us to identify the best and robust technical strategy applicable to ECTO 

I samples. The identified strategy was therefore applied to samples derived from the arm B 

(adjuvant) and their biological meaningfulness was evaluated and later was applied to samples 

derived from arm C (neoadjuvant).  

Pre-analytical sample assessment led to a higher loss of samples compared to the pilot study 

probably due variations in tissue handling and processing (length of fixation in formalin, type of 

buffer incorporated in the fixative) as expected in a multicentric study (99). 

Indeed 272 initially selected surgery samples dropped to 162 after pathological assessment of 

samples and technical pre-assessment of aDNA and core biopsy samples dropped from 192 to 

121(ranging from around 26% to 40%) (Table 17a Fig. 64). Table 17b show ER and grading 

characterization of ECTO sample profiled. 
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a 
Pilot 

 study 
Adjuvant 

arm 
Surgery 

Neo-adjuvant 
arm 

Core biopsy 
Total samples 60 272 192 
Pathological 
assessment 

55 234 173 

Technical Pre-
assessment +Total 
samples profiled 
on Affymetrix 
chip HG-
133_PLUS_2 

44 162 121 

 

b 
Neo-

adjuvant 
arm 

Core biopsy 

Adjuvant arm 
Surgery 

ER   
pos 50 56 
neg 71 105 

missing 0 1 
   
Grade   

1 9 16 
2 70 100 
3 41 41 

missing 1 5 
 

 

Table 17: a. loss of samples for pre-analytical and analytical factors; b. ER and grading characterization of ECTO 

sample profiled. 

 

 

 

Figure 64: loss of samples for pre-analytical and analytical factors. 

 

162 obtained from ECTO arm B and 44 from the pilot study (matched with ECTO I samples by 

year at diagnosis) were used to check the biological and technical reliability of the obtained 

GEPs. 

The median Present call (PC) obtained was quite low (PC=26.2) with a wide distribution, 

essentially in agreement with literature data for FFPE samples. In fact the higher PC values 

obtained in FFPE samples were comparable to the lowest ones derived from frozen samples.  
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Figure 65: distribution of percentage of Present Call. FFPE samples (left) and Frozen samples (right). 

 

An inverses and still good correlation between PC% and Ct values for the housekeeping gene 

RPL13, as observed in the pilot study, was confirmed also in this larger data set. 

 

Figure 66: scatter plot of RPL13a qPCR as a function of Present Call 

 

To specifically evaluate the biological meaningfulness of our data we used two main criteria: 

a) correct clustering according to ER and ERBB2 status; 

 b) suitability to develop clinically relevant predictors. 

a) After array quality control we were left with 204 samples which we clustered using 12 probe 

sets targeting genes from the ERBB2 amplicon (GRB7, ZNFN1A3, PPP1R1B, NEUROD2, 



RESULTS AND DISCUSSION 

  

 

149 

 

STARD3, PERLD1, CRKRS and ERBB2). For each sample a label referring to HER2 status 

obtained by IHC was available. Label are reported at the bottom of the figure considering either 

HER3+ cases alone a HER2+and HER3+ cases together. The two clusters defined by GEP data 

showed a good agreement with IHC data, indirectly confirming the good quality of the data.   

 

 

Figure 67: clustering of 204 samples using ERBB2 amplicon genes and compared with IHC data. 

 

To further asses the biological reliability of the GEPs obtained from FFPE, 167 samples (for 

which ER status defined by IHC was available) were clustered using ER-related genes (GATA3, 

CA12, SCUBE2, RERG, GREB1, PGR, NAT 1). 

Again, the two obtained clusters were in good agreement with ER status determined either by 

IHC or by ESR1 gene expression (ESR1 was not included among the ER-related genes). 
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Figure 68: clustering of 2167 samples using ER related genes and compared with IHC data. 

 

b) To evaluate the suitability of our GEP data obtained from FFPE samples to build classifiers 

we used a publicly available data set (GSE2109) of frozen samples obtained from different 

tumors and selected 165 breast cancer samples where there was an agreement between ER status 

determined by ESR1 gene expression and by IHC (119ER+ and 46ER-). 

On such training set an ER status classifier was developed by Prediction Analysis of Microarrays 

(PAM) using the Set Index gene list (159). The classifier was then challenged on two 

independent frozen datasets of 127 (160) and 684 (pooled from (GSE2034, GSE7390, and 

GSE11121) samples and on our FFPE data set of 204 samples. 

In the Lu dataset of 127 samples (77 ER+ and 50 ER-) profiled by Affymetrix chip HG-

U133_PLUS_2, using our classifier we obtained a prediction accuracy of 0.96 (0.91-0.99) with a 

Cohen’s k 0.92 (0.85-0.99) with either the IHC- or gene-determined ER status. 
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Figure 69: graphical representations of classifier performance on Lu dataset. 

 

In the second pooled dataset of 684 samples (514 ER+ and 170 ER-), profiled with Affymetrix 

chip HG-U133A, the prediction accuracy was 0.96 (0.95-0.98) with a Cohen’s k of 0.91(0.87-

0.94) when the ER label derived from gene expression was used and 0.90 (0.87-0.92) with a 

Cohen’s k 0.75 (0.69-0.82) when using ER status defined by IHC. 

 

 

Figure 70: graphical representations of classifier performance on pooled dataset. 

Accuracy Cohen's k 

Gene 0.96 0.92 

IHC 0.96 0.92 
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Using our ECTO FFPE data set of 206 samples (146 ER+ end 170 ER-) profiled by our technical 

protocol we obtained a prediction accuracy of 0.96 (0.92-0.98) with a Cohen’s k of 0.89 (0.82-

0.96) with respect to ER status defined by gene expression and of 0.90 (0.67-0.79) with a 

Cohen’s k 0.76 (0.66-0.89) with respect to ER status defined by ICH. Prediction accuracies 

obtained in our FFPE data set using GEP determined with an improved technical protocol were 

therefore not different from the ones obtained on frozen datasets. This is an indirect proof of the 

good quality of our gene expression data. 

 

 

Figure 71: graphical representations of classifier performance on ECTO FFPE dataset. 

 

It is therefore fair to conclude that gene expression data obtained from FFPE are biologically 

reliable as gene expression data obtained from frozen samples. FFPE samples can definitely be 

used to generate GEP data to be used for clinical prediction purposes, especially if an accurate 

sample pre/assessment procedure is applied to discard samples predicted to be unreliable. The 

low PC rates obtained in FFPE samples do not preclude the possibility to gain biological 

information.  
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4.4 THE DATA ANALYSIS ISSUE 
 

4.4.1. DEVELOPMENT OF AN OPTIMIZED PROCESSING PIPELINE FOR 
AFFYMETRIX GENE EXPRESSION DATA DERIVED FROM FFPE 
SAMPLES 

 

As demonstrated before, ad hoc optimized protocols using the Affymetrix HGU133 Plus 2.0 

microarray platform following amplification with the NuGEN WT-Ovation FFPE System proved 

to yield biologically meaningful gene expression profile data from FFPE clinical samples. 

Nevertheless, high frozen-FFPE discrepancies remain in expression data. In their dataset 

(GSE19246), Williams et al. (161) processed 59 matched frozen and formalin-fixed DLBCL 

patient samples belonging to two distinct prognostic subgroups and, after standard data 

processing procedures, reported 1428 genes as differentially expressed (DE) with a false 

discovery rate (FDR) <5% between the two subgroups when expression data from frozen 

samples were used; however only 289 genes were found to be DE when using expression data 

from corresponding FFPE samples at the same FDR threshold. Moreover, only 35 of the top-100 

differentially expressed genes were in common.  

We therefore developed a data analysis pipeline able to improve expression data obtained with 

the Affymetrix platform in FFPE samples. In the Affymetrix platform, each gene can be 

measured by different probesets and the signal of each probeset is obtained by combining the 

signals coming from 11 independent probes. Between the time where the probes for a given chip 

were designed, and the time an analysis is made, the transcript annotation might have changed. 

As a consequence, probe re-annotation was demonstrated to improve data quality. This can be 

practically done by creating alternative Chip Description Files (aCDFs) where only probes of 

interest are used and probesets are redefined (162).  

An alternative Chip Description File (CDF) where only probes unambiguously mapping RefSeq 

transcripts were retained was created, thus removing poorly informative probes and creating a 

single probeset for each gene (hereafter we refer to this alternative CDF as RefSeq_all). A total 

of 16,991 probesets were generated and about half of them (45.3%) contains more than the 11 

probes present in standard Affymetrix probesets (Fig.72), thus increasing the statistical power in 

measuring expression levels.  
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Figure 72: Number of probes in each probeset in the RefSeq_all CDF 

 

Using the standard Affymetrix CDF and looking at the 11 probes in each probeset taking into 

account their distance from the 3’-end, we had noticed a decay in their signal intensity moving 

toward the 5’ also in frozen data. But this effect was much more marked in FFPE data (Fig.73).  

 

 
Figure 73: RNA degradation plot for the frozen (left) and FFPE (right) data 

 

This was not surprising since, despite the use of a combination of random primers and oligo-dT 

in the amplification step, a 3’-biasis still expected as a consequence of fixation and RNA 

degradation. We therefore hypothesized that probes nearer to the 3’-end could be the more 

informative and reliable in FFPE data.  
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To verify it, after the probe re-annotation described before, we computed the distance from the 

probe to the 3’-end of the transcript. The correlation between frozen and FFPE data turned out to 

be inversely correlated with such distance (Fig.74).  

 

 
Figure 74: Frozen-FFPE correlation and distance of the probes from 3’-end. 

 

Based on this observation, we created a second CDF using for each transcript only the five 

probes closest to the 3’-end and in any case mapping within 300 bp from the 3’-end (this 

alternative CDF was called RefSeq_dist). Using such criteria it was possible to define 8,263 

probesets, in which the reliability of each probe was likely to be increased, despite the number of 

probes measuring each gene was reduced. 

To verify the utility of our alternative data analysis approach, we tested the agreement between 

Frozen and FFPE data in the William’s dataset, after processing the raw data with one of the 

Affimetrix standard CDF, the RefSeq_all CDF or the RefSeq_dist CDF. As processing methods 

we considered MAS5 and RMA, the two most commonly used algorithms for Affymetrix data, 

together with fRMA, a recently developed method that allows single array processing (118), 

which is important in biomarker development studies where the final goal is to obtain the gene-

based classification of a single sample.  

Three out of 59 matched samples were removed from our analysis due to poor quality of FFPE 

data.  

We considered the results obtained from frozen samples as the gold standard, and rated the 

processing pipelines based on various measures of concordance between frozen and FFPE 

samples. Specifically we measured the following quantities: a) frozen-FFPE sample correlation 
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and frozen-FFPE probeset correlation; b) frozen-FFPE fold change correlation and slope; c) 

percentage of DE genes in data from frozen samples called as DE in FFPE data; d) number of 

common genes among top-100 DE genes in frozen and FFPE data. Results obtained for each 

combination of processing algorithm (MAS5, RMA, fRMA) and CDF (standard, RefSeq_all and 

RefSeq_dist) are reported in Table 18. From the data processed with the standard CDF, we also 

extrapolated the subset of probesets mapping on genes targeted in the RefSeq_all and 

RefSeq_dist aCDFs, in order to undertake a fair comparison. 

 

 
Table 18: Frozen-FFPE comparison results for each combination of processing algorithm. 

 

Independently from the CDF used, MAS5 gave the poorest agreement between Frozen and FFPE 

data while fRMA slightly outperformed RMA.  When using the RefSeq_dist CDF we obtained 

the best frozen-FFPE sample correlation and the best frozen-FFPE fold change slope, confirming 

that, as hypothesized, the probes nearer to 3’-end are those giving the most similar signals in 

frozen and FFPE data. Nevertheless, using this aCDF we did not obtained an improvement in 

frozen-FFPE probeset correlation or in the agreement of genes called as differentially expressed. 

On the opposite, the best agreement was obtained using the RefSeq_all CDF in combination with 

the fRMA method. For example, 41.7% of genes identified as DE in frozen data were found DE 

in FFPE data at the same significance threshold, about twice the value obtained with MAS5 

method and the standard CDF (20.7% looking at all probesets or 23.1% looking at probesets 

targeting the same pool of genes). Similarly, the number of common top-100 genes increased 

from 35 to 53. 

 

 

CDF
Number of 
probesets

Number of 
genes

median frozen-FFPE 
sample correlation

median frozen-FFPE 
probeset correlation 

(50% higher IQR)

Percentage of DE 
probesets in Frozen data 
called as DE in FFPE data

Number of common genes 
among top-100 DE genes in 

Frozen and FFPE data

Value CI lower 5% CI upper 95% Value CI lower 5% CI upper 95%

CDF standard - MAS5 54675 19798 0.691 0.116 0.407 0.400 0.414 0.442 0.434 0.451 20.7 35

CDF standard - RMA 54675 19798 0.792 0.333 0.696 0.691 0.700 0.525 0.520 0.529 28.4 37

CDF standard - fRMA 54675 19798 0.784 0.347 0.717 0.713 0.721 0.627 0.622 0.632 31.5 38

CDF standard common with RefSeq_all - MAS5 36727 16991 0.709 0.135 0.430 0.422 0.438 0.472 0.462 0.482 23.1 39

CDF standard common with RefSeq_all - RMA 36727 16991 0.777 0.359 0.706 0.701 0.712 0.543 0.537 0.548 29.8 44

CDF standard common with RefSeq_all - fRMA 36727 16991 0.773 0.371 0.726 0.721 0.731 0.637 0.631 0.643 32.2 41

CDF standard common with RefSeq_dist - MAS5 18517 8263 0.713 0.131 0.413 0.401 0.425 0.461 0.446 0.476 20.8 39

CDF standard common with RefSeq_dist - RMA 18517 8263 0.783 0.36 0.695 0.688 0.703 0.550 0.542 0.558 29.2 42

CDF standard common with RefSeq_dist- fRMA 18517 8263 0.776 0.371 0.715 0.708 0.722 0.649 0.640 0.659 32.4 46

CDF RefSeq_all - MAS5 16991 16991 0.759 0.228 0.566 0.556 0.576 0.526 0.514 0.537 30.9 44

CDF RefSeq_all - RMA 16991 16991 0.79 0.42 0.737 0.730 0.744 0.526 0.519 0.533 35.9 52

CDF RefSeq_all - fRMA 16991 16991 0.782 0.43 0.761 0.755 0.767 0.634 0.626 0.642 41.7 53

CDF RefSeq_dist - MAS5 8263 8263 0.736 0.178 0.468 0.451 0.484 0.491 0.471 0.511 18.5 30

CDF RefSeq_dist - RMA 8263 8263 0.795 0.349 0.688 0.676 0.699 0.626 0.611 0.640 26.7 47

CDF RefSeq_dist - fRMA 8263 8263 0.801 0.359 0.694 0.683 0.705 0.694 0.678 0.709 24.7 44

Frozen-FFPE Fold change correlation Frozen-FFPE Fold change slope
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4.4.2 VALIDATION OF THE DEVELOPED DATA PROCESSING PIPELINES ON 
BREAST CANCER DATASETS 

 

The robustness of the results was verified by applying the different processing pipelines to the 

GSE5460 dataset (163) from 127 frozen breast cancers and to our FFPE data (data from the 

pilot-study of 44 FFPE breast cancers and data from the surgery arm of ECTO1 trial (see §4.3). 

As described in the scheme (Fig.75), in the frozen dataset we performed a class comparison 

between ER positive and ER negative samples and 5% of probesets with lowest p-values were 

selected. Then in our FFPE data we computed the same class comparison for such selected 

probsets and looked at the distribution of their p-values. The same analysis was carried out using 

MAS5 with the standard CDF as well as using fRMA and the RefSeq_all CDF.  

 

 
Figure 75: Flow chart of the analysis to evaluate the improvement in data reliability using independent datasets and 

ER status. 
 

As shown in the figure, p-values shifted towards lower values, thus the number of probesets 

keeping to be significantly DE in the FFPE dataset increased from about 40% to more than 70% 

when using our processing method (Fig.76).  
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Figure 76: Distribution of p-values in the INT FFPE dataset for top 5% of probesets identified as differentially 

expressed in the GSE5460 Frozen dataset. The analysis was performed on data processed using MAS5 and the 

standard CDF (left), fRMA and the standard CDF (center) or fRMA and the RefSeq_all CDF (right). 
 

The utility of our data analysis pipeline was further tested looking at pathological features of the 

tumor, like grade and lymphocyte infiltration. We compared tumors with high or low 

lymphocyte infiltration looking this time at the expression of a set of Tcell specific genes 

previously described (see § 4.1.1) (Fig.77).  

 

 
Figure 77: Flow chart of the analysis to evaluate the improvement in data reliability using independent datasets and 

lymphocytes infiltration (LI). 

 

By processing our data with the standard or with the method developed by us, we could observe 

that the percentage of significant probesets rose from 48% to 67% (Fig.78). 
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Figure 78: Distribution of p-values in the INT FFPE dataset for top 5% of probesets identified as differentially 

expressed in the GSE5460 Frozen dataset. The analysis was performed on data processed using MAS5 and the 

standard CDF (left), fRMA and the standard CDF (center) or fRMA and the RefSeq_all CDF (right). 
 

Similarly, we performed in our data the class comparison between grade 3 and grade 2 tumors 

looking at p-values of the genes of the GGI developed by Sotiriou and colleagues (164) (Fig.79).  

 

 
Figure 79: Flow chart of the analysis to evaluate the improvement in data reliability using independent datasets and 

grade. 

 

 

This time the percentage of significant probesets rose from 54% to 82% (Fig.80). 
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Figure 80: Figure 78: Distribution of p-values in the INT FFPE dataset for top 5% of probesets identified as 

differentially expressed in the GSE5460 Frozen dataset. The analysis was performed on data processed using MAS5 

and the standard CDF (left), fRMA and the standard CDF (center) or fRMA and the RefSeq_all CDF (right). 
 

Our data demonstrate that optimized processing of FFPE Affymetrix data leads to a sizable 

improvement of their reliability. In particular a significant advantage is obtained by using custom 

CDFs based on current transcript annotation (RefSeq_all and Refseq_dist) together with fRMA 

normalization. 

 

4.4.3 USING GENE EXPRESSION PROFILES TO PREDICT TREATMENT 
SUCCESS FOR STANDARD TREATMENTS IN BREAST CANCER  

 

Developing predictors of response and survival from standard chemotherapy for patients with 

newly diagnosed invasive breast cancer is a crucial issue in attaining a treatment personalization. 

In the present thesis we have developed a strategy to obtain optimal treatment response 

prediction by  

 combining information from already published signatures,  

 using publicly available data set,  

 developing predictors and biomarkers based on metagenes rather than single genes and  

 exploiting data obtained within a multicentric clinical trial with a high clinical relevance 

to validate the developed strategy. 

 

A similar strategy has been used in a recent study by Hatzis et al (REF, Jama 2011) to develop 

genomic predictors of response and survival following Taxane-Anthracyclin therapy. Treatment 
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sensitivity was predicted using a combination of signatures independently for ER+ and ER- 

tumors. 

The general strategy used by Hatzis et al is illustrated in the following graph (Fig.81): 

 

 

Figure 81: Hatzis et al. (165) 
 

ER+ patients were evaluated with respect to signature predicting endocrine sensitivity, and if 

sensitive endocrine treatment was considered the best choice treatment for those women. If 

insensitive, based on the signature, a signature predicting chemotherapy resistance was used to 

sort patients. Those predicted to be chemo-resistant were considered insensitive to conventional 

treatment and allocated to new alternative treatments. The patients not predicted to be chemo-

resistant were instead evaluated for chemo sensitivity and allocated to conventional treatments if 

defined as sensitive or diverted to alternative new treatments if predicted as insensitive according 

to their gene profile.  

This type of algorithm applied to a validation cohort of patients showed that the outcome for 

patients predicted as sensitive based on the genomic predictor was as good as those in patients 

actually achieving a pCR (an in vivo sensitivity test). 

 

We built our prediction strategy taking the strengths of Hatiz paper (a specific clinical question 

aim as aim; the fact that a patients cannot be cured twice, i.e. patients cured by endocrine therapy 
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do not need to be assessed for chemosensitivity, and the development of separate genomic 

predictors according to ER status). 

However, in our prediction model we tried to overcome following limitations: 

 Hatzis et al consider only patients with HER-2 negative tumors. 

 Only a small proportion of patients is predicted to be treatment sensitive (28%). 

 The prognostic issue was not considered as no pure prognostic genomic predictor was 

included in the model. 

 The model was not compared with conventional prognostic/predictive models. 

 Follow up time was relatively short. 

 

Overcoming of the above limitations was possible thanks to the use of gene expression profiles 

obtained within the ECTO1 trial as validation cohort. Such data represent internationally 

recognized high quality clinical data which warrant the relevance of the developed predictors. 

One of the central issues of this thesis work was to overcome the technical hurdles intrinsic in 

obtaining biologically and clinically relevant gene expression profiles from FFPE samples using 

array platforms widely used for frozen samples, allowing this way to unlock the valuable clinico-

biological information of the ECTO I samples.  

 

As stated above we collected publicly available data sets with distinct features suitable to answer 

the different type of prediction questions. All collected data set had in common the fact that they 

were available in GEO and that their gene expression data had been obtained using the 

Affymetrix platform either with the HG-U133A or the HG-Plus 2.0 chips. 

 

The table below summarizes the main features of our dataset collection 
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Definition  Suitable 
samples  

Features 

GENERIC  1366 GEP of untreated primary breast cancers beloging to all 
subtypes  

PROGNOSTIC  826 GEP of untreated primary breast cancers from node 
negative patients receiving any adjuvant sistemic 
treatment. All subtypes. 10-years follow-up available.  

TAM  962 GEP of ER+ (IHC) untreated primary breast cancers 
from patients receiving hormonal adjuvant therapy. 10-
years follow-up available.  

CHEMO  508 GEP of untreated primary breast cancers from patients 
receiving chemo and hormonal (ER+) therapy in both 
neoadjuvant or adjuvant setting. All subtypes. 3-years 
follow-up available.  

 

Table 19: description of collected public dataset. 

 

The so-called generic dataset (including gene expression profiles obtained from 1366 fresh 

frozen breast cancer samples) was used to derive metagenes. Metagenes were defined as a group 

of highly correlated genes and whose expression level was computed as the average expression 

level of each single gene belonging to the metagene. The metagene-strategy was chosen to attain 

more robust data especially in the event of the necessity to switch to a different platform. Probes 

for single genes are in fact likely to perform differently on different platforms, whereas the 

average expression level of a metagene is likely to be more stable.  

The prognostic dataset (including gene expression profiles obtained from 826 fresh frozen 

breast cancer samples from node negative breast cancer patients not receiving any type of 

adjuvant treatment) was used to derive a pure prognostic genomic predictor. It is important to 

mention that such dataset included all breast cancer subtypes and that the follow up time was up 

to 10 years long. 

The TAM dataset (including gene expression profiles from 962 ER+ tumors from breast cancer 

patients receiving hormonal adjuvant therapy only) was used to derive an endocrine sensitivity 

predictor.  

The chemo dataset (including 508 gene expression profiles from primary breast cancer patients 

receiving chemotherapy alone or in combination with endocrine treatment either in the 

neoadjuvant or adjuvant setting) was used to derive a chemosensitivity predictor. 
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By looking closer at the selected datasets we noticed that there may exist for certain genes a 

chip-associated bias despite the use of a CDF including only RefSeq common to the U133A 

(22283 probesets) and the Plus 2.0 (54675 probesets). A possible interpretation is that even the 

same probesets can perform differently depending on the ‘environment’ (more or less dense 

chip).  

An example is reported in the graph below  

 

 

Figure 82: density plot of ESR1 and SPARC genes. 
 

As can be seen even in the presence of high correlations (r>0.95) for certain genes, as for 

example SPARC there may be a shift in the intensity levels depending upon the used chip. 

This is one more reason for choosing the metagene-strategy which counteracts such effects 

through averaging.  

As already stated, one of the main points of our prediction strategy was the development of 

genomic predictors separately for patients with ER+ and ER- tumors.  

To do so, it was important to have a way, as uniform as possible, to classify ER status of our 

tumors. This was achieved by selecting within the generic dataset (as the latter was not used for 

other predictor developments) 317 samples where the ER status had been defined by IHC using 

the same criterion, i.e. 1% positivity as threshold.  

Within such datasets ER related genes were selected and genes having the highest AUC were 

used for ER-status metagene computation.  

The selected genes and their relative AUC values are reported hereafter: 
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Symbol  AUC  

TBC1D9  0.965  

SLC39A6  0.964  

SCUBE2  0.963  

GATA3  0.953  

CA12  0.953  

ESR1  0.95  

 

Table 20: genes with the highest Area Under ROC Curve (AUC) 

 

Once the genes belonging to the ER-status metagene were selected, we defined a threshold 

mainly looking at the bimodal distribution of the ER-metagene in the population and confirming 

the choice by comparing with the IHC-defined ER status, as illustrated below 

 

  

Figure 83: density plot of ER metagene (left) and agreement with IHC ER status. 
 

The ER-status metagene defined this way was thereafter validated. We know from the literature 

that ER status is predictive of response to endocrine treatment. 

ER_IHC
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g 0 141 7

1 4 165

Generic
N=317

K= 0.930 



RESULTS AND DISCUSSION 

  

 

166 

 

To validate the predictive significance of our ER-status metagene, in a combined dataset of 934 

HT treated ER+ patients, a subgroup was ER- according to the ER-metagene and showed worse 

outcome (p=4.8E-08) (Fig. 84). 

 

 

Figure 84: Kaplan Meier curve for ER+ and ER- patients 

 

The same type of strategy was applied also to the HER2 status definition. 

A dataset of 490 cases with Her2 positivity defined by IHC (as 3+) or by FISH was identified. 

The following genes, all mapping on chromosome 17, were identified based on the AUC and 

used for metagene computation. 

 

Symbol  Chr AUC 

PGAP3  17 0.902 

PNMT  17 0.817 

ERBB2  17 0.805 

 

Table 21: genes with the highest Area Under ROC Curve (AUC). 
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A threshold was arbitrarily selected based on the distribution of the metagene expression levels 

and the chosen cut-off was validated comparing with the IHC or FISH –defined HER2 status. 

 

   

Figure 85: density plot of Her2  metagene (left) and agreement with IHC/FISH Her2 status. 

 

Once uniform genomic predictors of ER and HER2 status were available the next step was to 

classify all samples with follow up data in the three groups:  

 HER2 negative/ER negative 

 HER2 positive 

 ER+/HER2 negative 

which were separately investigated for defining subtype-specific genomic predictors. 

At the same time the generic dataset was used to identify metagenes (eg. Proliferation, immune 

axis, etc) with specific biological significance. 

The choice of using metagenes presented several advantages over the use of single genes to build 

prediction signatures. One of the main advantages is the possibility to identify prognostic and 

predictive biomarkers based on biological knowledge. This could be done also with single genes, 

but with metagenes we obtain more complete information for biological features or pathways 

which are regulated by many genes. A single gene could in fact hardly represent a biological 

property like proliferation which derives from the interaction of many genes at different levels, 

from cell membrane signals, to kinase cascades transducing the external signal to transcription 

factors acting on specific gene involved in regulation of cell cycle. 

An additional advantage of metagenes is the possibility to perform an easier cross-platform 

analysis which is very important in this thesis which considers gene expression profiles obtained 
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from both frozen and FFPE samples and combines the two types of information ‘jumping’ from 

one setting to the other. 

 

Once a cluster of correlated genes is identified in a specific platform, when moving to another 

platform some of the genes could not correlate with the others anymore but, after excluding them 

we will be able to plausibly evaluate the same biological process in the second platform. 

 

The metagene identification was attained with the following strategy. We used 1366 gene 

profiles from the generic dataset which was split into two parts. The first part (including 683 

samples) was used to cluster all genes and to identify clusters of genes showing a correlation 

>0.4 and including more than 25 genes. A re-clustering was performed on the second group and 

clusters containing genes with a correlation coefficient superior to 0.4 were identified. To assure 

the reproducibility of the data on FFPE samples, an additional re-clustering was done on the 44 

FFPE samples belonging to the pilot study. After clustering and re-clustering, 36 clusters 

containing at least 12 genes were retained for following analyses. 

The following chart illustrates the strategy for metagene identification: 

 

 

Figure 86: Flow chart of metagene identification strategy. 
And the following table show some examples of the identified metagenes: 

GENERAL dataset
1366 samples

Split 1
683 samples

Split 2
683 samples

Clustering of all genes and 
identification of clusters 

with cor>0.4 and # of 
genes >25

Re-clustering on Split 2 
and dendrogram cut at 
0.4 and # of genes >20

Retain clusters with at 
least 12 genes

Re-clustering on FFPE 
pilot study and 

dendrogram cut at 0.4
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Metagene Name 

15 Proliferation 

26 ER axis 

39 STAT1/ISGs 

40 Immune 

41 Dendritic cells 

42 T-cell 

44 ECM 

46 ECM/SPARC 

47 ECM/TFGBR2 

48 ECM/PLAU 

 

Table 22: biological function for selected metagenes. 

Once equipped with metagenes we could continue our strategy for genomic predictor definition. 

 

 

Figure 87: flow chart of the strategy to identify a genomic predictor. 
 

We first concentrated on prediction of good and bad prognosis for patients with ER+/HER2-

tumors. Based on previous knowledge and literature data, proliferation and immune axis genes 
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were chosen in order to be defined/refined on our prognostic datasets and to be further validated 

out of context using the TAM dataset.  

 

The proliferation metagene identified as previously described was now refined with respect to its 

prognosis predictive power. The refinement was done using 495 ER+/HER2- cases from the 

prognostic dataset. The originally defined metagene contained 88 genes, and to attain a 

refinement each of them was tested in univariate analysis using a Cox model with regard to 

association with prognosis. Then genes were ordered according to their Cox p-value and the 

number used to compute the metagene was gradually reduced. Simultaneously, the fraction of 

patients defined as at low risk was varied between 10 and 90%. All the procedure was performed 

in a 10-fold cross validation setting iterated 100 timed. The top 25 genes with the lowest p-

values were chosen. 

 

 

Figure 88: metagene refinement procedure. 
 

Using the newly refined proliferation metagene 60% of patients were defined as having low-

proliferating tumors and more than 90% of those patients were disease-free at 5 years. 
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Figure 89: Kaplan Meier curve for patients with high or low proliferation. 

 

A similar strategy was then applied to the identified immune axis metagene which originally 

contained 20 genes. Refinement was carried out as described for the proliferation gene 

performing an univariate analysis for each gene but using only cases defined as highly 

proliferating. The refined gene contained the top 16 genes and was significantly (p=0.016) 

associated with prognosis in tumors characterized by high proliferative activity as shown in the 

following plot: 

 

Figure 90: Kaplan Meier curve for high proliferation patients with high or low immune cells infiltration. 
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The immune axis gene however maintained its prognostic relevance also in the whole population 

not subdivided according to proliferation (p=0.00083), and the two variables were independent 

as they remained significantly associated with outcome in a multivariate analysis.  

 

Variable hazard ratio 
Multivariate 
Cox p-value 

Proliferation 
mg  

4.16  0  

Immune mg  0.58  0.000842  
 

Table 23: multivariate Cox analysis in the prognostic dataset. 

 

The 20% of patients with the highest expression of the immune genes were disease-free after 5 

years from surgery in 90% of cases. 

For an optimal prediction of prognosis proliferation and immunity were combined and a 

prognostic score (PS) was defined using the β-coefficients derived from the multivariate Cox 

analysis. As can be seen from the plot, the 60% of patients with the lowest PS had a 5 years 

disease free survival higher than 90%. 

 

Figure 91: Kaplan Meier curve for patients with high or low prognostic score. 

 

The thresholds defined in the prognostic dataset were then applied to the TAM data set 

separately for node positive and node negative patients. The predictive value of the PS was 
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validated in both subsets. More than 95% of women with negative nodes treated with tamoxifen 

were disease free 5 years after surgery. 

 

 

Figure 92: Prognostic score validation in N- (left) and N+ (right) tamoxifen treated patients. 
 

The strategy consisted in defining an ER-axis metagene exploiting the TAM dataset and in 

validating the defined metagene out of context in the chemo datasets. 

The originally defined ER metagene contained 42 genes and the top 16 genes obtained after 

refinement in the bad prognosis group were used. More than 95% of patients with high ER-

metagene values in the third tertile were disease free after 5 years from surgery, independently 

from prognosis and from nodal status. Data are reported in the following plots. 

 

 

Figure 93: Kaplan Meier curves for patients with high or low expression of ER-axis genes in poor (left) or good 

(right) prognostic groups. 
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Figure 94: Kaplan Meier curves for patients with high or low expression of ER-axis genes (from the left: all, N- and 

N+ patients). 
 

The PS, ER metagene and nodal status were combined to define a hormone score (HS). A 5-

year DFS superior to 95% was attained in the 45% of patients with the highest HS values. 

The HS score was therefore subjected to a validation on chemo datasets. Analyses are still 

ongoing.  

Results so far obtained are very promising and will acquire additional value from the validation 

on the ECTO1 series, thanks to the technical success achieved in obtaining biologically reliable 

gene expression profiles from FFPE samples. 
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5. CONCLUSION 
 

As stated in the chapter ‘purpose of this thesis’ our main aim was to provide a genomic based-tool 

for on optimal treatment planning of breast cancer. 

The initial hypothesis was that the more accurate the prognostic and response predictions, the more 

personalized treatment recommendation can be made for an individual.   

Presently available treatments based on hormones and on chemotherapy are very effective, but have 

two major drawbacks: 

 Over-treatment, with unnecessary exposure to toxicity for patients who would have been 

treated without chemotherapy. 

 Difficulty in identification treatment insensitive and resistant patients who are likely to 

mostly benefit from newly developed anticancer drugs, rather than receive conventional 

treatment which is ineffective for them. 

Presently available treatment predictors fail from provide optimal identification of patients based on 

their likelihood to respond. 

 

We therefore built our own treatment prediction strategy 

 based on previous knowledge mostly developed using gene expression profess obtained 

from frozen samples and combining available predictors  

1. with a  hierarchical approach 

2. using metagenes 

3. developing specific predictors according to the molecular subtype 

 and developed a robust technical protocol with an improved data analysis pipeline allowing 

to finally unlock the biological information locked in FFPE samples derived from clinical 

trials  

 

with such tools it was possible to identify a priori in the ER+/Her2- a subset of patients who were 

predicted (and confirmed by external validation) to have a 95% 5-year disease free survival. Such 

accurate (and validated) prediction was achieved by combining optimized metagenes with clear 

biological roles in proliferation, ER signaling and immunity and separately analyzing prognostic 

and predictive information. 
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Work is still in progress for the other molecular subtypes (Her2+ and ER-/Her2-). 

 

We reported in the results a detailed dissection of all technical hurdles arising with FFPE samples 

and solutions to minimize or overcome the technical problems. We also extensively analyzed pro 

and cons of several different approaches suitable for gene expression studies in FF and FFPE 

samples. 

The impossibility to utilize with the presently available technologies, samples which were fixed in 

Bouin (an important issue which dramatically affected our treatment predictor development strategy 

as it prevented us from being able to use data obtained in untreated arms from old clinical trials) 

was also extensively demonstrated and supported by comparative data with formalin-fixed samples. 

 

The role of the immune system in affecting breast cancer prognosis was separately studied not only 

from a clinical point of view, but also to better understand the biological base for the tumor-

promoting and tumor-inhibiting effects of the immune axis. We started from clinical data including 

a series of 127 untreated node negative breast cancer, and showed that the ISG expression was 

associated to the likelihood to develop distant metastases.  

During the external validation of such piece of information we surprisingly noticed that the ISG 

expression had a distinct role in impacting distant metastases development based on the molecular 

subtype of the tumor: positive association with metastasis in patients with ER+/Her2- tumors, 

positive association in patients with Her2+ tumors and non association in women with ER-/Her2- 

tumors. 

We also noticed that in clinical samples there was no association between the expression levels of 

ISG and either lymphocyte infiltration or specific type of infiltrates defined using IHC with several 

antibodies specific for different cell subpopulations of immune system (anti CD3, anti CD4, anti 

CD8, anti CD 68, anti CD56, anti CD57, anti FOXP3, anti CD45, anti CD 20, anti GRANZYME 

and anti HLADR). Furthermore IHC approaches clearly demonstrated that ISG genes were mostly 

expressed by the epithelial cells. Such data add to other controversial data on the prognostic role of 

the immune axis in breast cancer, already available in the literature, but, most importantly, 

underline the importance of evaluating genomic prognostic (and treatment predictive) factors 

distinctly for each molecular subgroup. 

To further search for biological mechanism justifying the prognostic role of ISG expression we 

switched to in vitro co-cultures of epithelial cells with normal fibroblasts of different origin or 
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CAFs. Many different experimental setting either 2D or 3D were adopted and described in detail. 

The experimental setting played a major role on the experimental results. On the average basal-like 

cells were more sensitive to fibroblasts promoted effects in terms of cytokine secretion in the 

culture medium and up-regulation of ISG genes in the epithelial cells. Those cells were 

characterized by high intrinsic migratory and invasive ability which did not change much upon co-

cultures. 

On the contrary luminal cells were stimulated to growth and gained invasive and migratory abilities 

after stimulation with fibroblasts and CAFs.  

Our experiments showed a complicated and sometimes controversial interplay between fibroblasts 

and epithelial cells which fully justifies the paradoxical role of the immune system in clinical 
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