
Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata

Dipartimento di Fisica

Corso di Dottorato in Fisica, Astrofisica e Fisica Applicata

Ciclo XXV

Single and Dual-Domain Models to
Assess the Effects of

Heterogeneity on the Solute
Transport in Alluvial Aquifers

Settore Scientifico Disciplinare FIS/06

Supervisori: Professor Guido PARRAVICINI

Professor Mauro GIUDICI

Coordinatore: Professor Marco BERSANELLI

Tesi di Dottorato di:

Fulvia BARATELLI

Anno Accademico 2012-2013



Commission of the final examination:

Membro docente (Presidente):
Prof. Timothy R. Ginn, Department of Civil Environment Engineering - University of
California

Membro docente:
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CHAPTER 1

Introduction

1.1 Motivation

Groundwater slowly flows through the soil or is stored in subsurface natural reservoirs,
so that the ions contained in the rocks and in the grains of soil can be released to the
water with which they come into contact. In addition to these natural substances, other
contaminants harmful to health may be present. Groundwater contamination by pollu-
tants is an issue of fundamental importance, since aquifers are a major source of drink-
ing water in many regions of the world (Fetter, 1999; Rausch et al., 2005; Charbenau,
2006), and is also used to irrigate crops. The contaminants can be introduced directly in
groundwater, e.g., through abandoned wells used as illegal dumping; more frequently,
the contaminants are released on the soil surface or in the shallow layers of ground, from
where they can reach groundwater by infiltration through the unsaturated zone; more-
over, the pollutants released in the atmosphere can be carried by precipitation to the
soil surface, and then infiltrate in groundwater. Most of the contaminants have an an-
thropogenic source: for example, the industrial dumpings, the spreading of pesticides,
fertilizers and slurry in agriculture, the urban drainage systems, possible accidents in the
transport or use of harmful substances and the gaseous emissions of factories and traffic
in the atmosphere. The contaminants in groundwater can come from natural sources as
well: for example, the emissions of volcanoes in atmosphere, followed by precipitation
and infiltration in the ground, or the change in the flow regime of a groundwater system,
which can lead to changes in the composition of the groundwater because it reacts differ-
ently with the solids forming the aquifer material (Rausch et al., 2005); the different flow
regimes may cause harmful substances to dissolve in groundwater, with a consequent
deterioration of its quality.

The different kinds of solutes in groundwater can be grouped in reactive solutes and
non-reactive (also called conservative) solutes. The former are substances that can take
part in physical reactions (for example: radioactive decay, filtration), chemical reactions
(for example: adsorption/desorption, ionic exchange, acid/base reactions, oxidation-
reduction reactions, precipitation, dissolution) or biological reactions (for example, some
bacteria can transform harmful organic compounds in other non-harmful substances).
On the other hand, the conservative substances do not take part in any reaction and, in
particular, do not interact with the porous medium.

The groundwater for drinking, civil use and irrigation is extracted, through pumping
wells, from the aquifers, namely from the pores of unconsolidated materials, e.g., gravel,
sand and silt, or from the fractures of rock formations. Therefore, the modeling of water
flow and solute transport in the aquifers is a primary task to control the possible effects
that the above mentioned sources of contaminants have on water quality, to understand
the spatial and temporal scales at which the contaminants spread from the injection area

1



2 1.1 Motivation

and reach a water well and finally to assist policymakers in planning possible interven-
tions to prevent contamination of drinking water or to remediate a contaminated region.

A thorough description of the different sources of groundwater contamination, of the
issues related to water quality, of the methods of remediation of a contaminated site and
of the transport modeling approaches, with the presentation of several case studies, can
be found, e.g., in the following textbooks: Bear (1979), Domenico and Schwartz (1998),
Fetter (1999), Fetter (2001), Fitts (2002), Charbenau (2006) and Bear and Cheng (2010).

An important issue to be addressed in the modeling of groundwater flow and trans-
port is the heterogeneity of the aquifers, which can occur at different spatial scales. In
particular, the alluvial aquifers might be very heterogeneous as a result both of a possi-
bly complex succession of sedimentation, erosion and diagenesis, controlled by climatic
cycles, and of the tectonic evolution. The fine scale heterogeneity of the aquifers sig-
nificantly affects groundwater flow and the transport of contaminants in groundwater
at the scales of interest for practical applications. More specifically, the internal archi-
tecture of the alluvial sediments may be characterized by the presence of preferential
flow paths (PFPs), that are connected bands of high-permeability sediments, e.g., gravel
or sandy gravel, where water and solute can move faster than in the fine-grained sedi-
ments; on the other hand, there may be hydraulic barriers, that are impermeable com-
ponents within the sediments, e.g., pebbles and cobbles, or low-permeability regions,
e.g., fine sand or clay lenses. PFPs characterize also the fissured aquifers and the macro-
porous soils, i.e., those soils characterized by the presence of cavities formed by plant
roots, earthworm and soil fauna or of drying cracks in case of swelling clay soils (Gerke,
2006). The fractures and the macropores clearly represent PFPs, where water flow and
solute transport are much faster than in the matrix blocks. PFPs and hydraulic barri-
ers control the travel times of the particles of solute and the pathways that they follow
from the injection area: in particular, PFPs control the early travel times, whereas low-
permeability materials control the late travel times.

An efficient transport modeling of such heterogeneous environments is essential in
order to avoid the underestimation of the travel times of the solute and to correctly pre-
dict the spatial and temporal evolution of a solute plume released in an aquifer. For ex-
ample, a transport model that does not take into account the PFPs might predict that the
solute arrives to a certain area (e.g., to a water well) later than actually happens; more-
over, the low-permeability material can slowly release the solute after having stored it
for some time, so that the region of interest might still be contaminated at later times than
predicted by a model that does not take into account this low-permeability material.

The effects of heterogeneity can be seen, for example, in the spatial distribution of
the solute and in the shape of the solute breakthrough curve (BTC), which represents
the temporal evolution of the mass of solute that crosses the unit surface of the porous
medium per unit time. In particular, for a point injection in an infinite domain, the solute
distribution is symmetrical in an homogeneous domain, whereas it is asymmetrical in
an heterogeneous domain.

Moreover, for an instantaneous pulse injection of solute in a semi-infinite domain, the
classical advective-dispersive equation (ADE) predicts that the BTC is an inverse Gaus-
sian distribution, which is then the typical BTC obtained for a homogeneous domain.
This situation is also called Fickian transport, since it results from the assumption that
the dispersion of the solute is described by Fick’s law.

On the other hand, for heterogeneous domains characterized by PFPs, the BTC re-
sulting from a pulse injection in a semi-infinite domain is characterized by an early peak,
which corresponds to the particles of solute that travel fast in the PFPs, and by a long
tail, which corresponds to the particles of solute that travel in the low-permeability sed-
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a) b) c)

Figure 1.1: BTC resulting from numerical simulations of an instantaneous injection of solute in
a semi-infinite medium characterized by homogeneity or random heterogeneity (a), structured
heterogeneity with moderate (b) and large (c) permeability contrast between the PFPs and the soil
matrix.

iments. The BTC can also show a double peak, in case of a moderate contrast between
the velocity of the fast and slow particles. These situations, which cannot be described
by the ADE, are also called anomalous or non-Fickian transport, since Fick’s law is not a
good description for the solute dispersion in these kinds of heterogeneous media.

As an example, Figure 1.1 shows three examples of BTCs obtained from numerical
3D transport experiments simulating an instantaneous injection of solute mass through
the border of a semi-infinite domain along the average flow direction; the three BTCs cor-
respond to porous domains characterized by different degrees of heterogeneity. Figure
1.1a) refers to a homogeneous domain (or to a domain with randomly distributed het-
erogeneity), for which the BTC follows an inverse Gaussian distribution. Figures 1.1b)
and c), instead, refer to structured heterogeneous porous media characterized, respec-
tively, by a moderate and large contrast between the permeability of the PFPs and that
of the soil matrix.

As pointed out by Feyen et al. (1998), water flow and solute transport in natural soils
are significantly influenced by the occurence of macropores and structured elements,
which they refer to as ‘micro-heterogeneity’, and by the spatial variability of soil proper-
ties (‘macro-heterogeneity’), or by a combination of micro- and macro-heterogeneity.

As will be explained in section 1.3, the primary objective of this work is to imple-
ment and compare different models to effectively describe non-reactive solute transport
in heterogeneous aquifers and to apply such models for the interpretation of numerical,
laboratory and field tracer tests in different heterogeneous environments. In particu-
lar, the effects of heterogeneity at a fine scale will be examined by means of equivalent
media, for which the classical ADE or simple modifications, involving few upscaled hy-
drodispersive parameters, can be applied.

Reactions might affect solute transport in groundwater, but the investigation of their
influence on solute transport is outside the scope of this work, which focuses on the
effects of the heterogeneity of the conductivity field only.

In order to introduce the precise statement of the objectives of this work, in the fol-
lowing section 1.2 the main approaches to the modeling of solute transport in heteroge-
neous aquifers are briefly recalled.
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1.2 Modeling solute transport in heterogeneous aquifers

Experimental reasons prevent the complete characterization of the fine scale heterogene-
ity, especially for a large field site; moreover, taking into account the fine scale hetero-
geneity in a transport model would be computationally very expensive. In order to
overcome this issue, several approaches to the modeling of preferential flow and solute
transport in heterogeneous soils have been developed; a thorough review and a good list
of related references, where those approaches are developed and applied, can be found,
e.g., in Jarvis et al. (1991), Dagan and Neuman (1997), Feyen et al. (1998), Rausch et al.
(2005), Gerke (2006), Köhne et al. (2009) and Neuman and Tartakovsky (2009).

The different approaches can be grouped into two classes: deterministic and stochas-
tic approaches. According to the former, the model parameters are represented by sin-
gle values, so that the outcomes of the model are uniquely determined as solution to
boundary and initial value problems. The stochastic approaches, instead, assume that
the model parameters, and therefore also the model outcomes, are random variables
defined by probability distributions.

1.2.1 Deterministic approaches

The most common deterministic approaches to the modeling of preferential flow and
solute transport in heterogeneous aquifers are represented by the single-domain model
(SDM) and the multi-domain models. These models describe the heterogeneous domain
at a fine scale as a simpler domain at a large scale: specifically, a homogeneous domain
in the case of the SDM, or a superposition of two or more homogeneous domains charac-
terized by different hydrodispersive parameters in the case of the multi-domain models.
The simpler domain should be equivalent to the true heterogeneous domain in the sense
that, under the same initial and boundary conditions, they share the same transport
properties.

The classical approach to the modeling of solute transport in groundwater is repre-
sented by SDMs (see section 2.3), which consider the heterogeneous porous medium as
an equivalent homogeneous volume and are based on the ADE. Such models have a
straightforward application, but they have the drawback of being inadequate in the case
of structured heterogeneous soils, since they cannot describe the effects of heterogeneity
on solute transport; for example, the SDMs are not able to take into account the highest
velocities of the particles of solute that travel in the PFPs.

The dual-domain models (DDMs, see section 2.4) are the most commonly used multi-
domain models and consider the heterogeneous porous medium as a superposition of
two domains. In particular, the dual-porosity model (DPorM) assumes that water can
flow in one of the two domains (mobile domain) but not in the other (immobile domain),
so that transport is dominated by advection in the mobile domain, while it mainly oc-
curs by molecular diffusion in the immobile domain; moreover, the two domains can
exchange water and solute and, consequently, the equations for the two domains are
coupled. The dual-permeability models (DPerMs), instead, assume that both domains
are mobile and that, in general, they have different hydrodispersive parameters (Darcy’s
velocities and dispersion coefficients); two formulations of such models can be defined
depending on whether the two domains are considered either as coupled (CDPerM), i.e.,
they can exchange water and solute, or uncoupled (UDPerM).

An extension of the DPorM is represented by the multi-rate mass transfer (MRMT)
model developed by Haggerty and Gorelick (1995), as briefly described in the follow-
ing section 1.2.2. According to the MRMT model, the heterogeneous porous medium is
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modeled as a superposition of a mobile domain and of a finite set of immobile domains
that exchange solute with the mobile domain at different rates.

1.2.2 A short review of multi-domain models and their applications

The DDMs have been introduced in the context of the petroleum industry research, in
order to study the possible exploitation of fissured groundwater and petroleum reser-
voirs, and to simulate observed pressure at wells that could not be reproduced by the
standard SDM (Rausch et al., 2005); among these pioneering studies, it is worth mention-
ing Barenblatt et al. (1960), Warren and Root (1963), Coats and Smith (1964) and Bibby
(1981).

In particular, the first applications of the DDMs aimed at the description of flow
in fractured rocks or in partially saturated macroporous soils. Such porous media are
characterised by large variations in pore water velocity between two sub-domains that
correspond to the fractures or macropores (fast or mobile domains) and to the rock or
soil matrix (slow or immobile domains).

For example, Warren and Root (1963) proposed a DPorM to simulate water flow in
naturally fractured reservoirs, which were considered as superpositions of the matrix
blocks (immobile domain, primary porosity) and the fracture network (mobile domain,
secondary porosity), that exchanges water with the matrix. Zimmerman et al. (1993) and
Lim and Aziz (1995) derived more accurate expressions for the fracture/matrix interac-
tion than that assumed by Warren and Root (1963), which is linear and proportional to
the difference of water pressure between fractures and matrix. Coats and Smith (1964)
and Bibby (1981) developed DPorMs to describe not only the water flow but also the
transport of solutes in fissured aquifers.

Later, the DDMs were also applied to model the transport of solutes in partially satu-
rated media and structured soils. For example, van Genuchten and Wierenga (1976) ex-
tended the dual-porosity approach, initially developed for fractured reservoirs, to struc-
tured soils. Two dual-porosity approaches were also employed by Rao et al. (1980a,b)
to describe different tracer tests in water saturated columns of aggregated and non-
aggregated porous media consisting of porous ceramic spheres randomly distributed
through packings of glass microbeads or fine sand; these tests were characterized either
by a nearly symmetrical BTC or by a significant tailing of the BTC. The major relevance of
the research conducted by Rao et al. (1980a,b) is in the fact that, analyzing the problem of
radial diffusion from spherical porous spheres, they provide an expression for comput-
ing the mass transfer rate coefficient from the system parameters instead of estimating it
by curve-fitting.

An important generalization of the DPorMs is represented by the MRMT model de-
veloped by Haggerty and Gorelick (1995). The MRMT model originates from the obser-
vation that real aquifers are characterized by a complex heterogeneity, with an extremely
wide range of particle sizes, aggregates of particles and lenses of low-permeability ma-
terial; therefore, different mass transfer processes occur at different scales and with dif-
ferent rates: for example, the pore-scale intra-particle diffusion, or the mass transfer
between low-permeability lenses and the surrounding higher permeability regions, at
centimeter to meter scale, or the mass transfer between fractures and rock matrix, at mil-
limeter to kilometer scale. The MRMT model of Haggerty and Gorelick (1995) takes into
account all these different mass transfer processes by modeling the heterogeneous do-
main as a superposition of one mobile domain and a finite set of immobile domains; each
immobile domain is characterized by a different mass transfer coefficient to represent the
different mass transfer processes that occur at different rates. These mass transfer pro-
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cesses are modeled as linear (first-order). The concentration in the immobile domains is
given by a time convolution of the mobile concentration and a memory function. The
MRMT model developed by Haggerty and Gorelick (1995) is a deterministic approach,
as the discrete distribution of domains is associated with the physical geometry at fine
scale.

The DPorM represents a particular case of the more general MRMT model: it cor-
responds to the one-rate linear MRMT model, which is obtained by assuming that all
mass transfers occur with the same rate, i.e., only one mobile domain and one immobile
domain are considered to form the equivalent domain.

Skopp et al. (1981) introduced a DPerM, i.e., a DDM for which both regions are mo-
bile and exchange solute through a linear interaction term, in the case of a steady state
water flow. Ma and Selim (1995) showed that the DPerM developed by Skopp et al.
(1981) permits describing the bimodal peaks of the BTCs. A similar approach was ap-
plied by Schwartz et al. (2000) to describe the reactive-transport of a solute in a fine-
textured soil. Gerke and van Genuchten (1993, 1996) developed a DPerM for simulating
variably saturated transient water flow and solute transport in structured porous media
or fractured rocks; in particular, they introduced an interaction term between the two
mobile regions which accounts for both advective and diffusive exchanges of solute.

More recently, the multi-domain models have also been applied to other kinds of het-
erogeneous geological formations: unconsolidated sediments, alluvial aquifers or struc-
tured soils. Such porous media are characterized by a less strong contrast of hydraulic
conductivity than the fractured rocks or the macroporous soils; nevertheless, they can
have connected bands of permeable material, e.g., gravel, that constitute channels for
preferential flow and transport. For example, Flach et al. (2004) showed that the DPorM
was able to simulate the tritium migration through the unconsolidated sediments at the
Savannah River Site (South Carolina) with much more accuracy than the SDM. Among
the examples of applications of DPorMs to alluvial aquifers, one of the most thorough
is probably the interpretation of the tracer tests performed at the research site located
in the Columbus Air Force Base in Mississippi, also called Macrodispersion Experiment
(MADE) site, as reviewed by Zheng et al. (2011). The MADE site is highly heterogeneous
and characterized by the presence of PFPs, at the centimeter to decimeter scale, which
is smaller than the typical grid scale of a transport model, so that they cannot be taken
into account in the heterogeneous field used in numerical models; nevertheless, these
small scale PFPs strongly influence the transport of solutes, as shown, e.g., by Harvey
and Gorelick (2000), Feehley and Zheng (2000), Julian et al. (2001) and Liu et al. (2010).
In these papers, it was shown that the classical modeling approach, based on the ADE,
is not suitable to describe the solute transport at the MADE site, while a dual-domain
mass transfer model (DDMT), which is equivalent to the DPorM, is able to correctly re-
produce the spatio-temporal evolution of the solute plume and to describe the effects of
the small scale PFPs. In particular, Zheng and Gorelick (2003), Liu et al. (2004), Liu et al.
(2007) and Ronayne et al. (2010) stress that the solute transport in a heterogeneous envi-
ronment with small scale PFPs can be adequately described both by a transport model
including only advection and molecular diffusion, i.e., by the standard ADE, in which
the decimeter scale PFPs are explicitly taken into account in the heterogeneous field, and
by a DDMT in which the small scale PFPs are not explicitly taken into account; the latter
approach is clearly more practical for large scale field sites, for which it is not possible to
map all the small scale PFPs.
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1.2.3 Stochastic approaches

As already mentioned, aquifer heterogeneity occurs at different scales and, in practice,
measurements of hydraulic conductivity, and other aquifer properties, can be performed
only at a limited set of points of the domain under study, so that the real heterogeneity
field is never known with certainty and the values of the hydraulic conductivity in the
rest of the domain are subject to uncertainty. This observation has led to the develop-
ment of stochastic approaches to the modeling of groundwater flow and solute transport.
In other words, the uncertainty of the hydraulic conductivity suggests to consider this
quantity as a random function of space and time, that may be conditioned on the mea-
sured data. As a consequence, whereas in the traditional deterministic approaches the
model outcomes (water head, velocity, concentration) are represented by unique values,
in the stochastic approach the model outcomes are random functions defined by the cor-
responding probability density functions (Dagan, 1983; Dagan and Neuman, 1997). An
important merit of the stochastic approaches is that they provide not only predictions
of solute concentrations and mass fluxes, but also measures of the associated prediction
errors (Neuman, 2004; Neuman and Tartakovsky, 2009).

Different classes of stochastic approaches can be found in the literature.
A first class is represented by the Lagrangian approach developed by Dagan (1982,

1988, 1989, 1990), according to which the solute plume is considered as composed of
several particles containing a certain mass of solute. The path and the velocity of each
particle is considered as a stochastic process, for which the statistical moments can be
approximated with the spatial moments, through the hypothesis of ergodicity. In par-
ticular, the dispersion tensor can be computed from the covariance of the components
of the particle path. This theory predicts that, under proper hypotheses, the dispersion
tensor increases linearly for small times and approaches a constant value for large times.
This approach can be applied to describe transport in weakly heterogeneous aquifers as,
for example, in Bellin et al. (1992).

Another approach is the generalized form of the MRMT model, which was extended
by Haggerty and Gorelick (1998) by assuming an infinite set of immobile domains; in
this case, a probability density function of the mass transfer rates must be defined to
compute the memory function. Several forms of this probability density function can be
assumed to properly describe the late time behaviour of the BTCs, as shown by Haggerty
et al. (2000).

Another class of stochastic approaches is represented by the stream-tube models (see,
e.g., Feyen et al. (1998)), according to which the heterogeneous soil is modeled as an en-
semble of stream tubes that are independent, i.e., they do not exchange water and solute.
Water flow and solute transport are described within each stream tube with a certain
transport model, which may be a simple advective transport model for conservative so-
lutes (Dagan and Bresler, 1979) or a more complex convective-dispersive-reactive trans-
port model to describe systems with multicomponent nonlinear reactions (Ginn, 2001;
Seeboonruang and Ginn, 2006).

Neuman and Tartakovsky (2009) reviewed four stochastic approaches for the descrip-
tion of non-Fickian transport in heterogeneous porous media. One of these approaches
is represented by the stochastic ADE (or space time nonlocal ADE, stnADE). This ap-
proach assumes that, at a local scale, the groundwater flow is Darcian and solute trans-
port is Fickian, i.e., well described by the ADE. Since the hydraulic parameters and the
forcing terms entering in the local flow and transport equations are random variables,
such equations become stochastic. The aim is that of computing the first two conditional
moments of the concentration and of the mass flux. One way to solve the stochastic
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flow and transport equations is that of the conditional Monte Carlo simulations: sev-
eral realizations of the velocity are generated and the ADE is solved for each field, then
the results obtained from the different realizations are averaged to obtain the sample
moments. This approach is computationally very demanding. An alternative and com-
putationally faster method of solution of the stochastic flow and transport equations can
be found, e.g., in Guadagnini and Neuman (1999); Ye et al. (2004); Morales-Casique et al.
(2006). This method consists in solving a system of statistical moments equations, which
are integro-differential equations and include non-local parameters depending on more
than one point in space-time. The major drawback of this method is that the integro-
differential equations are not closed and the most common method to solve them is valid
for mildly heterogeneous media or well-conditioned strongly heterogeneous media.

The continuous-time random walk (CTRW) represents another common stochastic
approach (see, e.g., Berkowitz et al. (2006) for a review of this method). The CTRW model
describes the transport of the solute particles in a heterogeneous medium as a random
walk in space and time, so that both transition lenghts and transition times are random
variables (Dentz and Berkowitz, 2003). As highlighted by Dentz and Berkowitz (2003),
CTRW methods are developed to describe BTCs in strongly heterogeneous porous media
and, from this point of view, they are preferable to the stnADE approach.

Another class of stochastic approaches is based on the fractional advective-dispersive
equation (f-ADE); an example of development and application of this approach can be
found, e.g., in San Jose Martinez et al. (2007). While the ADE assumes that the solute
dispersion results from the Brownian motion of the solute particles, the f-ADE assumes
that the random movement of the solute particles is rather the Lévy motion, which,
respect to the Brownian motion, allows more frequent large jumps of the particles from
one point of the space to another. This assumption permits to describe the heavy-tailed
distributions typical of non-Fickian transport. A drawback of this method is the lack of
a link between the model parameters and the measurable medium properties (Neuman
and Tartakovsky, 2009).

Under proper hypotheses, some equivalences between the different stochastic ap-
proaches can be established, as discussed, e.g., by Neuman and Tartakovsky (2009). It
was shown by Dentz and Berkowitz (2003) that the CTRW is formally equivalent to the
generalized form of the MRMT model, under the hypothesis that the joint transition time
and length distribution decouples into spatially-dependent transition length and time-
dependent transition times distributions. Moreover, as discussed by San Jose Martinez
et al. (2007), both the ADE and the f-ADE are special cases of the CTRW formulation.

Some field tracer tests have been performed to develop and test different transport
models in heterogeneous formations. The MRMT model (Zhang et al., 2007a), the f-ADE
model (Zhang et al., 2007b; Zhang and Benson, 2008), and the CTRW method (Berkowitz
and Scher, 1998) have been applied to interpret the tracer tests performed at the MADE
site. Furthermore, natural gradient tracer tests have been conducted at the Borden site,
Ontario, (Mackay et al., 1986), in a sand aquifer (well sorted, fine to medium sand) and at
Cape Cod, Massachusetts, (LeBlanc et al., 1991), in a medium to coarse sand and gravel
aquifer. For these two tests, the tracer clouds showed similar features: the spreading
occurs mainly in the longitudinal direction, with a small spreading in the transverse and
vertical directions. For the Borden test, a stochastic approach has been applied, e.g., by
Sudicky (1986) and a deterministic fractal-multifractal approach by Puente et al. (2001).

A forced gradient tracer test in a stratified aquifer at the Rocky Mountain Arsenal,
Colorado (Thorbjarnarson and Mackay, 1997), characterized by a range of three orders
of magnitude in hydraulic conductivity, showed that the interpretation of the data with
a model assuming homogeneity, as the SDM, results in erroneous estimates of transport
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parameters. A dual-porosity approach was used to interpret the tracer tests at the Waste
Isolation Pilot Plant (WIPP, Ostensen (1998)) in New Mexico, a nuclear waste repository
located in an area characterized by the presence of fractured rocks formations; never-
theless, this study showed that the effects of the dual porosity formations on the con-
taminant transport was negligible, so that the formation can be adequately modeled as
a single domain medium.

1.3 Objectives and outline of the study

Within the framework outlined in the previous sections, this work aims to contribute to:

1. the search of effective transport models, applicable to alluvial aquifers at the field
scale, to correctly predict the transport of contaminants in heterogeneous aquifers;

2. the understanding of the link between the soil structure (sediments connectivity,
presence of PFPs and hydraulic barriers) and the effective transport parameters of
such models.

In order to reach these general goals, the specific objectives of this work can be sum-
marized as follows:

• implement 1D single and dual-domain transport models (SDM, DPorM, UDPerM
and CDPerM);

• calibrate the different models with the results of some numerical, laboratory or
field experiments of conservative solute transport performed in portions of aquifers
with different degrees of heterogeneity and at different scales;

• analyze the relation between the effective parameters of the models and the het-
erogeneity pattern of the particular case studies;

• compare the effectiveness of the different models in describing the effects of PFPs
on the solute transport and, specifically, on the BTC.

Notice that, as mentioned in section 1.2.2, the development and most applications of
DDMs refer to transport processes in unsaturated soils or fractured rocks, i.e., for media
with a dramatic difference among the transport physical properties of two subdomains.
Roughly speaking, differences of several orders of magnitude between the hydraulic
conductivites of matrix and fractures, or of pores and macropores, makes it obvious the
need for the DDM approach. This work aims to assess the relevance of DDMs even
for alluvial sediments which could be characterised by a relatively narrow range of hy-
draulic conductivity, i.e., covering “few” orders of magnitude. Moreover, it is important
to observe that, as briefly reviewed in section 1.2.2, most of the applications of DDMs to
heterogeneous structured soils and fractured or alluvial aquifers that can be found in the
literature refer to the DPorM, whereas very few applications of the CDPerM have been
published so far, as this model requires the estimate of a larger set of parameters.

As emphasized by textbooks on flow and transport in porous media, solute transport
simulation requires the knowledge of the groundwater velocity field, i.e., it requires to
solve first a flow model. In this work, only the transport modeling is treated, and it is
assumed that the flow field is either known (by estimation from direct measurements or
by solution of a flow model) or calibrated from the concentration measurements. The
latter approach can be useful in situations where concentration data are available, but
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the groundwater flow is unknown and can be estimated through the calibration of the
transport model against concentration data.

Feyen et al. (1998) and Gerke (2006) highlighted the importance of the solute trans-
port modeling in the unsaturated zone of the ground, as this is the region through which
chemicals must pass to reach the groundwater. In this work, in order to simplify the
analysis and to focus on the most fundamental aspects of the solute transport in hetero-
geneous aquifers, only the solute transport through the saturated zone is considered and
it is always assumed, even if not specified, that the solute is conservative and that it does
not modify the physical properties of water (density and viscosity).

Four case studies are analyzed in this work, as described in chapters 6 and 7.
The first two examples (case studies A and B, chapter 6) refer to numerical experi-

ments of non-reactive transport performed with a particle tracking technique in some
prismatic blocks of sediments which were dug into two real aquifer analogues of North-
ern Italy and whose facies distribution was reconstructed by means of 3D geostatistical
simulations in previous work (Zappa et al., 2006; dell’Arciprete et al., 2012a). In both
cases, the numerical transport experiments simulate the instantaneous injection of so-
lute through the upstream face of the blocks.

In particular, case study A consists of three meter-scale blocks coming from the same
aquifer analogue but belonging to three different sedimentological facies; therefore, this
case study permits to compare the effects of different sedimentary structures on the so-
lute transport and to compare the performance of different transport models in describ-
ing such effects.

Case study B consists of a ten-meter-scale block belonging to a different aquifer ana-
logue, so that it represents a further example of heterogeneous environment to test the
transport models. Nevertheless, the major novelty with respect to the previous case
study is that 50 equiprobable realizations were obtained for this block of sediments
with two methods of geostatistical simulation (dell’Arciprete, 2010; dell’Arciprete et al.,
2012a). The two ensembles of realizations show different features, e.g., they have differ-
ent connectivity patterns, even if they refer to the same block of sediments and they are
equiprobable; in addition, different structures are found also among the realizations of
a single ensemble. A real aquifer can be considered as a single realization of a stochastic
process; in other words, the ensembles of realizations of this case study represent equally
likely situations that could be found in the field. Therefore, this case study allows to an-
alyze the effects of different structures on the solute transport by means of a statistical
analysis of the results: the assessment of the ensemble uncertainties on the effective pa-
rameters of the models gives an estimate of the uncertainty of the results drawn from
a single realization. Finally, the correlation between the connectivity indicators and the
flow and transport effective parameters can be studied within a stochastic framework in
order to assess the relevance of this relation.

The two other case studies, which are described in chapter 7, refer to real tracer tests.
Case study C consists of a laboratory tracer test performed on a 20 cm homogeneous
sand column by Ivan Toloni (Toloni, 2011) at LHyGeS (Laboratoire d’Hydrologie et de
Géochimie de Strasbourg, Université de Strasbourg). In this experiment, a dye was in-
jected through the top surface of the column at a constant rate for a certain time interval;
the results showed a significant tail in the BTC measured at the bottom of the column,
which is unexpected for a homogeneous sand column. Case study D is represented by
the field tracer test performed in a 200 m long region in a sand and gravel aquifer at
the Cape Cod site (LeBlanc et al., 1991), that was already mentioned in section 1.2.3.
Case studies C and D allow to improve the assessment of the relevance of the differ-
ent transport models for different heterogeneous environments and for different scales;
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moreover, since they are based on hard data from laboratory or from the field, they rep-
resent an important step towards the development of a transport modeling approach
that is effectively applicable to real problems.

Summing up, these four case studies differ both for the degree of heterogeneity and
for the spatial scales involved.

After the present introductory chapter, the main quantities and the basic equations of
the SDM, DPorM and DPerM are recalled in chapter 2; moreover, the initial and bound-
ary conditions describing the four case studies, that can be grouped in pulse and step
injection, are specified.

Chapters 3 and 4 are devoted to the development of the forward transport models.
In particular, chapter 3 presents the analytical solutions of the SDM and UDPerM for an
instantaneous injection of solute in a semi-infinite domain; to the author’s knowledge,
the technique employed to derive such solutions, which is based on the Laplace trans-
form, cannot be generalized for the solution of the CDPerM, as discussed in appendix
A.

Therefore, as described in chapter 4, a numerical scheme has been developed to solve
all the transport models for the initial and boundary conditions relevant to the case
studies. The models have been implemented with a Crank-Nicholson finite difference
scheme, an upwind technique for the convective term and a second-order correction to
reduce numerical dispersion due to truncation errors. The codes are then validated by
comparing their outcomes with results obtained with the analytical models and with the
software HYDRUS-1D for the simulation of a pulse injection in a semi-infinite domain.

Chapter 5 describes the method used to calibrate the transport models, which is
based on the Levenberg-Marquardt algorithm to minimize the misfit between the ex-
perimental data and the models outcomes.

In chapters 6 and 7 the results of the application of the transport models to the four
case studies is presented and discussed.

Most of the results of this work have been published in the international scientific
literature (Baratelli et al., 2011; Giudici et al., 2011) or are the subject of papers under
revision or submitted for the publication (dell’Arciprete et al., 2012b; Baratelli et al.,
2012). Here the results are shown with further details, so that a thorough and structured
overview can be given. In particular some remarks about the relevance of the results
obtained with this work are discussed in chapter 8.



CHAPTER 2

Basic equations of the SDM and DDMs

In this chapter, the basic equations of the SDM and DDMs are presented. First of all, the
transport processes of a conservative solute in groundwater and the advective-dispersive
equation, with the corresponding single-domain model, are recalled, based on the text-
books by de Marsily (1986) and Rausch et al. (2005). The dual-porosity model is de-
scribed following Rausch et al. (2005); the dual-permeability models are based on the
papers by Skopp et al. (1981) and Gerke and van Genuchten (1993).

Then, some quantities are defined for later use in the model calibration: the resident
and flux concentrations, the breakthrough curve, with the corresponding temporal mo-
ments, and the cumulative breakthrough curve.

Finally, the initial and boundary conditions, which are applied to the different trans-
port models to describe the case studies analysed in this work, are presented.

2.1 Transport processes

The transport processes of a conservative solute in groundwater are represented by ad-
vection, molecular diffusion and hydrodinamic dispersion.

The displacement of water in the porous medium implies the displacement of the
particles of solute, a process that is called advective (or convective) transport. The ad-
vective solute flux q adv represents the mass of solute that crosses by advection a unit
surface of the porous medium perpendicular to the groundwater flow direction per unit
time. It is given by:

q adv = Cq, (2.1)

whereC is the volumetric solute concentration, which from now on will be simply called
concentration and represents the mass of solute per unit volume of solution, and q is
Darcy’s velocity (or specific discharge), i.e., the volume of solution that crosses the unit
surface of the porous medium per unit time. Notice that in the following we will deal
only with saturated porous media, so that the volume of solution coincides with the
volume of pores. The groundwater velocity (or average pore water velocity, v) is linked
to Darcy’s velocity by q = nev, where ne = V ep /V is the effective porosity, i.e., the ratio
of the volume of pores that effectively participate in the flow, V ep , to the volume of the
porous medium, V .

Molecular diffusion is the displacement of solute determined by the possible gradi-
ent of concentration in the porous medium: the solute moves from high concentration
regions to low concentration regions. The solute flux by molecular diffusion is given by
Fick’s law:

q dif = −ntd∇C, (2.2)

12
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where nt = Vp/V is the total porosity, i.e., the ratio of the volume of all the pores, Vp,
to the volume of the porous medium, and d is the molecular diffusion coefficient in the
porous medium. Unlike advection, molecular diffusion occurs also in a stagnant fluid;
this is the reason why the total porosity appears in equation (2.2) instead of the effective
porosity. In particular, as discussed, e.g., by de Marsily (1986), the concentration C in
the mobile fraction of water may be different from the concentration C ′ in the immobile
fraction of water, i.e., in the water present in the dead-end pores or in the water adhering
to the grain surfaces of the porous medium. Moreover, also the diffusion coefficient may
change between the mobile (d) and the immobile (d′) fraction of water, so that equation
(2.2) should be written rigorously as:

q dif = −ned∇C − (nt − ne)d′∇C ′. (2.3)

The hydrodinamic dispersion of a solute is determined by variations of groundwa-
ter velocity which occur at different scales: at the scale of a single pore (zero velocity at
the border of the grain, maximum velocity in the center of the pore), at the scale of two
or more pores (for a given flow rate, the velocity is smaller in larger pores, but, for a
Poiseuille flow, the flow rate increases with the fourth power of the pore radius, so that
the velocity increases with the squared pore radius and is larger in larger pores1; more-
over, there are variations of the direction of velocity due to the spatial arrangement of the
pores) and at scales larger than the pore scale (heterogeneous domains are characterized
by spatially varying hydraulic conductivity and, therefore, by spatially varying flow ve-
locity). The advective term takes into account, via Darcy’s velocity, the mean flow field,
while the dispersive term includes the effects of the heterogeneity, which determines the
real flow field, whose details at fine scale are generally unknown. It is usually assumed
that the solute flux by hydrodinamic dispersion has an expression analogous to Fick’s
law, i.e.:

q disp = −D∗∇C, (2.4)

where D∗ is the hydrodinamic dispersion tensor, which is a symmetrical second-order
tensor whose principal directions are the direction of the groundwater velocity v, and
two orthogonal directions perpendicular to v. In the reference system of its principal
directions, D∗ has the following components: DL 0 0

0 DT 0
0 0 DT

 ,
where DL and DT are called longitudinal and transverse dispersion coefficients respec-
tively and depend on the module of Darcy’s velocity, q, and on the longitudinal and
transverse dispersivities, αL and αT , through the following relations: DL = αLq, DT =
αT q. The longitudinal dispersivity is from five to hundred times larger than the trans-
verse dispersivity (de Marsily, 1986), so that D∗ is anisotropic, and the solute plume
spreads more along the direction of groundwater flow than along the perpendicuar di-
rections.

1 For a given pressure gradient ∆p/L, the flow rate for a Poiseuille flow across a circular pore of radius r
varies according to

Q =
ρπ

8η

∆p

L
r4,

where ρ is density and η is viscosity. Therefore, the average velocity in a pore is given by:

v =
Q

πr2
=

ρ

8η

∆p

L
r2.
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2.2 The advective-dispersive equation

In a Cartesian coordinate system (x, y, z), the transport equation for a conservative solute
is obtained by applying the principle of mass conservation to a control volume, denoted
with Ω, which is centered at a certain position x in the porous medium and bounded by
a surface ∂Ω. Assuming that there are no sources or sinks of solute in Ω, the solute mass
conservation in Ω is given by the following expression:

d

dt

∫
Ω

[neC + (nt − ne)C ′] d3x =

∫
∂Ω

qc · nind2x, (2.5)

where d3x is the element of volume of Ω, d2x is the element of surface of ∂Ω, nin is the
unit vector normal to ∂Ω directed towards the inside of Ω and qc is the total solute flux,
that is the sum of the advective, diffusive and dispersive solute fluxes defined in section
2.1: qc = qadv + qdif + qdisp. Equation (2.5) states that the time derivative of the solute
mass contained in Ω (left-hand side) equals the total solute flux entering the domain
through its border ∂Ω (right-hand side). Considering the expressions of the solute fluxes
(2.1), (2.3) and (2.4), qc is given by:

qc = qC − ned∇C − (nt − ne)d′∇C ′ −D∗∇C. (2.6)

Applying the divergence theorem and considering the arbitrariness of the volume Ω,
equation (2.5) becomes:

ne
∂C

∂t
+ (nt − ne)

∂C ′

∂t
= −∇ · qc. (2.7)

In the hypotesis that the concentrations in the mobile and immobile fraction are the
same, i.e., C and C ′ instantaneously reach an equilibrium, C ≈ C ′ and d ≈ d′. Moreover,
assuming that nt ≈ ne, equations (2.6) and (2.7) reduce respectively to:

qc = n (vC −D∇C) , (2.8)

n
∂C

∂t
= −∇ · qc, (2.9)

where, denoting with I the identity matrix, the tensor D = D∗/n + dI has been in-
troduced. Notice that, from now on, we will refer to D as dispersion tensor, without
specifying that it includes the effects of both molecular diffusion and hydrodinamic dis-
persion; also, we will no more distinguish between the total and the effective porosity,
and we will refer to the porosity n as approximating both nt and ne.

Combining equations (2.8) and (2.9), the classical form of the advective-dispersive
equation describing the transport of a conservative solute in groundwater is obtained:

∂C

∂t
= −∇ · (vC −D∇C) . (2.10)

Notice that the same equation is deduced by assuming that C ′ ≈ 0 in equations (2.6) and
(2.7), i.e., if there is no solute in the immobile fraction of water.
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2.3 The single-domain model (SDM)

The single-domain model (SDM) is the classical approach to the modeling of solute
transport in a porous medium. It considers the heterogeneous domain as an equiva-
lent homogeneous domain, as represented in Figure 2.1. In this case, the average pore
water velocity v and the elements of the dispersion tensor D are constant effective pa-
rameters that characterize the equivalent homogeneous domain and they can be taken
out from the divergence operator at the right-hand side of equation (2.10).

Therefore, for a one-dimensional flow and transport along the x direction (to which
we restrict from now on), equations (2.8) and (2.10) respectively reduce to:

qc(x, t) = n

[
vC(x, t)−D∂C

∂x
(x, t)

]
, (2.11)

∂C

∂t
= −v ∂C

∂x
+D

∂2C

∂x2
, (2.12)

where D = DL/n + d is the longitudinal component of the dispersion tensor D. Notice
that the dependence on x and t in equation (2.11) has been specified to highlight that
the solute flux varies with space and time because the concentration varies in space and
time, while the parameters n, v and D are constant. In equation (2.12), and elsewhere,
the dependence of C on x and t is implied.

In the following, we will refer to the transport equation of the SDM (2.12) as advective-
dispersive equation (ADE), even if it is a simplified form of the more general advective-
dispersive equation (2.10).

2.4 The dual-domain models (DDMs)

The DDMs represent the heterogeneous domain as an equivalent superposition of two
homogeneous domains, which are characterized by different hydrodispersive parame-
ters. Different formulations of the DDMs have been defined in the literature depending
on the following model assumptions:

• either both domains can be considered as mobile, i.e., water can flow in both do-
mains, or water is mobile in one domain and immobile in the other domain;

• the two domains can be considered as either coupled, i.e., they can exchange water
and solute, or uncoupled.

According to the first alternative, two classes of DDMs can be defined:

• dual-porosity model (DPorM, section 2.4.1), which assumes that water can flow in
one of the two domains (mobile domain) but not in the other (immobile domain)
and that the two domains can exchange water and solute (see Coats and Smith
(1964) and other references in section 1.2.2); the DPorM is also called stagnant
region model (Skopp et al., 1981), compartment model (Gerke, 2006) or mobile-
immobile model;

• dual-permeability models (DPerMs, section 2.4.2), which assume that both do-
mains are mobile. In this case, according to the second alternative, two subclasses
of models can be defined: uncoupled (UDPerM) or coupled (CDPerM). The UD-
PerM is also called capillary bundle model (Skopp et al., 1981), while the CDPerM
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a) Real block

b) SDM

c) DPorM

d) UDPerM

e) CDPerM

Figure 2.1: Schematic representation of the equivalent description of a real heterogeneous block,
a), according to the different transport models: b) SDM, c) DPorM, d) UDPerM and e) CDPerM.
The arrows indicate the possible movement or transfer of water and solute.

is also referred to as two-region model (Skopp et al., 1981), dual-porosity model
(Gerke and van Genuchten, 1993), dual-continuum or dual-domain model (Rausch
et al., 2005).

2.4.1 The dual-porosity model (DPorM)

The DPorM (see Figure 2.1) describes the heterogeneous domain as an equivalent super-
position of one mobile domain, in which water flows and the solute is transported both
by advection and dispersion, and one immobile domain, in which water cannot flow
and the solute is transported only by molecular diffusion. The mobile and immobile do-
mains exchange solute if they have a different solute concentration; therefore, the solute
can diffuse from the mobile to the immobile domain, which can store the solute for some
time before diffusing it again in the mobile domain.

In order to obtain the transport equations of the DPorM, the principle of mass con-
servation is applied to each of the two domains with a method similar to that applied in
section 2.2. In particular, the time variation of the solute mass contained in the mobile
domain is balanced both by the solute flux crossing its border and by the solute mass
exchanged with the immobile domain. On the other hand, the time variation of the so-
lute mass contained in the immobile domain is assumed to be balanced only by the mass
exchanged with the mobile domain; in fact, the only non-zero component of the solute
flux in the immobile domain is qdif , which can be considered negligible with respect to
the solute exchange term. Therefore, the mass conservation equations for the mobile and
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immobile domains are given respectively by:

d

dt

∫
Ω

nmobCmobd3x =

∫
∂Ω

qmob
c · nind2x−

∫
Ω

Γsd
3x, (2.13)

d

dt

∫
Ω

nimC imd3x =

∫
Ω

Γsd
3x, (2.14)

where Cmob = mmob
s /V mob

p is the local concentration in the mobile domain (mass of
solute in the mobile domain, mmob

s , per unit volume of solution in the mobile domain,
V mob
p ), nmob = V mob

p /V is the porosity of the mobile domain; C im and nim are the cor-
responding quantities for the immobile domain, with n = nmob + nim. Finally, Γs is
the exchange term, that represents the mass of solute that is exchanged per unit volume
of porous medium and unit time. A linear exchange term is commonly adopted for Γs
(Coats and Smith, 1964; van Genuchten and Wierenga, 1976; Skopp et al., 1981):

Γs = α
(
Cmob − C im

)
, (2.15)

where α is the solute exchange coefficient, which has the dimensions of an inverse time,
so that the solute is exchanged more rapidly for large values of α.

From equation (2.8), the expression of the solute flux in the mobile domain is given
by:

qmob
c = nmob

(
vCmob −D∇Cmob

)
, (2.16)

which coincides with the solute flux in the total domain, qc, as the solute flux in the
immobile domain is negligible. Therefore, from equations (2.13), (2.14) and (2.15), ap-
plying the divergence theorem and reducing to the one-dimensional case, the transport
equations of the DPorM are obtained:

∂Cmob

∂t
= −v ∂C

mob

∂x
+D

∂2Cmob

∂x2
− α

nmob

(
Cmob − C im

)
, (2.17)

∂C im

∂t
=

α

nim

(
Cmob − C im

)
. (2.18)

If L is the spatial length of the domain, equations (2.17) and (2.18) can be rewritten in
terms of the dimensionless space and time coordinates ξ = x/L and τ = vt/L as:

∂Cmob

∂τ
= −∂C

mob

∂ξ
+

1

Pe

∂2Cmob

∂ξ2
− 1

Æ
(
Cmob − C im

)
, (2.19)

∂C im

∂τ
=

1

Æ
(
Cmob − C im

)
, (2.20)

where the two following dimensionless numbers have been introduced:

• the Péclet number:
Pe =

Lv

D
, (2.21)

which is given by the ratio of the coefficients of the convective and dispersive terms
and represents the relative importance of the convective and dispersive transport
processes; in particular, high Péclet numbers correspond to situations in which the
solute transport is dominated by advection, while the dispersive transport is less
important;
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• the dimensionless number Æ:

Æ =
nmobv

αL
. (2.22)

This number is given by the ratio of the coefficients of the advective and exchange
terms and quantifies the relative importance of the solute exchange with respect to
the advective solute transport; in particular, if Æ� 1, the solute exchange is more
important, i.e., it is faster, than the convective solute transport. Notice that the
inverse of this dimensionless number is equivalent to the first Damköhler number,
which is defined as the ratio of the reaction rate to the advective transport rate
(Cho et al., 2011; Kuntz and Grathwohl, 2009); in the case of the MRMT model,
Haggerty and Gorelick (1995) associate a first Damköhler number DaIj to each
j-th mass transfer process. Reducing this definition to the one-rate mass transfer
model, the relation Æ−1=DaI/n holds.

The effects of the dual-porosity, that is the effects of the presence of an immobile
domain exchanging solute with the mobile domain, can be quantified also by comparing
the typical time of advective transport, tT with the typical time of solute exchange, τe,
which are defined by Rausch et al. (2005) as:

tT =
L

v
, (2.23)

τe =
ln 2

α
. (2.24)

As discussed by Rausch et al. (2005), three different situations can be distinguished de-
pending on the relative values of tT and τe:

• τe/tT � 1: the mass exchange is so slow that it does not influence the solute con-
centrations for the transport times of interest; in this case, the solute transport can
be described well also by the standard ADE (2.12) for a medium with the same
porosity of the mobile domain nmob, as the immobile domain does not contribute
to the solute transport.

• τe/tT � 1: the mass exchange is so rapid that there is an instantaneous equilibrium
between the mobile and immobile domains, which have the same solute concen-
tration; in this case, the solute transport can be described well also by the standard
ADE (2.12) for a medium with porosity n.

• τe/tT ≈ 1: the typical times of mass exchange and advective transport share the
same order of magnitude; in this case the effect of dual-porosity is strongest. In
particular, for a pulse injection of solute, the BTC is asymmetric and characterized
by tailing, so that it cannot be described by the ADE.

2.4.2 The dual-permeability models (DPerMs)

The DPerMs (see Figure 2.1) describe the heterogenous domain as an equivalent super-
position of two domains: one fast domain (H) and one slow domain (L) characterized,
respectively, by high and low values of hydraulic conductivity, K(H) and K(L). In the
following, the superscripts (H) and (L) will be employed to refer the different physical
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quantities to the corresponding domain. In particular, let ε(H) and ε(L) denote the frac-
tions of the porous medium volume occupied by the (H) and (L) domains, respectively:
ε(H) = V (H)/V , ε(L) = V (L)/V . The following trivial relation holds:

ε(H) + ε(L) = 1. (2.25)

It is assumed that ε(H) and ε(L) characterise also the areal fractions of the fast and slow
domains: ε(H) ' A(H)/A, ε(L) ' A(L)/A. The local porosity in the fast domain is denoted
as n(H) = V

(H)
p /V (H), where V (H)

p is the volume of pores in (H); the local porosity in the
slow domain n(L) is defined in a similar way. Therefore, the porosity of the medium is
given by n = ε(H)n(H) + ε(L)n(L).

If a hydraulic gradient ∇h is applied to the porous medium, the fast and the slow
domains will be subjected to the same hydraulic gradient, since the two domains are
overlapped at every point. Therefore, ifKeq is the equivalent hydraulic conductivity, the
Darcy velocities q = −Keq∇h, q(H) = −K(H)∇h and q(L) = −K(L)∇h can be defined
as the flow rate across a unit surface of the respective domains and are related to the
average pore water velocities by q = nv, q(H) = n(H)v(H) and q(L) = n(L)v(L). The link
among the Darcy velocities is then given by:

q = ε(H)q(H) + ε(L)q(L), (2.26)

which can be rewritten in terms of the average pore water velocities as:

v = n−1
[
ε(H)n(H)v(H) + ε(L)n(L)v(L)

]
. (2.27)

The solute flux in each of the two domains is given by expressions analogous to (2.8):

q(H)
c = n(H)

[
v(H)C(H) −D(H)∇C(H)

]
, (2.28)

q(L)
c = n(L)

[
v(L)C(L) −D(L)∇C(L)

]
, (2.29)

where q
(H)
c represents the mass of solute contained in (H) that crosses the unit surface

of (H) per unit time, C(H) = m
(H)
s /V

(H)
p is the concentration in (H), given by the ratio of

the solute mass contained in (H) to the volume of pores in (H) and D(H) is the dispersion
tensor in (H); q

(L)
c , C(L) and D(L) are the corresponding quantities for (L).

The solute flux in the porous medium can then be obtained from the solute fluxes in
the two domains according to the following relation:

qC = ε(H)q
(H)
C + ε(L)q

(L)
C . (2.30)

For a 1D flow and transport along x, equation (2.30) can also be used to define the
relation between the flux concentrations, which are defined for each of the two domains
as in section 2.5:

CF = q−1
[
ε(H)q(H)C

(H)
F + ε(L)q(L)C

(L)
F

]
. (2.31)

As already done in sections 2.2 and 2.4.1, the solute mass conservation can now be
applied to each of the two domains:

d

dt

∫
Ω

n(H)C(H)d3x =

∫
∂Ω

q(H)
c · nind2x−

∫
Ω

Γsd
3x, (2.32)

d

dt

∫
Ω

n(L)C(L)d3x =

∫
∂Ω

q(L)
c · nind2x +

∫
Ω

Γsd
3x, (2.33)
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where, as in Skopp et al. (1981), for Γs it is commonly assumed a linear expression anal-
ogous to (2.15):

Γs = α
(
C(H) − C(L)

)
. (2.34)

Reducing to the one-dimensional case, equations (2.32), (2.33) and (2.34) give the
equations governing the solute transport in the two domains:

∂C(H)

∂t
=−v(H) ∂C

(H)

∂x
+D(H) ∂

2C(H)

∂x2
− α

ε(H)n(H)

[
C(H) − C(L)

]
, (2.35)

∂C(L)

∂t
=−v(L) ∂C

(L)

∂x
+D(L) ∂

2C(L)

∂x2
+

α

ε(L)n(L)

[
C(H) − C(L)

]
. (2.36)

Two formulations of the DPerM can be defined according to the value of the solute
exchange coefficient α. In particular, for the uncoupled dual-permeability model (UD-
PerM) α = 0, which means that there is no exchange of solute between the two domains
and that the solute is transported in each of the two domains independently of the other.
In this case, equation (2.35) is uncoupled from (2.36), so that the transport equations of
the UDPerM are given by a set of two uncoupled ADEs, one for each of the two domains.
According to the coupled dual-permeability model (CDPerM), instead, α is, in general,
different from zero, so that the two domains can exchange solute if they have a different
solute concentration, and the transport equations (2.35) and (2.36) are coupled.

Notice that the UDPerM is, clearly, the limiting case of the CDPerM for vanishing
α. Nevertheless, in this work the two models are considered as distinct models. This is
explained by the fact that, as will be shown in chapter 5, the calibration of the two models
requires the estimation of different sets of parameters; moreover, as will be shown in
chapter 3 and appendix A, the UDPerM can be solved analytically, which is not the case
for the CDPerM. Therefore, the implementation and inversion of the UDPerM requires
less computational effort than the CDPerM.

The equations of the DPerMs can be rewritten in terms of the dimensionless coordi-
nates ξ and τ , as already shown for the DPorM in section 2.4.1; in this case the dimen-
sionless numbers Pe and Æ can be defined separately for each of the two domains as in
(2.21) and (2.22):

Pe(H) =
Lv(H)

D(H)
, P e(L) =

Lv(L)

D(L)
; (2.37)

Æ(H) =
ε(H)n(H)v(H)

αL
, Æ(L) =

ε(L)n(L)v(L)

αL
. (2.38)

Moreover, the typical advective transport time tT and the typical exchange time τe
can be defined as in the DPorM by relations (2.23) and (2.24), where the characteristic
transport velocity v is given by the 1D counterpart of equation (2.27).

As observed by Skopp et al. (1981), if the interaction is large, i.e., if τe � tT , then the
CDPerM reduces to the SDM; the same holds for the DPorM. In other words, a large in-
teraction is typical of homogeneous soils, whereas a small interaction is typical of struc-
tured soils and can explain early peaks or double peaks in the BTCs of conservative
solutes. This is confirmed by Ma and Selim (1995), who showed that the bimodal shape
of the BTC gradually changes into an unimodal shape as the interaction increases.

On the contrary, if the interaction is small, i.e., if τe � tT , the CDPerM does not nec-
essarly reduces to the SDM, differently from the behaviour of the DPorM. In particular,
if the parameters D and v of the two domains are similar, then the CDPerM is indeed
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Figure 2.2: Comparison of the BTC (a) and CBTC (b) for a pulse injection and different magnitudes
of the solute exchange coefficient α.

equivalent to the SDM; instead, if the parameters are different, then the CDPerM reduces
to the UDPerM.

Finally, it should be considered that several expressions have been proposed for com-
puting the exchange coefficient α: for example, Skopp et al. (1981) and Gerke and van
Genuchten (1993) report some expressions that depend on parameters like the size and
shape of the aggregates and of the interaggregate pores, or on the geometric properties
of the fracture system. Gerke (2006) refers to the particular cases of uniformly sized
spherical aggregates, solid cylindrical aggregates and parallel rectangular fracture sys-
tems. Nevertheless, such information about the geometry of the soil are usually difficult
to obtain, and the method of calibrating α seems more easily applicable to practical situ-
ations.

Figure 2.2 compares the BTC and the cumulative breakthrough curve (CBTC, see
section 2.5) obtained in the case of a pulse injection for different magnitudes of the solute
exchange term. It can be seen that, for low values of the exchange term, the BTC is
chracterized by a bimodal shape, with two peaks corresponding to the fast and the slow
domains. As the exchange term increases, the two peaks become less evident and the
shape of the BTC is similar to that obtained with a SDM.

Comparison between the CDPerM and the models developed by Skopp et al. (1981)
and Gerke and van Genuchten (1993)

The CDPerM is similar to the models developed by Skopp et al. (1981), where a steady
state flow is assumed as in our CDPerM, and by Gerke and van Genuchten (1993), where,
instead, a variably saturated flow is considered. In particular, the fast and slow domains
correspond, respectively, to the fractures or macropores and to the soil or rock matrix,
and the indices (H) and (L) in our CDPerM correspond, respectively, to A and B in
Skopp et al. (1981) and to f and m in Gerke and van Genuchten (1993). For convenience,
in Table 2.1 the correspondence between the main physical quantities defined by the
different transport models is listed.

With the correspondences of Table 2.1, equations [3] and [4] in Skopp et al. (1981)
coincide with the transport equations of the CDPerM (2.35) and (2.36). Moreover, notice
that Skopp et al. (1981) define a dimensionless interaction coefficient which is equivalent
to the inverse of Æ, Æ(H) or Æ(L), where the porosity n and velocity v of the porous
medium are used instead of the porosities and velocities of the mobile, fast or slow
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CDPerM Skopp et al. (1981) Gerke and van Genuchten (1993)
C(H), C(L) A, B cf , cm
n, n(H), n(L) ε, εf , εm
ε(H), ε(L) wf , 1− wf
ε(H)n(H), ε(L)n(L) θA, θB
α L αs(1− wf )θm

Table 2.1: Correspondence between the main physical quantities defined by our CDPerM and by
the models developed by Skopp et al. (1981) and Gerke and van Genuchten (1993).

domains. The dimensionless coefficient introduced by Skopp et al. (1981) is therefore
representative of the whole porous medium.

Concerning the model of Gerke and van Genuchten (1993), the water flow is de-
scribed by a coupled pair of Richards equations, while the solute transport is described
by a coupled pair of ADEs; the latter are represented by Equations (17a) and (17b) of
Gerke and van Genuchten (1993), which reduce to equations (2.35) and (2.36) in the case
of a saturated flow and a conservative solute, which means that the water contents θf
and θm coincide with the porosities εf and εm, the retardation coefficientsRf andRm are
equal to 1 and the first-order decay coefficients µf and µm vanish. Moreover, the solute
mass transfer term Γs is given by Equation (19) of Gerke and van Genuchten (1993):

Γs = (1− d)Γwφfcf + dΓwφmcm + αs(1− wf )θm(cf − cm), (2.39)

which includes both a convective and a diffusive component; the first two terms of equa-
tion (2.39) represent the convective component and depend on Γw, which is proportional
to the difference in pressure heads between the fracture and the matrix pore systems; the
coefficient d is 1 if the matrix pressure head is greater than the fracture pressure head,
i.e., the water exchange is from the matrix to the fracture, whereas d is 0 if the exchange
is from the fracture to the matrix; φf and φm are the volume of water in the fracture and,
respectively, in the matrix per unit volume of water in the medium. The third term in
equation (2.39) is the diffusive component of the mass transfer term and is proportional
to the difference in concentrations between the two domains.

In our CDPerM it is assumed that the pressure height is the same in the two domains,
so that the mass transfer term for solute transport includes only the dispersive/diffusive
term, while the convective term vanishes; therefore, in equation (2.39), Γw is set to zero,
while αs(1− wf )θm corresponds to α in equations (2.35) and (2.36).

2.5 Resident concentration, flux concentration, breakthrough curve and
its temporal moments

Depending on the injection technique, the boundary conditions of the transport equa-
tions can be expressed in terms of two different kinds of concentrations defined by Kreft
and Zuber (1978): the concentration in resident fluid, or resident concentration (C), and
the concentration in fluid flux, or flux concentration (CF ). In the same way, the mea-
surement technique determines if the experimental data refer to C or CF . The resident
concentration C represents the mass of solute per unit volume of fluid contained in an
elementary volume of the system at a given instant, while the flux concentration CF rep-
resents the mass of solute per unit volume of fluid passing through a given cross section



Basic equations of the SDM and DDMs 23

at an elementary time interval. In other words, CF is the ratio of the solute flux to the
Darcy’s velocity: CF = qc/q.

The use of the appropriate definition depends on the problem under study and on
the type of measurement. For instance, the injection of solute can be uniform in the in-
flow cross-section or proportional to the velocity at every point of the cross section; as
a consequence, the boundary condition will be expressed in terms of C or CF , respec-
tively. Concerning the measurement technique, the concentrations measured in samples
of fluid collected by samplers installed in the porous domain correspond to C, while the
concentrations measured in the fluid crossing a given cross-section correspond to CF .

In the case of the SDM, considering the expression of the solute flux (2.11), CF is
given by:

CF (x, t) =
qc(x, t)

q
= C(x, t)− D

v

∂C

∂x
(x, t). (2.40)

In the case of the DDMs, CF is obtained by substituting in definition (2.40) the corre-
sponding expressions of the solute flux, which are given by the 1D counterpart of (2.16)
for the DPorM and of (2.30) for the DPerMs.

The solute breakthrough curve (BTC) is defined as the mass of solute, that crosses a
unit surface of the porous medium per unit time, as a function of time. The BTC at a
certain position x = L is then given by qc(L; t).

In the following, it will be useful also to consider the cumulative breakthrough curve
(CBTC), which represents the total mass of solute that has crossed a unit surface of the
porous medium until time t from the solute injection, as a function of t. The CBTC at a
certain position x = L is then given by:

M(L; t) =

∫ t

0

qc(L; t′)dt′. (2.41)

The temporal moments of the BTC can be as well useful quantities to characterize
solute transport. Temporal moments have often been used (Naff, 1992; Cirpka and Kita-
dinis, 2000; Bardsley, 2003; Luo et al., 2006, 2008) to study solute transport and by Varni
and Carrera (1998) and Ginn et al. (2009) to analyse groundwater ageing, even if these
quantities could be affected by outliers especially in the tail of the BTC (Jacobsen et al.,
1992). In the present work, the identification of the models parameters will be based also
on the temporal moments of the BTCs for few tests.

The r-th order temporal moment Mr(L) of the BTC in x = L is defined as:

Mr(L) =

∫ +∞

0

trqc(L; t)dt, (2.42)

where qc is given by (2.11) for the SDM, and by the 1D counterpart of (2.16) and (2.30) for
the DPorM and the DPerMs respectively. Recalling the physical meaning of qc, M0(L)
represents the total mass of the solute that crosses the unit surface of the porous medium
at a distance L from the inflow boundary.

The r-th order moment normalized with respect to the zero-th order moment is de-
noted by mr(L) = Mr(L)/M0(L) and the r-th order central moment µr is defined as:

µr(L) =
1

M0

∫ +∞

0

[t−m1(L)]
r
qc(L; t)dt, (2.43)

where m1(L) represents the average arrival time of the particles of solute at the distance
L. The second-order central moment µ2 is the variance of the distribution of the arrival
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times of the particles of solute. Finally, we consider the skewness parameter, defined
as S = µ3/µ

3/2
2 , which gives information about the asymmetry of the BTC. In particular,

Stagnitti et al. (2000) highlight that the skewness can indicate the existence of preferential
flow, observing that asymmetric BTCs with early peak and increased tailing to the right
of the peak are characterized by S > 0.

Notice that µ2 and µ3 can also be computed from the normalised moments mr, r =
1, 2, 3, according to the following relations:

µ2 = m2 −m2
1, (2.44)

µ3 = m3 + 2m3
1 − 2m1m2. (2.45)

In section 3.3 the analytical expressions ofMr,mr and µr will be derived for the BTCs
of the SDM and UDPerM in the case of a pulse injection of solute and for r ≤ 3.

2.6 Boundary conditions for the transport models

Different initial and boundary conditions can be applied to the transport equations
depending on the particular situation that is simulated.

The case studies analysed in this work (see chapters 6 and 7) can all be described
as semi-infinite 1D domains, initially free of solute, in which a certain mass of solute is
injected at an intial time either instantaneously (pulse injection) or continuously for a
certain time interval (step injection). It is then useful to report here the general form
of the boundary conditions describing these examples. In particular, a Dirichlet (or
first-type) boundary condition is imposed at an infinite distance from the injection point,
whereas a Cauchy (third-type) boundary condition is imposed at the inflow boundary,
where the solute flux is assigned. Such conditions are first written for the SDM, and
then they are easily generalized to the DDMs.

Boundary conditions for the SDM

Let x = 0 and t = 0 define the injection point and the injection time, respectively. Given
the semi-infinite spatio-temporal domain x ∈ [0,+∞) and t ∈ [0,+∞), it is assumed that
initially there is no solute in the domain, so that the initial condition is simply given by:

C(x, 0) = 0, x > 0. (2.46)

Boundary conditions commonly adopted in literature for x→ +∞ assume either a zero
concentration (Ogata and Banks, 1961; Lassey, 1988) or a vanishing concentration gra-
dient (Parker and van Genuchten, 1984; van Genuchten and Parker, 1984; Toride et al.,
1993; Vanderborght et al., 2005). The latter type of boundary condition implies that at
an infinite distance from the injection point the solute flux is given by the advective flux
only, which, given the zero concentration initial condition and considering that the so-
lute propagation velocity is finite, must also vanish, and the zero-concentration bound-
ary condition is obtained. Therefore, the boundary condition for x → +∞ used in this
work is given by:

lim
x→+∞

C(x, t) = 0, t ≥ 0. (2.47)

In the case of a pulse injection, let M be the mass of solute per unit surface which is in-
jected instantaneously at t = 0 through the border of the domain at x = 0; the boundary
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condition at x = 0 is then given by:

qc(0, t) = Mδ(t), t ≥ 0, (2.48)

where δ(t) is the Dirac delta.
In the case of a step injection, the solute is injected continuously with a constant rate

for a certain duration T , so that the boundary condition at x = 0 becomes:

qc(0, t) =
M

T
I[0,T ](t), t ≥ 0, (2.49)

where I[0,T ](t) is the characteristic function of the interval [0, T ].

Boundary conditions for the DPorM

The initial and boundary conditions for the DPorM are obtained from conditions (2.46)
to (2.49), assuming that all the solute initially enters the mobile domain:

Cmob(x, 0) = 0, C im(x, 0) = 0, x > 0, (2.50)

lim
x→+∞

Cmob(x, t) = 0, lim
x→+∞

C im(x, t) = 0, t ≥ 0, (2.51)

Pulse injection:

qmob
c (0, t) = Mδ(t), qim

c (0, t) = 0, t ≥ 0, (2.52)

Step injection:

qmob
c (0, t) =

M

T
I[0,T ](t), qim

c (0, t) = 0, t ≥ 0. (2.53)

Boundary conditions for the DPerMs

The initial and boundary conditions for the DPerMs are obtained from conditions (2.46)
to (2.49), assuming that the mass of solute injected in x = 0 splits between the two
domains:

C(H)(x, 0) = 0, C(L)(x, 0), x > 0, (2.54)

lim
x→+∞

C(H)(x, t) = 0, lim
x→+∞

C(L)(x, t) = 0, t ≥ 0, (2.55)

Pulse injection:

q(H)
c (0, t) = M (H)δ(t), q(L)

c (0, t) = M (L)δ(t), t ≥ 0, (2.56)

Step injection:

q(H)
c (0, t) =

M (H)

T
I[0,T ], q(L)

c (0, t) =
M (L)

T
I[0,T ], t ≥ 0, (2.57)
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where M (H) denotes the mass of solute that initially enters the (H) domain per unit
surface of the (H) domain and M (L) is defined similarly for the (L) domain, so that the
following relation holds:

M = ε(H)M (H) + ε(L)M (L). (2.58)



CHAPTER 3

Analytical solutions for the SDM and the UDPerM for a
pulse injection

The SDM, UDPerM and DPorM can be solved analytically for general initial and bound-
ary conditions in semi-infinite domains, as reported, e.g., by Vanderborght et al. (2005).
Analytical solutions of the SDM can be found, e.g., in Lapidus and Amundson (1952);
Ogata and Banks (1961); Parker and van Genuchten (1984); van Genuchten and Parker
(1984). In particular, Lassey (1988) derived analytical solutions, in terms of both resident
and flux concentration, for DPorMs generalized to include first-order solute decay pro-
cesses, in a semi-infinite domain, with zero initial distribution concentration and general
linear boundary condition. Toride et al. (1993) extended these solutions by including a
zero-order production term in the DPorM.

To the author’s knowledge, the equations of the CDPerM, instead, do not admit an
analytical solution for general initial and boundary conditions. Appendix A presents
some considerations on the analytical solution of problems similar to the CDPerM,
showing that the analytical solution of the CDPerM could be obtained only under very
restrictive hypotheses.

In this chapter, the analytical solutions of the equations of the SDM and of the UD-
PerM will be derived in a semi-infinite domain for an instantaneous injection of a solute
mass through the border of the domain, which initially does not contain any solute.

3.1 Analytical solution for the SDM

We want to solve equation (2.12) in a semi-infinite spatio-temporal domain, x ∈ [0,+∞)
and t ∈ [0,+∞), with boundary conditions simulating an instantaneous injection, i.e.,
conditions (2.46) to (2.48).

It is easy to check that the flux concentration CF defined by (2.40) satisfies the ADE
(2.12) as well. Moreover, also the initial condition (2.46) and the boundary condition
(2.47) hold with CF in place of C; in fact, if the concentration C vanishes, then the gra-
dient of the concentration ∂C/∂x also vanishes, so that CF itself vanishes. Therefore,
equation (2.12) and the conditions (2.46) to (2.48) can be respectively rewritten in terms
of CF as:

27
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∂CF
∂t

= −v ∂CF
∂x

+D
∂2CF
∂x2

, (3.1)

CF (x, 0) = 0, x > 0, (3.2)
lim

x→+∞
CF (x, t) = 0, t ≥ 0, (3.3)

CF (0, t) =
M

q
δ(t), t ≥ 0. (3.4)

The solution of this problem can be obtained applying the Laplace transform with
respect to the variable t. In particular, the Laplace transform C̃ of the flux concentration
CF is defined as:

C̃(x, s) =

∫ +∞

0

e−stCF (x, t) dt, (3.5)

where s is the coordinate in the Laplace space. Notice that, taking conditions (3.2) and
(3.3) into account, the Laplace transform of the left-hand side term of equation (3.1) is
given by:

∂̃CF
∂t

= sC̃.

Therefore, applying the Laplace transform to equation (3.1) and condition (3.4) and re-
calling that the Laplace transform of the Dirac delta is δ̃ = 1, it is obtained:

sC̃ = −v ∂C̃
∂x

+D
∂2C̃

∂x2
, (3.6)

C̃(0, s) =
M

q
, t ≥ 0. (3.7)

It can be easily shown that the solution of (3.6) and (3.7) is given by:

C̃(x, s) =
M

q
exp

(
v −
√
v2 + 4Ds

2D
x

)
. (3.8)

The inverse Laplace transform of equation (3.8) gives the solution of the problem in the
time domain:

CF (x, t) =
M

q

x√
4πDt3

exp

[
− (x− vt)2

4Dt

]
. (3.9)

The corresponding BTC in x = L is given by qc(L, t) = qCF (L, t):

qc(L, t) = M
L√

4πDt3
exp

[
− (L− vt)2

4Dt

]
= M f(t;D, v), (3.10)

Therefore, the CBTC defined by (2.41) becomes:

M(L, t) =
ML√
4πD

∫ t

0

t′−3/2 exp

[
− (L− vt′)2

4Dt′

]
dt′. (3.11)

Notice that the solution given by (3.10), normalized by M , is the derivative with respect
to time of the solution obtained by Ogata and Banks (1961) for the constant pulse bound-
ary condition, i.e., for a continuous solute injection.
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The analytical solution of the SDM, equation (2.12) with conditions (2.46) to (2.48),
can also be obtained in terms of the resident concentration C, as shown, e.g., by Van-
derborght et al. (2005), where the solution of the ADE, generalized to include adsorp-
tion and desorption, is obtained in semi-infinite soil profiles for the following initial and
boundary conditions:

C(x, 0) = g(x),

CF (0, t) = h(t),

lim
x→+∞

∂C

∂x
(x, t) = 0.

From conditions (2.46) and (2.48), we have g(x) = 0 and h(t) = Mδ(t)/q. In this case,
equation [17] of Vanderborght et al. (2005) becomes:

C(x, t) =

∫ t

0

M

q
δ(τ)cB(t− τ ;x)dτ =

M

q
cB(t;x), (3.12)

where cB is the transfer function, i.e., the solution of the problem for g(x) = 0 and h(t) =
δ(t). If there is no sorption, the retardation factor R is equal to 1; under these conditions,
the corresponding transfer function ceq,B given by equation [19] of Vanderborght et al.
(2005) can be substituted in (3.12), so that the solution of the ADE for a pulse injection is
obtained in terms of C:

C(x, t) =
M

q

{
v√
πDt

exp

[
− (x− vt)2

4Dt

]
− v2

2D
exp

(vx
D

)
erfc

(
x+ vt√

4Dt

)}
, (3.13)

where erfc denotes the complementary error function.
It can be easily verified, by substituting the expression of C given by (3.13) in the

definition of CF (2.40), that the solution in terms of CF given by (3.9) is obtained.
Notice that solution (3.13) permits to compute the concentration at the injection point

x = 0:

C(0, t) =
M

q

[
v√
πDt

exp

(
−v

2t

4D

)
− v2

2D
erfc

(
vt√
4Dt

)]
. (3.14)

Solution (3.13) for the resident concentration can be also obtained from the results of
Lapidus and Amundson (1952).

3.2 Analytical solution for the UDPerM

We want to solve equations (2.35) and (2.36), with α = 0, in the semi-infinite domain
x ∈ [0,+∞), t ∈ [0,+∞), with conditions simulating a pulse injection, i.e., (2.54) to
(2.56).

It can be noticed that the equations of the UDPerM are uncoupled, as well as the
boundary conditions for the two domains. In particular, the equation and the bound-
ary conditions for each of the two domains have the same form than the equation and
boundary conditions of the SDM. Therefore, the solution in each of the two domains is
given by the analytical solution of the SDM (3.9), with the parameters of the respective
domain:

C
(H)
F (x, t) =

M (H)

q(H)

x√
4πD(H)t3

exp

[
− (x− v(H)t)2

4D(H)t

]
, (3.15)

C
(L)
F (x, t) =

M (L)

q(L)

x√
4πD(L)t3

exp

[
− (x− v(L)t)2

4D(L)t

]
. (3.16)



30 3.3 Temporal moments of the BTC

Similarly, the solution of the UDPerM in terms of C is given for each of the two domains
by the solution of the SDM (3.13), with the parameters of the respective domain.

In particular, the BTC at a certain distance L from the injection point is obtained from
equation (2.30):

qc(L, t) = ε(H)M (H)f
(
t;D(H), v(H)

)
+
(
M − ε(H)M (H)

)
f
(
t;D(L), v(L)

)
, (3.17)

where f was defined in equation (3.10).
Therefore, the CTBC defined by (2.41) becomes:

M(L, t) =

∫ t

0

{
ε(H)M (H) L√

4πD(H)t′3
exp

[
−
(
L− v(H)t′

)2
4D(H)t′

]
+

+ ε(L)M (L) L√
4πD(L)t′3

exp

[
−
(
L− v(L)t′

)2
4D(L)t′

]}
dt′. (3.18)

3.3 Temporal moments of the BTC

The moments of the BTC can be computed analytically, at least up to the third order,
for both the SDM and the UDPerM. They can be obtained from definition (2.42), where
qc = qCF , and CF is given by (3.9) for the SDM and by (2.31) for the UDPerM, with C(H)

F

and C
(L)
F given by (3.15) and (3.16), respectively. The results up to the second order can

be found also in Kreft and Zuber (1978).
In particular, as discussed in section 2.5, M0(L) represents the total mass of the solute

that crosses the unit surface of the porous medium at a distance L from the injection
point. As we are dealing with a non-reactive solute and, in the case of the SDM and
UDPerM, the porous medium is assumed to contain no immobile component, the whole
mass injected at x = 0 crosses the surface at a distance L, so that M0(L) = M , ∀L ≥ 0.
This can be checked analytically from (2.42), with r = 0.

For the SDM, the normalized moments mr, r ≤ 3, are given by the following expres-
sions:

m1 =
L

v
, (3.19)

m2 =

(
L

v

)2(
1 +

2

Pe

)
, (3.20)

m3 =

(
L

v

)3(
1 +

6

Pe
+

12

Pe2

)
, (3.21)

where Pe is the Péclet dimensionless number defined by (2.21). For the UDPerM, mr,
r ≤ 3, can be computed as:

mr =
1

M

[
ε(H)M (H)m(H)

r +
(
M − ε(H)M (H)

)
m(L)
r

]
, r = 1, 2, 3, (3.22)

where m(H)
r and m(L)

r are given by the SDM expressions (3.19), (3.20) and (3.21) with the
corresponding (H) or (L) parameters.
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The central moments µ2 and µ3 can be obtained from the normalized moments by
means of relations (2.44) and (2.45), which, for the SDM, reduce to:

µ2 =

(
L

v

)2
2

Pe
=

2LD

v3
, (3.23)

µ3 =
12LD2

v5
, (3.24)

so that the skewness is given by:

S = 3

(
2D

Lv

)1/2

= 3

(
2

Pe

)1/2

.



CHAPTER 4

Numerical implementation of the SDM and DDMs

The analytical solutions for the SDM and for the UDPerM were obtained in chapter 3 in
the case of a pulse injection. In order to apply these models for more general boundary
conditions, e.g., in the case of a step injection, the superposition principle could be used
to obtain the corresponding analytical solutions. As discussed in the introductory part
of chapter 3, also the DPorM can be solved analytically, which is not the case for the
CDPerM, to the author’s knowledge, unless very restrictive hypothesis are applied (see
also appendix A).

Therefore, a numerical scheme must be developed to solve the CDPerM. In this work,
the numerical model was developed also for the SDM, DPorM and UDPerM, despite
the availability of analytical solutions. This choice has a twofold motivation: on the first
side, the numerical scheme for the solution of the CDPerM can be obtained by extending
the numerical scheme for the solution of the UDPerM and of the SDM, which can be
validated by comparison with the corresponding analytical solutions. On the other side,
the numerical solution scheme can be useful for extending the solutions in future works
to incorporate other processes involved in the solute transport.

In this chapter the numerical scheme adopted to implement the SDM and the DDMs
is described. The equations are discretized with a finite difference Crank-Nicholson
scheme, an explicit evaluation of the solute exchange term and an upwind technique for
the convective terms. Moreover, a correction is applied to reduce the numerical disper-
sion determined by the truncation errors implied by the finite difference approximation
of the equations.

Then, a validation of the codes is presented: in the case of the simulation of a pulse
injection in a semi-infinite domain, the results of the numerical models are compared
with those obtained by the analytical models developed in chapter 3 and with the results
of the program HYDRUS-1D.

Notice that HYDRUS-1D implements the SDM, DPorM and DPerMs, as well as a pa-
rameter estimation technique, based on the Levenberg-Marquardt method, that includes
several options to choose the kind of flow or transport data to use for the parameter es-
timation.

As will be explained in chapters 6 and 7, the transport models are calibrated with
experimental data ofM in case studies A and B, of CF in case study C and of C in case
study D. The option to fit the M data is not available in HYDRUS-1D and the option
to fit the CF data at the observation node is possible for all models but the DPerMs.
Moreover, the source code of HYDRUS-1D is not freely available for the inverse models,
so that it was not possible to modify the definition of the objective function as required
by our examples. As a consequence, it was not possible to use HYDRUS-1D to calibrate
the transport models with the data of the case studies considered in this work. It was not
even possible to implement an inverse model based on the solution of the direct model

32
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by HYDRUS-1D, since the source code is freely available only for the direct SDM and
DPorM, but not for the DPerMs.

This remark shows that the implementation of the direct numerical models, pre-
sented in this chapter, and of their calibration, presented in chapter 5, is not an unneces-
sary work.

4.1 Numerical scheme for the SDM

4.1.1 Discretization of the spatial domain

Let [0, L] be the spatial domain in which the transport equation is to be solved. In this
work, it is assumed that x = 0 is the injection point and x = L is the observation point,
that is the position where the experimental data, volumetric concentration or solute flux,
are measured. Since the boundary condition (2.47) is set at an infinite distance from
the injection point, the domain of the numerical model has been extended to [0, Lmax],
with Lmax � L. An accurate solution of the transport equation is required only up to
the observation point x = L; nevertheless, it is safer to keep a fine grid also for some
distance beyond this position, in order to avoid rough finite difference approximations
of the first and second order derivatives of the concentration in the vicinity of x = L.
Then, it was chosen to use a fine grid up to twice the size of the physical domain, 2L,
and to widen the grid beyond that distance. In particular, the subdomain [0, 2L] has been
discretized with a regular grid of width ∆x, whereas for x ∈ [2L,Lmax] the grid spacing
geometrically increases with common ratio r = 1.4. A graphical representation of the
grid is shown in Figure 4.1.

Figure 4.1: Schematic representation of the grid discretizing the domain.

A reference value ∆x0 is defined in order to minimize the effects of numerical dis-
persion (see section 4.1.5); the actual value of ∆x is given by the best approximation of
∆x0 that permits to have an internode both at the injection point and at the observation
point, i.e., ∆x = L/N1, where N1 is the least integer greater than or equal to L/∆x0.

The discrete spatial domain is then defined by the grid xi = xi−1 + ∆xi−1, i =
2, . . . , N , with x1 = ∆x/2 and:

∆xi =

{
∆x i = 1, . . . , 2N1 − 1
r∆xi−1 i = 2N1, . . . , N − 1

,

where N is the total number of nodes of the grid, with xN ≤ Lmax.
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4.1.2 Discretization of the temporal domain

Let [0, tmax] be the temporal domain for which the transport equation is solved. The
corresponding discrete temporal domain is given by the set {t`, ` = 0, . . . , Nt}, where
t0 = 0 and tNt

= tmax. The time discretization is not uniform: the time intervals {∆t` =
t`+1 − t`, ` = 0, . . . , Nt − 1} are chosen to satisfy the following constraints:

• all the time intervals do not exceed a reference time interval ∆tref which is set to
minimize numerical instability and depends on the time scales of the particular
case study: ∆t` ≤ ∆tref , ` = 0, . . . , Nt − 1;

• one of the time levels must coincide with the end of the injection period. In other

words, there exists an integer ¯̀ such that t¯̀ =

¯̀−1∑
`=0

∆t` = T . Notice that, for the

simulation of a pulse injection, it has been assumed T = 10−3 s;

• if {τn, n = 1, . . . , Ndata} is the set of times corresponding to the experimental mea-
surements, a set of integers {`n, n = 1, . . . , Ndata} exists such that t`n = τn, n =
1, . . . , Ndata. In other words, the solution is computed for all times at which an
experimental measurement is available.

The last constraint is not necessary for the general solution of the transport equation; its
importance will become apparent for the calibration of the transport models (see chap-
ters 5, 6 and 7), as the objective function will take into account the misfit between the
experimental measurement at each time τn and the corresponding model outcome.

4.1.3 Discretization of the equation

The ADE (2.12) has been discretized with a Crank-Nicholson finite difference scheme
and an upwind technique for the convective term. Therefore, the discrete counterpart of
the ADE, for the generic node i = 2, . . . , N − 1 and time level ` = 0, . . . , Nt − 1 is given
by:

C`+1
i − C`i

∆t`
=

1

2

−vC`i − C`i−1

∆xi−1
+D

C`i+1 − C`i
∆xi

−
C`i − C`i−1

∆xi−1

∆xi + ∆xi−1

2

+

+
1

2

−vC
`+1
i − C`+1

i−1

∆xi−1
+D

C`+1
i+1 − C

`+1
i

∆xi
−
C`+1
i − C`+1

i−1

∆xi−1

∆xi + ∆xi−1

2

 , (4.1)

where C`i = C(xi, t`) denotes the concentration at node i and time level `, that is at
position x = xi and time t = t`.

Boundary condition (2.47) can be easily discretized as:

C`N = 0, ` = 0, . . . , Nt.

Both boundary conditions (2.48) and (2.49) assign the solute flux at the inflow bound-
ary qc(0, t). Recalling definition (2.11), the boundary conditions for a step injection (2.49)
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and for a pulse injection (2.48) can be discretized as:

q`c0 =
1

∆t`

∫ t`+1

t`

qc(0, t) dt =


M

T
if ` = 0, . . . , ¯̀− 1,

0 if ` ≥ ¯̀.

(4.2)

The equation for node i = 1, which allows to compute the concentration C`1, is now
written in such a way to show explicitly the boundary condition at the injection point,
given by (4.2):

C`+1
1 − C`1

∆t
= ϕ`0+

1

2

(
−v C

`
1

∆x
+D

C`2 − C`1
∆x2

)
+

+
1

2

(
−vC

`+1
1

∆x
+D

C`+1
2 − C`+1

1

∆x2

)
, (4.3)

where the discrete function ϕ`0 is defined as

ϕ`0 =
q`c0
n∆x

and, taking (4.2) into account, satisfies:

ϕ`0 =


M

n∆xT
if ` = 0, . . . , ¯̀− 1,

0 if ` ≥ ¯̀.

(4.4)

Notice that this scheme permits to have the correct amount of solute mass entering
the domain; in fact, condition (4.2) implies:

¯̀−1∑
`=0

q`c0 ∆t` =

∫ T

0

qc(0, t) dt = M.

4.1.4 Solution of the discrete equation

The initial condition (2.46) can be easily discretized as:

C0
i = 0, i = 1, . . . , N,

which sets the concentration at each node of the domain at the initial time ` = 0. At
each successive time step, the concentrations are computed by solving equations (4.1)
and (4.3), which can be rewritten as the following tridiagonal system of N − 1 equations
in the N − 1 unknowns C`+1 = {C`+1

i , i = 1, . . . , N − 1}, ` = 0, . . . , Nt − 1:

(1 + b`1)C`+1
1 +c`1 C

`+1
2 =f `1 , (4.5)

a`i C
`+1
i−1 + (1 + b`i)C

`+1
i +c`i C

`+1
i+1 =f `i , i = 2, . . . , N − 2 (4.6)

a`N−2 C
`+1
N−2+(1 + b`N−1)C`+1

N−1 =f `N−1, (4.7)
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or, in more compact form:
A`C`+1 = f `, (4.8)

where the elements A`ij of the tridiagonal matrix A` are given for i, j = 1, . . . , N − 1 by:

A`ij =


a`i if j = i− 1, i > 1
(1 + b`i) if j = i,
c`i if j = i+ 1, i < N − 1
0 otherwise,

with the following coefficients:

a`i =− ∆t`
∆xi−1

(
v

2
+

D

∆xi + ∆xi−1

)
, i = 2, . . . , N − 1,

b`i =


∆t`
2∆x

(
v +

D

∆x

)
i = 1,

∆t`
∆xi−1

(
v

2
+

D

∆xi

)
i = 2, . . . , N − 1,

c`i =


−D∆t`

2∆x2
i = 1,

− D∆t`
∆xi(∆xi−1 + ∆xi)

i = 2, . . . , N − 2.

The vector f ` has the following components:

f `i =


(1− b`1)C`1 − c`1 C`2 + ∆t`ϕ

`
0 i = 1,

−a`i C`i−1 + (1− b`i)C`i − c`i C`i+1 i = 2, . . . , N − 2,

f `N−1 = −a`N−1 C
`
N−2 + (1− b`N−1)C`N−1 i = N − 1.

The tridiagonal system (4.8) has been solved with the subroutine tridag developed
by Press et al. (1989).

From the resulting concentrations C`, ` = 1, . . . , Nt, it is possible to compute the flux
concentrations at every internode i+ 1

2 using the discrete counterpart of definition (2.40),
that is:

C`F
i+1

2

= C`i −
D

v

C`i+1 − C`i
∆xi

, (4.9)

for i = 1, . . . , N − 1 and ` = 1, . . . , Nt. From the flux-concentration C`F
i+1

2

it is also

possible to compute the BTC as q`C
i+1

2

= qC`F
i+1

2

, and the CBTC as the numerical approx-

imation of the integral of q`C
i+1

2

over time, according to (2.41), which hase been obtained

with the trapezoid rule.
For the model calibration, the computation of the BTC and of the CBTC will be of par-

ticular interest at the observation point, i = N1; this is the reason why the discretization
of the domain was chosen to have an internode in the observation point.
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4.1.5 Correction of truncation errors

It is well known that the finite difference approximation of the ADE introduces trunca-
tion errors. One of the first quantitative evaluations of the truncation errors was per-
formed by Lantz (1971) for finite difference approximations of the 1D ADE, considering
both implicit and explicit schemes and both centered and upwind approximations of the
convective term. Further research in this field has progressively extended the analytical
computation of the truncation errors and the corresponding development of corrected
numerical schemes to the case of 2D transport equations with a first order reaction term,
for uniform and variable discretization grids and for different finite difference schemes
(Ataie-Ashtiani et al., 1995, 1996; Moldrup et al., 1996; Ataie-Ashtiani et al., 1999; Ataie-
Ashtiani and Hosseini, 2005a,b).

As shown, e.g., by Ataie-Ashtiani et al. (1999), the finite difference approximation
of the ADER, i.e., the ADE with a first order reaction term, introduces three forms of
truncation errors: a second order truncation error, represented by numerical dispersion;
a first order truncation error, represented by a numerical water velocity; a zeroth or-
der truncation error, represented by a numerical reaction coefficient. In particular, for
a conservative solute, i.e., in the absence of reaction terms in the ADE, the zeroth and
first order errors vanish, so that the only effect of truncation errors is the introduction of
numerical dispersion.

In this case the truncation error can then be removed, up to the second order in the
grid spacing ∆x, by solving the ADE with an effective dispersion coefficient, De = D −
Dnum, where Dnum is a numerical dispersion coefficient.

The expression ofDnum depends on the numerical scheme (explicit, Crank-Nicholson
or implicit), on the numerical approximation of the convective term (centered or up-
wind) and on the spatial grid (uniform or variable). The different expressions of the ra-
tio of the numerical to real dispersion coefficients Dnum/D for a uniform grid are listed
in Table 4.1 and are obtained from Ataie-Ashtiani et al. (1999) by setting to zero the
first order reaction rate coefficient. The values of Dnum/D are expressed as functions of
the numerical Péclet number Penum = v∆x/D, which corresponds to (2.21), and of the
Courant number Cr = v∆t/∆x.

explicit Crank-Nicholson implicit

centered −Penum Cr

2
0

Penum Cr

2

upwind
Penum

2

(
1− Cr

2

)
Penum

2

Penum

2

(
1 +

Cr

2

)

Table 4.1: Ratio of numerical to real dispersion coefficients, Dnum/D, for different finite difference
approximations of the ADE and a uniform grid.

The expressions listed in Table 4.1 hold for a uniform grid; for some numerical
schemes the generalization to the variable grid is trivial, but, as shown, e.g., by Ataie-
Ashtiani et al. (1995), in some finite difference schemes the variable space discretization
can cause additional numerical errors with respect to the case of a uniform grid.

In order to properly correct the numerical scheme described in sections 4.1.1 to 4.1.4,
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the truncation error for the numerical approximation of the ADE given by (4.1), i.e.,
for a Crank-Nicholson scheme and an upwind treatment of the convective term is now
derived following Ataie-Ashtiani et al. (1999), for the simpler case of no reaction terms,
but considering a variable grid.

The first step is to expand in Taylor series the concentrations appearing in the discrete
form of the ADE, i.e., C`i+1, C`i−1, C`+1

i , C`+1
i+1 and C`+1

i−1 . The expansions of C about
any grid point are obtained following two criteria: the third and higher order spatial
derivatives are neglected (second order expansions) and the second and higher order
temporal derivatives are expressed in terms of the spatial derivatives, using the ADE
(2.12).

In particular, the expansions of C`i+1 and C`i−1 are readily obtained as:

C`i+1 ≈ C`i + ∆xi
∂C

∂x
+

∆x2
i

2

∂2C

∂x2
, (4.10)

C`i−1 ≈ C`i −∆xi−1
∂C

∂x
+

∆x2
i−1

2

∂2C

∂x2
. (4.11)

The concentration at time `+1 and at node i is approximated by the following Taylor
series expansion around time `:

C`+1
i ≈ C`i +

∞∑
m=1

(
∆tm`
m!

∂mC

∂tm

)
. (4.12)

Differentiating the ADE (2.12), the time derivatives in equation (4.12) are expressed in
terms of the spatial derivatives, where, again, the third and higher order spatial deriva-
tives are neglected. Since the time derivatives of order m ≥ 3 depend only on spatial
derivatives of third and higher order, only the terms with m = 1, 2 are considered in the
series (4.12). In particular, for m = 2:

∂2C

∂t2
≈ v2 ∂

2C

∂x2
. (4.13)

Substituting (4.13) in (4.12), it is obtained:

C`+1
i ≈ C`i + ∆t`

∂C

∂t
+

∆t2`
2
v2 ∂

2C

∂x2
. (4.14)

The Taylor expansion of C`+1
i+1 is given by:

C`+1
i+1 ≈ C

`+1
i + ∆xi

∂C`+1

∂x
+

∆x2
i

2

∂2C`+1

∂x2
. (4.15)

Substituting (4.14) in (4.15) and using again the differentiated ADE, it is obtained:

C`+1
i+1 ≈ C

`
i + ∆t`

∂C

∂t
+ ∆xi

∂C

∂x
+

+

(
∆t2`

2
v2 −∆xi∆t`v +

∆x2
i

2

)
∂2C

∂x2
. (4.16)
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With the same method, the second order approximation of C`+1
i−1 is obtained:

C`+1
i−1 ≈ C

`
i + ∆t`

∂C

∂t
−∆xi−1

∂C

∂x
+

+

(
∆t2`

2
v2 + ∆xi−1∆t`v +

∆x2
i−1

2

)
∂2C

∂x2
. (4.17)

The second step is to substitute the second order approximations of C`i+1, C`i−1, C`+1
i ,

C`+1
i+1 and C`+1

i−1 , i.e., expressions (4.10), (4.11), (4.14), (4.16) and (4.17) in the discrete ADE
(4.6). The following equation is then obtained:

∂C

∂t
= −v ∂C

∂x
+ (D +Dnum)

∂2C

∂x2
, (4.18)

where
Dnum =

v∆xi
2

= D
Penumi

2
, (4.19)

which trivially generalizes the corresponding expression for a uniform grid (Table 4.1).
As already mentioned, equation (4.18) clearly shows that the truncation error can

be removed by replacing D with De = D − Dnum in the numerical equation (4.8). The
correction has been applied here only in the fine grid region, i.e., for i = 1, . . . , 2N1.

Moreover, since the effective dispersion De must be positive, then Dnum < D, which
implies Penum < 2. Therefore, the upper limit for the grid spacing is ∆x = 2D/v, which
is related to the grid spacing chosen for the regular grid discretizing the subdomain
[0, 2L] (see section 4.1.1). Specifically, ∆x0 = min(2D/v,∆L), where ∆L depends on the
size of the domain of the particular case study and is needed to ensure that the grid is
not too coarse for high Penum. In fact, it should be observed that the expressions of the
corrections to the truncation errors hold for small ∆x, as they are obtained from second
order truncated Taylor series expansions in ∆x.

In order to show the effects of numerical dispersion on the solution of the ADE and
the effectiveness of the correction scheme, Figure 4.2 compares the time evolution of the
concentration and the CBTC, computed for a pulse injection with the non-corrected and
the corrected numerical model, with the anaytical solution given in section 3.1 and with
the solution obtained with the program HYDRUS-1D (see section 4.3.1). The parameters
used in this simulation are reported in Table 4.2. Figure 4.2 shows that, in the case of the
uncorrected numerical scheme, the presence of numerical dispersion causes a spreading
of the concentration pulse and a corresponding decrease of the peak concentration with
respect to the analytical solution, while the front of the CBTC is dampened; the introduc-
tion of the correction of the truncation errors in the numerical scheme clearly removes
these effects, and the numerical solution matches the analytical solution with very good
accuracy.

Finally, it is worth mentioning also the work of van Genuchten and Gray (1978),
where a different method of analysis has been used to compute correction factors from
the second to the fourth order, for several finite difference and finite elements schemes
for solving the ADE. In particular, they developed both schemes for which only the trun-
cation errors associated with the time derivative in the ADE are considered and schemes
with space-time corrections, in which also the errors associated with the approxima-
tion of the space derivatives are considered. The application of the different corrected
schemes to the simulation of a continuous injection of solute in a semi-infinite domain
showed that the most accurate solutions were obtained when fourth order space-time
corrections were applied to either the finite difference or the finite element scheme.
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a) b)

Figure 4.2: Comparison of the simulations of a pulse injection obtained with: analytical SDM
(black line), HYDRUS-1D (yellow line), numerical SDM uncorrected and corrected for truncation
errors (blue and pink line, respectively); a) time evolution of the concentration, b) cumulative
breakthrough curve.

Parameter Value Unit
L 2.38 m
M 0.1 kg m−2

v 1.2 · 10−3 m s−1

D 7.0 · 10−6 m2 s−1

n 0.2

Table 4.2: Parameters used for the simulation of the pulse injection shown in Figure 4.2.

4.2 Numerical scheme for the DDMs

The equations of the DPorM, (2.17) and (2.18), with the corresponding boundary condi-
tions, (2.50) to (2.53), and the equations of the DPerMs, (2.35) and (2.36), with the corre-
sponding boundary conditions, (2.54) to (2.57), have been discretized with a numerical
scheme similar to that developed for the SDM and described in section 4.1.

In particular, the model equations are approximated with a finite difference Crank-
Nicholson scheme and the convective terms are computed with an upwind technique.
The exchange term in the DPorM and the CDPerM is treated explicitly. This choice has
a twofold motivation; in fact, the explicit evaluation of the exchange term permits to
write the equations for the two domains as tridiagonal systems, as was already done
for the SDM. An implicit or Crank-Nicholson treatment of the exchange term would
have required the use of iterative methods to solve the resulting coupled set of discrete
equations for the two domains. The second motivation is represented by the observation
that the expressions of the truncation errors have the same form as in the SDM when the
exchange term is treated explicitly. An attempt to extend the method explained in section
4.1.5 to the derivation of the truncation error in the case of a Crank-Nicholson treatment
of the exchange term was not successful because of the coupling between the equations
of the two domains, as shown in appendix B.

The discretization of the equations of the DPerMs (2.35) and (2.36) is then given, as
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in (4.8), by:
A(H)`C(H)`+1

= f (H)` , (4.20)

A(L)`C(L)`+1

= f (L)` , (4.21)

where the coefficients of the matrices A(H)` and A(L)` are given by the same expressions
of the coefficients of A` with the parameters of the corresponding (H) or (L) domain.
The vectors f (H)` and f (L)` , instead, have a different expression, as the solute exchange
term must be included:

f
(H)`

i =



(1− b(H)`

1 )C
(H)`

1 − c(H)`

1 C
(H)`

2 + ∆t`ϕ
(H)`

0 +

− α∆t`
ε(H)n(H)

(C
(H)`

1 − C(L)`

1 ) i = 1,

−a(H)`

i C
(H)`

i−1 + (1− b(H)`

i )C
(H)`

i − c(H)`

i C
(H)`

i+1 +

− α∆t`
ε(H)n(H)

(C
(H)`

i − C(L)`

i ) i = 2, . . . , N − 1,

where ϕ(H)
0 is given by (4.4), with the parameters of the (H) domain. The components

of f (L)` are defined similarly, changing sign to the exchange term.
As mentioned above, the correction to the second order truncation errors has the

same form derived for the SDM; specifically, the dispersion coefficient D(H) is replaced
by the effective dispersion coefficient D(H)

e = D(H) − D
(H)
num, where D(H)

num is given by
(4.19) with the parameters of the (H) domain. A similar replacement is done for D(L).

From the solution C(H)` and C(L)` , the corresponding flux-concentrations C
(H)`

F and

C
(L)`

F can be easily computed with expressions similar to (4.9) with the quantities of

the corresponding domains. The solute fluxes are given by q
(H)`

C
i+1

2

= q(H)C
(H)`

F
i+1

2

and

q
(L)`

C
i+1

2

= q(L)C
(L)`

F
i+1

2

; finally, the BTC and CBTC are given by the discrete counterparts of

(2.30) and (2.41) respectively.
The discretization of the equations of the DPorM (2.17) and (2.18) is simply obtained

from (4.20) and (4.21) by setting v(L) = 0 and D(L) = 0, ε(H)n(H) = nmob, ε(L)n(L) = nim,
v(H) = v, D(H) = D, C(H) = Cmob, C(L) = C im, M (H) = M and M (L) = 0.

4.3 Validation of the codes by comparison with the results of the ana-
lytical models and of HYDRUS-1D

The numerical scheme described in sections 4.1 and 4.2 for the solution of the single and
dual domain models has been implemented in an original FORTRAN code, which was
validated by comparing its results both with the analytical solutions presented in chapter
3 and with the numerical solutions obtained with the software HYDRUS-1D. The com-
parison has been performed for the transport simulation corresponding to the boundary
conditions presented in section 2.5: an instantaneous injection of a conservative solute in
a semi-infinite domain, initially free of solute, with a steady state saturated water flow
and unitary hydraulic gradient.

Table 4.3 shows the input parameters of the different transport models that have been
used for the code validation.
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Model Parameter Value Unit
SDM D 9.05 · 10−4 m2s−1

v 2.45 · 10−3 m s−1

n 0.2
M 0.2766 kg m−2

DPorM D 9.05 · 10−4 m2 s−1

v 2.45 · 10−3 m s−1

nmob, nim 0.2
α 10−7 s−1

10−4 s−1

10−2 s−1

M 0.2766 kg m−2

UDPerM and CDPerM D(H) 8.49 · 10−4 m2 s−1

D(L) 5.83 · 10−5 m2 s−1

v(H) 3.15 · 10−3 m s−1

v(L) 1.81 · 10−3 m s−1

ε(H) 0.475
n(H), n(L) 0.2
M (H) 0.3556 kg m−2

M (L) 0.2043 kg m−2

M 0.2762 kg m−2

α 1.05 · 10−4 s−1

1.05 · 10−3 s−1

1.05 · 10−2 s−1

Table 4.3: Input parameters of the transport models used for the code validation.

4.3.1 HYDRUS-1D

HYDRUS-1D (Šimůnek et al., 2009, 2005; Šimůnek and van Genuchten, 2008) is a pub-
lic domain software package for simulating the one-dimensional movement of water,
heat and multiple solutes in variably saturated porous media. HYDRUS-1D numerically
solves, with a finite element technique, Richards’ equation for saturated and unsaturated
water flow and Fickian-based advective dispersive equations for heat and solute trans-
port; moreover, it implements several approaches for simulating nonequilibrium water
flow and solute transport, as the the dual-porosity model developed by van Genuchten
and Wierenga (1976) and the dual-permeability model developed by Gerke and van
Genuchten (1993) and Gerke and van Genuchten (1996), so that it is well suited for the
validation of the codes that implement the single and dual domain models considerd in
this work.

Notice that, in the case of the DPerM, HYDRUS-1D and our model do not share the
same strategy to determine the distribution of the solute injected in the porous medium
between the two domains. In fact, HYDRUS-1D assumes that at the upstream boundary
of the domain the local flux-averaged concentration in the fracture (fast domain in our
DPerMs) equals the local flux-averaged concentration in the matrix (slow domain in our
DPerMs), i.e., C(H)

F (0, t) = C
(L)
F (0, t) = CF (0, t), whereas we assume that, in general,

C
(H)
F (0, t) can be different from C

(L)
F (0, t), as implied by boundary conditions (2.56) or
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(2.57). In other words, the mass of solute that enters the fractures per unit volume of
solution in the fractures and the mass of solute that enters the matrix per unit volume
of solution in the matrix are the same in HYDRUS-1D, whereas they can be different
according to our model.

Therefore, in order to compare the results of our model with those of HYDRUS-1D,
the values of M (H) and M (L) had to be chosen in such a way that C(H)

F (0, t) = C
(L)
F (0, t).

Considering (2.56) or (2.57), this condition is equivalent to:

M (H)

q(H)
=
M (L)

q(L)
,

which, taking (2.58) into account, corresponds to:

M (H) = M
q(H)

q
, M (L) = M

q(L)

q
. (4.22)

The values reported in Table 4.3 satisfy this condition.
As a consequence, once the parameters M , n(H), n(L), ε(H), ε(L), v(H) and v(L) are

fixed, M (H) and M (L) are known in HYDRUS-1D from (4.22); in our CDPerM, instead,
one of the two parameters M (H) and M (L) remains unknown, but the other is deter-
mined from equation (2.58). Therefore, as will be shown in section 5.2.1, M (H) is one of
the parameters to be estimated for the calibration of the CDPerM.

Moreover, HYDRUS-1D implements the expression of Gerke and van Genuchten
(1996) for the mass transfer term, which is slightly different from the form proposed
by Gerke and van Genuchten (1993) and reported in equation (2.39). Therefore, the sim-
ulations of HYDRUS-1D have been performed setting Γw to zero, while the solute mass
transfer coefficient αs, which is denoted as ωdp in Šimůnek et al. (2009) and Mass.Tr. in
the HYDRUS-1D interface, is set to α/

(
ε(L)n(L)

)
, as observed in section 2.4.2.

For convenience, the correspondence between the parameters of the SDM and DDMs
and those of HYDRUS-1D is summarized in Table 4.4, which includes only the HYDRUS-
1D parameters that are relevant to the simulations that are used for the model validation
in this work; it is understood that all the parameters related to reactions, sources and
sinks of solute, to the presence of multiple and multiphase solutes must be properly set
to simulate the transport of a single, liquid phase, non-reactive solute in a medium with
no sources or sinks.

Moreover, since the solute transport is simulated for a steady state saturated flow,
the pressure head in the simulations of HYDRUS-1D is not computed from Richards’
equations, but remains fixed to the initial value, which is set in such a way that∇h = 1.

4.3.2 Results

For the different transport models described in chapter 2, Figure 4.3 compares the con-
centration in x = L as a function of time computed by our numerical model with those
computed by HYDRUS-1D and, in the cases of the SDM and the UDPerM, also with the
analytical solution reported in chapter 3. Figure 4.3 shows that the numerical results
agree very well both with the analytical solutions and with the solution computed by
HYDRUS-1D.

Moreover, interesting observations about the effect of solute exchange terms of dif-
ferent magnitude can be made by inspection of Figure 4.3.

For example, in the case of the DPorM, low and high values of the exchange term
determine solutions that can be described well also by the SDM, as can be seen from
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HYDRUS-1D SDM and DDMs
Symbol in the
user interface

Description Correspondent quantity

SDM
Qs saturated water content n
Ks saturated hydraulic conductivity nv/∇h
Disp longitudinal dispersivity D/v
DPorM
Qs saturated water content for the mobile

region
nmob

QsIm saturated water content for the immo-
bile region

nim

Ks saturated hydraulic conductivity nv/∇h
Disp longitudinal dispersivity D/v
Alpha mass transfer coefficient for solute ex-

change between mobile and immobile
liquid regions

α

DPerM
Qs saturated water content for the matrix n(L)

QsFr saturated water content for the fracture n(H)

Ks saturated hydraulic conductivity for
the matrix

n(L)v(L)/∇h

KsFr saturated htdraulic conductivity for the
fracture

n(H)v(H)/∇h

Disp.M longitudinal dispersivity for the matrix D(L)/v(L)

Disp.F longitudinal dispersivity for the frac-
ture

D(H)/v(H)

w ratio of the volume of the fracture do-
main and the total soil system

ε(H)

Mass.Tr. mass transfer coefficient for solute
transfer between matrix and fracture

α/
(
ε(L)n(L)

)
Bound.Cond. concentration flux boundary condition CF (0, 0) = M/(nvT )

Table 4.4: Correspondence between the parameters of HYDRUS-1D and the parameters of the
SDM and DDMs.

graphs b) and d), whereas for intermediate values of the exchange the effect of dual-
porosity becomes important (graph c)). This is in agreement with the discussion made
in section 2.4.1.

For the CDPerM, low values of the exchange term correspond to the situation of two
nearly independent domains as in the UDPerM, so that the solution in each of the two
domains is well described by the SDM, as shown in graphs e) and f). The relevance of
the CDPerM with respect to the UDPerM becomes apparent for intermediate values of
the exchange term - graph g) - whereas for large values of the exchange term the two
domains exchange solute so fast that they can be considered at equilibrium, so that the
solution of the CDPerM can be described well also by the SDM - graph h).
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Figure 4.3: Comparison of the solute concentrations computed by our numerical model with those
of HYDRUS-1D and with the analytical solution, for the geometry, initial and boundary conditions
described in the text: SDM (a); DPorM (b, c, d, with α = 10−7 s−1, 10−4 s−1, 10−2 s−1 respectively);
UDPerM (e); CDPerM (f, g, h, with α = 1.05 ·10−4 s−1, 1.05 ·10−3 s−1, 1.05 ·10−2 s−1 respectively).



CHAPTER 5

Calibration of the transport models

The transport models described in chapter 2 depend on a number of parameters that
are characteristic of the particular site and are linked to the hydrogeologic features of
the soil, to the types and proportions of the facies, to their organization and degree of
connectivity. As observed by Köhne et al. (2009), the ongoing research is looking for
“easily measurable proxy variables to represent the missing link between soil structure
and model parameters”. Without such a link, the parameters of a transport model can
be estimated through its calibration, that is, by fitting the experimental data, obtained
from proper transport tests, with the predictions of the transport model.

In this chapter, the methods adopted to calibrate the different transport models are
described. After a brief outline of the Levenberg-Marquardt method, which is the algo-
rithm used for the model fitting, some remarks specific to the models calibration with
the data of the case studies considered in this work are given; in particular, the parame-
ters that must be estimated are listed for each model (SDM, DPorM, UDPerM and CD-
PerM). Moreover, some issues on the uniqueness of the solution of the inverse problem
are briefly discussed.

5.1 The Levenberg-Marquardt method

A thorough, although practical, description of the Levenberg-Marquardt method can be
found in Press et al. (1989); here, only the main concepts are reviewed to fix the notation
and to recall some features that will be useful later.

Given a set of data {yi, i = 1, . . . , Ndata} and a model function y(x; a), that depends
on the parameters a = (a1, . . . , aM ), the calibration or inverse problem consists in finding
the best-fit (or optimal) parameters aopt, i.e., those parameters that give the best fit of the
data with the model. In order to measure the agreement between the data and the model,
a merit (or objective) function is often defined as:

χ2(a) =

Ndata∑
i=1

[
yi − y(xi; a)

σi

]2

, (5.1)

where σi is the standard deviation associated with the measurement of yi. Notice that,
in practice, the measurement errors are never known and estimating σi is not an easy
task. Therefore, a common approach is setting σi to a constant value (σ=1), as discussed
by Press et al. (1989). This is also the approach adopted in this work.

The best-fit parameters aopt are obtained by minimization of the merit function
χ2, which, in general, is a non linear function of the parameters a. The Levenberg-
Marquardt (LM) method is a standard algorithm to achieve this optimization.
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The LM technique smoothly switches between the steepest descent method (far from
the minimum) and the inverse-Hessian method when approaching the minimum.

In the vicinity of a current set of parameters acur, χ2 can be approximated by the
following second order Taylor series:

χ2(a) ≈ χ2(acur) +∇χ2(acur) · δa +
1

2
δaT ·H(acur) · δa, (5.2)

where δa = a−acur, while∇χ2 and H denote, respectively, the gradient and the Hessian
matrix of χ2, whose components are given by:

∇χ2(a)|j =
∂χ2

∂aj
(a) and Hjk(a) =

∂χ2

∂aj∂ak
(a), j, k = 1, . . . ,M.

If a = aopt, then the objective function χ2 has a minimum there, ∇χ2(aopt) = 0, which,
considering (5.2), is equivalent to the following condition:

H(acur) · (aopt − acur) = −∇χ2(acur), (5.3)

and the best fit parameters can be computed through the inversion of the Hessian matrix:

aopt = acur + H(acur)
−1 · [−∇χ2(acur)]. (5.4)

This expression represents the so-called inverse-Hessian method, which permits to com-
pute the best fit parameters when the current set of parameters is not too far from the
minimum, a condition which is necessary so that the approximation (5.2) holds.

Considering the definition of the objective function (5.1), the components of ∇χ2 are
given by:

∂χ2

∂aj
= −2

N∑
i=1

[yi − y(xi; a)]

σ2
i

· ∂y(xi; a)

∂aj
= −2βj , j = 1, . . . ,M, (5.5)

while the components of the Hessian matrix H are approximated by:

∂2χ2

∂aj∂ak
≈ 2

N∑
i=1

1

σ2
i

[
∂y(xi; a)

∂aj
· ∂y(xi; a)

∂ak

]
= 2γjk, j, k = 1, . . . ,M, (5.6)

as the second order derivatives of y are neglected, following the motivations of Press
et al. (1989). They also observe the important fact that the approximation of the Hessian
matrix H has no effect at all on which final set of parameters is reached, but affects only
the iterative route that is taken in getting there; in fact, the condition at the minimum is
that ∇χ2(aopt) = 0, independently of how H is approximated.

For convenience of notation, the vector β = −∇χ2/2 and the matrix γ = H/2 have
been introduced in equations (5.5) and (5.6), so that equation (5.3) can be rewritten as:

γ · δa = β, (5.7)

where δa = anext − acur and anext indicates the next approximation of the parameters in
the iterative procedure.

Far from the minimum, the Taylor expansion (5.2) is not a good approximation and,
instead of the inverse-Hessian method, the steepest descent method can be used; this
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method consists in iteratively approaching the minimum by a succession of steps in the
parameter space down the gradient of the objective function:

δaj = − 1

λHjj

∂χ2

∂aj
, j = 1, . . . ,M, (5.8)

where λ is a positive dimensionless coefficient.
Equations (5.4) and (5.8) can be combined in the following way:

γ′ · δa = β, (5.9)

where the matrix γ′ is defined as:

γ′jk =

{
γjk if j 6= k,
γjk(1 + λ) if j = k,

For large values of λ, the matrix γ′ is forced to be diagonally dominant and (5.9) re-
duces to the steepest descent formula (5.8), whereas, for small values of λ, equation (5.9)
reduces to the inverse-Hessian formula (5.4).

The LM algorithm can then by summarized as follows: starting from an estimate of
the parameters a0:

1. the objective function χ2(a0) is computed;

2. λ is set to a small value, e.g., λ = 0.001;

3. nth iterative step:

(a) equation (5.9) is solved for δa, and the trial estimate is computed as atr =

a(n−1) + δa;

(b) if χ2(atr) ≥ χ2
(
a(n−1)

)
, then the value of λ is increased by a factor 10, the

current estimate of the parameters is not changed, i.e., a(n) = a(n−1) and
χ2
(
a(n)

)
= χ2

(
a(n−1)

)
, n = n + 1, and the algorithm goes back to point

3;

(c) if χ2(atr) < χ2
(
a(n−1)

)
, then the value of λ is decreased by a factor 10, the

current estimate is updated, a(n) = atr, n = n + 1, and the algorithm goes
back to point 3.

5.1.1 The stopping criterium of the iterative LM process

Press et al. (1989) suggests to stop iterating on the first or second occasion that χ2 de-
creases by a negligible amount, e.g., less than 0.01 absolutely or some fractional amount
like 10−3.

In this work, it was chosen to stop the iterative process when

χ2
(
a(n−1)

)
− χ2

(
a(n)

)
< ε, (5.10)

with ε = 10−6, for at least 20 successive iterative steps. This choice is motivated by the
following facts:
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• at each iterative step at which condition 0 < χ2
(
a(n−1)

)
− χ2

(
a(n)

)
< ε holds,

λ is divided by a factor 10 (see step 3(a) of the LM algorithm), so that, after 20
successive iterative steps in which the same condition holds, λ has decreased by
20 orders of magnitude; this means that the algorithm is very close to the mini-
mum and that further iterative steps would not lead to significant variations in the
estimated parameters;

• at each iterative step at which condition χ2
(
a(n−1)

)
− χ2

(
a(n)

)
= 0 holds, λ is

multiplied by a factor 10 (see step 3(b) of the LM algorithm), so that, after 20 suc-
cessive iterative steps in which the same condition holds, λ has increased by 20
orders of magnitude, a value so high that (5.9) reduces to (5.8), which in turn re-
duces to δa = 0; in other words, the parameters are no more updated and it is not
meaningful to continue the iterative process;

• finally, condition (5.10) can alternate between the two previous conditions, either
0 < χ2

(
a(n−1)

)
− χ2

(
a(n)

)
< ε or χ2

(
a(n−1)

)
− χ2

(
a(n)

)
= 0 during the 20 iter-

ative steps; as a consequence, λ is alternatively multiplied or divided by 10. This
is what happens when the algorithm is moving in unsteep degenerate valleys of
the parameter space; in this case, it is not meaningful to continue the iterative pro-
cess, since the algorithm would remain confined in an almost flat region of the
parameter space.

This stopping criterion does not guarantee that the best fit parameters given by the al-
gorithm actually represent a good minimum for the objective function, as it happens if
the algorithm remains confined in a flat region of the parameter space, or if some of the
parameters yielded by the algorithm have unphysical values.

Moreover, the objective function can have a complex shape in the parameter space,
with several local minima (see also section 5.2.2). Since the LM method is not a global
optimization method, the best fit parameters found by the algorithm may represent a
local minimum.

These observations highlight the importance of running the algorithm with several
initializations, in order to sample a good part of the parameter space, and then to analyse
the results for each initialization to assess if a reliable global minimum has been found.

5.1.2 Covariance, correlation and conditioning of the problem

The LM algorithm gives, together with the optimal parameters aopt, the corresponding
covariance matrix, estimated as Γ = γ−1, that is, half the inverse of the Hessian matrix
H(aopt).

The correlation matrix can be computed from the covariance matrix as:

ρij = Γij(ΓiiΓjj)
−1/2.

The computation of the covariance and correlation matrices for the optimal parame-
ters requires the inversion of the Hessian matrix and, as a consequence, can be affected
by its possible ill-conditioning. In order to analyze this problem, the condition num-
ber κ2 of the Hessian matrix can be computed as the ratio of its maximum to minimum
absolute eigenvalue. It is clear that the problem of the possible ill-conditioning of H af-
fects every step of the minimization process, since every step requires, for the solution
of (5.9), the inversion of γ′, which is related to H, relative to the current set of param-
eters. Nevertheless, in this thesis only the conditioning at the end of the minimization
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process is investigated. In fact, as already mentioned, the approximation of H during the
minimization process can affect the path followed in the parameter space to arrive at the
optimal values aopt, but not the values themselves, so that the possible ill-conditioning
of H has not shown any problem in the LM minimization.

5.2 Specific aspects of the calibration of the SDM and DDMs

5.2.1 Parameters to be estimated

Table 5.1 lists the parameters to be estimated for the calibration of the different transport
models described in chapters 3 and 4 with the data of the case studies considered in this
work.

As will be explained in chapters 6 and 7, the transport models are calibrated with
experimental data ofM in case studies A and B, of CF in case study C and of C in case
study D. The corresponding objective functions are then defined in each case by setting
y to the proper quantity (M, CF or C) in the general form of the objective function (5.1).

For each model, it is assumed that the injected mass per unit surface, M , and the
porosity, n, are known parameters, as well as the local porosities of the two domains
of the DPerMs which are assumed to be equal to the porosity of the medium: n(H) =

n(L) = n. Notice that this assumption does not imply the equality between the volumes
of solution (pore water) in the two domains. In fact, V (H)

p = ε(H)n(H)V and V
(L)
p =

ε(L)n(L)V , and, in general, ε(H) 6= ε(L).
For the numerical models, the parameters indicated in Table 5.1 are valid both for

a pulse and for a step injection, and for experimental data of M, qc, CF or C; on the
other hand, for the analytical SDM and UDPerM the parameters listed in the table are
intended for the case of a pulse injection, as this is the only case for which the analytical
solutions have been derived. Moreover, for the analytical UDPerM it is assumed that the
experimental data to be fitted refer to the CBTC,M, or to the solute flux, qc, that is the
model function y is represented by equation (3.18) or (3.17); it is important to notice that
these functions depend on the product ε(H)M (H), but not on the two parameters ε(H)

and M (H) separately.
On the other hand, as shown in section (4.2), in order to numerically solve the equa-

tions of the DPerMs, both parameters M (H) and ε(H) must be specified, while ε(L) and
M (L) are computed with the constraints (2.25) and (2.58).

As a consequence, when the experimental data refer to qc orM, the calibration of the
analytical UDPerM requires the estimation, among the other parameters, of the product
ε(H)M (H), whereas for the calibration of the numerical UDPerM the two parameters ε(H)

and M (H) must be estimated separately.
Finally, Table 5.1 shows that the number of parameters to be estimated ranges from

two for the SDM to seven for the CDPerM.

5.2.2 Computational issues

Adaptive integration

When the model output to be used for the calibration of the analytical SDM and UD-
PerM is the CBTC, i.e., y = M, the integrals which appear in (3.11) and (3.18), and in
the derivatives of the CBTC with respect to the model parameters, which are required
by the LM algorithm to compute the vector β, must be numerically calculated for a large



Calibration of the transport models 51

Model Solution
method

Parameters to be estimated

SDM analytical/ nu-
merical

2 D, v

DPorM numerical 4 D, v, nmob, α
UDPerM analytical 5 D(H), D(L), v(H), v(L), ε(H)M (H)

UDPerM numerical 6 D(H), D(L), v(H), v(L), ε(H),M (H)

CDPerM numerical 7 D(H), D(L), v(H), v(L), ε(H),M (H), α

Table 5.1: Parameters to be estimated for the calibration of the different transport models; it is un-
derstood that the analytical solution method refers to the pulse injection only, i.e., to the analytical
models developed in chapter 3, while the numerical solution method refers both to the pulse and
to the step injection, as described in chapter 4. The parameters listed for the analytical UDPerM
are based on the assumption that the model function is the BTC or CBTC.

set of different values of the parameters a. For some set of parameters, the BTC may
have a narrow peak, and a very thin time dicretization is required to correctly compute
its integral. Such a fine discretization is clearly unnecessary far from the peak and it is
unnecessary also for other sets of parameters, for which the BTC has a wide peak; more-
over, a systematically fine discretization would significantly slow down the execution of
the code. Therefore, an accurate calculation of these integrals has been obtained with an
adaptive integration (McKeeman, 1962; Lyness, 1969; Forsythe et al., 1977), which allows
to refine the time grid used for the computation of the integrals only when necessary, that
is, when the integrand is rapidly varying.

Specifically, in the case of the analytical SDM, the peak time tpeak of the BTC corre-
sponding to a set of parameters a is obtained from (3.10):

tpeak =
3D

v2

√1 +

(
Lv

3D

)2

− 1

 . (5.11)

Then, the adaptive integration can correctly take into account even a very narrow
peak as follows. If {τn, n = 0, . . . , Ndata}, with τ0 = 0, is the set of times at which the
CBTC of the SDM (3.11) is computed, and n̄ is the index such that τn̄ < tpeak < τn̄+1,
then the CBTC at the generic time τk > tpeak is computed as:

M(τk) =

n̄−1∑
n=0

I(τn, τn+1) + I(τn̄, tpeak) + I(tpeak, τn̄+1) +

k−1∑
n=n̄+1

I(τn, τn+1),

where I(a, b) denotes the approximation of the integral
∫ b
a
qc(t

′) dt′ with the adaptive
integration technique. For τk < tpeak the expression above reduces to:

M(τk) =

k−1∑
n=0

I(τn, τn+1).

In the case of the analytical UDPerM, the integral in (3.18) is computed by adding the
two integrals corresponding to the (H) and (L) domain, which are separately computed
with the same technique described above for the SDM, where the proper peak times t(H)

peak

and t(L)
peak, given by expressions similar to (5.11), must be considered.
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In the case of the numerical models, the time grid defined in section 4.1.2 is never
too coarse, in order to prevent numerical instability; therefore, the computation of the
integrals of the BTC and of its derivatives is simply obtained with the trapezoid rule.

Uniqueness issue for the solution of the inverse problem

As observed in section 5.1.1, the minimization of the objective function with the LM
algorithm has been performed starting from several initializations in the parameter
space. The best-fit parameters obtained for each initialization can represent the abso-
lute (global) or a relative (local) minimum; in some cases, the objective function at the
relative minima may have a small difference with respect to the absolute minimum, so
that an accurate analysis is necessary to assess which minimum is physically more sup-
ported (as an example, see the discussion in section 6.1.6).

Moreover, for some initializations, the LM algorithm suffers from the well-known
problem of gradient-type approaches, i.e., the search for the best-fit parameters can fall
in regions of the parameter space where the objective function is almost constant so that
a minimum cannot be found, as already discussed in section 5.1.1. In the following, the
term “good initializations” will be used to indicate those initializations that let the LM
algorithm work outside regions of the parameters space where either the graph of the
objective function is flat or the parameters assume unphysical values.

As an example, for one of the numerical transport experiments of case study A (see
section 6.1), Figure 5.1 shows the graph of the objective function, defined as the misfit
between the experimental CBTC and the CBTC predicted by the SDM, in the parameter
space (D, v). The two graphs in Figure 5.1 refer to the same example, with the difference
that plot a) has been obtained without the use of the adaptive integration. Plot b) shows
that in large regions of the parameter space the graph of the objective function is nearly
flat; if the initialization is chosen in these area, it is unlikely that the LM algorithm can
reach the minimum.

Moreover, multiple minima may arise from numerical errors in the forward solution
of the transport models, which can contribute to the roughness of the surface represent-
ing the objective function in the parameter space.

This is illustrated, e.g., by the previous example in Figure 5.1: if the adaptive integra-
tion is not used, the graph of the objective function changes significantly with respect
to the case in which the integrals in the CBTC and in its derivatives are properly and
accurately computed; in particular, Figure 5.1a shows two valleys, only one of which
contains the minimum, so that the presence of the second valley may prevent the LM
algorithm to find the minimum, as the iterative algorithm may be stuck in the wrong
valley.

Notice that Figure 5.1b) shows the presence of a single minimum of the objective
function. Nevertheless, for the more complex DDMs, for which the objective function
is defined in a parameter space of higher dimension, the issue of the non-uniqueness of
the solution of the inverse problem arises, as will be highlighted by the results of the
calibration of the analytical UDPerM for case study A (see section 6.1.6).

Although some algorithms have been proposed to overcome the difficulties related
to the presence of local minima, e.g., simulated annealing (see, e.g., Press et al. (1989) and
Kirkpatrick et al. (1983)) or genetic algorithms (see, e.g., Goldberg (1989)), nevertheless
their application to practical problems with complex objective functions is not yet fully
satisfactory and a posterior analysis of the results of the minimization from the physical
point of view, still appears to be a better approach.
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a) b)

Figure 5.1: Graph of the objective function, measuring the misfit between the experimental and
model CBTCs, in the parameter space (D, v) (logarithmic scale), for the SDM. a) without adap-
tive integration; b) with adaptive integration. The arrows indicate the gradient of the objective
function.



CHAPTER 6

Application of the transport models: interpretation of
numerical tracer tests

This chapter and the following chapter 7 are devoted to the description of the four case
studies of tracer tests analyzed in this work and to the presentation of the results of the
interpretation of these tests with the different single and dual-domain models developed
in the previous chapters. Specifically, this chapter deals with two case studies (A, sec-
tion 6.1, and B, section 6.2) represented by numerical transport experiments conducted
on blocks of sediments from “virtual” aquifers, which have been reconstructed with a
stochastic simulation on the basis of field data. The two case studies are characterized by
different depositional environments and by different spatial scales (meter scale for case
study A and decameter scale for case study B).

The analyses performed for case studies A and B share the same main steps:

1. development of the geological and hydrostratigraphical model;

2. geostatistical simulation of the block of sediments, conditioned by the data result-
ing from step 1., in order to obtain the hydrofacies and hydraulic conductivity
distibution in space;

3. development of the flow model;

4. performance of 3D numerical tracer tests with a particle tracking technique, in
order to simulate an instantaneous injection of solute in the blocks of sediments;

5. interpretation of the results of the numerical tracer tests with the different 1D single
and dual-domain transport models.

For case study A, steps 1. to 3. were the subjects of the Master thesis of Giulio Zappa
(Zappa, 2002), whereas step 4. was performed by Laura Cattaneo in her Master thesis
(Cattaneo, 2008). For case study B, steps 1. to 4. are part of the PhD thesis of Diana
dell’Arciprete (dell’Arciprete, 2010). These results have been published on international
journals (Zappa et al., 2006; Vassena et al., 2010; dell’Arciprete et al., 2012a,b), as ex-
plained in detail in the following sections. The original work of this thesis is related to
step 5. for both case studies.

6.1 Case study A. Numerical tracer tests on meter scale blocks of sedi-
ments from an alluvial aquifer in the Ticino basin (Northern Italy)

The first case study has been presented and thoroughly described by Zappa et al.
(2006); it consists of three prismatic blocks of sediments (model blocks, MBs), some
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cubic meters in volume, dug at a quarry site into real sediments belonging to the
Pleistocene sequences of the Ticino basin (Piedmont, Northern Italy) and, specifically,
to the Albusciago Alloformation unit, which provides a good glacio-fluvial aquifer
analogue. The details of the sedimentological description can be found in Zappa et al.
(2006), together with the methods and results of the 3D geostatistical simulation and the
flow modeling of the MBs, with the computation of the upscaled tensor of equivalent
conductivity at the MB scale. For the Reader’s convenience, the main concepts are
recalled in section 6.1.1. The description of the numerical tracer tests performed on the
MBs can be found in Vassena et al. (2010) and a corresponding summary is given in
section 6.1.2. The experimental data are presented and discussed in section 6.1.3 and the
objective functions used to calibrate the transport models are defined in section 6.1.4.
Section 6.1.5 outlines the analysis performed to interpret the experimental data with
the different transport models, whose results are presented in sections 6.1.6 to 6.1.10.
Finally, some concluding remarks are given in section 6.1.11.

6.1.1 Geological and hydrostratigraphic features and geostatistical simulations of
the blocks of sediments

The MBs are representative of common sedimentary facies: MB1 was dug into a
sand dune above a gravel/sand cross-laminated bar unit, MB2 into a cross-stratified
gravel/sand bar with patches of open framework clean gravel and MB3 into mostly
disorganized gravel-sands; the three MBs are then representative of sand-gravel dunes
(MB1), gravel bedforms (MB2) and poorly sorted, mass gravity deposits (MB3).

As described by Zappa (2002) and Zappa et al. (2006), a sedimentological descrip-
tion was obtained for each block, resulting in the facies classification of the sediments
belonging to the lateral faces of the blocks.

Subsequently, porosity and permeability of the different facies were estimated com-
paring the results of laboratory analyses of samples of hydrofacies with empirical for-
mulas and with literature data. In particular, porosity and permeability of sand-grade
sediments were estimated by laboratory measurements of volumetric samples and by
laboratory permeability tests on undisturbed and oriented samples; six samples of sands
were collected, two for each direction, from MB1 (Zappa, 2002). The permeability of the
fine gravel-grade sediments were estimated by comparing the results obtained with the
Hazen’s and Kozeny-Karman’s empirical formulas and with literature data (Zappa et al.,
2006); two samples were collected from MB1 for such permeability estimates. Finally,
three infiltration tests, one for each MB, were performed in sites chosen in such a way
to sample a small number of facies. Each test consisted of two or three repetitions of a
two phase procedure: the first phase was conducted with a stationary head, the second
phase with a time varying head (Zappa, 2002).

The facies maps of the lateral faces of the blocks were then analyzed from an hy-
drogeologic point of view in order to group the different lithological facies, according to
their texture, structure and estimated conductivity value, in six operative facies1, namely
“pebbles and cobbles” (L, with null hydraulic conductivity), “fine sand” (fS, K = 10−4

m/s), “coarse to medium sand” (cS, K = 5 · 10−4 m/s), “sandy gravel (poorly sorted)”
(SG, K = 6 · 10−4 m/s), “fine sandy gravel (well sorted)” (fSG, K = 2 · 10−3 m/s) and
“open framework gravel” (G,K = 5·10−2 m/s). The operative facies L1/2 (K = 2.8·10−5

m/s) was used only for MB3 to consider the cobbles which occupy at least one half of
two adjacent cells (see Figure 5 of Zappa et al. (2006)).

1In the following, the terms facies or hydrofacies will be often used for these operative facies, for the sake
of simplicity.
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The hydrofacies maps of the lateral faces of each block were then discretized with 2
cm resolution and used to condition the 3D geostatistical simulation of the sediment vol-
umes, obtained by Zappa et al. (2006) with a hierarchical modification of SISIM (Sequen-
tial Indicator Simulation). This method allows an efficient reproduction of the external
geometry of individual sedimentary units and the simulation of their internal architec-
ture. In particular, successive geostatistical simulations are realized for each facies and
the simulation of the smallest elements of the sedimentary architecture are conditioned
to the results of the simulation of the higher order bounding surfaces. The single geosta-
tistical simulations are finally merged. Therefore, in order to simulate each block, many
variograms have to be computed, one for each of the successive geostatistical simula-
tions, which are performed with SISIM. These variograms, that can be found in the Mas-
ter thesis of Zappa (2002), showed that MB1 is characterized by a horizontal anisotropic
behaviour for the most abundant operative facies fS, cS and SG, for which the verti-
cal variograms have short ranges (0.15 m to 0.3 m). MB2 is characterized by vertical
ranges which are about 9 times shorter than horizontal ranges, showing a high degree
of heterogeneity along the vertical direction, which results in an approximately layered
conductivity field. The most abundant facies for MB3 are SG and fSG, for which the
horizontal variograms have long ranges (2-3 m) and indicate anisotropy. For all three
blocks the vertical and horizontal variograms for facies L are characterized by very short
ranges and a high nugget effect, indicating that this operative facies, that represents peb-
bles and cobbles, is uncorrelated even at short distances and is randomly distributed in
the volumes of sediments.

The geostatistical simulation permitted to obtain, for each block, the facies distribu-
tion and, consequently, the hydraulic conductivity field, with a resolution of 2 cm. Figure
6.1 shows the results of the geostatistical simulations and reports the size of the blocks.

All the three blocks are heterogeneous, but show different architectures and organi-
zation of the hydrofacies. Table 6.1 reports some parameters that highlight the different
structures of the blocks, i.e., the variance of the logarithm of the hydraulic conductiv-
ity, var[lnK], which is commonly used to quantify the heterogeneity, and, for the most
conductive hydrofacies G, the fraction of the total volume and the intrinsic connectiv-
ity, which is one of the new hydrofacies connectivity indicators, together with the total
and normal connectivities, introduced by Vassena et al. (2010), where a comparison with
other connectivity indicators already proposed in the literature can be found. For con-
venience, the definition of the intrinsic connectivity is here recalled.

Let Ωp be a subset of the volume Ω composed by the hydrofacies p. Two points
x ∈ Ω and y ∈ Ω are connected (x ↔ y) if there is a continuous path linking them
and belonging to a single hydrofacies, i.e., belonging to Ωp for some p. The intrinsic
connectivity C∗p of the hydrofacies p is defined as the probability that two distinct points
belonging to Ωp are connected, that is:

C∗p = P [x↔ y|x ∈ Ωp,y ∈ Ωp,x 6= y]. (6.1)

In practice, if the domain Ω is discretized with N points, if Np is the number of points
belonging to Ωp and Cp the number of non-trivial connections in Ωp, i.e., avoiding trivial
connections that correspond to a path linking a node with itself, then the intrinsic con-
nectivity can be estimated as the ratio between Cp and the number of pairs of distinct
points belonging to Ωp:

C∗p = Cp · [Np (Np − 1) /2]
−1
. (6.2)

In other words, the intrinsic connectivity is normalised (or conditioned) to an event re-
lated to the p facies only, so that it is an indicator of the connectivity of a facies within
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itself.
Table 6.1 shows that var[lnK] for MB2 and MB3 is about two times that for MB1; MB2

is the block with the highest percentage of gravel; moreover, the intrinsic connectivity of
gravel for MB1 and MB2 is about two orders of magnitude larger than that of MB3, which
means that gravel is randomly distributed in MB3, while it is organized in connected
volumes in MB1 and MB2.

(a) (b)

Length [m] MB1 MB2 MB3
Lx 2.38 3.20 3.50
Ly 2.42 2.30 2.44
Lz 0.50 0.54 0.60

(c)

Figure 6.1: Results of the 3D geostatistical simulation of (a) MB1, (b) MB2, (c) MB3; the pie charts
represent the facies proportions. Each color corresponds to one of the different operative facies
described in the text: L, fS, cS, SG, fSG and G. The Table lists the length of the MBs along each
direction. Modified from Zappa et al. (2006) and Vassena et al. (2010).

MB1 MB2 MB3
var[lnK] 1.52 3.61 3.21
Fraction of G 0.02 0.16 0.06
Intrinsic connectivity of G 0.3 0.4 0.004

Table 6.1: Variance of the logarithm of the hydraulic conductivity, var[lnK], fraction of the total
volume occupied by the hydrofacies G (open framework gravel) and intrinsic connectivity of G.

6.1.2 Numerical experiments of non-reactive solute transport

Some numerical experiments of non-reactive solute transport were performed on these
MBs, as described by Vassena et al. (2010). Each block was discretized in a square grid
with a spacing of 2 cm, which is the same resolution of the conductivity field. The flow
field was then computed with a conservative finite difference model for steady state
saturated flow, where the internode conductivity was computed with harmonic aver-
aging. Convective transport was modelled with a particle tracking technique based on
the trilinear interpolation of the velocity and the integration of the motion equation of
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each individual particle with a Runge Kutta fourth-order method (Anderson and Woess-
ner, 1991). Reaction or local diffusion terms were neglected. Moreover, for the sake of
simplicity, a constant porosity n = 0.2 was assumed. For each MB, six numerical experi-
ments were conducted, by fixing the flow direction along the cartesian axes: notice that
the horizontal axes run along the SN and WE directions. The following boundary con-
ditions were assigned to simulate the flow field of each test: constant heads on the two
faces perpendicular to the mean flow direction (unit hydraulic gradient) and no flow
along faces parallel to the mean flow direction. The numerical experiments simulate an
instantaneous injection of a certain mass of solute through the upstream face of each
block, where about 3000 particles have been injected with a distribution proportional to
Darcy’s velocity in order to reproduce the experimental conditions of a laboratory test
on the whole block. A graphical representation of the results of some of these numerical
experiments is showed in Figure 6.2.

As described by Vassena et al. (2010), in the case of MB1, many particles travel in two
fast sub-plumes corresponding to two PFPs along the WE direction, whereas most of the
particles travel with the same velocity along the SN direction. In the case of MB2, fast
PFPs are apparent in both flow directions, as a result of the high connectivity of gravel
in this block. Finally, MB3 appears to be more isotropic, as a result of the random het-
erogeneity observed from the results of the geostatistical simulation; in fact, the particles
travel in both directions with approximately the same velocity, without the development
of faster sub-plumes.

Vassena et al. (2010) analysed these experiments through the computation of the dis-
persion tensor with a Lagrangian approach, i.e., from the second order moments of the
particle distribution, and the comparison with the longitudinal dispersion coefficient ob-
tained with an Eulerian approach, i.e., by fitting the BTCs with the solution of the ADE.

This case study was further analysed by Baratelli et al. (2011) and Baratelli et al.
(2012), where both single and dual-domain models have been applied to interpret the
results of the numerical experiments, as will be shown in the following sections.

6.1.3 Experimental data

The “experimental” data are the results of particle tracking numerical experiments; for
each MB and for each flow direction along the cartesian axes, the virtual field data are
then given by the arrival times τi, i = 1, . . . , Np, of the Np solute particles at the down-
stream face of the block. The arrival times of the fastest and the slowest particles are de-
noted respectively as tmin = min{τi, i = 1, . . . , Np} and tmax = max{τi, i = 1, . . . , Np},
whereas tP% denotes the time at which P% of the total particles injected has arrived at
the end of the MB.

The particle tracking transport simulations used to generate data are 3D, but they
are interpreted with 1D transport models along the flow direction. The spatial domain
in which the transport models are solved to fit the experimental data is represented by
[0, L], where L is the length of each MB along the x or y direction, whose values are
reported in Figure 6.1. The temporal domain is given by [0, tmax].

The “experimental” BTC at the downstream border of the block (x = L) and in the
time interval (t, t+ ∆t) can be computed as:

qexp
c (t) =

mpNp(t, t+ ∆t)

A∆t
,

where mp is the mass of each individual solute particle and Np(t, t+ ∆t) is the number
of particles that cross the downstream face of the block, of area A, in the time interval
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Figure 6.2: Evolution of the solute plumes for different flow orientations (WE flow direction in
plots a, c, e; SN flow direction in plots b, d, f) and for the different MBs (MB1 in plots a and b,
MB2 in plots c and d, MB3 in plots e and f). Dots represent the positions of the solute particles; the
color scale refers to the time elapsed from the injection. From Vassena et al. (2010).

(t, t + ∆t): the experimental BTC can then be represented as an histogram, as shown in
Figure 6.5 for three of the six tests.

The experimental histogram for MB1 EW (Figure 6.5a) is clearly bimodal, with two
peaks that correspond to two groups of particles that travel fast in two PFPs with a
moderate contrast of velocity, as shown also by Figure 6.1a.

The experimental histogram for MB2 WE (Figure 6.5b) shows an early peak, corre-
sponding to the fast sub-plume traveling in the wide PFP that is visible in Figure 6.1c,
and a long tail, corresponding to the slower particles of solute.

While the experimental BTCs of MB1 EW and MB2 WE show the typical effects of
the presence of PFPs in the porous medium, the experimental histogram for MB3 WE
(Figure 6.5c), instead, has the typical shape of a single homogeneous domain, as could
be expected by inspection of Figure 6.1e.

The particles used for the particle tracking simulations are about 3000 (see Table 6.2);
a much larger number of particles would have been needed to obtain a sufficient number
of data to accurately estimate the instantaneous BTC. For this reason, it has been chosen
to fit the CBTC, instead of the BTC, with the single and dual-domain transport models.

Differently from the BTC, the “experimental” CBTC can be computed at all the ar-
rival times τi; in particular, the CBTC is computed at times tk, k = 1, . . . , Ndata, where
Ndata < Np, as some particles share the same arrival time. The CBTC is easily obtained
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asMexp(tk) = Np(tk)mp/A, where Np(tk) is the number of particles that have crossed
the downstream face of the block by the time tk, i.e., the number of particles for which
τi ≤ tk.

The values of the injected mass per unit surface M can be obtained from M =
Npmp/A; for simplicity it is assumed that each particle carries a mass of solute numeri-
cally equal to the area A, i.e., mp/A = 1 kg/m2, so that the total mass of solute injected
per unit surface M coincides numerically with the number of injected particles Np.

Moreover, recalling the notation introduced in section 2.5, the r-th order “experimen-
tal” absolute and central moments can be obtained, respectively, as:

M exp
r =

mp

A

Np∑
i=1

τ ri , (6.3)

µexp
r =

mp

AM exp
0

Np∑
i=1

(τi −mexp
1 )r, (6.4)

where mexp
1 = M exp

1 /M exp
0 . Notice that, in agreement with the discussion made in sec-

tions 2.5 and 3.3, M exp
0 = Npmp/A = M , mexp

1 is the average arrival time of the particles
at the outflux face, µexp

2 is the variance of the distribution of the arrival times of the par-
ticles and Sexp = µexp

3 /(µexp
2 )1/2 is the skewness parameter representing the asymmetry

of the distribution. The values of mexp
1 , (µexp

2 )1/2 and Sexp are reported in Table 6.2, to-
gether with the number of injected particles Np. These results indicate that the first three
temporal moments of the BTC cannot be used alone as signs for the presence of PFPs: in
fact, the smallest values ofmexp

1 are obtained for MB2, which is the MB where conductive
hydrofacies are prevailing, as shown is section 6.1.1; nevertheless, mexp

1 can be small be-
cause of the PFPs (as is the case for MB2) but it can be small also if the porous domain is
homogeneous and with high permeability. The highest values of µexp

2 , which correspond
to the widest distributions of the arrival times, are obtained for MB1 EW and MB3 WE,
that is for porous domains with PFPs that determine double peaks in the BTC (as MB1
EW) but also for porous domains with random heterogeneity (as MB3 WE). Finally, in
contrast to the remark of Stagnitti et al. (2000) recalled in section 2.5, the highest skew-
ness S is obtained for both tests on MB3, which in 6.1.1 was shown to be disorganized
and without PFPs.

Model Flow Np mexp
1 (µexp

2 )1/2 S
block direction [s] [s]
MB1 NS 2839 1017 258.9 0.98

EW 2766 914.9 401.7 0.35
MB2 NS 2610 186.3 246.9 4.63

WE 2654 192.7 310.6 3.69
MB3 NS 3573 594.2 362.2 8.22

WE 3604 810.2 416.3 6.42

Table 6.2: Number of injected particles and experimental moments for the different numerical
tests of case study A.
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6.1.4 Objective functions

As mentioned above, the different transport models are calibrated by fitting the experi-
mental CBTC; the following objective function is then defined:

χ2
M(a) =

1

M2Ndata

Ndata∑
i=1

[Mexp(ti)−M(ti; a)]
2
, (6.5)

where a is the array of the parameters to be estimated, which are listed in Table 5.1.
Definition (6.5) clarifies the remark, made in section 4.1.2, about the need to discretize
the temporal domain in such a way that a time level exists for each experimental data,
so that all the contributions to the sum in expression (6.5) can be evaluated.

The analytical models have also been calibrated by minimization of another objective
function, which is based on the misfit between the model and experimental temporal
moments of the BTC m1 and µ2:

χ2
µ(a) = χm1

(a)2 + χµ2
(a)2, (6.6)

where

χm1
(a) =

m1(a)−mexp
1

mexp
1

and χµ2
(a) =

µ2(a)− µexp
2

µexp
2

are the relative errors in the determination of the moments; recall that, as explained in
section 2.5, m1 is the first order normalized moment, i.e., the average arrival time of the
solute, and µ2 is the second order central moment, i.e., the variance of the distribution of
the arrival times of the solute.

In the following, with the expression “calibration (or optimization) with respect to
the CBTC” it is meant the calibration obtained through the minimization of the objective
function χ2

M, defined by (6.5). On the other hand, with “calibration (or optimization)
with respect to the temporal moments of the BTC”, it is meant the calibration obtained
through the minimization of the objective function χ2

µ, defined by (6.6), which takes into
account the moments of the BTC of order r ≤ 2.

6.1.5 Overview of the analysis

In section 6.1.6 the results of the calibration of the analytical SDM and UDPerM, with
respect both to the CBTC and to the temporal moments of the BTC, are presented for
each MB and for each flow direction (see Tables 6.3, 6.4 and 6.6).

For the calibration of the analytical SDM, 2500 initializations have been considered
for each test, resulting from the cartesian product of 50 values of D and of 50 values of v
taken in the intervals [5 ·10−5, 5 ·10−3] m2/s and [2.5 ·10−3, 2.5 ·10−1] m/s, respectively,
with a logarithmic step; these values have been chosen based on the estimates of D and
v given by Vassena et al. (2010).

For the calibration of the analytical UDPerM, 3125 initializations have been consid-
ered for each test, resulting from the cartesian product of 5 values for each of the five
parameters of the analytical UDPerM (see Table 5.1) varying with a logarithmic step in
the following intervals: D(H),D(L) ∈ [5 ·10−5, 5 ·10−3] m2/s, v(H) ∈ [2.5 ·10−3, 2.5 ·10−1]

m/s, v(L) ∈ [5 · 10−5 m/s, v(H)], ε(H)M (H) ∈ [1 kg/m2, M ].
In section 6.1.7 the results of the calibration of the numerical models (SDM, DPorM,

UDPerM and CDPerM) with respect to the CBTC are presented (see Tables 6.7 to 6.10).
In particular, the calibration of the numerical SDM and UDPerM has been performed
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to compare the results with those of the corresponding analytical models, as a further
verification of the codes. The calibration of the DPorM and CDPerM, instead, permits
to investigate the role of the solute exchange term in the description of the transport
experiments and to assess the importance of the coupling between the two domains of
the DDMs. To these aims, only tens of initializations have been considered, for which
the values of the parameters have been chosen based on the results of the minimization
of the analytical models. One test for each MB has been analyzed; in particular, the tests
for which the calibration of the analytical SDM gave the largest values of χM have been
chosen, that is: MB1 EW, MB2 WE and MB3 WE.

In order to quantify the improvement of the fit of the experimental data obtained
with the DDMs with respect to that obtained with the SDM, a parameter ∆ is defined as
the relative difference of the objective function of the DDMs with respect to the objective
function of the SDM:

∆ =
χSDM
M − χDDM

M
χSDM
M

. (6.7)

In other words, ∆ represents the percentage of improvement of the fit of the experimen-
tal data obtained using a DDM instead of the SDM. The values of ∆ are reported in Table
6.5.

Figures 6.3 to 6.6 represent the results of the calibration of the different transport
models with respect to the CBTC, i.e., the outcomes of the optimization of χM. In partic-
ular, Figure 6.3 compares the optimal value of the objective function χM for the different
tests and transport models.

For the two tests in which the UDPerM gives the best improvement over the SDM,
i.e., MB1 EW and MB2 WE, Figure 6.4 represents the experimental and analytical CBTCs
for both the SDM and the UDPerM. The insets show the same curves for t ≤ t60%, so that
the first part of the CBTCs can be focused.

Figure 6.5 represents the BTCs, normalized with respect to M , at the downstream
border of the domain for the following three tests: MB1 EW, MB2 WE and MB3 WE. In
Figure 6.5, the histograms represent the experimental BTC, while the curves represent
the best-fit obtained with the different transport models.

Finally, Figure 6.6 represents the two components of the analytical BTC of the UD-
PerM corresponding to the (H) and (L) domains, i.e., ε(H)q

(H)
c and ε(L)q

(L)
c .

Notice that, as will be discussed later, the results of the numerical SDM and UDPerM
coincide with those of the corresponding analytical models; therefore, in Figures 6.3
to 6.6 it is not necessary to specify whether the curves represent the outcomes of the
analytical or of the numerical models.

In section 6.7 the relevance of the DDMs is analyzed in the framework of multi-
objective optimization: two objective functions are defined, namely the misfit between
the experimental and modelled CBTCs for early and late times, respectively. The geom-
etry of the Pareto frontier is proposed as an indicator to assess the presence of PFPs in
porous media.

6.1.6 Calibration of the analytical models

Analytical SDM: optimization with respect to the CBTC

The minimization of χ2
M with the good initializations has yielded a single minimum for

each test; Table 6.3 reports the corresponding best-fit parameters.
Table 6.3 shows that MB2 is the block with the highest values of D and v for both

directions. MB1 and MB2 present a very different dispersive behaviour along the two
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considered flow directions, with the NS values that are five to six times the values for
the other direction, while MB3 appears to be more isotropic. The velocities, instead, do
not show significant variations with the flow direction. These results are in agreement
with the qualitative interpretation of Figure 6.1.

From the analysis of Table 6.3 it can be argued that MB1 for the NS direction is well
described by the SDM; considering the value of χM, the same conclusion can be drawn
for MB3, even if the value of χµ is quite high. The high values of χM for MB1 EW and
MB2 WE, instead, indicate that in those cases the SDM poorly fits the experimental data,
so that an improvement is expected from the DDM approach.

Table 6.3 also includes the values of χµ, χm1
and χµ2

which are computed for the
values of D and v that yield the minimum of χM: they are quite high, except for MB1
NS, and this is mainly due to χµ2

, whereas |χm1
| ≤ 11%.

Model Flow D v χM χm1
χµ2

χµ
block direction [10−4 m2/s] [10−3 m/s] % % % %
MB1 NS 1.74 2.39 0.49 -0.43 -8.04 8.05

EW 9.05 2.45 3.11 6.17 81.5 81.7
MB2 NS 157 13.8 1.11 -10.6 -55.0 56.0

WE 890 14.7 4.93 6.64 75.7 76.0
MB3 NS 9.74 4.21 0.46 -2.44 -51.5 51.5

WE 10.7 4.44 0.44 -2.64 -50.4 50.5

Table 6.3: Case study A: results of the optimization of χ2
M for the analytical SDM.

Analytical UDPerM: optimization with respect to the CBTC

For the UDPerM the problem of the non-uniqueness of the solution of the inverse prob-
lem arises for the minimization of both χM and χµ.

For all the tests, the LM algorithm finds the absolute minimum for most of the good
initializations. However, the algorithm also finds local minima, that cannot be ignored
a priori, because the difference of the corresponding values of χM with respect to the
absolute minimum is small.

In order to clarify this observation, the most significant minima for each test are listed
in Table 6.4. The criteria applied to select these minima are the fact that the values of χM
and χµ are the smallest available and no parameter attains unphysical values. The third
column of Table 6.4 contains the codes with which the different minima are labelled,
whereas the eighth column lists the ratio ε(H)M (H)/M , which represents the fraction of
the total mass entering the high-K domain, and which gives a better physical insight
than the parameter ε(H)M (H) alone. Finally, the last column reports the fraction ε(H) of
the total domain occupied by the high-K domain, which can be computed from relations
(2.25) and (2.26) as:

ε(H) =
q − q(L)

q(H) − q(L)
,

where the values of q are the estimates of the SDM (Table 6.3).
In some cases, the best-fit parameters of the UDPerM describe a medium which is

equivalent to a single domain medium. For example, the absolute minimum A for the
test MB1 NS corresponds to a prevalent low-K domain, whereas the local minimum
B corresponds to a prevalent high-K domain, but these solutions do not significantly
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differ from each other, because they correspond to similar physical situations. In fact the
values of D and v of the dominant domain – (L) domain for A and (H) domain for B –
are very close to each other. Moreover the relative error in the determination of m1 and
µ2 is slightly less for B than for the absolute minimum A. Finally, minimum C represents
a single (L) domain, whose parameters D and v, as well as the misfit functions, coincide
with those of the SDM (Table 6.3).

Similar remarks apply to the MB2 NS test, for which the absolute minimum A and
the local minima B and C represent similar physical situations in the sense that the pa-
rameters D and v of the dominant domains are close to each other; however, notice that
the value of χµ is the smallest for C. Minimum D corresponds to a nearly single (L) do-
main, whose parameters D and v are quite similar to the solution of the SDM of Table
6.3 and to the parameters of the dominant (L) domain for minimum A and (H) domain
for minima B and C.

For MB1 EW and MB2 WE, only one minimum is listed in Table 6.4 and it char-
acterises a proper dual-domain medium which cannot be accurately described by the
SDM. In particular, for MB1 EW the values of χM for other local minima found by the
algorithm, and not listed in Table 6.4, are more than five times higher and correspond
to the SDM solution. The absolute minimum of χM for the UDPerM is such that the
fraction of the high-K domain is 47.5%, so that this is indeed a dual-domain case, with
v(H) ' 1.7v(L). As expected, the UDPerM greatly improves the fit of the experimental
data: in fact χM and χµ decrease by a factor of 5.6 and 17 respectively from the corre-
sponding SDM values, with ∆ = 82% (Table 6.5). This improvement is evidenced also
by Figure 6.3, which compares the values of the objective function χM for the SDM and
for the absolute minima of the UDPerM.

Concerning MB2 WE, the local minima, which are not listed in Table 6.4, correspond
to the SDM solution of Table 6.3 with a χM value 3.6 times greater than that correspond-
ing to the absolute minimum. The latter represents a dual domain composed of ap-
proximately 6% of high-K domain with a Darcy velocity 10 times greater than the flow
velocity in the low-K domain (v(H) ' 10 v(L)). As expected the UDPerM permits to
improve the solution of the SDM, as χM decreases from 4.93% to 1.36% and ∆ = 72%;
however, the value of χµ still remains high, although it decreases from 76% to 59.9%.

Figures 6.4 and 6.6 highlight some differences between MB1 EW and MB2 WE. In
fact Figure 6.4a shows that both the SDM and the UDPerM provide a good fit of the
experimental data for t < 750 s, whereas for greater times the better performance of
the UDPerM becomes apparent. This is consistent with the interpretation of Figure 6.6a,
which shows that at t ≈ 750 s the first particles travelling in the (L) domain reach the
end of the MB, so that for early times the medium behaves like a single (H) domain. In
the case of MB2 WE, instead, Figure 6.4b shows that the improvement of the fit obtained
with the UDPerM is important at early times (t < 100 s), while for greater times both
models fit the experimental data well. This is consistent with Figure 6.6b, where it is
apparent that the particles of the (H) domain are so fast that they arrive at the end of the
MB for t ≤ 100 s (see also the value of v(H) in Table 6.4); then, for late times, the medium
behaves as a single (L) domain.

Figure 6.5 shows that the UDPerM is able to reproduce both the double peak in the
BTC of MB1 EW and the early peak and the tail in the BTC of MB2 WE.

Concerning the third MB, all the results for MB3 NS reported in Table 6.4 correspond
to a nearly single domain, with the parameters D and v of the dominant domain that
are close to those obtained for the SDM (Table 6.3). However it can be noticed that χµ
for the local minimum C is less than a half of the value for the other minima: among the
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local minima, C is characterised by the smallest value of v(L) and by the greatest value
of D(L), i.e., for this minimum we have the greatest differences between the parameters
of the dominant and non-dominant domains.

For the MB3 WE test, the fraction of the high-K domain for the absolute minimum A
is 56.3% and for the local minimum B is 77.1%. At a first glance these percentages could
support the hypothesis that MB3 WE should be interpreted with a UDPerM rather than
with a SDM. However, the (H) and (L) parameters show similar values of D and v and
therefore the minima A and B describe a physical situation similar to that of the local
minimum C and of the SDM (see also Table 6.3). This conclusion is supported by Figure
6.6c, which shows, in the case of minimum A, that the BTCs of the (H) and (L) domain
have similar peak times and variances; moreover, the BTCs of the SDM and the UDPerM
(Figure 6.5c) nearly coincide and approximate well the experimental histogram, which
is clearly unimodal and typical of a single-domain medium.

In all the tests, both χM and χµ obtained with the UDPerM are smaller than those
obtained with the SDM (see also Figure 6.3). This improvement is particularly important
for MB1 EW and MB2 WE, i.e., for those examples where the presence of PFPs is more
evident, as shown by Figure 6.1, as well as by Zappa et al. (2006) and Vassena et al.
(2010).

Model Flow DPorM UDPerM CDPerM
block direction
MB1 NS 38%

EW 24% 82% 82%
MB2 NS 23%

WE 63% 72% 74%
MB3 NS 31%

WE 43% 43% 43%

Table 6.5: Case study A: values of ∆, the relative improvement of the fit of the CBTC obtained
with the DDMs with respect to that of the SDM. Missing values refers to tests for which the fit
obtained from the SDM was very good and therefore the DPorM and CDPerM were not applied.

Optimization of the analytical SDM and UDPerM with respect to the temporal mo-
ments of the BTC

The results of the minimization of χ2
µ for the SDM are reported in Table 6.6.

The minimization of χ2
µ for the SDM requires the solution of the system of equations

(3.19) and (3.23) in the two unknowns D and v, where the left-hand sides are given by
the experimental values of m1 and µ2 reported in Table 6.2. Then, the LM algorithm
was applied to check the fitting procedure only: the results of the minimization of χ2

µ

coincide for all the tests with those obtained from the solution of (3.19) and (3.23). In this
case the LM algorithm does not suffer the problem of falling in a region of the parameter
space where χ2

µ is almost constant. Table 6.6 includes the values of χM computed for the
values of D and v that yield the minimum of χµ: they are quite high except for MB1 NS
and they are greater than the optimal values of χM by a factor varying between 1.5 and
14. The values of χµ, χm1 and χµ2 are not reported in Table 6.6, as they are very close to
zero.

The results of the minimization of χ2
µ, reported in Table 6.6, show that, in agreement
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Figure 6.3: Optimal values of χM for the different tests of case study A: SDM (green circles),
DPorM (yellow triangles), UDPerM (red diamonds), CDPerM (blue squares).

with the results of the optimization of χ2
M, MB1 and MB2 are anisotropic with respect

to the longitudinal dispersion coefficient, even if the difference between the values of D
for the two flow directions is less than that observed in Table 6.3.

The comparison of the results obtained for the two types of objective functions shows
that the values of v are very similar, whereas the values of D show larger differences,
even if they share the same order of magnitude.

The results of the optimization of χ2
µ for the analytical UDPerM are not reported

here, because the equations for m1 and µ2 depend on five unknowns, thus the problem
is clearly underdetermined and therefore it is not possible to find a unique minimum of
χ2
µ.

For the same reason, the optimization with respect to the moments of the BTC will
not be carried on for the numerical DDMs.

Model Flow D v χM
block direction [10−4 m2/s] [10−3 m/s] %
MB1 NS 1.87 2.38 0.84

EW 5.97 2.60 5.42
MB2 NS 249 12.3 5.06

WE 614 15.7 7.50
MB3 NS 18.6 4.11 6.36

WE 20.0 4.32 5.76

Table 6.6: Case study A: results of the optimization of χ2
µ for the analytical SDM.

6.1.7 Calibration of the numerical models

Tables 6.7 to 6.10 report the best-fit parameters, together with the corresponding value
of the objective function χM, given by the different numerical transport models for each



68 6.1 Case study A

0 500 1000 1500 2000 2500
t (s)

0

20

40

60

80

100

M
/
M

(%
)

(a) MB1EW

200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
t (s)

0

20

40

60

80

100

M
/
M

(%
)

(b) MB2WE 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Figure 6.4: Case study A: CBTCs, normalized with respect toM , for MB1 EW (a) and MB2 WE (b).
Blue line is the experimental CBTC; green and red lines are the model CBTCs for the SDM and the
UDPerM respectively. The insets show the same curves for t ≤ t60%.
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Figure 6.5: Case study A: BTCs, normalized with respect to M , for MB1 EW (a), MB2 WE (b) and
MB3 WE (c). The histogram represents the experimental BTC, while the curves represent the best-
fit of the transport models: SDM (blue line), DPorM (purple line), UDPerM (red line), CDPerM
(green line).
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Figure 6.6: Case study A: components relative to the two domains of the BTC of the UDPerM (H -
blue line, L - red line) and of the CDPerM (H - black line, L - green line), i.e., ε(H)q

(H)
c and ε(L)q

(L)
c ,

for MB1 EW (a), MB2 WE (b) and MB3 WE (c).



Application of the transport models: interpretation of numerical tracer tests 71

test considered. As explained in section 6.1.5, only one flow direction for each MB has
been analyzed, choosing those tests for which the calibration of the analytical SDM gave
the largest optimal values of χM, that is: MB1 EW, MB2 WE and MB3 WE.

In Tables 6.9 and 6.10 the parameter ε(H)n(H) represents the volume of pore water in
the fast domain per unit volume of the porous medium, and it corresponds to nmob for
the DPorM.

Notice that the values of the parameters identified by the numerical implementation
of the SDM and the UDPerM coincide with those identified by the analytical implemen-
tation and reported in Tables 6.3 and 6.4. In particular, it is important to observe that the
parameters ε(H) andM (H) are not uniquely identified by the numerical inverse UDPerM
(Table 6.9), in the sense that different initializations lead to different couples of values for
these parameters; nevertheless, all these couples are characterized by the fact that their
product is constant and equal to the parameter ε(H)M (H) identified by the analytical
inverse UDPerM.

Table 6.5 and Figure 6.3 show that the DPorM improves the fit of the SDM, but it
does not perform as well as the UDPerM, since ∆ = 24% for MB1 and ∆ = 63% for MB2.
Figure 6.5 shows that the DPorM describes quite well the early peak and the tail of the
experimental BTC of MB2 WE, but it is not able to reproduce the double peak of MB1
EW.

Regarding MB3, it can be seen that all the transport models give almost the same
results (see also Figure 6.5c) and even the standard SDM provides a good fit of the ex-
perimental data, with an average squared difference between the model and the exper-
imental CBTC which is only the 0.4% of the total mass injected per unit surface (Table
6.7). It can be noticed from Table 6.5 that for this block the DDMs permit, anyway, a 43%
decrease of the objective function.

It is important to observe that, for all the blocks, the CDPerM (Table 6.10) gives al-
most the same minimum of the objective function χM as the UDPerM (Table 6.9); this
is confirmed by Figure 6.3 and by the values of ∆ in Table 6.5. Consequently, as can be
seen in Figure 6.5, the corresponding BTCs coincide. In other words, the introduction
of the exchange term in the DPerM does not lead to a significant improvement of the
fit. It is interesting to understand how this is related to the optimal parameters for the
two dual-permeability approaches; by comparing Tables 6.9 and 6.10, it can be seen that
for MB1 the optimal parameters of the UDPerM and of the CDPerM are almost equal,
and the exchange coefficient is small, so that the two DPerMs actually describe the same
physical situation. This is confirmed by Figure 6.6a, where the BTCs of the two domains
differ only very slightly between the coupled and the uncoupled model.

The CDPerM has an optimal v(L) which is almost negligible for MB2, so that the
CDPerM actually reduces to the DPorM. Moreover, for both MB2 and MB3, the mass of
solute that enters the fast domain is larger for the CDPerM than for the UDPerM; these
differences are compensated by the exchange term whose coefficient α is larger for MB2
and MB3 than for MB1.

The role of the solute exchange term in the description of these transport experiments
can be further analyzed by comparing the typical solute exchange time with the typical
times of advective transport, as shown in the next section.

6.1.8 Characteristic transport times

Table 6.11 reports the ratio of the characteristic exchange time (τe) to the characteristic
time of advective transport (tT ) and the dimensionless numbers Pe and Æ defined for
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Test D v χM
[10−4 m2/s] [10−3 m/s] %

MB1 EW 9.05 2.45 3.1
MB2 WE 890 14.7 4.9
MB3 WE 10.7 4.44 0.4

Table 6.7: Case study A: results of the calibration of the numerical SDM.

Test D v nmob α χM
[10−4 m2/s] [10−3 m/s] [10−2] [10−4 s−1] %

MB1 EW 5.39 7.04 7.15 9.12 2.38
MB2 WE 1.52 84.5 4.20 8.90 1.82
MB3 WE 9.46 4.70 18.7 0.61 0.25

Table 6.8: Case study A: results of the calibration of the DPorM.

the DPorM in section 2.4.1, together with the analogous quantities defined for the CD-
PerM in section 2.4.2.

Notice that, for the DPorM, considering definitions (2.22), (2.23) and (2.24), the ratio
between the typical times, τe/tT , is related to the dimensionless number Æ by:

Æ =
nmob

ln 2

τe
tT
. (6.8)

Since n = 0.2 and 0 < nmob ≤ n, (6.8) implies that Æ can vary from 0 to
n

ln 2

τe
tT
≈

0.3
τe
tT

as a linear function of nmob.

For the CDPerM, the corresponding definitions in section 2.4.2 yield:

Æ(H) =
ε(H)n(H)v(H)

v ln 2

τe
tT

=
n(H)

ln 2

ε(H)v(H)

ε(H)v(H) + ε(L)v(L)

τe
tT
, (6.9)

where the hypothesis n(H) = n as been applied; a similar expression holds for Æ(L).

MB1

Table 6.11 shows that, in the case of MB1, the exchange term for the DPorM is greater
than both the convective and the dispersive terms (Æ< 1 < Pe), and the characteristic
times τe and tT have the same order of magnitude, which implies an important effect of
dual-porosity, i.e., strong asymmetry of the BTC (see section 2.4.1).

For the CDPerM, instead, the convective term is greater than the exchange and
the dispersive terms for both the fast and the slow domains (1 < Pe(H) <Æ(H) and
1 <Æ(L) < Pe(L)), and τe/tT � 1, that is, the solute exchange is slow and does not
significantly influence the solute concentration, in agreement with Figure 6.6a. Since the
hydrodispersive parameters of the two domains are very different (see Table 6.10), the
fact that the exchange is not important implies that the transport properties of MB1 are
well described by an equivalent superposition of two independent and mobile domains,
as observed in section 6.1.6. The exchange term is important in the equivalent descrip-
tion of the DPorM to compensate for the fact that one of the two domains is immobile;
on the other hand, the two domains of the CDPerM take into account both groups of fast
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and slow solute particles, so that, for both domains, the exchange term diminishes its
importance with respect to the convective term.

MB2

The results of the DPorM for MB2 show that τe/tT � 1; according to the discussion in
section 2.4.1, this means that that the solute exchange is slow and the DPorM is nearly
equivalent to the SDM. Nevertheless, Æ≈ 1 < Pe, that is, the exchange term gives
approximately the same contribution to the temporal variation of the concentration as
the convective term. However, since τe/tT � 1, a less important contribution of the
exchange term, that is a larger value of Æ, would have been expected. The apparent
contradiction can be explained taking into account relation (6.8) and the small value of
nmob (see Table 6.8).

For the CDPerM, the value of τe/tT shows that the exchange is faster than for the
DPorM and that the convective term is larger than the exchange term only for the fast
domain, but not for the slow domain. Table 6.10 shows that the hydrodispersive pa-
rameters of the two domains are very different. From this analysis it can be concluded
that for MB2 the CDPerM is characterized by a slightly more important role of the solute
exchange term with respect to MB1.

MB3

Both the results of the DPorM and of the CDPerM indicate that MB3 can be effectively
described by a SDM. In fact, in the case of the DPorM, τe/tT � 1 and 1 <Æ< Pe.

In the case of the CDPerM, the convective term is larger than the exchange term only
for the fast domain, but not for the slow domain, as for MB2. Moreover, τe/tT ≈ 1, that
is, the solute exchange occurs with approximately the same velocity of the convective
transport; nevertheless, Table 6.10 shows that the hydrodispersive parameters of the two
domains are very similar, so that the CDPerM is equivalent to the SDM.

Remarks

The analysis presented in this section showed some interesting aspects, which are sum-
marized in the following points.

• DPorM: the parameters τe/tT and Æ do not carry the same information, as Æ also
depends on nmob, as shown by (6.8). The analysis of both parameters is then nec-
essary to assess the effects and the importance of the solute exchange term in each
case. The most representative example for this feature is MB2.

• CDPerM: the relation between τe/tT and Æ(H) (and, similarly, between τe/tT and
Æ(L)), given by (6.9), is more complex than for the DPorM, but also in this case, the
different parameters do not give equivalent information, even if they often lead
to similar conclusions. Moreover, for the interpretation of τe/tT , Æ(H) and Æ(L),
it is very important to consider the values of the parameters of the two domains
(v(H), v(L), D(H), D(L)), as already observed in section 2.4.2 (the most represen-
tative examples are MB1 and MB3). In fact, a very slow exchange between two
domains with different hydrodispersive features implies a description equivalent
to the UDPerM and not to the SDM; on the other hand, an important exchange
between two domains that share the same hydrodispersive parameters implies a
description equivalent to the SDM.
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MB1 EW MB2 WE MB3 WE
DPorM τe/tT 2.2 22 15

Æ 0.23 1.3 4.1
Pe 31 17 17

CDPerM τe/tT 140 7.1 6.6
Æ(H) 17 2.0 1.5
Æ(L) 23 5.1 · 10−9 0.39
Pe(H) 9.0 34 18
Pe(L) 76 4.8 · 10−9 9.6

Table 6.11: Case study A: ratio of the characteristic exchange time (τe) to the characteristic time of
advective transport (tT ) and dimensionless numbers Pe and Æ for the DPorM and the CDPerM.

6.1.9 Results on the conditioning of the Hessian matrix of the objective function and
on the correlation matrix

As explained in section 5.1.2, the condition number κ2 of the Hessian matrix H(aopt) of
the objective function χM at the end of the minimization process can be computed to
analyze the conditioning of the computation of the inverse of the Hessian matrix and
therefore of the corresponding computation of the covariance and correlation matrices.

Table 6.12 reports such condition numbers for the different transport models and
blocks of sediments. It can be seen that κ2 increases with the complexity of the model,
but it is greater for the UDPerM than for the CDPerM. The greatest condition numbers
are obtained for the UDPerM and for MB1 and MB3; as a consequence, in these cases the
inversion of the Hessian matrix yields some non-accetable negative diagonal elements
in the covariance matrix, which do not allow the computation of the correlation between
the corresponding parameters. In the other cases, the analysis of the correlation matrix
ρ has shown that, for all the blocks, ε(H) and M (H) have a correlation close to 1, both
for the UDPerM and the CDPerM, which is consistent with the previous remark on the
uniqueness of the product ε(H)M (H) and on the non-uniqueness of the two separate pa-
rameters. Moreover, in the case of the CDPerM the correlation among all the parameters
is always greater than 0.7, which is not the case for the UDPerM.

MB1 EW MB2 WE MB3 WE
SDM 4.7 2.5 5.1
DPorM 8.4 · 106 2.7 · 104 9.6 · 106

UDPerM (analytical) 1.1 · 1015 7.9 · 1010 2.9 · 1020

UDPerM (numerical) 1.4 · 1029 2.6 · 1025 4.3 · 1028

CDperM 4.7 · 1023 1.5 · 1019 4.1 · 1023

Table 6.12: Case study A: condition numbers of the Hessian matrix of the objective function χM.

6.1.10 Single and dual domain media in a multi-objective framework

The results presented in sections 6.1.6 and 6.1.7 have been obtained by minimization
of the objective function χ2

M defined in (6.5), which is based on the fit of the whole
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experimental CBTC, i.e., for times tk ranging from the arrival time of the fastest particle,
tmin, to that of the slowest particle, tmax.

Obviously, the SDM can describe a medium with only a single flow velocity. There-
fore if a porous medium has a dual behaviour, i.e. if it is characterized by the presence
of PFPs, the SDM can fit well the portion of the BTC corresponding to the fast particles,
to the slow particles or a compromise between them. It is then clear that the calibration
problem for dual domain media could be considered in a multi-objective framework.

The multi-objective optimization of hydrologic models is characterised by the defi-
nition of two (or more) objective functions that describe different aspects of the system
behaviour and are often aggregated, through a weighted sum, into a single global ob-
jective function. A multi-objective calibration problem usually does not have a single
global solution, but a Pareto set (or frontier) of optimal solutions (Gupta et al., 1998;
Yapo et al., 1998; Boyle et al., 2000, 2001; Madsen, 2003; Vrugt et al., 2003; Blasone et al.,
2007), whose elements are such that by moving from one element to the others, one of
the objective functions decreases, whereas the other objective functions increase.

The discussion in section 6.1.6 about the CBTCs shown in Figure 6.4 suggests to con-
sider the following two objective functions:

χ2
P%(a) =

1

M2NP%

NP%∑
i=1

[Mexp(ti)−M(ti; a)]
2
,

χ2
(100−P )%(a) =

1

M2(Ndata −NP%)

Ndata∑
i=NP%+1

[Mexp(ti)−M(ti; a)]
2
,

where NP% is the cardinality of the set {tk ≤ tP%, k = 1, ..., Ndata}, so that χ2
P% repre-

sents the misfit between the CBTCs for t ≤ tP%, i.e., the first P% of the injected parti-
cles is taken into account in the computation of the mean squared error. On the other
hand χ2

(100−P )% considers the remaining (100− P )% of the injected particles. The mini-
mization of χ2

P% and χ2
(100−P )% permits to best fit different portions of the experimental

CBTC, corresponding respectively to the early times, t ∈ [tmin, tP%], and to the late times,
t ∈ [tP%, tmax].

Figure 6.7 plots the values assumed by χP% and χ(100−P )% when the parameters
a = (D, v)T vary in an interval around the best-fit values computed by the analytical
SDM (Table 6.3), for three different percentages of the particles (P=6, 50 and 90), for MB1
NS and MB2 WE. These graphs give a rough representation of the structure of the Pareto
frontier, the exact determination of which would require specific techniques described,
e.g., by Vrugt et al. (2003). Anyway this is beyond the scopes of the present analysis. The
aim here is to assess whether the Pareto set could be an indicator of the “duality” of a
porous medium. In particular the red dots correspond to the points that belong to the
Pareto frontier, as estimated on the basis of the data drawn in the same figure.

The graphs for the MB1 NS and MB2 WE tests show some important differences
that can be linked to the different nature of the two examples, single-domain and dual-
domain medium, respectively.

In the case of MB1 NS, for P=6, Figure 6.7a shows that the Pareto set reduces to a
very small region, possibly a single point, as the two objective functions decrease si-
multaneously. The same result is observed for P=50 and P=90 (Figures 6.7b and 6.7c),
i.e., it seems to be independent of the percentage of the particles considered. This is
in agreement with the outcomes of section 6.1.6, which have shown that MB1 NS is a
single-domain medium. In fact in the case of a single-domain medium the SDM solution
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describes well the whole experimental CBTC and not only the first or the last part of the
curve.

In the case of MB2 WE, that has been shown to be dual (sections 6.1.6 and 6.1.7),
Figure 6.7d exhibits a Pareto front characterized by the fact that decreasing χ6% causes
the increase of χ(100−6)% and vice versa. This is exactly what is expected in the case of a
dual-domain medium. In fact, as previously mentioned, a SDM solution cannot describe
the whole experimental CBTC of a dual-domain medium: fitting well the first part of the
curve, for t ∈ [tmin, t6%], results in a bad fit of the last part, for t ∈ [t6%, tmax].

Figures 6.7e and 6.7f show that for high values of P the graphs are quite similar to
those of a single-domain medium (compare Figures 6.7c and 6.7f). This can be explained
by the fact that, for P=6, χ6% includes only the fastest 6% of the particles injected, i.e., it
includes only the particles traveling in the (H) domain. For high values of P , instead,
χP% considers the particles traveling in both (H) and (L) domains, so that the duality
of the medium cannot be resolved. For instance, for P=90, χ90% attempts to best fit a
SDM solution to the experimental data for t ∈ [tmin, t90%], i.e., for almost the whole set
of experimental data, which is not possible for a SDM solution, as already discussed.

Figure 6.7: Qualitative estimate of the Pareto set for MB1 NS and MB2 WE and for P=6, 50, 90.
Each graph plots the percentage values of the objective functions χP% and χ(100−P )% computed for
different values of the parameters of the SDM and the red dots correspond to the points belonging
to the Pareto frontier.

6.1.11 Concluding remarks on case study A

Comparison of the results of the different transport models

For all tests, the UDPerM improves the fit of the experimental data with respect to the
classical SDM. Such improvement is small for MB1 NS, MB2 NS and both tests on MB3,
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whereas it is significant for MB2 EW and MB1 WE.
The results of the hydrostratigraphic analysis and of the geostatistical simulation (see

section 6.1.1), as well as the interpretation of the evolution of the solute plumes shown
in Figure 6.2 and of the experimental BTCs shown in Figure 6.5, highlight that MB1 and
MB2 are characterized by PFPs in the WE direction, a feature that is missing in MB3.

Therefore, it can be concluded that those tests for which the presence of PFPs is more
evident (MB1 EW and MB2 WE) are described with a far greater effectiveness by the
UDPerM than by the SDM; on the other hand, those tests with less marked presence of
PFPs (MB1 NS, MB2 NS and MB3) are efficiently described by the standard SDM.

Moreover, taking Table 6.1 into account, the fraction of the highly permeable mate-
rials, as gravel, and the degree of heterogeneity, which can be quantified by var[lnK],
are not the most important parameters controlling the existence of PFPs. In fact, MB3
has about three times more gravel than MB1 and it is more heterogeneous than MB1, as
shown by the values of var[lnK]. The key factor in controlling the existence of PFPs is
the spatial arrangement of the highly permeable materials, i.e., if they are connected or
not; in fact, Table 6.1 shows that gravel connectivity for MB1 and MB2 is two orders of
magnitude larger than for MB3. As a further support of this observation, the interpreta-
tion of the numerical tracer tests showed that MB3 behaves like a homogeneous domain,
while the BTC of MB1 EW and of MB2 WE are highly asymmmetrical and characterized
either by double peaks (MB1 EW) or by an early peak and a long tail (MB2 WE), which
are clear effects of PFPs.

For all tests, the fit of the CDPerM basically coincides with the fit of the UDPerM;
in other words, the introduction of the solute exchange term between the fast and the
slow domains does not lead to a significant further improvement of the description of
the experimental data.

The DPerMs are able to describe the typical effects of the presence of PFPs on the
solute transport, that is, the double peak in the BTC of MB1 EW and the early peak and
the tail in the BTC of MB2 WE.

On the other hand, the DPorM improves the fit of the SDM, but it does not perform
as well as the UDPerM; in particular, the DPorM can describe quite well the early peak
and the tail in the BTC of MB2 WE, but it obviously cannot reproduce double peaks in
the BTCs.

Therefore, among the three DDMs considered in this work, the UDPerM is the model
that most efficiently describes the transport properties of those blocks characterized by
structured heterogeneity and presence of PFPs.

Uniqueness of the estimated parameters

The calibration of the SDM results in a unique set of best-fit parameters. On the other
hand, the issue of non-uniqueness arises for the calibration of the DDMs, which makes
important to analyze the sets of parameters corresponding to the different minima
(global and local), in order to assess which solution is physically more accetable.

For example, such analysis, performed on the results of the calibration of the analyti-
cal UDPerM (section 6.1.6), shows that the local minima obtained from the calibration of
the UDPerM often correspond to the physical situation described by the SDM. In other
words, for local minima, one domain is usually dominant and the calibrated values of D
and v for this domain are close to those obtained by the calibration of the SDM. For the
tests that present a clear “dual” behaviour, the local minima are characterised by a misfit
much greater than that of the absolute minimum.
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Optimization with respect to the temporal moments of the BTC

The optimization of χ2
µ for the SDM gives results which are similar to those obtained

with the optimization of χ2
M, especially regarding the estimates of the velocity. Nev-

ertheless, this kind of optimization is not suitable for the calibration of the DDMs, for
which the problem is underdetermined.

6.2 Case study B. Numerical tracer tests on a decameter scale block
from a point bar channel aquifer analogue in the Lambro basin
(Northern Italy)

The second case study consists of a prismatic block of sediments, around 100 m3 in
volume, dug in a quarry site into real sediments of an alluvial aquifer analogue.

The study site is located in the southern Lambro Valley (Northern Italy, south of Mi-
lan), where the Lambro River, a left tributary of the Po River, is a meandering stream
encased in a post-glacial terraced valley, within the Pleistocene sediments of the Lario
sandur. A volume of approximately 30,000 m3 (47 m×75 m×8.6 m) was dug into an
aquifer analogue exposed in a quarry at this site, specifically, into sands and gravels of a
point-bar/channel association of Holocene age. This case study has been extensively de-
scribed and analysed from the hydrostratigraphic point of view by dell’Arciprete (2010)
and dell’Arciprete et al. (2012a), where the details on the geostatistical simulations can
also be found; the main concepts are recalled in section 6.2.1. The numerical tracer tests
and the connectivity analysis are presented in dell’Arciprete et al. (2012b) and summa-
rized in sections 6.2.2 and 6.2.3. The experimental data resulting from the numerical
tracer tests are presented and discussed in section 6.2.4, whereas the results of their in-
terpretation with the single and dual-domain transport models are given in sections 6.2.5
and 6.2.6. Finally, some concluding remarks are given in section 6.2.7.

6.2.1 Geological and hydrostratigraphic features and ensembles of geostatistical
simulations of the block of sediments

The geological and hydrostratigraphic model of the site was elaborated starting from
the stratigraphical, sedimentological and geophysical analysis of the quarry volume
(Bersezio et al., 2004, 2007; dell’Arciprete et al., 2012a).

The paper by dell’Arciprete et al. (2012a) presented and discussed the results of the
3D geostatistical simulations, which were performed both on the entire volume of sedi-
ments and on a subregion represented by a prismatic block of dimensions 11.4 m×11.4
m×2.85 m, named “test volume”. The test volume, which was discretized with a regular
grid with spacing 0.2 m×0.2 m×0.05 m, is small enough to permit the simulation of the
facies distribution with good resolution for a large number of stochastical realizations
and the corresponding simulation of solute transport experiments. Moreover, from the
hydrostratigraphic point of view, this test volume can be considered as representative
of the behaviour of the whole studied domain. For these reasons, the test volume is the
second case study considered in the present work.

Four hydrofacies were assumed in the geostatistical simulation, based on the analy-
sis of conductivity values obtained by laboratory tests on samples and the comparison
with literature data: least permeable (K = 5 · 10−5 ms−1, very fine sand and minor silt-
clay - F), poorly permeable (K = 5 · 10−4 ms−1, sand from point-bar and channel fill
bedforms - S), permeable (K = 5 · 10−3 ms−1, sandy gravel and gravelly sand from scroll
bars - SG) and most permeable (K = 5 · 10−2 ms−1, open framework gravels - G). An



80 6.2 Case study B

ensemble of 50 equiprobable realizations was obtained with two different methods of
geostatistical simulation: Sequential Indicator Simulation (SISIM, see, e.g., Deutsch and
Journel (1992)) and MPS (Multiple Point Simulation, see, e.g., Strebelle (2002)). Two
representative examples of the results of the geostatistical simulation are shown in Fig-
ure 6.8. The experimental and model variograms used for the SISIM simulations can
be found in the electronic supplementary material of dell’Arciprete et al. (2012a) and
are reported in Figure 6.9 for the Reader’s convenience. The experimental variograms
have been described with different models for the different hydrofacies and for the dif-
ferent directions. Specifically, for facies F the model variogram is a linear combination
of a gaussian and a spherical variogram with a very large horizontal range (140 m) and
a vertical range (3 m) of the same order of magnitude as the vertical size of the block.
For facies S, a linear combination of an exponential and a gaussian variogram has been
used, with ranges smaller than the block scale (3 m horizontally and 0.5 m vertically).
For facies SG an exponential variogram is assumed, with ranges similar to those of facies
S. Finally, for facies G a linear combination of an exponential and a spherical variogram
was used with small values of the range: 1 m and 5 m along the two horizontal directions
and 0.3 m along the vertical direction.

a) b)

Figure 6.8: Results of one of the 50 equiprobable geostatistical simulations obtained with a) MPS
and b) SISIM; the pie charts represent the facies proportions. From dell’Arciprete et al. (2012b).

As discussed by dell’Arciprete et al. (2012a) and dell’Arciprete et al. (2012b), the vol-
umes simulated by the two geostatistical simulation methods have different features. In
fact, the volumes simulated by MPS are more structured and are often characterized by
the presence of connected bands of permeable sediments (G, SG, S) that can represent
the PFPs; on the other hand, the MPS simulations cannot take into account the geometry
and distribution of the F hydrofacies bodies. For example, Figure 6.8a clearly shows con-
nected channels of gravel, which is the most conductive facies considered, while the F
proportion is almost negligible. The volumes simulated by SISIM are more disorganized;
on the other hand, all the hydrofacies, including F, have a good and realistic spatial con-
tinuity (see Figure 6.8b). The spatial average and variance of lnK have been computed
for each realization and the ensemble expected values are listed in Table 6.13, which
shows that the difference among the two ensembles is related to the spatial variability
more than to the averaged K. The different architecture of the volumes simulated by
MPS and SISIM significantly influences their transport properties and, to a less extent,
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Figure 6.9: Experimental (black dots) and model (red lines) variograms for the four hydrofacies
and for the three directions. From the electronic supplementary material of dell’Arciprete et al.
(2012a).
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their flow properties, as will be shown in the following sections 6.2.2 to 6.2.2.
Notice that, in the following, the two ensembles of simulations performed with SISIM

and MPS will be denoted as ensemblesA and B, respectively. The comparison of the two
simulation techniques has already been discussed by dell’Arciprete et al. (2012a). In this
study, the two methods are used to generate two different ensembles of realizations,
which represent possible realizations that can be found in the field, with the objective of
analyzing the effects of the different features of the two ensembles on the corresponding
flow and transport properties.

Ensemble Average Variance
A -6.0 8.8
B -6.2 11.6

Table 6.13: Ensemble expected values of the spatial average and variance of hydraulic conductiv-
ity (in ms−1) for both ensembles (A: SISIM; B: MPS); from dell’Arciprete et al. (2012b).

6.2.2 Numerical experiments of non-reactive solute transport on the ensembles of
equiprobable realizations of the block

The test volume was further analysed by dell’Arciprete et al. (2012b), where the flow and
transport modeling and the connectivity analysis are conducted with the same methods
summarized in section 6.1 for the three MBs: flow modeling, particle tracking numerical
tracer tests simulating an instantaneous injection, transport modeling with single and
dual-domain models. In this case only one flow direction is considered: the solute is in-
jected instantaneously through the NS face of the block, and the flow field is determined
by a unit hydraulic gradient along the EW direction. The porosity of the sediments is
assumed constant, n = 0.4, following the results of laboratory tests on samples that have
not shown clear variations among the different facies; a uniform value of porosity was
then used so that the numerical transport experiments reveal the effects of differences
in hydraulic conductivity only. Six representative examples of the results of the numer-
ical transport experiments (A06, A44, A47, B00, B41 and B15) are shown in Figure 6.10,
where each point represents the position of a solute particle during its motion.

These realizations are chosen as representative of extreme situations of facies con-
nectivity among the 50 available simulations. In fact SG facies is less connected than S
facies for simulations A44 and B41, whereas the opposite inequality is verified for sim-
ulations A47 and B15; the connectivities of all facies are close to the ensemble averages
for simulations A06 and B00.

As a general remark, the plumes movement is faster in the volumes of ensemble B
than in the volumes of ensemble A. Moreover, volumes of ensemble B show a striking
contrast between the upper part, where particles move fast, and the lower part where
they travel slowly: in particular, inB41 the upper layer of the block acts as a PFP, whereas
in B15 a preferential channel is apparent (see Figure 6.10). As shown by dell’Arciprete
et al. (2012b), the connectivity of the G hydrofacies bodies is the dominant feature in the
realizations of ensemble B.

Realizations of ensemble A appear less structured and the presence of PFPs is not as
evident as for ensemble B, apart from a few cases which show a different behaviour: for
instance in simulation A47, which is characterized by highly connected SG hydrofacies
bodies, the particles are faster than in simulations A06 and A44.

Differently from case study A, when a single realization was analysed, in this case
50 equiprobable realizations of the same block were performed with each simulation
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Figure 6.10: Plots of the trajectories of the solute particles for six realizations obtained with SISIM
(A) and with MPS (B); the color scale refers to the time, in seconds, elapsed from the injection time;
the gray scale shows the simulated hydrofacies. From dell’Arciprete et al. (2012b).
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method, so that it is possible to perform a statistical analysis of the results. For exam-
ple, as will be shown in sections 6.2.5 and 6.2.6, the frequency distributions of the flow
and transport parameters, as well as of the connectivity indicators, can be obtained and
a principal component analysis can be applied to assess which quantities are statisti-
cally the most relevant for the relationship between connectivity indicators and flow
and transport properties (dell’Arciprete et al., 2012b).

6.2.3 Connectivity analysis: flow and transport indicators, hydrofacies connectivity
indicators, percolating clusters

In dell’Arciprete et al. (2012b) a connectivity analysis has been performed for the 50 re-
alizations of both ensembles. The analysis is based on the computation of some connec-
tivity indicators (four of the nine flow, transport and statistical connectivity indicators
suggested in Knudby and Carrera (2005) and two of the three hydrofacies connectivity
indicators proposed by Vassena et al. (2010)) and on the statistical analysis of percolating
clusters.

The distribution of the connectivity indicators showed that the realizations of ensem-
bleA are less structured than the realizations of ensemble B and that PFPs are present in
most of the realizations of ensemble B while they are almost absent in those of ensemble
A. It is interesting to notice that the transport indicator CT2, which is the skewness of
the time distributions, attains small values for ensemble B and large values for ensemble
A; in other words, the skewness is smaller for the blocks of sediments characterized by
PFPs, in agreement with what observed in section 6.1.3 for case study A.

The frequency distribution of the intrinsic connectivity confirms that ensemble B con-
sists of blocks with a more organized structure, and consequently well-defined PFPs,
whereas ensemble A consists of blocks which are less structured. In fact, the intrinsic
connectivity of the G facies is significantly higher for ensemble B than for ensemble A,
showing the presence of well-connected high-permeability bodies which could represent
the PFPs in the considered region of the aquifer analogue.

In percolation theory, a percolating cluster is a connected domain which has infinite
extension (Stauffer and Aharony, 1994): in this case, a percolating cluster is a connected
component that extends from one side to the other of the simulated domain along at
least one direction (Lee et al., 2007). In dell’Arciprete et al. (2012b) it is shown that the
behaviour of the most permeable facies G has different patterns for the two ensembles.
In fact, the realizations of ensemble A show more variability than those of ensemble B,
as most of them have one percolating cluster, but two percolating clusters are found for
six realizations and no percolating cluster is found for six other realizations. On the
other hand, all the realizations of ensemble B have one percolating cluster, but there is
one realization for which two percolating clusters are found. Checking the geometrical
features of these clusters, it is interesting to notice that they percolate along the x–y plane
for ensemble B, whereas they mostly percolate along the x direction (25 clusters), the x–
y plane (14 clusters) and the whole space (nine clusters) for ensemble A. Furthermore,
for the realizations of ensemble B, more than 77% of the volume occupied by facies
G belongs to the percolating cluster, with an average value close to 90%; on the other
hand, for the realizations of ensemble A, the portion of the volume occupied by facies
G belonging to the percolating cluster never exceeds 70% and has an average value of
about 40%. In other words, the facies G is represented by a large number of small-size
connected and non-connected components for ensemble A, while for ensemble B most
of the facies G belongs to the percolating cluster.

Then the results of the computation of the different connectivity indicators and the
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analysis of the percolating clusters are in agreement with the observations drawn from
the results of the geostatistical simulation: the ensemble B shows a more definite connec-
tivity pattern of most-permeable hydrofacies with respect to the ensemble A, for which
the connectivity pattern is less precisely defined and more varying among the 50 real-
izations.

6.2.4 Experimental data

As described in section 6.2.1, 50 equiprobable realizations of the same block of sediments
have been achieved with SISIM (ensemble A) and 50 with MPS (ensemble B).

The numerical experiments of non-reactive solute transport have been conducted, for
each realization, with the same methods used for case study A, so that the considerations
on the experimental data and the objective functions made in sections 6.1.3 and 6.1.4 hold
also in this case. In particular, the experimental data are represented by the arrival times
of the solute particles at the downstream face of the block, which allow the computation
of the “experimental” BTCs and CBTCs.

The experimental BTCs for some realizations are represented by the histograms in
Figures 6.13 and 6.14. The BTCs resulting from the transport experiments performed on
the realizations of ensemble A are very similar to each other; consequently, any instance
of BTC is representative of the whole ensemble A. An example is plotted in Figure 6.13
for realization A44, which shows that the experimental BTC has the shape typical of a
single homogeneous porous medium.

A greater variability is observed among the results of the transport experiments per-
formed on the realizations of ensemble B, as shown by Figure 6.14. For example, both
B15 and B41 (Figures 6.14b and 6.14c, respectively) are characterized by high peaks for
early times, followed by very low and wide peaks for later times: such results are the
consequence of the presence of PFPs, which have already been highlighted in these two
realizations by Figure 6.10. On the other hand, the realization B00, for which, as dis-
cussed in section 6.2.2, the connectivity of all facies are close to the ensemble averages,
behaves as a single domain medium (Figure 6.14a).

These results are in agreement with those of the geostatistical simulation and of the
connectivity analysis recalled in sections 6.2.1 and 6.2.3, as well as with the qualitative
interpretation of Figure 6.10, which showed that the volumes simulated by SISIM are
more disorganized, i.e., they lack PFPs, whereas most of the volumes simulated by MPS
are characterized by structured heterogeneity and by PFPs.

For each realization, about 4000 solute particles are used for the particle tracking
simulations; therefore, for the same reasons of case study A, it is chosen to fit the experi-
mental CBTCs with the transport models, so that the objective function to be minimized
is given again by χM, defined by (6.5).

Moreover, it has been chosen to fit the experimental CBTCs with the analytical SDM
and UDPerM only; the first reason of this choice is that the results of case study A
showed that the introduction of the exchange term between the two domains of the
DDMs, which is the characteristic feature of the DPorM and CDPerM, does not lead to a
significant improvement of the fit with respect to the UDPerM. The second reason is that
a statistical analysis on the 100 realizations of the block is more easily obtained with the
analytical models, whose calibration is computationally much faster than the calibration
of the numerical models.
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6.2.5 Calibration of the analytical models

The distributions of the v and D values obtained from the optimization of χM with the
SDM (Figure 6.11) show clear differences for the two ensembles. In fact, the distributions
of the transport parameters D and v for ensemble A are quite narrow, which means
that the parameters of the SDM are well identified for the realizations of this ensemble.
On the contrary, ensemble B is characterized by much wider distributions of D and v,
which means that the single-domain approach is not suitable to describe the transport
properties of most volumes of this ensemble.

It is interesting to compare Figure 6.11 with Figure 6.12, which shows the distribution
of the values of Kxx, that is, of the xx component of the equivalent hydraulic conduc-
tivity tensor Keq, computed for the two ensembles by the 3D groundwater flow model
mgup3D (Zappa et al., 2006), as explained by dell’Arciprete et al. (2012b).

It is apparent, from Figures 6.11 and 6.12, that the differences between the two ensem-
bles are poorely reflected in Keq, but they significantly influence the transport properties
D and v. In other words, hydrodispersive parameters and travel times are influenced by
the geological features shown by the two ensembles and by the corresponding hetero-
geneity of the K field much more than Keq.
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Figure 6.11: Distribution of the values of D (top) and v (bottom) obtained with the optimization
for the SDM of the realizations of ensembles A (black bars) and B (gray bars).

Figure 6.13 shows the best fit obtained with the analytical SDM and UDPerM for
A44; this realization has been chosen as representative of ensemble A since, as already
mentioned in section 6.2.4, the results obtained for all the realizations of this ensemble
are very similar. In this figure, the “experimental” BTC (gray histogram) is compared
with the BTCs fitted for the SDM (green line) and for the UDPerM (black line), which
is the sum of the two BTCs for the high (blue line) and the low (red line) conductivity
domains. It can be seen that the two transport models give similar results; in particular,
the contribution of the (L) domain to the BTC of the UDPerM is very small, so that the
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Figure 6.12: Distribution ofKxx for the simulations of ensemblesA (black bars) and B (gray bars).

description of the block given by the UDPerM is equivalent to the description of a SDM.
In Figure 6.14, the BTCs given by the SDM and UDPerM for three realizations of

ensemble B (B00, B15 and B41) are shown with the same plot format as Figure 6.13: the
different behaviour of the volumes of ensemble B is apparent.

The realization B00, for which the connectivities of all facies are close to the ensemble
averages, behaves as a single domain medium. In fact, the BTC of the UDPerM is similar
to the BTC of the SDM and only slightly improves the fit of the experimental data.

In the case of B15 and B41, instead, the UDPerM significantly improves the fit of the
BTCs by taking into account both the faster part of the plume and the slower one; specif-
ically, Figure 6.14 shows that the (H) and (L) components of the BTC of the UDPerM are
able to describe the high and narrow peak for early times and the wide and low peak for
late times, respectively.

A more thorough assessment of the results obtained with the UDPerM is given by
Figures 6.15 and 6.16, which show the frequency distribution of the values of the lon-
gitudinal dispersion coefficients and of the velocities in the two domains, obtained for
both ensembles. It is apparent that the spread of the values for the ensemble B (gray
bars) is wider than that for A, for all the quantities. Moreover, it is also apparent that
the values of v(H) are higher for B than for A and that the differences between the dis-
tributions of v(H) and v(L) are more important for B than for A. In other words, these
frequency distribution plots suggest the great relevance of the UDPerM for ensemble B.

The latter remark is confirmed by the visualization of the improvements in the results
due to the UDPerM for both ensembles which is given in Figure 6.17, where the relative
difference between the SDM and UDPerM merit functions χM, i.e., parameter ∆ defined
by (6.7), is shown. For ensemble B a high percentage of tests corresponds to the greatest
values of the misfit between SDM and UDPerM. On the other hand the improvement
given by the UDPerM for ensemble A is less important. This is the consequence of the
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fact that the two ensembles represent different geometries, which are well fitted in the
case of ensemble A with a SDM, whereas the UDPerM is optimal to fit the BTCs and
gives significant improvements to the results of ensemble B.

Figure 6.13: BTC for a typical realization of ensemble A (A44). The correspondent particles paths
are shown in Fig. 6.10. The gray bars show the experimental BTC, the green line the BTC fitted for
the SDM, the black line the BTC fitted for the UDPerM, which is the sum of the two BTCs for the
high (blue line) and the low (red line) conductivity domains.

6.2.6 Principal component analysis of the equivalent flow and transport parameters
and of the connectivity indicators

The use of two ensembles of equiprobable realizations of the same block of sediments
permits to analyze the correlation between the connectivity indicators and the equivalent
flow and transport parameters by means of multivariate statistical analysis and, spcifi-
cally, with the principal component (PC) analysis, as discussed in detail by dell’Arciprete
et al. (2012b).

30 parameters have been considered in the PCA, among them: Kxx, v, D, v(H), v(L),
D(H), D(L), ε(H)M (H), the average arrival time of the solute particles t̄, t5%, t50%, the
flow and transport connectivity indicators (CT1, CT2, CF1, CF2), the total and intrinsic
connectivity indicators for the four facies.

For the first PC of ensemble A, the coefficients with the highest absolute values cor-
respond to v, Kxx, t50% and v(H). The second PC is controlled by CT1, CF2, D and
the connectivity indicators for the G facies. The connectivity indicators of the S facies
are among the parameters with the highest contribution to the third order PC, together
with t̄. Therefore, it appears that the main PC represents the flow characteristics of the
medium, whereas the transport properties, which appear in the second PC, are mainly
related to the “fast” portion of the medium. The effects of the sparse low-permeability
facies appear only on PCs with orders greater than three.

For the first PC of ensemble B,Kxx has the coefficient with the highest absolute value,
followed by the total connectivity of the G facies, t50% and t̄. The second and third
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Figure 6.14: BTC for the realizations B00 (top), B15 (middle) and B41 (bottom). The particles path
are shown in Fig. 6.10. The gray bars show the experimental BTC, the green line the BTC fitted for
the SDM, the black line the BTC fitted for the UDPerM, which is the sum of the two BTCs for the
high (blue line) and the low (red line) conductivity domains.
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Figure 6.15: Distribution of the values of D(H) (top) and D(L) (bottom) obtained with the opti-
mization for the UDPerM of the realizations of ensembles A (black bars) and B (gray bars).
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Figure 6.16: Distribution of the values of v(H) (top) and v(L) (bottom) obtained with the optimiza-
tion for the UDPerM of the realizations of ensembles A (black bars) and B (gray bars).
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Figure 6.17: Frequency distribution of the relative variation between the SDM and UDPerM merit
functions of the realizations of ensembles A (black bars) and B (gray bars).

PCs for this ensemble are controlled, respectively, by CF2, by the total and intrinsic
connectivity of the SG facies and by D(H), D, t5%, v. These results are quite consistent
with those obtained for ensemble A, in the sense that flow parameters play a significant
role, whereas the transport parameters are related with the connectivity indicators of the
most permeable facies and only to a minor extent to the connectivity indicator of sparse
less permeable facies.

6.2.7 Concluding remarks on case study B

The application of the SDM and UDPerM to interpret the numerical transport exper-
iments performed on the two ensembles of simulations has shown that the different
heterogeneity patterns of the different realizations significantly influence the transport
properties, whereas the flow properties are less affected.

The SDM fits quite well the data of the tests on most of the realizations of ensemble
A, which are obtained with SISIM, whereas, for most of the realizations of ensemble B,
which are obtained with MPS, the UDPerM can fit the data significantly better than the
SDM.

This conclusion has been drawn from the comparison between the frequency distri-
butions of the best-fit parameters of the SDM and UDPerM for the two ensembles and,
for some tests, between the experimental and the model BTCs, as well as from the anal-
ysis of the relative reduction of the objective function obtained with the UDPerM with
respect to that obtained with the SDM.

It is interesting to note that the improvement of the fit with the UDPerM is accompa-
nied by a widening of the distribution of the optimal values for ensemble B, as shown
by Figures 6.15 and 6.16. In other words, the improvement given by the UDPerM is
achieved at the expense of the variability of the calibrated physical parameters (v(H),
v(L), D(H), D(L)).

As recalled in section 6.2.3, the connectivity analysis on the two ensembles has shown
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that most of the realizations of MPS are characterized by structured heterogeneity and
presence of PFPs, whereas most of the realizations of SISIM are less structured, with the
different hydrofacies randomly distributed in the domain.

Therefore, the analysis conducted for case study B confirms the role that the sedi-
ments connectivity plays to determine the solutes fate in groundwater. Specifically, the
relevance of the UDPerM with respect to the SDM is in agreement with the connectiv-
ity analysis: the UDPerM efficiently describes the transport properties of those porous
media characterized by a large connectivity of the most permeable facies, that is, charac-
terized by PFPs.

In other words, a qualitative correlation between transport properties and connec-
tivity indicators has been observed. A quantitative analysis of the relationship between
facies connectivities and flow and transport parameters has been attempted through the
PCA of thirty variables for the two ensembles.

For both ensembles, the connectivities of the most permeable facies G show a good
importance, as they appear among the most relevant quantities on the low-order PCs,
whereas less permeable facies have a more significant contribution to the high-order
PCs. With regard to the transport parameters of the SDM and UDPerM used to interpret
the numerical tracer tests, v(L) and D(L) are not significantly correlated with the other
parameters considered in the PCA. This can be stated as follows: the use of the UDPerM
may effectively improve the fit of the BTCs, but the physical parameters for the slow,
low K domain are of minor importance for the description of the transport features.



CHAPTER 7

Application of the transport models: interpretation of
laboratory and field tracer tests

In this chapter the different single and dual-domain transport models are applied to
interpret two real tracer tests, conducted either in laboratory, on a 20-centimeter-long
sand column (case study C, section 7.1), or in the field, at the Cape Cod site (case study
D, section 7.2). The latter is a 3D tracer test at hectometer scale, for which the features of
the solute plume suggest that the 1D transport modeling may be meaningful.

7.1 Case study C. Real tracer test on a decimeter scale sand column

7.1.1 Experimental set up and data

The third case study considered in this work consists of a laboratory test conducted
by Ivan Toloni (Toloni, 2011) at LHyGeS (Laboratoire d’Hydrologie et de Géochimie de
Strasbourg, Université de Strasbourg) on a plexiglass column (see Figure 7.1) of length
L = 28 cm and diameter 2r = 2.6 cm, filled with sand coming from the quarry of
Kaltenhouse (67 - Bas-Rhin). The sand is composed of quartz (silicate, 96.69%), ortho-
clase (feldspar, 2.89%) and variscite (phosphate, 0.42%), with an average grain diameter
of about 500 µm. A constant porosity, n = 0.35, is assumed. A solution of E124, an an-
ionic alimentary red dye which does not react with bases like the sand, has been injected
through the top surface of the column with a flow rate Q = 1 mL/min for a duration
T = 10 min. The concentration of the injected solution is C0 = 0.1 g/L.

A fraction collector was used to sample the solution dropping out from the bottom
of the column as a function of time, and a spectrophotometer was employed to measure
the tracer concentration of the samples. Therefore, the experimental data are represented
by the measurements of the flux-averaged concentration CF (tk) at the bottom of the
column at the times tk, k = 1, . . . , Ndata. The experiment lasted for about 160 min; the
tracer started to arrive to the bottom of the column around 55 min after injection, and
the collection of water samples occured at intervals ranging from 3 min (initially) to
9 min (at the end of the experiment), resulting in Ndata = 30 non-zero concentration
measurements.

The resulting BTC (see Figure 7.2) is characterized by a significant tailing, which is
unexpected, as the sand column is homogeneous. Toloni (2011) suggests that this be-
haviour may be due to a possible adsorption of the red dye on the grains of sand, which
may occur for low flow rates, or to experimental problems, like a possible dispersion
effect introduced from the diffuser in the injection operation. This experiment has been
interpreted with both SDM and DDMs, as discussed in Baratelli et al. (2012) and in sec-
tion 7.1.2.

94
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Figure 7.1: Experimental set up for case study C (photograph taken by Ivan Toloni at LHyGeS).

7.1.2 Results of the calibration of the SDM and DDMs

In this case study it is possible to directly fit the experimental measurements without
having to compute the CBTCs, differently from case studies A and B; therefore, the fol-
lowing objective function, based on the misfit between the experimental and the model
CF , has been optimized to calibrate the transport models:

χ2
CF

(a) =
1

C2
0Ndata

Ndata∑
i=1

[Cexp
F (ti)− CF (ti; a)]

2
. (7.1)

All the numerical transport models (SDM, DPorM, UDPerM, CDPerM) have been
applied to interpret this experiment. Tables 7.1 to 7.4 report the best-fit parameters,
together with the corresponding value of the objective function χCF

, obtained with the
different transport models. Figure 7.2 shows the experimental measurements of the flux-
averaged concentrations CF at the bottom of the column as a function of time and the
best-fit obtained with the different transport models. Finally, Table 6.5 reports the values
of ∆, Table 6.11 the characteristic times and the dimensionless numbers Pe and Æ and
Table 6.12 the condition numbers κ2 of the Hessian matrix computed for the optimal
parameters.

As a general observation, the DDMs significantly improve the fit of the experimental
data obtained with the SDM, with a relative reduction ∆ of the objective function that
ranges from 52% to 58% (Table 7.5). Figure 7.2 shows that this improvement is mainly
related to the better description of the peak and of the tail of the BTC. On the other hand,
there are only minor differences between the descriptions of the three different DDMs
that have been considered here, i.e., DPorM, UDPerM, CDPerM.

In particular, if we compare the parameters identified by the DPorM (Table 7.2) and
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by the CDPerM (Table 7.4), we can notice that D ≈ D(H), v ≈ v(H), nmob ≈ ε(H)n(H) and
the exchange coefficients are very similar for the DPorM and the CDPerM. Moreover,
Table 7.4 shows that ε(H)M (H)/M ≈ 100%. In other words, the DPorM and the CDPerM
describe two physical situations which are very similar: in fact, all the injected mass of
solute initially enters the mobile or the fast domain. In the case of the DPorM the mobile
domain exchanges solute with an immobile domain, while in the case of the CDPerM the
fast domain, which has the same transport properties (v and D) as the mobile domain
of the DPorM, exchanges solute with another mobile domain; this difference allows the
objective function of the CDPerM to slightly decrease with respect to the DPorM, with a
corresponding 2% reduction of ∆. Instead, in the case of the UDPerM, the fast domain
has approximately the same velocity and dispersion as for the CDPerM, but the mass
of solute that enters the fast domain of the UDPerM is about 65% of the total injected
mass, and the remaining mass enters the slow domain to compensate for the absence
of the exchange between the two domains. As a result, the UDPerM performs slightly
worse than the DPorM and the CDPerM, which means that the exchange term between
the two domains of the DDMs plays a non negligible role in the interpretation of this
tracer experiment. This is confirmed also by the characteristic times reported in Table
7.6, where it is shown that τe has approximately the same order of magnitude as tT , both
for the DPorM and for the CDPerM, and by the dimensionless numbers Æ, Æ(H) and
Æ(L), which are close to 1.

As already observed for case study A (section 6.1.9), the condition number κ2 in-
creases with the complexity of the model. The condition number for the DPerMs are
several orders of magnitude lower than those computed for the MBs of case study A;
consequently, in this case there was no problem in the inversion of the Hessian matrix
for the computation of the correlation matrices.

7.1.3 Concluding remarks on case study C

Despite the fact that the column contains homogeneous sand, a significant tailing has
been observed in the BTC measured at the bottom of the column. All the DDMs describe
quite accurately this behaviour, which is not the case for the SDM, with only minor
differences between the predictions of the three types of DDMs.

Since the porous domain is homogeneous, the observed anomalous dispersion can-
not be related to the heterogeneity of the hydraulic conductivity field. As mentioned
in section 7.1.1, this effect could be due to a possible adsorption of the red dye on the
grains of sand or to experimental problems. Another possibility is the presence of a den-
sity effect, i.e., of a vertical sinking of the solution containing the tracer, which has a
higher density than the “pure” water (without the tracer). Such effects are very evident,
e.g., in the case of salt-water intrusion in native groundwater, where the relative density
difference can be as large as 0.035 (Istok and Humphrey, 1995). Nevertheless, relevant
plume sinking can be observed also for much smaller density contrasts. In particular,
Istok and Humphrey (1995) showed that buoyancy-induced vertical flow of a bromide
tracer plume can occur for injected concentrations as small as 50 mg/L. This result was
obtained by investigating two-well forced gradient tracer tests in a physical meter-scale
aquifer model containing a homogeneous and isotropic sand pack. Istok and Humphrey
(1995) also observed that the occurrence of such density-induced sinking results in an
increase of the apparent longitudinal and transverse solute dispersion; moreover, the
peak concentration decreases and the concentration remains above background levels
for longer periods of time, i.e., a tailing is observed in the BTCs. In case study C the
concentration of the injected solution is C0=100 mg/L, which is above the limit identi-
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fied by Istok and Humphrey (1995). Therefore, the possibility of a density effect must be
considered for the interpretation of the tailing observed in the BTC.

Figure 7.2: Case study C: flux-averaged concentrationsCF , normalized by the concentration of the
injected solution C0, at the bottom of the column. The black diamonds represent the experimental
data, while the curves represent the best fit obtained with the different transport models: SDM
(blue line), DPorM (light blue line), UDPerM (red line), CDPerM (green line).
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DPorM 56%
UDPerM 52%
CDPerM 58%

Table 7.5: Case study C: values of ∆, the relative difference of the objective function of the DDMs
with respect to the objective function of the SDM.

DPorM τe/tT 5.5
Æ 2.2
Pe 99

CDPerM τe/tT 3.7
Æ(H) 1.6
Æ(L) 0.30
Pe(H) 110
Pe(L) 7.5

Table 7.6: Case study C: ratio of the characteristic exchange time (τe) to the characteristic time of
advective transport (tT ) and dimensionless numbers Pe and Æ for the DPorM and the CDPerM.

SDM 4.5 · 102

DPorM 7.7 · 1010

UDPerM 6.2 · 1013

CDperM 5.5 · 1014

Table 7.7: Case study C: condition numbers of the Hessian matrix of the objective function χCF .
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7.2 Case study D. Large-scale natural gradient tracer test at hectometer
scale performed in a sand and gravel aquifer at the Cape Cod site

The study site is located at Cape Cod, Massachusetts, where a large-scale tracer test
was conducted in an unconfined stratified sand and gravel aquifer (see Figure 7.3). The
hydrogeologic and hydrological characteristics of the field site and the details of the re-
alization of the tracer test are described by LeBlanc et al. (1991), where the main features
of the movement of the tracer cloud are also discussed. For the sake of clarity, only the
main concepts are reported in the following sections 7.2.1 to 7.2.3. The experimental
data are presented in section 7.2.4; in particular, proper averages of the experimental
concentrations are computed at some fixed distances from the injection wells, so that it
is possible to apply the 1D transport models developed in the previous chapters. The
results of the calibration of the transport models, obtained through the optimization of
the objective functions defined in section 7.2.5, are presented and discussed in section
7.2.6. Finally, some concluding remarks are given in section 7.2.7.

Figure 7.3: Tracer test at Cape Cod (LeBlanc et al., 1991). In the shaded areas the bromide concen-
trations exceeded 1 milligram per liter; the solid lines are the contours of the height of the water
table; the arrows indicate the predicted path of the tracer cloud.
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7.2.1 Hydrologic characteristics of the site

The observations of the water table height during the period of the tracer test showed
that the aquifer was characterized by a nearly horizontal groundwater flow, with hori-
zontal hydraulic gradients varying with time from 0.0014 to 0.0020, and very small verti-
cal gradients, which were less than 0.00012, corresponding to a head difference of 0.3 cm
over a distance of 25 m. The estimate of the average groundwater velocity is 0.4 m/d,
which is obtained by applying the Darcy’s law with the estimates of the hydraulic gradi-
ent, of the hydraulic conductivity (K=110 m/d) and of the effective porosity (ne = 0.39)
coming from field measurements at the site.

7.2.2 The tracer test

Three tracers were used in this test: a non-reactive tracer, bromide, and two reactive
tracers, lithium and molybdate. On July 1985, a 7.6 m3 volume of a solution with the
three tracers was injected into three wells for a 17 hour period, with a total rate of wa-
ter injection of 7.6 L/min. The spatio-temporal evolution of the tracer clouds was then
monitored for three years - until June 1988 - through an array of 656 multilevel samplers
(MLSs) covering a width from 12 to 22 m, a length of 282 m and spanning a vertical
distance from 3.6 m to 10.7 m long. The MLSs were installed at successive stages dur-
ing the test: in particular, given the position of the tracer cloud and the simultaneous
direction of groundwater flow, the evolution of the cloud could be estimated and the lo-
cation of the next set of MLSs chosen in order to intercept the solute movement. The first
sampling was performed 13 days after injection, and then 18 successive campaigns of
sampling followed during the three years of the test. For each campaign, water samples
were collected from the subset of MLSs that, according to the previous round data, were
expected to cover the area occupied by the tracer cloud. The solute concentration of each
water sample was then measured with different methods as, in the case of bromide, ion-
selective electrode, ion chromatography and an autoflorescence technique. The bromide
cloud was monitored only until December 1986, when the bromide itself left the mon-
itored region; instead, the lithium and molybdate clouds could still be observed after
three years from the injection, since these reactive tracers are adsorbed on the grains of
the sediments, and, therefore, their movement in the aquifer is slower than that of the
bromide.

7.2.3 Main features of the tracer cloud

The bromide moved basically along the direction of groundwater flow and was char-
acterized by a significant longitudinal spreading, whereas the spreading along the di-
rection transverse to water flow and, especially, along the vertical direction was much
smaller. For example, 461 days after injection, the bromide cloud had spread more than
80 m longitudinally, but was only 14 m wide and 4-6 m thick (see also Figure 7.4b).
Moreover, the bromide cloud moved downward about 4 m because of a combination
of the effects of precipitation and of a density-induced sinking, which is more impor-
tant in the early stages of the test when the higher concentrations of solutes determine a
higher density contrast between the injected solution and the native groundwater. This
downward movement can be seen, e.g., in Figure 7.5. The bromide concentration of the
injected solution is C0= 640 mg/L, which is well above the lower limit established by Is-
tok and Humphrey (1995) for the presence of density-induced sinking of the plume (see
also section 7.1.3); therefore, density-induced sinking is likely to be one of the processes
that determine anomalous dispersion at the Cape Cod site. The estimate of the average
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velocity of the bromide cloud during the test was 0.42 m/d, which coincides with the
estimate of the average groundwater velocity obtained with Darcy’s law. Moreover, the
pattern of the bromide concentration in the plume was complex and characterized by
asymmetry; such a result is a consequence of the aquifer heterogeneity. For example, the
presence of very permeable layers near the water table, which could act as channels for
preferential water flow and tracer transport, was observed at the site.

Despite these complexities, LeBlanc et al. (1991) concluded that the movement of the
tracer cloud can be predicted with sufficient accuracy from the measurements of the time
evolution of the water table elevation and of the corresponding gradient and observed
that the movement of the cloud follows the temporal changes of the direction of the
hydraulic gradient. Therefore, they stressed the importance of the accurate definition of
the water table in the study of contaminant transport in similar unconfined aquifers.

7.2.4 Experimental data

The bromide concentrations have been measured during 16 campaigns at about monthly
intervals, from 13 days to 511 days after injection; the campaign times are denoted with
t`, ` = 1, . . . , 16, and their values are listed in Figure 7.4a. As described in section 7.2.2,
water samples were collected during each campaign from a subset of the MLSs inter-
cepting the bromide cloud; therefore, for each campaign, that is, at a certain time t` after
injection, the experimental data are given by a set of bromide resident concentrations
C(x, y, z) at the position (x, y) of the MLSs and at the depth z of their sampling ports.

The location of the MLSs and of the three injection wells is represented in Figure 7.4a.
Moreover, in order to show the horizontal movement of the bromide cloud, Figure 7.4b
plots in the horizontal plane xy the maximum bromide concentration along z, at 33, 237
and 461 days after injection.

As already observed in section 7.2.3, the bromide cloud spreads mainly along the
average direction of groundwater flow (compare with Figure 7.3), while the spreading
along the transverse and vertical directions is much smaller. Therefore, it may be mean-
ingful to interpret these 3D concentration data with the 1D transport models developed
in this work.

To this aim, five vertical cross-sections of the 3D domain have been fixed by choosing
five subsets of MLSs aligned approximately perpendicularly to the direction of the av-
erage groundwater flow, as shown in Figure 7.4a. The average concentration over each
section has then been computed for each time, as explained in detail in the following.

Since in each campaign solute concentrations have been monitored only at a subset
of the MLSs, it is then necessary to introduce the following definition.

For any section n, Ln ⊂ {1, . . . , 16} includes the codes of the measurement cam-
paigns during which data have been collected for that section. In other words, concen-
tration data are collected at time t` for section n, if ` ∈ Ln. The cardinality of Ln is
denoted with Ndata,n.

The sampled area A`n of section n at time t`, ` ∈ Ln, is defined as the area that covers
all the sampling points of the MLSs considered at section n and time t`, that is:

A`n =
√

(x`2,n − x`1,n)2 + (y`2,n − y`1,n)2 ·∆z`max,n,

where (x`1,n, y
`
1,n) and (x`2,n, x

`
2,n) are the coordinates of the two extreme MLSs, i.e., the

most eastern and western MLSs, and ∆z`max,n is the maximum vertical distance spanned
by the sampling ports of the MLSs, at section n and time t`.
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Figure 7.4: a) location of injection wells (crosses) and MLSs (dots); the five sections for which the
average concentrations have been computed for the 1D transport modeling are also shown. b)
contours of the maximum bromide concentration (in milligrams per liters) at 33 days (black line),
237 days (blue line) and 461 days (green line) after injection. Origin of magnetic north-oriented
coordinate system is the central injection well. Redrawn from LeBlanc et al. (1991).
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Figure 7.5: Measured concentrations at section n=1 and time t3 = 55 d (plot a) and at section
n = 5 and time t16 = 511 d (plot b). The sampled surfaces, over which the average concentrations
C
`
n are computed, are highlighted with a gray background. The red border marks off the surfaces

over which the equivalent 1D concentrations C`n are computed.

Moreover, let Amax be the maximum of the sampled areas A`n, for ` ∈ Ln and n =
1, . . . , 5.

Let C
`

n be the concentration averaged over all the sampling points belonging to sec-
tion n at time t`, ` ∈ Ln.

As described above, at each section and time, water samples are collected for con-
centration measurement only from the subset of MLSs that is estimated to intercept the
tracer cloud, assuming that the concentration is zero in the other MLSs; consequently,
the average concentrations C

`

n for the different sections and times are computed over
different areas. In particular, because of dispersion, geometrical spreading and, possibly,
of the density effect (see section 7.1.3), as the distance from the injection wells increases,
the tracer cloud widens and then the area sampled by the MLSs increases.

As an example, in Figure 7.5 the concentrations measured at the first section n=1
and time t3=55 d (plot a) are compared with those measured at the last section n=5 and
time t16=511 d (plot b). In this figure, the sampled areas, over which the average con-
centrations C

`

n are computed, are highlighted with a gray background. It was obtained
A3

1=30.2 m2, C
3

1 = 2.13 mg/L, A16
5 = Amax =155.0 m2 and C

16

5 = 0.60 mg/L.
Since this tracer test is interpreted with 1D transport models, the concentrations must

be averaged over surfaces of the same area, which in our case is chosen as the maximum
sampled area Amax. To this aim, the equivalent 1D concentrations at section n and time
t` are defined as:

C`n = C
`

n

A`n
Amax

, n = 1, . . . , 5, ` ∈ Ln. (7.2)

This definition derives from the assumption that the concentration is zero outside the
sampled surface.

Coming back to the example sketched in Figure 7.5, equation (7.2) yields C3
1 = 0.41

mg/L and C16
5 = C

16

5 = 0.60 mg/L and the surfaces over which these equivalent 1D
concentrations are computed are marked off with a red border.

The experimental data defined by (7.2) are represented, e.g., in Figure 7.6a as dia-
monds connected by thin lines, where each colour corresponds to a different section.
It can be seen that the concentration peaks become smaller and wider as the distance
from the injection wells increases, as a consequence of both dispersion in the heteroge-
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neous aquifer and of geometrical spreading. A contribution to this reduction of the peak
concentration might also be given by the plume sinking (see section 7.1.3).

Some other important observations for the transport modeling can be introduced.
LeBlanc et al. (1991) highlighted that the variations of the water table elevation and

of the magnitude and direction of the hydraulic gradient were very small in the first 17
months of the tracer test; consequently, groundwater flow can be considered as steady
with a good approximation during the monitoring period of the bromide cloud.

The duration of the injection is T=17 hours, which is a very short time with respect
to the time scales with which the tracer moved in the aquifer; therefore, in this work, the
Cape Cod tracer test has been modelled as an instantaneous injection, that is, boundary
conditions (2.48), (2.52) and (2.56) have been applied.

The mass of solute injected per unit surface is given by M = mBr−/Amax, where
mBr−=4.9 kg is the total bromide mass that was injected. The bromide concentration of
the injected solution was 640 mg/L, which is very large compared to the natural bromide
concentration at the site, which was estimated around 0.1 mg/L.

7.2.5 Objective functions

In order to fit the experimental data C`n with the transport models developed in the pre-
vious chapters, the following objective function is defined:

χ2
C(a) =

1

N tot
data

5∑
n=1

∑
`∈Ln

[
C`n − C(xn, t`; a)

]2
, (7.3)

where N tot
data =

5∑
n=1

Ndata,n is the total number of experimental data for all sections and

times.
The minimization of this objective function gives the same weight to the misfit be-

tween experimental and model concentrations for all the five sections of the domain.
Other objective functions χn can be defined by taking into account the misfit for the

single section n, that is:

χ2
n(a) =

1

Ndata,n

∑
`∈Ln

[
C`n − C(xn, t`; a)

]2
, (7.4)

for n = 1, . . . , 5.

7.2.6 Results of the calibration

Figures 7.6, 7.7 and 7.8 represent the results of the calibration of the SDM, DPorM and
UDPerM, respectively. These figures share the same format: plot a) shows the results of
the optimization of the objective function χ2

C , defined by (7.3), that is, the concentrations
data of all the five sections are fitted simultaneously; plots b) to f) show the results of
the optimization of the objective functions χ2

n, n = 1, . . . , 5, defined by (7.4), i.e., the data
of the individual sections are fitted with the transport models. Moreover, the results
obtained through the optimization of χ2

C are compared in Figure 7.9 for the SDM, DPorM
and UDPerM and in Figure 7.10 for the UDPerM and CDPerM. Finally, Figure 7.11 shows
the values of χC and χn computed with the optimal parameters for χ2

C .
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As shown in Figures 7.10 and 7.11, the results of the two DPerMs are almost coin-
cident; therefore, the following discussion on the results of the UDPerM hold for the
CDPerM as well.

Concerning the outcomes of the optimization with respect to the single sections, a
common result of the calibration of the SDM, DPorM and UDPerM is that the fit of
the data of the first and second section leads to a very bad description of the data corre-
sponding to the further three sections, for which the prediction of the peak time is clearly
underestimated (see plots b and c of Figures 7.6, 7.7 and 7.8). On the other hand, the fit
of the data of the third, fourth or fifth section describes the data of the remaining sections
quite well, even if with some exceptions; for example, in some cases the peak time for
the second section is slightly overestimated (see plots 7.6d, 7.7d, e and f, 7.8d and f) and
the height of the peaks of the first two sections is underestimated (see plots 7.6e and f
and 7.8f) or overestimated as in plot 7.8e.

It should be noticed that the first two sections are characterized by few data
(Ndata,1 = 3 andNdata,2 = 6), so that the model calibration from these two single sections
is not reliable.

It is interesting to observe the results of the calibration of the UDPerM with respect
to χ2

4 (plot 7.8e): the model fits the data of the fourth section very well; nevertheless, due
to the low sampling rate, the model concentration has a behaviour that is not realistic
on the basis of the experimental data. The two peaks of the model concentration clearly
correspond to the fast and slow domains of the UDPerM.

Concerning the results of the optimization with respect to all five sections, the im-
provement of the fit relative to the SDM, defined by (6.7), is ∆ = 17% for the DPorM
and ∆ = 14% for the UDPerM and the CDPerM; in other words, all the three DDMs fit
the data better than the SDM (see also Figure 7.11), with minor differences between each
of them. Nevertheless, plots 7.7a and 7.8a show that the description of the experimental
data given by the DPorM and UDPerM is not accurate for all sections.

The best-fit parameters obtained for each model show that the estimate of the velocity
v is very similar to the estimate given by LeBlanc et al. (1991), that is, as recalled in section
7.2.1, v = 0.42 m/d; in fact v = 0.49 m/d for the SDM, v = 0.45 m/d for the DPorM,
v = 0.47 m/d for the UDPerM and v = 0.46 m/d for the CDPerM.

Both the inspection of Figure 7.9 and the values of ∆, which are smaller than those
obtained in the previous case studies, point out that it is not possible to obtain a good fit
of the data of all five sections neither with a SDM nor with the DDMs. This result may
be due to the 1D modeling of an actually 3D tracer test, and to the computation of the
average concentrations C with (7.2).

7.2.7 Concluding remarks on case study D

The calibration of the transport models against the concentration data of a single section,
i.e., the calibration obtained through the optimization of χn, does not always give reli-
able results; in fact, the best-fit parameters for section n often give a bad fit for the other
sections n 6= n. This is particularly evident for n = 1 and n = 2.

One of the possible explanations of this result is the low sampling rate, that charac-
terizes all sections and, especially, n=1 and n=2.

Moreover, it should be considered that the five sections are located at distances from
the injection wells ranging from about 15 m to about 200 m; therefore, the calibration of
the transport models against the data of one single section implies the transport model-
ing of a domain whose size ranges in the same interval. The effective parameters of the
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transport models are, in general, scale dependent (see, e.g., Giudici (2010)) so that the
best-fit parameters are likely to be different for the different sections.

Since it was observed that, for n ≥ 3, the fit for the other sections n 6= n is, in general,
satisfactory, then the low sampling rate seems to play a relevant role in the explana-
tion of these results; nevertheless, the scale dependence of the effective parameters also
represents an issue that should be taken into account for the interpretation of the results.

The calibration against the concentration data of all five sections, i.e., the calibration
obtained through the optimization of χC , seems to be a better approach than the former
one, considering that the objective is the determination of effective parameters that allow
the description of the transport properties for the whole studied region.

The results of this calibration showed that all the three DDMs fit the data slightly
better than the SDM, with only minor differences between the DPorM, UDPerM and
CDPerM. Specifically, the best fit obtained with the two DPerMs is almost the same, a
result that holds for the first type of optimization as well. Nevertheless, it is important
to stress that even the DDMs are not able to describe the data of all sections with very
good accuracy.
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Figure 7.6: Case study D: experimental (diamonds and thin lines) and model (thick lines) concen-
trations given by the calibration of the SDM with χC (a) and χn, n = 1, . . . , 5 (b to f). Different
colours are used to represent the data for the different sections: black for section 1, green for section
2, blue for section 3, purple for section 4, orange for section 5.
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Figure 7.7: Case study D: experimental (diamonds and thin lines) and model (thick lines) concen-
trations given by the calibration of the DPorM with χC (a) and χn, n = 1, . . . , 5 (b to f). Different
colours are used to represent the data for the different sections (see Figure 7.6).
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Figure 7.8: Case study D: experimental (diamonds and thin lines) and model (thick lines) concen-
trations given by the calibration of the UDPerM with χC (a) and χn, n = 1, . . . , 5 (b to f). Different
colours are used to represent the data for the different sections (see Figure 7.6).
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Figure 7.9: Case study D: experimental (black diamonds and thin lines) and model (thick lines)
concentrations given by the calibration of the SDM (blue line), DPorM (green line) and UDPerM
(red line) with respect to χC : a) sections 1, 3 and 5; b) sections 2 and 4.

Figure 7.10: Case study D: experimental (black diamonds and thin lines) and model concentrations
given by the calibration of the UDPerM (red line) and CDPerM (yellow line) with respect to χC .
The results for the two models are almost identical.
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Figure 7.11: Objective functions χC and χn, n = 1, . . . , 5, obtained with the minimization of χ2
C for

each model. The values are normalized with the optimal χC for the SDM.

7.3 Comments on the advantages of using either the solute concentra-
tion or the temporal moments of the BTC for the inversion of the
transport models

As discussed in sections 6.1.4 and 6.2.4, in case studies A and B, it was chosen to use the
CBTC data for the inversion of the transport models; this choice was justified by the fact
that those cases consist of numerical particle tracking experiments, which do not allow
a precise estimate of the concentrations or of the BTC, unless a much greater number
of particles is used in the simulations. In some tests of case study A, the inversion has
been also performed using the temporal moments of the BTC of order r ≤ 2, and it was
observed that, for the SDM, the results were very similar to those obtained using the
CBTC, whereas for the UDPerM the inverse problem is underdetermined.

On the other hand, in case studies C and D, it was chosen to use the flux or resi-
dent concentrations for the inversion, as these are the real hard data obtained from the
laboratory and field experiments.

The computation of the time integrals, that are present in the definitions of the CBTC
(2.41) and of the temporal moments of the BTC (2.42), permits to dampen the errors
which affect the experimental measurements of the concentration; this fact would clearly
support the use of the CBTC or the temporal moments of the BTC for the inversion.
Moreover, the first two temporal moments of the BTC are related to the average arrival
times of the solute and to the variance of the distribution of the arrival times, i.e., to basic
features of the solute plume that is important that the models are able to describe.

Nevertheless, a proper computation of the experimental CBTC or of the temporal
moments of the experimental BTC from the measurements of concentrations requires a
sufficiently high sampling rate, which would be possible for a laboratory test, like case
study C, but is more difficult to carry out for a large scale field test like case study D.

In order to illustrate a possible merit of the use of the temporal moments of the BTC
for the inversion of the transport models, the results of the calibration of the UDPerM
with respect to χ4, represented in Figure 7.8e), are considered. As observed in section
7.2.6, the best-fit concentration curve for section n=4 is characterized by a very small
misfit with respect to the experimental data, but its shape is not realistic. It is likely that,
in this case, the use of the the temporal moments for the inversion would have not given
this unrealistic result.
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This hypothesis is supported by Figure 7.12, which reports the values of the tempo-
ral moments, up to the second order, of the concentration curve for section n=4 in the
following cases: plot a) corresponds to Figure 7.8e), i.e., it refers to the best-fit of the UD-
PerM obtained through the optimization of χ4; plot b) corresponds to Figure 7.8a), i.e., it
refers to the best-fit of the UDPerM obtained through the optimization of χC ; plot c) cor-
responds to Figure 7.7e), i.e., it refers to the best-fit of the DPorM obtained through the
optimization of χ4. The estimate of the experimental moments is reported in the bottom
of Figure 7.12.

It is apparent that the different curves are characterized by different temporal mo-
ments; specifically, it can be noticed that the best approximation of the experimental
moments M exp

0 and mexp
1 is obtained with the curve in plot c), that is, with the DPorM,

whereas the best approximation of µexp
2 is obtained with the curves in plots a) and b),

that is, with the UDPerM. Since the curve in plot c) is more realistic than the curves in
plots a) and b), it would have been expected that all the three experimental moments
would have been better approximated with the curve in plot c). Nevertheless, it should
be noticed that the curve in plot c), as well as most of the curves predicted by the DPorM
(see figure 7.7), is characterized by a significant tail. As a consequence, the values of
the moments reported in plot c) are, actually, the temporal moments of the truncated
concentration curve.

This example shows that the use of the temporal moments in the inversion of the
transport models could favor curves which are more realistic (plot c), despite their higher
misfit with respect to the concentration data. Nevertheless, especially in the case of the
DPorM, an accurate estimate of the model parameters with the method of moments re-
quires proper techniques to match the temporal moments of the truncated concentration
curve, as done, e.g., by Luo et al. (2006) for the SDM.

Furthermore, given the large number of parameters of the DDMs, the inversion of
such models with the method of moments requires also the use of temporal moments
of order higher than 2, otherwise the inverse problem would be underdetermined, as
shown in section 6.1.6 for case study A. Nevertheless, as discussed by Jacobsen et al.
(1992), the use of the higher order temporal moments can result in an unreliable param-
eter estimation; in fact, the proper computation of the higher order temporal moments
can be significantly affected by small experimental errors in the tail of the BTC. Jacob-
sen et al. (1992) also observe that the concentration data obtained through conservative
transport experiments in lysimeters are poorly described both by the standard SDM and
by a two-region model, equivalent to the DPorM, when the parameters of the models are
estimated with the method of moments, whereas the non-linear least-squares inversion
using the concentration data has a greater flexibility and yields a better description of the
experimental data; this conclusion supports the use of the concentration data, instead of
the temporal moments of the BTC, in case studies C and D.
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M0=1.8 · 10−1 kg d m−3

m1=3.5 · 102 d
µ2=2.1 · 103 d2

χ4=1.8 · 10−5 kg m−3

M0=1.8 · 10−1 kg d m−3

m1=3.5 · 102 d
µ2=2.3 · 103 d2

χ4=2.6 · 10−4 kg m−3

M0=1.5 · 10−1 kg d m−3

m1=3.7 · 102 d
µ2=3.4 · 103 d2

χ4=1.2 · 10−4 kg m−3

Experimental moments: M exp
0 =1.3 · 10−1 kg d m−3

mexp
1 =3.6 · 102 d

µexp
2 =1.9 · 103 d2

Figure 7.12: Comparison of the concentration curves and of their temporal moments for section
n=4. Plot a): best-fit of the UDPerM obtained through the minimization of χ4. Plot b): best-fit
of the UDPerM obtained through the minimization of χC . Plot c): best-fit of the DPorM obtained
through the minimization of χ4.



CHAPTER 8

Conclusions

In this work, 1D single and dual-domain transport models (SDM, DPorM, UDPerM, CD-
PerM) have been implemented and calibrated with the data of four different case stud-
ies, which include both numerical and real (laboratory and field) transport experiments
performed at different spatial scales in alluvial sediments with different heterogeneity
patterns.

In order to study the different situations, initial and boundary conditions have been
applied to the models to describe both a pulse and a step solute injection. In particular,
the SDM and UDPerM have been solved analytically in the case of a pulse injection,
whereas a numerical scheme has been developed to solve these models and the coupled
DPorM and CDPerM for both a pulse and a step injection. The numerical models have
been validated by comparing their results with those given by HYDRUS-1D and, for the
uncoupled models, with the analytical solution.

Some general concluding remarks can be drawn from the results of the application
of the transport models to the different case studies.

Comparison of the performance of the different transport models

The DDMs permit to significantly improve, with respect to the SDM, the fit of the exper-
imental data resulting from transport experiments in structured heterogeneous porous
media characterized by the presence of PFPs (e.g, MB1 and MB2 for case study A and
ensemble B for case study B). On the other hand, when the PFPs are less marked, as
for media which are homogeneous or characterized by a fully random or unstructured
heterogeneity pattern, the SDM was shown to efficiently describe the experimental data
(e.g., MB3 for case study A and ensemble A for case study B).

Regarding the comparison between the performances of the three DDMs considered
in this work, i.e., DPorM, UDPerM and CDPerM, the UDPerM is the model that most
efficiently describes the transport properties of the sediments characterized by the pres-
ence of PFPs.

In fact, both DPerMs can describe the typical effects of PFPs on the solute transport,
such as the presence of double peaks or of an early peak and a long tail in the BTCs,
which are determined by velocity contrasts between the solute particles that travel in
the high-permeability PFPs and in the low-permeability sediments. Nevertheless, the
comparison of the results of the two DPerMs showed that, in all the tests, the CDPerM
does not lead to a significant further improvement of the fit obtained with the UDPerM,
so that the introduction of the exchange term between the two domains of the UDPerM
is not important for the description of the transport properties of the portions of alluvial
aquifers considered in this work. This may be explained considering that if the solute ex-
change is slow, then the description of the CDPerM is equivalent to that of the UDPerM;
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on the other hand, if the solute exchange is fast, the concentrations in the two domains
are at equilibrium, so that the description of the CDPerM is equivalent to that of a SDM.
Since the results of the two DPerMs are equivalent, the UDPerM is preferable for two
reasons: it has fewer parameters to be estimated in the model calibration and, at least
for the pulse injection, it can be solved analytically; consequently, the calibration of the
UDPerM is computationally much faster and robust.

Concerning the comparison between the DPerMs and the DPorM, it was shown that
in case study A the DPerMs describe the experimental data significantly better than the
DPorM, whereas in case studies C and D the DPerMs do not improve significantly the
fit of the DPorM. These remarks can be justified in a relatively simple way. Case study A
consists of three heterogeneous blocks of sediments, which are composed of hydrofacies
characterized by different values of K and with different arrangements among the MBs.
For MB1 and MB2, the highly conductive facies are connected to form PFPs, which give
rise to asymmetric BTCs, with double peaks (see Figure 6.5a) or early peak and tailing
(see Figure 6.5b). The DPerMs permit to take properly into account both the particles of
solute that travel along the PFPs, i.e., in the fast domain, and the slower particles that
travel in the less permeable sediments, i.e., in the slow domain. The DPorM, instead,
is not a good model for these kinds of heterogeneous domains, as it assumes that the
second domain is immobile. On the other hand, case study C consists of a homogeneous
sand column, for which the asymmetry and tailing of the BTC cannot be related to the
presence of PFPs, but it is probably due to the adsorption of the red dye on the sand, that
may be possible at low flow rates, as suggested by Toloni (2011). In this case, the DPorM
is a good model, as the adsorbed solute particles correspond to the particles in the im-
mobile domain. Another possible explanation of the observed tailing is represented by
the density-induced sinking that, according to the results of Istok and Humphrey (1995),
may occurr for the injected concentration used in this experiment.

In case study D, when the model calibration is performed for all the five sections si-
multaneously, the DPorM and the DPerMs share a similar value of the optimal objective
function, which is a common result with case study C. Therefore, this result may be ex-
plained by the hypothesis that, as in case study C, the Cape Cod site is not characterized
by the presence of PFPs. Nevertheless, it was shown that the SDM does not describe
accurately the experimental data and that the DDMs perform slightly better than the
SDM, even if the improvement is not so striking as in the other case studies. This result
can have different explanations: it may be just due to the higher number of parameters
of the DDMs that allows to improve the fit of the experimental data with respect to the
SDM, or to effects caused by the 1D modeling of the 3D tracer test; it may also have more
physical justifications, as the presence of some low-permeability sediments that store the
tracer and form an immobile domain or the presence of a density-induced sinking of the
tracer plume, which is well-established for this site by the analyses of, e.g., LeBlanc et al.
(1991); Garabedian et al. (1991); Zhang et al. (1998). A connectivity analysis could help
to choose the correct interpretation but is not available for the Cape Cod site. However,
the few following remarks could provide some arguments for these hypotheses.

The estimated value of var[lnK] is 0.26 (LeBlanc et al., 1991), which is very small
with respect to the values of this parameter for the blocks of case study A and B (see
Tables 6.1 and 6.13) or for other sites, as the MADE site, for which var[lnK]=4.5 (Rehfeldt
et al., 1992). This observation supports the hypothesis that the Cape Cod site is more
homogeneous than the other examples considered in this work; nevertheless, as stated
in section 6.1.11, the main factor that controls the presence of PFPs is not var[lnK], but
the connectivity of the high-permeability facies.

Konikow (2011) observes that “the applications of numerical solute-transport models
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indicate that conventional numerical models based on the Fickian ADE can adequately
simulate transport of non reactive and reactive solute species in this aquifer”, referring
to the modeling works by Garabedian et al. (1991), Zhang et al. (1998) and Parkhurst
et al. (2003).

As the medium can be considered quite homogeneous and the SDMs applied in pre-
vious works were satisfactory, the improvement of the fit of experimental data given by
the DDMs in this work is hardly related to the presence of very low-K or even immobile
domains.

Moreover, the results for MB3 of case study A have not shown relevant improve-
ments of the DDMs with respect to the SDM, despite the high number of parameters of
the DDMs, which, therefore, should not be the main factor to reduce the misfit between
model outcomes and observations.

As a consequence, the ability of the DDMs to simulate the deviations from the
assumed average 1D flow and to take partially into account the effects of the density-
induced sinking seem to be the most plausible reasons for the slightly improved
descriptions of case study D provided by the DDMs with respect to the SDM.

The conclusions in this paragraph have been drawn from the results of different
approaches: comparison between the best-fit parameters of the transport models, be-
tween the graphs of the BTCs or CBTCs, as well as between the characteristics times
for advection and exchange and between two dimensionless numbers that permit to
quantitatively assess the relative importance of the three transport mechanisms that are
considered at “large” scale: advection, dispersion and coupling between slow/fast or
mobile/immobile domains.

Relation between the effective parameters of the transport models and the hetero-
geneity pattern

For both case studies A and B, an accurate geological and hydrostratigraphical model,
a geostatistical simulation and a connectivity analysis permitted to obtain a detailed
characterization of the heterogeneity pattern of the blocks of sediments. In both cases, a
qualitative correlation between the connectivity indicators and the transport properties
has been observed; the relevance of this relation has been primarly shown by the results
of the statistical analysis on the two ensembles of equiprobable realizations in case study
B.

A quantitative analysis of the relation between connectivity indicators and effective
flow and transport parameters of the SDM and UDPerM has been attempted with a
PCA, which was performed on the ensembles of equiprobable geostatistical realizations
of case study B. This analysis has shown that the connectivities of the most permeable
facies G appear among the most relevant quantities of the low-order PCs, as well as the
hydrodispersive parameters of the fast domain of the UDPerM, whereas the parameters
of the slow domain are of minor importance for the description of the transport features.

Therefore, this study provides futher evidence about the statement proposed by
several Authors (e.g., Fogg (1986); Poeter and Townsend (1994); Scheibe and Yabusaki
(1998); LaBolle and Fogg (2001); Zinn and Harvey (2003); Zappa et al. (2006); Konikow
(2011)) that the interconnectedness of high-conductivity sediments is more important
than the actual conductivity values to control the solute fate and to determine non-
Fickian transport behaviour.

Moreover, it is shown that a preliminary analysis of the volume of sediments, based
on sedimentological, geostatistical and connectivity analysis, is important to decide
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whether a dual domain approach, which requires more computational effort than a clas-
sical SDM, is necessary.

Remarks on the calibration with the LM algorithm

In this work, the models calibration is based on the LM algorithm, which is a standard
non-linear least-squares approach. The model calibration for the UDPerM showed the
well known difficulties of the inverse problems when non-linear least squares are ap-
plied. In particular, a gradient-based algorithm might fail to find a minimum, if it ex-
plores a region of the parameter space for which the objective function is quite constant,
or might fall into a local minimum, so that the issue of the non-uniqueness of the solution
of the inverse problem arises and an analysis of the best-fit parameters corresponding
to the different minima is necessary. The results of the application of the analytical UD-
PerM to case study A showed that the local minima obtained from the calibration of the
UDPerM often correspond to the physical situation described by the SDM.

The performed tests confirmed the importance of the initial set of parameters in order
to reach the global minimum of the objective function, which shows a complex depen-
dence on several variables, and to find a physically plausible solution of the problem.
On the other hand, the LM method proved to be quite robust with respect to the Hessian
matrix of the objective function, which could often be ill-conditioned; the inverse of the
Hessian matrix enters in the LM algorithm and is used also to estimate the correlation
matrix of the parameters around the optimal values. No particular problems had to be
faced during the search for the solution, but the ill-conditioning of the Hessian matrix
prevented to draw conclusions about the uncertainty on the fitted parameters for some
cases.

Pareto set as a possible indicator of PFPs

The analysis of the results of model calibration for the SDM in case study A within the
framework of multi-objective optimization provides interesting information. In particu-
lar if the misfit between experimental and modelled CBTCs is split in the contribution of
early and late times, then it is possible to draw an approximation of the Pareto frontier.
For those cases which can be satisfactorily represented with a SDM, the Pareto frontier
reduces to a single point. On the other hand, for those tests which present clear effects
of PFPs and which require the UDPerM to improve the fit of the experimental data, the
Pareto frontier is a wider set. These results suggest that the Pareto set could effectively
be an indicator of the presence of PFPs in heterogeneous porous media.

Scale dependence of the best modelling approach

In this work the relevance of the DDMs is assessed for case studies involving very dif-
ferent scales of observation and data: from the 20-centimeter-long column of case C, to
the meter- and decameter-sized blocks of cases A and B, to the 200-meter-long region
studied in the Cape Cod field tracer test of case D. It would then be interesting to assess
whether the relevance of the single and dual-domain models depends on the scale of
observation.

Several theoretical and experimental studies on field tracer tests have highlighted
some fundamental differences between the solute transport in large scale aquifers and
in laboratory columns. In particular, as shown and discussed, e.g., by Dagan (1982,
1984); Gelhar and Axness (1983); Garabedian et al. (1991); Gelhar et al. (1992), the evolu-
tion of a plume in an aquifer cannot be explained using a constant dispersivity value, as
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assumed by the Fickian theory; in fact, it was observed that the values of the dispersivity
obtained at field sites are much larger than the values obtained in laboratory and that,
even at a given scale of observation, the longitudinal dispersivity ranges over two or
three orders of magnitude. Moreover, it was observed that the longitudinal dispersivity
linearly increases with the displacement distance and gradually approaches a constant
asymptotic value if the hydraulic conductivity field is stationary (i.e., statistically ho-
mogeneous) and has a finite correlation scale. Such results show that, at a sufficiently
large scale of observation, a classical Fickian approach, with a constant macrodispersion
coefficient, could be used to effectively describe the solute transport, whereas at smaller
scales different non-Fickian models should be used to correctly describe and predict the
solute movement.

In a similar way, the DDMs are relevant for the description of solute transport in
structured heterogeneous porous formations when observed at small scales; as the scale
of observation increases, it might be expected that the small-scale “dual” behaviour is
averaged over larger volumes, so that the DDMs become less relevant and the solute
transport can be effectively described by a SDM.

Nevertheless, this is not a general conclusion, as the large-scale behaviour is strongly
affected by the sediments connectivity, which determines non-local effects in the so-
lute transport, which cannot be described by a classical SDM. In particular, if the high-
permeability sediments are poorly connected, then it is likely that the large-scale repre-
sentation of the aquifer is that of a homogenous domain, since the small-scale effects of
heterogeneity are averaged over large volumes. On the contrary, if the aquifer is char-
acterized by a large connectivity of high-permeability sediments, i.e., by PFPs, then the
DDMs should be more relevant than a SDM even at large-scale, because such models
can properly describe the sub-plumes traveling with different velocities in the PFPs and
in the low-permeability sediments.

These observations are supported by the results obtained by Zinn and Harvey (2003),
who highlighted that very different flow and transport behaviours can occur in conduc-
tivity fields characterized by the same lognormal univariateK distribution and the same
isotropic spatial covariance function, but with different connectivity patterns. Therefore,
information on the connectedness of geologic media may be necessary to choose the
form of the transport model to be applied in each specific situation.

In this work, it was observed that DDMs are relevant in case studies A, B (for ensem-
ble B) and C, that is, at scale lengths from 10 cm to 10 m, whereas for the Cape Cod tracer
test the DDMs bring less significant improvement to the description of the SDM. Such
results are in agreement with the above discussion; in fact, as previously mentioned, the
Cape Cod site is not characterized by strong hydraulic conductivity contrasts and the
presence of PFPs seems not to be an important feature of this site. It is then expected
that the SDM properly describes the large-scale behaviour of the solute plume and that
the DDMs do not show a major relevance, which is exactly what has been observed in
the results of section 7.2.

Final remarks

The comparison of the different dual-domain approaches considered in this work indi-
cates that, in order to correctly describe the transport of solutes in alluvial sediments
characterized by the presence of PFPs, the UDPerM should be used. In other words, it
is necessary that both domains are mobile; on the other hand, the two domains can be
considered independent.

As mentioned in the Introduction, most applications of DDMs to saturated porous
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media refer to the DPorM. In this work, it was shown that the DPerM approach is more
relevant than the DPorM for the description of the transport properties of heterogeneous
alluvial aquifers with PFPs, for which the velocity contrasts caused by the heterogeneity
of the porous medium is not so strong as, e.g., for fractured rocks.

This conclusion is well supported by the results of the analysis of the numerical trans-
port experiments (case studies A and B), which were performed at relatively small spa-
tial scales (meter to decameter), so that a detailed hydrofacies characterization and con-
nectivity analysis were possible.

The Cape Cod tracer test represents a first step towards the generalization of this
conclusion for alluvial aquifers at the scales of interest for practical applications (e.g.,
for the modeling of a possible contamination event or for the design of a contaminated
aquifer remediation).



APPENDIX A

Considerations on the analytical solution of the
CDPerM

The CDPerM with the initial and boundary conditions describing a pulse injection in
a semi-infinite domain has been solved numerically in chapter 4. In fact, it was not
possible to obtain an analytical solution of the coupled equations (2.35) and (2.36), for x ∈
[0,+∞) and t ∈ [0,+∞), with boundary conditions (2.54) to (2.55). Analytical solutions
of initial-boundary value problems for linearly coupled systems of partial differential
equations (PDEs) similar to those of the CDPerM can be found in the literature only in
some special cases or with different boundary conditions.

For example, Skopp et al. (1981) proposed a perturbation method to solve the model
equations for small interaction coefficient, i.e., for small α. In particular, their solution is
not valid when the dimensionless interaction coefficient αL/(nv) is larger than 1.5.

The results of Walker (1987), together with those of Hill and Aifantis (1980), Hill
(1981), Veling (2002) and Vanderborght et al. (2005), show that the analytical solution of
equations (2.35) and (2.36) could be obtained with the method used in these works only
in one of the two following situations:

a) the condition D(H)/v(H) = D(L)/v(L) holds;

b) the spatial domain is infinite, −∞ < x < +∞.

Condition a) does not hold in general for a dual-permeability medium. Moreover, as
stated at the beginning of this chapter, in our case the domain is semi-infinite, so that
neither condition b) holds.

In particular, Hill (1981) proposes the solution of the following system of coupled
equations:

∂u

∂t
= D1L(u)− au+ bv, (A.1)

∂v

∂t
= D2L(v) + cu− dv, (A.2)

where L is a linear spatial operator not involving time. The solution is given, both
for zero and non-zero Dirichlet boundary data, in terms of integrals of two functions
that solve the corresponding uncoupled problem, ∂h/∂t = L(h), with proper initial and
boundary conditions. Equations (2.35) and (2.36) can be cast in the same form as equa-
tions (A.1) and (A.2), only if condition a) holds; in that case the operator L would be
defined as:

L = − v

D

∂

∂x
+

∂2

∂x2
.
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One of the applications presented in Hill (1981) is the model of an arms race, whose
equations are analogous to (2.35) and (2.36) and are solved in a semi-infinite spatial do-
main with Dirichlet boundary conditions and a restrictive assumption equivalent to a)
that allows to rewrite such equations in the form (A.1) and (A.2).

Walker (1987) proposes a method to solve analytically the following coupled set of
PDEs:

∂u

∂t
= −σ∂u

∂x
+ (1 + β)Lu− au+ bv + η1(x, t) x ∈ V, (A.3)

∂v

∂t
= −σ ∂v

∂x
+ βLv + cu− dv + η2(x, t) x ∈ V, (A.4)

with the initial conditions u(x, 0) = f1(x) and v(x, 0) = f2(x), where L is a linear time-
independent operator, a, b, c, d, β and σ are constants, f1, f2, η1 and η2 are given func-
tions and V is the spatial domain. If V is finite, then the boundary conditions are rep-
resented by: Kiju = ξij and Mijv = χij , for x ∈ Sj , where Kij and Mij are linear
time-independent operators, ξij , χij are given functions and Sj are subsurfaces of the
boundary of V .

Walker (1987) showed that if σ 6= 0, then analytical solutions can generally be ob-
tained only if V is infinite in extent in the x coordinate; if σ = 0, instead, solutions can be
obtained for a finite V , with the boundary conditions stated above. In particular, the so-
lution of these equations consists in a convolution of the Green’s function corresponding
to the operator L and a function independent of L.

Walker (1987) also applied his results to the modeling of the two-dimensional move-
ment of solutes in a double-porous medium. Specifically, equations (A.3) and (A.4) re-
duce to the CDPerM equations (2.35) and (2.36) with the following substitutions:

β =
D(L)

D(H) −D(L)
,

σ =
D(H)v(L) −D(L)v(H)

D(H) −D(L)
,

L =
(
D(H) −D(L)

) ∂2

∂x2
−
(
v(H) − v(L)

) ∂

∂x
,

and by setting η1 = η2 = 0, a = b = α/
(
ε(H)n(H)

)
, c = d = α/

(
ε(L)n(L)

)
.

Notice that, with these substitutions, condition σ = 0 corresponds to condition a), in
which case the analytical solution could be derived in a finite (or semi-infinite) domain.
The solution of the dual-permeability problem with σ 6= 0 is obtained by Walker (1987)
for an infinite spatial domain, that is in situation b). Despite the fact that this solution is
not applicable to our case, the Walker interestingly shows that, for short times, the two
domains act independently from each other, while, for long times, the heterogeneous
medium acts as a homogeneous medium with parameters (velocity and dispersion coef-
ficient) that average the parameters of the two domains.

Veling (2002), by generalizing the method proposed by Walker (1987) to a system
of three coupled equations, presented the analytical solution for the following triple-
porosity problem, which consists in one PDE and two ordinary differential equations:

∂c1
∂t

= Lc1 +

3∑
j=1

a1jcj , c1(x, 0) = 0, c1(0, t) = cb,
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∂ci
∂t

=

3∑
j=1

aijcj , ci(x, 0) = 0, i = 2, 3,

where L is a linear second-order time-independent operator in x and aij are real con-
stants. The solution is obtained, for x ∈ [0,+∞) and t ∈ (0,+∞), as the sum of several
integrals that involve the following functions: w, which is the solution of the correspond-
ing uncoupled problem, i.e., ∂w/∂t = Lw with w(x, 0) = 0 and w(0, t) = cb; the Bessel
functions I0 and I1; the Goldstein J-function.

Veling (2002) also observes that a solution to the initial value problem given by a
system of three coupled PDEs of the same form as (A.1) and (A.2) can be obtained gener-
alizing the technique developed by Walker (1987); this can be done in an infinite domain,
in agreement with the results of Walker (1987) for two coupled PDEs.

Finally, Vanderborght et al. (2005) started from the results of Walker (1987) and re-
ported the solution of the CDPerM equations in an infinite soil profile with an initial
concentration distribution of the form δ(x).



APPENDIX B

On the determination of the truncation errors for
a Crank-Nicholson upwind approximation of the

CDPerM

In this appendix the method developed by Ataie-Ashtiani et al. (1999) and outlined in
section 4.1.5 is applied to determine the truncation errors for the finite difference approx-
imation of the equations of the CDPerM with a Crank-Nicholson scheme, an upwind
treatment of the convective term and a variable spatial grid.

For ease of notation, let C(H) and C(L) be denoted as C and B, respectively, v(H) and
v(L) as v1 and v2, D(H) and D(L) as D1 and D2, ε(H) and ε(L) as ε1 and ε2, n(H) and n(L)

as n2 and n2. With this notation, the equations of the CDPerM (2.35) and (2.36) become:

∂C

∂t
= −v1

∂C

∂x
+D1

∂2C

∂x2
− α

ε1n1
(C −B), (B.1)

∂B

∂t
= −v2

∂B

∂x
+D2

∂2B

∂x2
+

α

ε2n2
(C −B). (B.2)

The Crank-Nicholson upwind finite difference approximation of equations (B.1) and
(B.2), for the generic node i and at the time level `, is given by:

C`+1
i − C`i

∆t`
= D1

1

2

C`+1
i+1 − C

`+1
i

∆xi
−
C`+1
i − C`+1

i−1

∆xi−1

1

2
(∆xi−1 + ∆xi)

+
1

2

C`i+1 − C`i
∆xi

−
C`i − C`i−1

∆xi−1

1

2
(∆xi−1 + ∆xi)

+

− v1

[
1

2

C`+1
i − C`+1

i−1

∆xi−1
+

1

2

C`i − C`i−1

∆xi−1

]
+

− α

ε1n1

[
1

2
(C`+1

i −B`+1
i ) +

1

2
(C`i −B`i )

]
, (B.3)
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B`+1
i −B`i

∆t`
= D2

1

2

B`+1
i+1 −B

`+1
i

∆xi
−
B`+1
i −B`+1

i−1

∆xi−1

1

2
(∆xi−1 + ∆xi)

+
1

2

B`i+1 −B`i
∆xi

−
B`i −B`i−1

∆xi−1

1

2
(∆xi−1 + ∆xi)

+

− v2

[
1

2

B`+1
i −B`+1

i−1

∆xi−1
+

1

2

B`i −B`i−1

∆xi−1

]
+

+
α

ε2n2

[
1

2
(C`+1

i −B`+1
i ) +

1

2
(C`i −B`i )

]
. (B.4)

Approximating the different quantities in equations (B.3) and (B.4) with second order
Taylor expansions, as explained in section 4.1.5, it is obtained:

(
1 +

α∆t`
2ε1n1

)
∂C

∂t
=−v1

∂C

∂x
+

(
D1 +

v1∆xi−1

2
− α∆t2`

4ε1n1
v2

1

)
∂2C

∂x2
+

− α

ε1n1
(C −B) +

α∆t`
2ε1n1

∂B

∂t
+
α∆t2`
4ε1n1

v2
2

∂2B

∂x2
,

(
1− α∆t`

2ε2n2

)
∂B

∂t
=−v2

∂B

∂x
+

(
D2 +

v2∆xi−1

2
+
α∆t2`
4ε2n2

v2
2

)
∂2B

∂x2
+

+
α

ε2n2
(C −B)− α∆t`

2ε2n2

∂C

∂t
− α∆t2`

4ε2n2
v2

1

∂2C

∂x2
,

which can be rewritten as:

∂C

∂t
= − (v1 + vnum

1 )
∂C

∂x
+ (D1 +Dnum

1 )
∂2C

∂x2
− α

ε1n1
(C −B) +

+
α∆t`
2ε1n1

∂B

∂t
+
α∆t2`
4ε1n1

v2
2

∂2B

∂x2
, (B.5)

∂B

∂t
= − (v2 + vnum

2 )
∂B

∂x
+ (D2 +Dnum

2 )
∂2B

∂x2
+

α

ε2n2
(C −B) +

− α∆t`
2ε2n2

∂C

∂t
− α∆t2`

4ε2n2
v2

1

∂2C

∂x2
, (B.6)

where a numerical velocity and a numerical dispersion coefficient have been intro-
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duced for each of the two domains:

vnum
1 = − α∆t`v1

2ε1n1 + α∆t`
,

Dnum
1 =

−2α∆t`D1 + 2ε1n1∆xi−1v1 − α∆t2`v
2
1

2(2ε1n1 + α∆t`)
,

vnum
2 =

α∆t`v2

2ε2n2 − α∆t`
,

Dnum
2 =

2α∆t`D2 + 2ε2n2∆xi−1v2 + α∆t2`v
2
2

2(2ε2n2 − α∆t`)
.

As shown in section 4.1.5, the objective of this method is to group all the terms in such
a way as to define numerical coefficients (a numerical velocity, a numerical dispersion
coefficient and a numerical solute exchange coefficient), so that the corrected scheme is
easily obtained by replacing the “true” coefficients with effective coefficients.

It is apparent that the equation for C, (B.5), contains two terms depending on
∂B

∂t

and
∂2B

∂x2
, respectively, while the equation for B, (B.6), contains two analogous terms

depending on C. These terms cannot be included neither in the convective term nor in
the dispersive term nor in the exchange term.

As a consequence, a correction scheme for the numerical approximation of the equa-
tions of the CDPerM, given by (B.1) and (B.2), cannot be easily obtained with this
method.

This negative result is determined by the Crank-Nicholson treatment of the solute
exchange term. For this reason, as explained in section 4.2, in this work it has been
chosen to treat explicitly the solute exchange term in both the DPorM and the CDPerM.
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