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Abstract—The notion of distributed interval, as a formal 
framework for information granulation, represented by the 
collection of finite number of general-intervals is introduced. 
Operations on distributed intervals are defined based on the 
corresponding general-intervals’. Distributed intervals provide a 
bi-criteria framework for information granulation that can be 
used as a conceptually rich structure in granular computing. 
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I.  INTRODUCTION 
In general, as the name stipulates, granular computing is 

about information granulation, i.e. aggregating entities based 
on their similarity, functionality, proximity, coherency and 
indistinguishability, and their processing. It is argued that 
“[information granules] are central to processes of abstraction 
guiding our intellectual pursuits” [1]. Although granularity is 
an intrinsic part of human endeavors, like many other cases, it 
is quite difficult to come up with its comprehensive definition 
everybody could agree upon [11]. Given this, it is worth 
considering here a multidisciplinary approach to this paradigm. 

Not all criteria and structures used by humans are well-
known, abstracted and implemented. Moreover, beside the fact 
that “human perception and understanding of real world 
depends, to a large extent, on [such] nested and hierarchical 
structures”, [12] for any real world entity, more than a single 
hierarchy may exist even from the same perspective. To this 
end, it is clear that other formal frameworks than those yet 
known, for information granulation and their processing are 
required. 

The main objective of this study is to introduce a formal 
framework for information granulation in terms of the criteria 
of coherency and proximity. The framework originated from 
the well-known theory of interval analysis, which enables 
tolerating computational errors by indicating an interval, 
“known in advanced, to contain the desired exact result” [7]. 
However, we enhanced the theory to draw a suitable 
framework in granular computing through relinquishing the 
constraint of crisp bounds in the first level – similar to the 
concept of multi-intervals [5]- and also by integrating the 
concept of distribution into the theory of intervals. The result, 
coming under the name of distributed intervals, provides as at 
least bi-criteria framework –due to the combination of the 
natures of intervals and distributed entities - that can be used as 
a conceptually rich structure in granular computing.  

Discussing coherency and coherence classes, we will 
explain how distributed intervals support for approximation of 
coherent relations, when the determination of the exact 
coherence classes is not viable. Moreover, we discuss ways of 
approximation of entities based on the coherence classes. 

II. GENERAL INTERVAL 
Interval is defined as a compact bounded subset of the real 

numbers denoted by a pair of real numbers identifying its 
bounds (lower and upper bound, respectively). Formally, we 
have }|{],[ axaRxaaA ≤≤∈==  where Raa ∈,  and aa ≤ . 
“Intervals on the real line have a dual nature, as set (of real 
numbers) with the usual set operations, and as a new kind of 
number represented by pairs of real numbers with an 
arithmetic”[8]. 

In this paper, these constructs will be referred to as 
conventional intervals. Degenerate intervals of the form ],[ aa  
are equivalent to real numbers. Given that IR denotes the set of 
all real intervals and [] indicates null interval, then for 

IRBA ∈,  the following notions are defined [3, 7]. 
• aaAw −=)( , width of A. 

• 2/)()( aaAr −=  , radius of A 

• 2/)()( aaAm += , mid-point of A. 

• }|||,max{||| aaA = , magnitude of A. 

• BA ⊆  iff  baab ≤≤≤ . 

• BA =  iff   baandba ==  

• BA <  iff  ba < . 
• }|{ BxandAxRxBA ∈∈∈=∩  
• }|{ BxorAxRxBA ∈∈∈=∪ if ≠BA∩ [], otherwise the 

union is undefined. In [4] instead e.g., interval hull is 
considered. 

Using the symbol D to denote these four basic operations +, -, 
* and /, the arithmetic operations on intervals are defined as 

}|{ BbandAabaBA ∈∈= DD  where if B∈0 then / is 
undefined. It could be proved that the four operations are 
continuous mapping from 2R  to R  and IRBA ∈D . 
By defining a proper distance function for example, 

|)|,|max(|),( babaBAd −−= [7], IR   could be made into a 
metric space. 

0840-7789/07/$25.00 ©2007 IEEE 
1409



Definition: Given IRBA ∈, , then BA≺ -A is loosely smaller 
than or equal to B- if and only if ba <  or  BA ⊆ . 
Definition: Given ],[ aaA = , ],[ bbB = , we define 

)],min(,),[min(),( babaBAInf = , 
)],max(,),[max(),( babaBASup = . 

Definition: General Interval is defined to be ],[ RL AA where 

],[ LdefL aaA ε+= , ],[ aaA RdefR ε−= , Raa RL ∈εε ,,, , 

0, ≥RL εε  and RL aa εε −≤+ . LA  and RA denote the left 
and right bounds of the general interval respectively. If RL εε ,  
are known, we show general interval as [ aa, ]. It is clear that 
if 0== RL εε , then the concept of the general interval reduces 
to the conventional interval and consequently real numbers are 
shown as degenerated conventional intervals. However, if 
either 00 == RL or εε , we may present the interval as [ aa, ] 
and [ aa, ] respectively.  
Definition: Given RI  denotes the family of all real general 
intervals, we define unary operators ↑ and ↓  on any RIA ∈  
as ],[ aaA ↑= and ],[ RL aaA εε −+↓=  where IRAA ∈↓↑,  
and ↑↓⊆ AA . 
Definition: Given RIBA ∈, , we define the following notions: 
• ],[)( aaaaAAAw RLLR −−−−=−= εε

)](),([ ↑↓= AwAw  , width of A.  
• 2/)](),([2/)(2/)()( ↑↓=−== AwAwAAAwAr LR , radius 

of A. 
• 2/],[2/)()( LRRL aaaaAAAm εε ++−+=+= , mid-

point of A. 
• |]||,|[|| ↑↓= AAA , magnitude of A. 
• BA <  iff  LR BA < . 
• BA =  iff  RRLL BAandBA == . 
• BA ⊂  iff  ↑↑⊆↓⊆↓ BAandBA . 
• =BA∩  )],(),,([ RRLL BAInfBASup  
• =BA∪  

o )],(),,([ RRLL BASupBAInf  if ↑≠↑ BA ∩ [],  
o Otherwise the union is undefined in the framework of 

general intervals. 
• BA \  

o = [] , if BA ⊆ , 
o = ∪)],(,[ LRL BAInfA )]),,([ RRL ABASup ,otherwise. 

Be noticed that in the framework of general intervals, 
the result may be undefined regarding to the union 
operation. 

Definition: Given RIBA ∈, , then BA≺  - A is said to be 
loosely smaller than or equal to B - if and only if 

RR ABBA )\()\( ≺ . 

Operational definition of the arithmetic operations reveals the 
relationships shown below. Consider that RIBA ∈,  then we 
have 
[ aa, ] +  [ bb, ] = [ baba ++ , ]. In special cases we have 

[ aa, ] + [ bb, ] = [ baba ++ , ] and likewise [ aa, ] + [ bb, ] = 

[ baba ++ , ] and so on. Similarly, [ aa, ] - [ bb, ] = 

[ baba −− , ] where in special cases we have [ aa, ] - [ bb, ] = 

[ baba −− , ] likewise [ aa, ] - [ bb, ] = [ baba −− , ] and 

[ aa, ] - [ bb, ]= [ baba −− , ] and so on. Multiplication and 
division are expressed as follows. 
[ aa, ]*[ bb, ] = [ ),,,,min( babababa ),,,max( babababa ] , 

[ aa, ] / [ bb, ] = [ aa, ] * [ bb /1,/1 ]  whilst 

[ bb /1,/1 ] ]]/1,)/(1[,]/(1,/1[[ bbbb B
L

B
Rdef εε +−=  

given .0 ↑∉ B  The resulting RL εε ,  depends on the terms 
involved and would be calculated accordingly. 
Theorem: Given RIBA ∈,  and D  stands for the four 
operations +, -, * and /, then RIBA ∈D . 
Consider RI  it is possible to construct a metric space by 
forming a suitable distance function. As a simple example, 
given RIBA ∈, , we may consider RRIRId →*:  defined as 

)),(),,(max(),( ↑↑↓↓= BAdBAdBAd . It can be easily 
observed that RICBA ∈∀ ,, we have: 

0),( =AAd , 
),(),( ABdBAd = , 

0),( ≥BAd , 
),(),(),( CBdBAdCAd +≤ . 

III. DISTRIBUTED INTERVAL 
Given the definition of general intervals, we define 

distributed interval as the collection of finite number of 
general intervals. More specifically we have  

i

n

i
n AAAAA ∪∪∪∪

1
21 .......~

=
== , where RIAi ∈ . It is clear 

that for },...,1{,,,, njijiAA ji ∈≠  if ][≠↑↑ ji AA ∩  the 
general-interval union may take place and the result would be 
substituted, otherwise they are left unchanged. A~  would be 
referred to as a reduced distributed interval if 

][=↑↑ ji AA ∩ }...,,1{,, njijifor ∈≠ .Through the paper 
by distributed interval we mean reduced one unless otherwise 
specified explicitly. Without any loss of generality, we assume 
that }...,,2{,1 niAA ii ∈< + . Distributed interval A~  when 

1=n , reduces to general interval A . Be aware that the 
operations ∪  and \  on general intervals is always meaningful 
in the framework of distributed intervals. Given RI~  denotes 
the set of all real distributed intervals and RIBA ~~,~ ∈  be 
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defined as i

n

i
AA ∪

1

~
=

=  and j

m

j
BB ∪

1

~
=

= then we arrive at the 

following notions: 

• ∑
=

=
n

i
iAwAw

1
)()~( , which in general is an interval number. 

• 2/)~()~( AwAr =  , radius of A. 

• |)]||,max(|,|)||,[max(||~| 11 ↑↑↓↓= nn AAAAA , the 

magnitude of RIA ~~ ∈ . 
• BA ~~ ⊂  iff  jiji BAtsBA ⊆∃∀ .., . 

• BA ~~ =  iff  },,.....1{,, nkBAnm kk ∈== . 

• BA ~~ <  iff  1BAn <  we say that A~  is smaller than B~  . 

• ∪ ∪ ∩∩
n

i

m

j
ji BABA

1 1
))((~~

= =
=  

• ))((~~
11

ji

m

j

n

i
BABA ∪∪ ∪∪

==
=  

• ∪ ∩
n

i

m

j
ji BABA

1 1
))\((~\~

= =
=  

Definition: A~ is loosely smaller than or equal to B~ , denoted 

by BA ~~≺ , if and only if, given ∪
'

1

~\~~ n

i
iABAA

=
′==′  and 

∪
'

1

~\~~ m

j
iBABB

=
′==′  then '' mn BA ′′ ≺ . This indicates that if 

BA ~~ < then BA ~~ ≺  but the reverse does not always hold. It 
becomes clear that ),~( ≺RI is a lattice, while RIBA ~~,~ ∈∀  then 

join is defined to be the union i.e. BABA ~~~~ ∪=∨  and meet is 

intersection that is, BABA ~~~~ ∩=∧ . 
We also note that if the universe of discourse is finite then 

we can define the inverse of a given distributed interval. Given 
A=[ aa, ] ],[ RL AA=  defined on bounded universe U, then 

0>∃ε , ],[],[ UAAUA RL εε +−= ∪ . Consequently the 
inverse of the distributed interval 

i

n

i
n AAAAA ∪∪∪∪

1
21 .......~

=
==  would be defined as 

∪ ∩
i

iAA )(~ = .  

If D denotes the four basic operations +, -, * and /, then 
arithmetic operations on distributed intervals would be defined 

as ))((~~
11

ji

m

j

n

i
BABA DD ∪∪

==
= . However, offering a fully 

operational definition of the arithmetic operations is not 
straight forward.  
Theorem: Given RIBA ~~,~ ∈  and D  stands for the four 

operations +, -, * and /,  then RIBA ~~~ ∈D . 

It is also possible to construct a metric space over RI~ . 
Given RIBA ~~,~ ∈  we may define distance function 

RRIRId →~*~:
~

 as ∑
=

=
1

)),((min),(
~

i
jij

BAdBAd where 

RRIRId →*:  is defined as before. It can be easily proved 
that RICBA ~~,~,~ ∈∀ , 

0)~,~(
~

=AAd , 

)~,~(
~

)~,~(
~

ABdBAd = , 

0)~,~(
~

≥BAd , 

)~,~(
~

)~,~(
~

)~,~(
~

CBdBAdCAd +≤ . 
Based on the above definitions, the following properties 

hold for the ⊆  relation, given RIDCBA ~~,~,~,~ ∈ . 

ABABA ~~~~~ =⇔⊆ ∩ , 

BBAAB ~~~~~ =⇔⊆ ∩ , 

DBCADCandBA ~~~~~~~~ ∩∩ ⊆⇔⊆⊆ , 

DBCADCandBA ~~~~~~~~ ∪∪ ⊆⇔⊆⊆ , 

BBAABA ~~~,~~~ ⊆⊆ ∩∩ , 

BABBAA ~~~,~~~ ∪∪ ⊆⊆ . 

A. Distributed Intervals and Interval Sets 

In effect [ aa, ] could be interpreted as an interval whose 
lower bound and upper bound are known to be in LA and RA  
respectively. In other words, the notion of the general interval 
arises as a consequence of our inability to precisely 
characterize an interval. In essence the general interval A 
denotes a family of intervals in the form of 
A=[ aa, ]= ]],[,],[[ aaaa RL εε −+ = ],[ RL AA = 

}|],{[ RL AandAIR ∈∈∈ βαβα  that is IRRI 2⊂  where 
degenerated general interval becomes a conventional interval 

],[ aa  where 0== RL εε . Clearly, ],[ RL AA  as a general 
interval is equal to the interval set [9] 

],[ ↑↓ AA = }|{ ↑⊆⊆↓∈ AAAIRA . Consequently, we can 

say, RIA ~~ ∈  defined as i

n

i
AA ∪

1

~
=

=  would be rewritten as 

]~,~[],[~
11

↑↓=↑↓==
==

AAAAAA
n

i
iii

n

i
∪∪

}|{ ↑⊆↓⊆= iAAAA .  

IV. DISSCUSSION 
Distributed interval, based on the concept of general 

interval provide a rich structure for granulation, based on 
coherency and proximity. This is due to the combination of the 
nature and properties of intervals and distributed entities 
which permit granulation exploiting these two paradigms. To 
further explain functionality of distributed interval we 
consider the notion of rough sets [6]. 
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Given is E  forming an equivalence relation defined over 
the universe U that partitions it to equivalence classes 

},...,,{\ 21 nEEEEU = . The pair ),( EU  is then called 
approximation space that permits approximating a set based 
on a collection of elements that definitely belong to the set, 
called lower bound, and by elements that possibly belong to 
the set, which constitutes an upper bound. The main challenge 
concerns rough set is defining E  and EU \  in a precise 
manner.  

For the sake of simplicity, we consider U to be linearly 
ordered. Then each equivalence class could be modeled by a 
distributed interval and consequently we can express any 
rough set in terms of the distributed intervals. Being endowed 
with distributed intervals, we can approximate each 
equivalence class in the form of ],[~

iii aaE ∪=  where if 

ii Ea ∈ then ],[ iii aaa ∈ . Be reminded that elements in 

],[ ii aa  e.g. regarding their proximity are not distinguishable 
from each other. It may be argued that in this case the resulted 
classes may overlap which put E out of the equivalence 
relation space.  

We name the surjective symmetric relation UU ∗⊆=  
coherence relation, that is Ubab =∈ }),(|{ = and consequently 

Ubaa =∈ }),(|{ = . Coherence class is to be defined as 
}|{][ baUba == ∈= . It is clear that in general =][a and =][b  

where ba ≠ are not necessarily equal or disjoint. As a specific 
case, =  would be a tolerance relation [2] or equivalence 
relation. We used the term coherence relation to stress that 
what we mean is more general than similarity. Equivalence 
and even tolerance relation, are mainly used to show similarity 
[10] however there are entities that would be allocated to the 
same granule just because of their coherency, and not 
necessarily according to similarity. A simple example could be 
words constituting a sentence; they are not similar except 
coherent that has forced them to be put in the same granule, 
here sentence. As another example, we sometimes highlight 
some parts of the same paragraph, i.e. put the highlighted parts 
of the paragraph as “aim of the paragraph”. The highlighted 
parts are grouped mainly according to their coherency.  

We may claim that coherent relation =  in U implemented 
in terms of distributed intervals, as an approximation of so to 
say covering relations like equivalence relation, provide 

covering coherent classes },....,,{\ 21 mU ==== = . 
Consequently, any given set H  would be e.g. said to be 

in 










≠⊆
∪∪
=∩=
==

][
,

ii H
i

H
i or be approximated based on its distance to 

coherent classes. In the former case, for instance, 
approximated rough sets would be reformulated based on the 
approximated granules- approximated equivalence classes. On 
the other hand it is possible to approximate coherent relation 
=  through implementing it by distributed intervals. When 
determining the exact members of coherence class is not 
viable or classes are not covering, distributed interval may 
come into picture. 
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