
A General Approach to Securely Querying XML
Ernesto Damiania Majirus Fansib Alban Gabillonb Stefania Marraraa

aUniversit̀a degli Studi di Milano
Dipartimento di Tecnologie dell’Informazione via Bramante 65 26013 Crema (CR), Italy

bUniversit́e de Pau et des Pays de l’Adour
IUT des Pays de l’Adour 40 000 Mont-de-Marsan, France

Abstract

Access control models for XML data can be classified in two major categories: node filtering and query rewriting systems. The
first category includes approaches that use access policies to compute secure user views on XML data sets. User queries are
then evaluated on those views. In the second category of approaches, authorization rules are used to transform user queries to
be evaluated against the original XML dataset. The aim of this paper is to describe a model combining the advantages of these
approaches and overcoming their limitations. The model specification is given using a Finite State Automata, ensuring generality
and easiness of standardization w.r.t. specific implementation techniques

Key words:
PACS:

1. Introduction

In the last few years, theeXtensible Markup Lan-
guage(XML)[5] has become the format of choice for
data interchange. XML-based systems are now widely
deployed in a number of application fields. This success
has triggered a growing interest in XML security, and
several schemes for XML access control have been pro-
posed. They can be classified in two major categories:
node filteringandquery rewritingtechniques. The first
category includes a number of approaches (e.g., [1],
[2], [18], [22]; for a complete survey, see [18]) that use
access policies to computesecure viewson XML data
sets. User queries are then evaluated on those views. Al-
though views can be prepared off-line, in general, view-
based enforcement schemes suffer from high mainte-
nance and storage costs, especially for a large XML
repository.

Email addresses:damiani, marrara@dti.unimi.it ,
janvier-majirus.fansi@etud.univ-pau.fr,
alban.gabillon@univ-pau.fr (Stefania Marrara).

XML access control viaquery rewriting([21], [20],
[19], [16], [15], [7]) has been proposed as a way to rem-
edy these shortcomings. According to this approach, ac-
cess control rules are not directly applied to the XML
dataset to be protected; rather, they are used to trans-
late potentiallyunsafeuser queries intosafeones, to be
evaluated against the original XML dataset. Most cur-
rent proposals translate the policy’s access control rules
(ACR) to nondeterministic finite automata (NFSA) to
rewrite user queries. However, for policies that include
many ACRs, NFSA backtrackings may cause unaccept-
able overhead. More importantly, NFSA-based models
are not entirely suitable for system specification and
standardization. Another serious concern is that few of
these models provide users with a safe schema repre-
senting the information that they are allowed to access.
Disclosing the original schema may cause unwanted in-
formation leaks. In this paper, we describe our Deter-
ministic Finite Automaton (DFA) based query rewriting
approach (Section 2) that overcomes the drawbacks of
the NFA-based Systems. The main contributions of this

Preprint submitted to Elsevier 17 July 2007

work include:
– A security model based on authorization attributes

for XML (Section 2.1) in which the security designer
inserts the attributes in the XML Schema of the doc-
ument collection via a GUI. We then obtain a policy-
dependent view of the schema (or annotated schema).

– A formalization based on deterministic automata with
a high level of generality (an automaton can be im-
plemented in different ways) and suitable for stan-
dardization of the enforcement technique. From this
formalization we straightforwardly derive algorithms
for computing the user view of the schema (Section
2.2) and the rewriting DFA (Section 2.3) from the
annotated schema.

– A way to exploit the standard operatorsEXCEPT
andUNIONof XPath to produce a sound and com-
plete rewriting procedure (Section 2.4) of the user
query. Detailed Examples (Section 2.6) illustrate the
approach.

– A proof that our approach is sound and complete by
means of a formal proof of correctness (Section 2.7).
The complexity analysis (Section 2.8) shows that the
entire procedure is efficient as it is linear with the
size (i.e the number of element definitions) and the
depth of the repository schema.

– Finally we propose an approach to securely han-
dle XUpdate [8] commands over views. Namely,
the authorization designer annotates the repository
schema with some write attributes (insert, update,
delete). The annotated schema is afterward translated
into a Deterministic Finite Automaton (for updates).
Rewriting an XUpdate request into a safe one is done
in two steps:
· Whenever a user sends an XUpdate request over

her view, we first rewrite the expression selecting
the nodes to be updated according to the principles
described in Section 3. This step is necessary since
the user should not be able to update nodes she is
not entitled to see.

· Then, we rewrite the XUpdate command over the
DFA for updates in order to obtain a safe query (i.e
a query updating the nodes the user is permitted to
update).

In Section 4 we present the experimental results ob-
tained with a prototype tool, while Related Work is dis-
cussed in Section 5. Finally, Section 6 concludes this
paper and discusses future work.

1.1. XML Security and actual standards

With this work, we propose a new use of XPath for
writing and enforcing security policies on XML data.
Since the beginning of the XACML ([29]) discussion,
the security community has focused on three important
points:
– a security policy has to define clearly the objects tar-

get of the security enforcement;
– every object, target of a user’s request, has to be com-

pared with the policy in order to outline which rules
have to be applied;

– there exist two different way to securely manage
XML data:
· use of XPath both to define the target object in the

security policy, and to access the object during a
request (road followed by XACML);

· use of schema annotations to define the security
requirements and of XPath to access the protected
data.

In both cases, the XPath standard, as it is now, is not
the best choice to address XML objects in a security
environment, because it presents some important prob-
lems (e.g. hidden paths) w.r.t. some advantages (e.g. rel-
ative expressions) whose importance and necessity are
questionable. For this reason, with this work, we sug-
gest to the W3C to break the monolithic XPath stan-
dard into atwo layerslanguage, where each layer is a
well-defined sub-language useful for different research
communities. In our setting, we suggest to break XPath
into XPath − − plus XPathrel, whereXPath − −
expressions can be informally defined as follows:

XPath-- := ε|l| ∗ |p1/p2| //p1|p[q] wherep1 andp2

areXPath-- expressions;ε, l, ∗ denote the empty path,
a label and a wildcard, respectively;/ and// stand for
child-axis and descendant-or-self-axis; and finally,q is
called a qualifier. We rewrite the request in the subset
ζ:={ε|l|p1/p2|p[q]} of XPath-- using the functions
union andexcept. ζ is XPath-- without descendant-
or-self axis (//) and wildcards (∗). Obviously we can
defineXPathrel as XPath minusXPath−−.

The formal definition ofXPath − − by the W3C
would provide the XML security community of a com-
mon, standard, language to access XML objects in the
definition of XML security policies and requests man-
agement avoiding the problems given by relative paths.

On another side, updating XML data can still be con-
sidered a research issue (e.g. see [9,10,8,11,12]); how-
ever at least some building blocks of a data manipulation
language for XML are now firmly in place. XUpdate is

an XML-based host language for instructions tailored
for update tasks. In other words, it expresses updates as
well-formed XML documents; specifically, each update
is represented by anxupdate:modifications el-
ement. XUpdate has now over a dozen implementations;
this relative success is due to the fact that it is easy to
understand and simple to implement. XUpdate opera-
tions have a requiredselect attribute. The value of
this attribute is a XPath expression which selects the
nodes to update, referred to ascontextnodes. Besides
updating XML content, XUpdate operations can create
and delete entire XML fragments. An example XUpdate
instruction is<remove select=’//vehicles’> .
This command is to remove from a document every
fragment which root is an element namedvehicles .
An xupdate:modifications element must have
a version attribute, indicating the version of XUpdate
that the update requires. For the version of XUpdate re-
leased in 2000 as working draft, the value should be 1.0.
The entire syntax released in 2000 allows the following
types of elements:
– xupdate:insert-before
– xupdate:insert-after
– xupdate:append
– xupdate:update
– xupdate:remove
– xupdate:rename
– xupdate:variable
– xupdate:value-of
– xupdate:if
The interested reader can refer to [8] for a complete
description of the XUpdate Language.

2. DFA-based Query Rewriting

In this section we present a novel approach for rewrit-
ing potentially unsafe user queries into safe ones. Our
technique is based onDeterministic Finite Automata
(DFA). We exploit the tree nature of the XML Schema
to derive the DFA, which is the core of the rewriting
procedure. We shows that our technique is correct by
devising its proof of correctness.

2.1. Writing the security policy

The security administrator (SA) uses a Graphical
User Interface (GUI) to specify for each user class
(role), the part of information that the users are granted
or denied access to. Indeed, in order to obtain a policy-
dependent view of the schema, the SA annotates the

schema usingsecurity attributes. This technique was
first used in SMOQE [27].

We define the following security attributes:
access, condition and dirty . Attribute
access specifies the rights of the user on the node.
The value of this attribute is eitherallow or deny .
Attribute condition contains a list of predicates that
have to evaluate to true for access to be granted. At-
tribute dirty indicates that some descendants of the
current node could be unauthorized. More precisely, a
node has a dirty attribute if it has at least one descen-
dant node with eitheraccess=deny or a non empty
condition attribute attached to it. Annotating the
original schema means appending these attributes to el-
ement definitions in the schema. The annotated schema
is no longer valid regarding W3C XML Schema rec-
ommendation. It is only an internal representation of
the security policy that is never disclosed to the user.

Throughout the rest of this paper, we will consider a
repository of XML documents valid w.r.t. the schema
depicted in Fig.1(a) as a working example. In this exam-
ple, we also consider user Alice and a policy that allows
her access to elementshowroom , conditionally grants
her access to elementsavailable andaccessory
and denies access tosold . Alice is granted access to
all other elements (except the descendants ofsold of
course). The annotated schema is depicted in Fig.1 (b),
where security attributes are written in bold.

The remainder of the rewriting procedure, presented
in the remaining subsections, consists of three steps:

Step 1: The annotated XML schema is transformed
according to the policy that applies to each role. Ac-
cording to her role, the user is provided with the view
of the schema (in shortSv) she is entitled to see. Then,
she can write her query using information available on
Sv. Henceforth, unless stated otherwise, the term view
will refer to the view of the schema and not to the view
of a source document.

Step 2: The annotated schema is translated into an
automaton which represents the structure ofSv. Each
state withinSv contains some security attributes that
will further serve us while rewriting the user request.

Step 3: The user query is rewritten using the finite
state automaton.

2.2. Deriving the user view of the schema (Step 1)

Deriving the user view from the annotated schema
is straightforward. We start at the root of the annotated

ema xmlns="http://www.w3.org//2001/XMLSchema">�

ement name="showroom">

element name="vehicles" maxOccurs="unbounded" minOccurs="1" >

 <element name="available" maxOccurs="unbounded" >

 <element name="model" type="string"/>

 <element name="color" type="string"/>

 <element name="price" type="string"/>

 <element name="accessory" maxOccurs="unbounded">

 <element name="description" type="string"/>

 <element name="price" type="string"/>

 </element>

 </element>

 <element name="sold" maxOccurs="unbounded" >

 <element name="model" type="string"/>

 ... �

 </element>

attribute name="city" type="string" use="required"/>

lement> �

hema>

<schema xmlns="http://www.w3.org//2001/XMLSchema">�

 <element name="showroom" access="allow" dirty="true">

 <element name="vehicles" maxOccurs="unbounded" minOccurs="1"�

 access="allow" dirty="true" >

 <element name="available" maxOccurs="unbounded" �

 access="allow" dirty="true" condition="C">

 <element name="model" type="string" access="allow"/>

 <element name="color" type="string" access="allow"/>

 <element name="price" type="string" access="allow"/>

 <element name="accessory" maxOccurs="unbounded"�

 access="allow" condition="C1">

 <element name="description" type="string" access="allow"/>

 <element name="price" type="string" access="allow"/>

 </element>

 </element>

 <element name="sold" maxOccurs="unbounded" access="deny">

 <element name="model" type="string"/>

 ... �

 </element>

 <attribute name="city" type="string" use="required"/>

 </element> �

</schema>

(a)

(b)

Fig. 1. The Showroom Schema (a) and the corresponding annotated Schema (b)

schema tree, and at each element definition, we proceed
as follows:
– If the attribute access isallow without any condition

then we keep the node as is in the user view.
– If access is allow and there is an attribute

condition set then we redefine the node as op-
tional by adding the attributeminOccurs= 0. In this
way if a query gets to fail because thecondition
is not satisfied, then the querist would not infer the
hiding of data.

– If access isdeny then we discard the sub-tree rooted
at the actual node from the user view.

The view for user Alice is depicted in Fig.2(a).

2.3. Constructing the automaton (Step 2)

Constructing the rewriting automaton from the anno-
tated schema is also straightforward. The automatonM
derived from the annotated schema consists of an al-
phabetΣ, a set of statesS, a transition functionT :
S ×Σ → S, a start states0 ∈ S, and a set of accepting
statesA ⊂ S. The automaton is constructed as follows:

The alphabetΣ consists of the values of the at-
tributesname of each element definition on the anno-
tated schema.

Creating the states: We start at the root of the anno-
tated schema. The state corresponding to the root (ele-
mentschema) is s0. We create one state for each ele-
ment definition which has adirty parent. Indeed, all
other nodes (those notdirty) and their subtrees are
kept unchanged in the secured view. Hence they do not
require to be processed by the automaton. When we
encounter a denied node, we create a state for that el-

ement and skip the entire sub-tree rooted at that node.
Each states ∈ S (s 6= s0) has attributes which repre-
sent the security attributes stated at the corresponding
element definition. We give to the state attributes the
name and the value of their corresponding security at-
tributes. Each states ∈ S (s 6= s0) is a final state (i.e.
A = S \ {s0}).

Defining transitions: There exists a transition from
a statesi to a statesj if the element definition corre-
sponding tosi is the parent of the element definition
corresponding tosj . The transition is labeled by the at-
tributenameof the element definition corresponding to
sj .

The automaton derived from the annotated schema
of Fig.1(b) is represented in Fig.2(b).

2.4. Rewriting the request (Step 3)

We assume that the user writes her request using the
subsetXPath-- . 1 Hereby, we alleviate the rewriting
process overhead since there is no need to backtrack in
the automaton. We therefore rewrite the query in two
phases. First, we refine the submitted expression and
second, we rewrite the refined expression through the
automaton.

Phase 1: refining the expressionThis step consists
in refining the request on the basis of the view the user is
permitted to see. We first transform the user query (over
the repository) to an equivalent one (over the view).
Second, we execute the latter on the user view (Sv) and
from the target node we go back up to the root node,

1 In [4] Gottlob, Koch and Picler show that the loss of expressive
power of a fragment likeXPath-- w.r.t. XPath is minimal.

minOccurs="1">

ed" minOccurs="0">

ounded" minOccurs="0">

 delete=" "/>

(b)

ess="allow"

S1

dirty

S2

access="allow"

dirty

vehicles

S4

S3

access="denied"

access="allow"

dirty

sold

available

S5

S6

S7

S8

access="allow"

access="allow"

access="allow"

access="allow"

condition="C1"

modal

color

price

accessory

condition="C"

Fig. 2. The User Schema View (a) and the Rewriting FSA (b)

adding the encountered nodes on the path to form the
refined expression. The goal of this procedure is to elim-
inate every// and* within the expression. As an ex-
ample, if Alice request is//vehicles/available
then the equivalent expression over the view is
//element[@name="vehicles"]/complex
Type/sequence/element[@name="availa
-ble"] and the refined expression is/showroom
/vehicles/available . More examples are given
in section 2.6.

Phase 2: Rewriting the request via the automaton
The automaton represents the view the user is permitted
to see. Rewriting the user request consists of,
– processing the first token2 of the refined expression
– moving to the next state of the automaton until either

the last token is received, or a clean state (i.e., a state
that has no attribute dirty) is met or a denied state is
encountered.
When processing a token, we consider the two fol-

lowing cases:
– Queries without predicates. After reading the current

token, the automaton uses the attributes of the current
state and behaves as follows:Access is deny . It

2 We call token a step in the path expres-
sion, for example showroom is the first token in
/showroom/vehicles/available , while vehicles is the
second./ stands for alookahead .

rejects the request.Access is allow. There are two
possibilities:

(1) If there is no attributedirty then the user
has the right to consult the entire sub-tree rooted at
that node. The token is kept as such, the value of the
attributecondition (if any) is attached to the token
and the remainder of the source query is appended
to the rewritten query. Note that the attributedirty
is for optimizing the rewriting procedure. Indeed, if
the access is allow and if there is no attributedirty
then we do not need to analyze the remaining tokens
one by one. We can directly append the remainder of
the source query to the rewritten query.

(2) If there is the attributedirty then the token is
kept as such and if there is an attributecondition ,
its content is attached to the token. Then, the analyzer
asks for the next token (if any).

If the last token has been fed into the automaton
then we use the operatorexcept to eliminate each
unauthorized node under the target nodes. Ifq de-
notes the rewritten expression after the last token has
been fed into the automaton then the final rewritten
expression isq′ = q except (e1 ∪ e2 ∪ ... ∪ en),
where eachej with 1 ≤ j ≤ n is computed as fol-
lows:

The automaton consults one after another the states
corresponding to the children of the node represented
by the current state. At each states corresponding to

the tokenl, we have the following:
If the attributeaccess = deny thenl is appended

to q. The resultq/l becomes one of theej .
If the attributeaccess =allow and there is an

attributecondition then the negation of the con-
tent C of the attributecondition is appended to
l. The resultl[not(C)] is appended toq. q/l[not(C)]
becomes one of theej . If there is also an attribute
dirty then the procedure goes deeper into the au-
tomaton (i.e. examines the children of the current to-
ken l) and starts computing anotherej with q now
being equal toq/l[C]. ExampleQ1 in section 2.6 il-
lustrates this procedure.

2.5. Queries with predicates.

A query with a predicate is a query which con-
tains a boolean expression. As instance, the expres-
sion vehicles[condition] selects the elements
vehicles , children of the current node, that satisfy
the condition (i.e. thecondition evaluation re-
turnsTRUE).

In order to simplify the query rewriting process, in
this work we consider only predicates that can be con-
junctions or disjunctions of simple expressionsp that
belong to the setP defined as follows:

P ={p|p = [exp] or p = [exp op val]}, whereexp ∈
{ε, l, l1/l2}, op ∈ {=, ! =, <,≤, >,≥} andval is the
test value.

Evaluating predicates means to be sure that the user
owns the authorization to see the information stored in
the nodes that appear in the query predicatep.

The query rewriting process is divided into the fol-
lowing steps:

(i) we start saving the predicate expressions appear-
ing in a queryq in a correspondence table=
{(li, pi)|pi is a predicate andli is the node on
which the predicate is evaluated,i = [1..n]}.

(ii) Then we follows the procedure detailed in the
previous section to rewrite the queryq without
the removed predicate expressions. We obtain the
rewritten queryq′.

(iii) Finally we replace the predicate expressions in
the rewritten queryq′ obtaining the queryq′′ and
construct the automaton as detailed in the pre-
vious section. In this case, we stop processing
the automaton when a token with predicate(s) is
received. We save the current state and check
whether the user has the right to consult the nodes
that occur within the predicate(s). If she has the
right to, we return to the saved state and continue

with the next token. Otherwise the request is re-
jected.

As instance, let us consider the query
q=//vehicles/available[model="Fiat
500"]/accessory[price ≤"150"] . Fol-
lowing the first step of the procedure, we ob-
tain the correspondence tableshown in Figure
3. After the removal of predicates the queryq is

Node Predicate

available[model=”Fiat 500”]

accessory [price≤”150”]

Fig. 3. Example of correspondence table

//vehicles/available/accessory , which
is rewritten into q′=/showroom/vehicles/
available/accessory . Then the pred-
icates are inserted again and we obtain
q′′=/showroom/vehicles/available[model
="Fiat 500"]/accessory[price ≤ "150"] .
Then, on the basis of query ”q”” we construct the
automaton.

2.6. Rewriting Examples

Let us now consider the following two
queries posed by user Alice.Q1://vehicles
and Q2://vehicles/ * Both queries
have to be refined. Q1 is transformed to
//element[@name="vehicles"] and executed
over the view of user Alice. From the target node
to the root, we encounter only the definition of ele-
ment showroom . The request is then refined toQ′

1:
/showroom/vehicles . LikewiseQ2 is transformed
to //element[@name="vehicles"]/complex
Type/sequence/element . The target nodes are
the definitions of elementsavailable and sold .
Traversing the tree up to the root, we refineQ2 as
Q′

2: /showroom/vehicles/available union
/showroom/vehicles/sold . Then, we come to
the second phase, i.e., rewriting the refined expression
using the automaton. If the refined expression contains
the operatorunion then we rewrite each component
of the expression individually and combine the indi-
vidual results withunion to form the global outcome.
Q′

1: /showroom/vehicles is rewritten as follows:
At state s0, the automaton receivesshowroom and
reaches states1. States1 indicates via its attributes
that the privilege isallow and some descendants of
showroom are inaccessible (attributedirty). The

output at this stage is/showroom . Sinces1 is dirty ,
the automaton reads the next token, that isvehicles ,
leading to states2. This state is allowed but some of
its descendants are inaccessible (attributedirty). We
use the operatorexcept to discard all unauthorized
nodes. The final result is/showroom/vehicles
except (/showroom/vehicles/sold Union
/showroom/vehicles/available[not(C)]
Union /showroom/vehicles/available[C]/
accessory [not(C1)]) where C (resp. C1) is the
condition expressed for the elementavailable (resp.
accessory) in the annotated schema (see Fig. 1 (b)).

2.7. Correctness of our query rewriting method

We show that our query rewriting method is correct
by means of the loop invariant [3] technique.

Let us assume that the system receives a user query
xp ∈ XPath-- . The first rewriting phase transforms
xp to a refined queryq which is a set of expression
qi ∈ ζ joined together with XPath operatorunion (i.e
q = q1 ∪ q2 ∪ ...∪ qn). Phase 2 rewrites in turn eachqi

into q′i.
Definition. We say thatq′i is correct with regard to

qi, if the result of executingq′i over the repository is
exactly the same as the answer toqi if qi were executed
over the XML repository with access controls correctly
enforced.

Let us assume thatqi containsni direct child axis
(i.e qi = /l1/l2/.../lni). Let us call lj ; j ≤ ni the
current label being processed by the automaton. Let
q′i(j−1)

=/l′1/ l′2/.../l′j−1 (note that eachl′k with k ≤
j − 1 might include a predicate) be the rewritten query
of qi(j−1) = /l1/l2/.../lj−1.

We define the following loop invariant:q′i(j−1)
is cor-

rect with regard toqi(j−1) .
We must show that, this loop invariant holds prior to

the first iteration of the second phase of the rewriting
procedure, that each iteration maintains the invariant
and that the invariant also holds when the procedure
terminates.
– Initialization : The loop invariant holds before

the first label is fed into the automaton. In fact, prior
to the first iteration the rewritten query isq′i(0) = ε.
This query is obviously correct with regard toqi(0) =
ε.

– Maintenance : We show that each iteration main-
tains the loop invariant. Let us assume that the loop
invariant is true before the labellj is received. i.e
q′i(j−1)

=/l′1/ l′2/.../l′j−1 is the rewritten path of the
sub-expression/l1/l2/.../lj−1 andq′i(j−1)

is correct

with regard toqi(j−1) . Let us assume that the current
state of the automaton issj−1. According to the first
phase of the rewriting procedure, there exists a tran-
sition fromsj−1 on lj . Let sj be the state reached by
that transition.

Since q′i(j−1)
is correct regardingqi(j−1) , q′i(j−1)

returns the same set of nodesR asqi(j−1) would do
if it were executed over the XML repository with
access controls correctly enforced.

When the automaton receiveslj , it proceeds to the
statesj and consultssj ’s attributes. If the attribute
access is allow then the token is kept as it is.
ContentC of the attributecondition (if any) is
then appended to it.

qi(j) would return all the child nodeslj of the nodes
belonging toR for which the user has an authoriza-
tion. Now, the nodeslj for which the user does not
have an authorization are filtered out by the predicate
C. Therefore,q′i(j)

returns the same set of nodes as
qi(j) would do. Hence,q′i(j)

=/l′1/l′2/.../l′j−1/lj[C] is
correct regardingqi(j)=/l1/l2/.../lj . If there is no at-
tribute condition, it simply means that the user has
an authorization for all the child nodeslj of the
nodes belonging toR. In that case we also have
q′i(j)

=/l′1/l′2/.../l′j−1/lj which is correct with regard
to qi(j)=/l1/l2/.../lj .

– Termination : The loop terminates in the fol-
lowing cases: (1) The loop meets a state where
access =allow and there is no attributedirty .
Let sj be that state (j ≤ ni). The (possibly
empty) remaining path (i.e/lj+1/.../lni) is ap-
pended to the already rewritten expression (i.e
q′i(ni)

=/l′1/l′2/.../ l′j−1/l′j/lj+1.../lni). As shown in

the maintenance step,q′i(j−1)
is correct with regard

to qi(j−1) . The absence of the attributedirty means
that the user is allowed to access to the entire sub-
trees rooted at nodesl′j addressed byq′i(j)

. Thus
q′i(ni)

=q′i(j−1)
/l′j/lj+1.../lni=q′i returns the same an-

swer asqi(ni)
=qi(j−1)/lj/lj+1/.../ lni=qi would do if

executed over the XML repository with access con-
trols correctly enforced. Henceq′i(ni)

=q′i is correct
with regard toqi(ni)

=qi.
(2) The loop meets a state whereaccess =deny .

let sj be that state (j ≤ ni). The entire rewritten
expression is replaced by the empty (ε) path.

The fact that access isdeny means that the
user is forbidden to access any descendant node
of the nodes addressed byq′i(j−1)

. Therefore
qi(ni)

=/l1/l2/.../lj/.../lni would return the empty
set if executed over a repository with access controls

correctly enforced. Henceq′i=q′i(ni)
=ε is correct with

regard toqi(ni)
=qi.

(3) The last token is fed into the automaton: If
access =allow and there is the attributedirty
then it means that some sub-trees of the target nodes
cannot be accessed to and, of course,qi(ni)

exe-
cuted over the XML repository with access controls
correctly enforced would not return these sub-trees.
Now, for such a case, the rewriting procedure we have
defined in section 2.4 includes a supplementary step
which is for filtering out these sub-trees by means of
the operatorexcept . Therefore we haveq′i(ni)

=q′i
which is correct with regard toqi(ni)

=qi. Else, termi-
nation meets either case (1) or (2).

By applying this proof for eachqi, we show thatq′ is
correct with regard toq = q1 ∪ q2 ∪ . . . ∪ qn.

2.8. Complexity analysis

The complexity of our approach is determined by that
of steps 1, 2 and 3 of the rewriting procedure. Let us
assume that the repository schema containsn definitions
of element nodes. Deriving the user view of the schema
(Section 2.2) takes at mostO(n) time. Constructing the
automaton (Section 2.3) also requires at mostO(n) time
as well. If m is the depth of the schema, then refining
the expression (Section 2.4) takesO(m) time. Since we
rewrite the refined expressions by simply traversing the
deterministic automaton, this phase takesO(n) time.
Hence, the overall time complexity of this proposal is
O(n + m).

3. Updating XML

Talking about XML security, not only theread priv-
ilege needs to be taken into consideration, but also the
write privilege plays an important role. In this set-
ting we do not have a proper standard for XML updates
but refer to the XUpdate working draft. In our model,
we consider the following write privileges:DELETE,
INSERT, andUPDATE. The semantics of these privi-
leges can be stated as follows:
– if users holds theINSERT privilege on noden then

users has the right to add a new sub-tree to noden.
– if users holds theUPDATEprivilege on noden then

users has the right to update noden (i.e., change the
values of its immediate children of typetext).

– if users holds theDELETEprivilege on noden then
users has the right to delete the sub-tree of which
noden is the root.

Below, for each XUpdate operation we list the write
privilege that users should hold.

Creating node operations There are three XUp-
date instructions for creating XML fragments:
insert-before , insert-after andappend .

Insert-before inserts a given fragment as
the preceding sibling of every context node, and
insert-after inserts it as the following sibling of
every context node. The operationappend allows a
node to be created and appended as a child of every
context node.
– insert-before/insert-after : users needs

the INSERT privilege on the parent node of every
context node.

– Operationappend : users needs theINSERT priv-
ilege on every context node.
Update operationsThere are two XUpdate instruc-

tions for updating XML nodes:update andrename .
Operationupdate can be used to update the content of
existing nodes. Operationrename allows an attribute
or element node to be renamed after its creation.
– update : if context nodes are elements, then user

s needs theUPDATEprivilege on the content (text
node) of every context node. If context nodes are
attributes, then users needs theUPDATEprivilege
on every context node.

– rename : user s needs theUPDATEprivilege on
every context node.

Renaming an attribute or updating its value requires the
UPDATEprivilege on the context node. This choice is
consistent with the XPath data model, where an attribute
node encapsulates both the attribute and its value. On
the contrary, renaming an element requires theUPDATE
privilege on the context node and updating its content
requires theUPDATEprivilege on the content node itself
(i.e., the text child of the context node).

Delete operationsThere is one XUpdate instruction
for deleting XML fragments:remove . Operation re-
move deletes all sub-trees having a context node as the
root. For this operation, users needs theDELETEpriv-
ilege on every context node.

3.1. Securing update operations

Simply considering the write privileges held by a sub-
ject is not sufficient to make XML updates secure. The
reason for this can be best understood by considering
an analogy with SQL. Let us consideruserA who is
the owner of anEmployee database table and who has
granted touserB theUPDATEprivilege on it. As a re-
sult, userB is not permitted to see userA’s Employee
table

SQL> SELECT* FROM user A.employee;
ERROR ORA-01031: insufficient privilege

Fig. 4. automaton for updates (a) and write privilege annotated schema (b)

but userB is permitted to update it:

SQL> UPDATE user A.employee SET
salary=salary+100 WHERE salary > 3000;
2 rows updated

The simple example above shows that although
userB was not permitted to see userA’s employee ta-
ble, she was able to learn, through an update command,
that there were two employees with a salary greater
than 3000. This is due to the fact that theWHEREclause
did perform aread operation onEmployee despite
the fact that userB did not hold theSELECTprivilege
on that table. In XUpdate operations theselect at-
tribute plays the same role as theWHEREclause in a
SQLUPDATE/DELETEcommand. Therefore, in order
to avoid the inference problem caused by write opera-
tions performing read action, we rewrite the XPath ex-
pression selecting context nodes according to the prin-
ciples described in Section??. Securely controlling an

XUpdate operation is then done in two steps.
(i) The XPath expression selecting the context nodes

is rewritten according to the read privileges held
by the user submitting the XUpdate operation.
This step is described in section??. It corresponds
to the work presented in [28] and uses the DFA for
queries. However, when rewriting the XPath ex-
pression, we use theanswer-as-nodestechnique
which stipulates that the XPath expression should
return the target nodes rather than the entire sub-
trees rooted at them. Consequently, we spare the
operationexceptthat eliminates forbidden nodes
within the sub-tree rooted at the target node.

(ii) The XUpdate operation should succeed for the
context nodes on which users holds the proper
write privilege and fail for the others. In order
to implement this principle, we rewrite a second
time the XPath expression selecting the context
nodes, so that only the nodes on which user s
holds the proper write privilege are selected.

For rewriting the XPath expression according to the
write privileges held by the user, we use the follow-
ing technique: the policy author inserts for each user
class (role), the authorization attributes in the XML
Schema of the document collection creating the anno-
tated schema. These attributes includeinsert, update
anddelete. The value of these attributes is either empty
or equal to a list of predicates stating under which con-
ditions the operation should be performed. A sample
annotated schema is shown in Figure 4(b). The anno-
tated schema is afterwards translated into a determinis-
tic finite automaton for updates (see Figure 4(a)). The
automaton traverses its states according to the tokens3

of the rewritten expression produced by step 1, until the
last token gets through. Then, the automaton transits to
the state corresponding to the target node of the expres-
sion. At this position, the finite state machine behaves
as follows4 :

Case 1: The operation isinsert-before or
insert-after . The automaton backtracks to the pre-
vious state, which is the state corresponding to the par-
ent of the context node. Indeed, the user needs the
INSERT privilege on the parent node of every context
node. If the attribute insert is present at that state then its
(possibly empty) value is appended to the XPath expres-
sion and returned. If the attribute insert is not present
then the expression is rejected.

Case 2: The operation isrename or update . If the
attributeupdate is present then its (possibly empty)
value is appended to the XPath expression and returned.
If the attribute update is not present then the expression
is rejected.

Case 3: The operation isremove . If the attribute
delete is present then its (possibly empty) value is
appended to the XPath expression and returned. If the
attributedelete is not present then the expression is
rejected.

Case 4: The operation is append. If the attribute
insert is present then its (possibly empty) value is
appended to the XPath expression and returned. If the
attributeinsert is not present then the expression is
rejected.

It is worthwhile making a few observations about
the operationremove . Let us consider aremove op-
eration on a noden. When the user removes noden
then she actually deletes the sub-tree rooted on noden.

3 We call token a step in the path expres-
sion, for example showroom is the first token in
/showroom/vehicles/available , while vehicles is the
second./ stands for alookahead .
4 Here, for the sake of simplicity, we consider only commands and
privileges addressing element nodes.

Some of the nodes which belong to that sub-tree may
not be visible (i.e. the user may not be permitted to see
them). Shall we reject the operation if some nodes of
the deleted sub-tree do not belong to the user’s view?
On one hand, this would preserve the integrity of data
the user is not permitted to see. On the other hand, it
would reveal to the user the existence of data she is not
entitled to see. In fact there is no definite answer to this
question. This is typically a case of conflict between
confidentiality and integrity. Here, we prefer to empha-
size the confidentiality, and the command is accepted.

4. Tool description and experimental results

5. Related work

In the last few years, several XML access control
models have been proposed (after the initial proposal
appeared in [1], refinements were described in [2], [22],
[18], [6], [13], [17]) which use access policies to com-
pute secure views on XML data sets. These models ad-
dressed issues like granularity of access, access-control
inheritance, overriding, and conflict resolution. All these
proposals require provision for view materialization. Al-
though views can be prepared offline, in general, view-
based enforcement schemes suffer from high mainte-
nance and storage costs, especially for a large XML
repository.

A different approach has been explored in [21]. In a
nutshell, [21] performs a static analysis that classifies
a XML query to be either always-granted or always-
denied before submitting it to an XML engine. For par-
tially authorized XML queries, the solution in [21] re-
lies on expensive run-time security checks to filter out
the data nodes that users do not have authorizations to
access. In [16], [23], the problem of unsafe query is
solved by rewriting the input query based on the notion
of security view. A security view is a restricted view
of the document’s DTD that exposes the schema struc-
ture the user is authorized to use when writing a XPath
query. However, in [16], [23] there is no control of the
query portion under the query target nodes, and forbid-
den nodes which are descendants of the target ones are
disclosed to the requester. Our approach uses the XPath
operator EXCEPT to filter out those conflicting portions
from the input query.

QFilter [20] is an NFA-based query rewriting tech-
nique for XML. Authors in [20] constructs one NFA for
each ACR and for each role. Thus this approach can be
very inefficient for rewriting queries with ”//” axis be-
cause of the many backtrackings in the Automaton. This

claim is confirmed by the complexity analysis done in
[20] which shows that queries with ”//” and ”*” dra-
matically aggravates the access control overhead. Also
when the input query has predicates in it, they are sim-
ply appended to the rewritten query and then can cause
information leaks. Moreover, [7] shows thatQFilter is
not correct by deriving from [20] examples of incor-
rectly rewritten queries. On the contrary, our proposal
uses a DFA-based technique which decreases the com-
plexity of the rewriting procedure and always checks
whether the user has the right to consult the nodes that
occur within the predicates. We proved its correctness
in section 2.7.

Authors in [19] argue that restricting access to rela-
tionships is as important as restricting access to nodes.
To this aim, [19] introduced aSecurity Specification
Language for XML(SSX). The SSX enforcement algo-
rithm produces a security view schema for each user.
XPath queries against security schemata are then rewrit-
ten according to the annotations attached to the anno-
tated schema. The main drawback of this solution re-
sides in the SSX language itself, which is based on
schema manipulation primitives likecopy or delete
that appear to be unfit to large-scale access control pol-
icy specification. Experiments conducted in [19] show
that on average, the approach has a performance which
is quite similar to that of materialized views.

The approach proposed in [7] includes a two-phase
filtering scheme: the first phase selects access control
rules that are related to the user query. The second
phase modifies an unsafe query into a safe one. This ap-
proach is interesting, but relies on underlying relational
DBMS. Also the user is provided with the entire DTD
and then can infer sensitive information. Our proposal
overcomes these shortcomings by carefully computing
the user view of the schema. Our DFA-based system is
designed for any XML database. We propose the same
technique for securely handling XUpdate commands,
but due to space limitation we cannot include it in this
paper.

Finally, we note that current standards for access con-
trol languages that can be used for protecting XML in-
formation ([29,30,?]) lack a standard technique for en-
forcing policies via secure query rewriting. For instance,
XACML allows to write policies in XML stating access
authorization to any type of resources, including XML
data. However, XACML does not mandate any specific
enforcement algorithm, but relies on different specifi-
cations of enforcement according to the protected re-
source type. Our DFA-based approach is general enough
to provide a standard semantics for the enforcement of
most XACML policies when applied to protect XML

information.

6. Conclusion

In this paper, we describe a Deterministic Finite Au-
tomata (DFA) based approach to rewrite unsafe queries
into safe ones, thus avoiding the many backtrackings
inherent to NFAs. We highlighted how our approach
improves w.r.t. previous works in the area. Also, we
prove the correctness of the approach., and show that
our technique is linear with the size and the depth of the
repository schema. Although our rewriting procedure is
theoretically efficient and suggests good performances,
experiments remain work to be done. Moreover, our
proposal leaves space for further work. Other inspiring
approaches [14], [24] enforce client-based access con-
trol to XML. Indeed, in [14] and [24], the document is
encrypted at the server side and decrypted at the client
side. The input of their system is then XML data and
the output is also XML data, while in our approach
both the input and output is an XML query. We are in-
vestigating the possibility to diminish the workload at
the server side by transferring the rewriting procedure
at the client side. Finally, we are investigating interfac-
ing our technique with standard policy languages like
XACML. Our DFA-based approach is general enough
to specify the enforcement of most XACML policies
when applied to protect XML data. We plan to develop
this topic in a future paper.

7. Acknowledgments

This work was supported in part by the Italian Ba-
sic Research Fund (FIRB) within the KIWI and MAPS
projects, by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-
2002-507591 and by funding from the French ministry
for research under ”ACI Śecurit́e Informatique 2003
- 2006. projet CASC”. Majirus Fansi holds a Ph.D
scholarship granted by the ”Conseil Géńeral des Lan-
des”. The authors wish to thank Sabrina De Capitani di
Vimercati, Pierangela Samarati and Stefano Paraboschi
for common work and valuable suggestions.

References

[1] Damiani E., De Capitani di Vimercati S., Paraboschi S. Samarati
P.: Securing XML Documents. In Proc. of the 2000 International
Conference on Extending Database Technology (EDBT2000).

[2] Damiani E., De Capitani di Vimercati S., Paraboschi S.,
Samarati P.: A fine-grained access control system for XML

documents. In ACM Trans. Inf. Syst. Secur., Vol. 5(2). ACM
Press, New York (2002) 169–202.

[3] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C.:
Introduction to Algorithms. the MIT Press, 2003.

[4] Gottlob G., Koch C., Pichler R.: The Complexity of XPath
Query Evaluation. In Proc. of the 22nd ACM SIGACT
SIGMOD SIGART Symposium on Principles of Database
Systems (PODS-02). ACM Press, San Diego (2003)179–190.

[5] Bray T., Paoli J., Sperberg-McQueen C. M.: eXtensible Markup
Language (XML) 1.0 (2nd Ed). W3C Recommendation, 2000

[6] Stoica A., Farkas C.: Secure XML Views. In Proc. of the 16th
IFIP WG11.3 Working Conference on Database and Application
Security, 2002.

[7] Byun C. W., Park S.: An Efficient Yet Secure XML Access
Control Enforcement by Safe and Correct Query Modification.
In Proc. of the 17th International Conference on Database and
Expert Systems Applications (DEXA), 2006.

[8] A. Laux and L. Martin. Xml update language (xupdate).xml:db
working draft, http://xmldb-org.sourceforge.net/xupdate, 2000.

[9] E. Bruno, J. L. Matre, and E. Murisasco. Extending xquery with
transformation operators.In Proc. of the 2003 ACM Symposium
on Document Engineering (DocEng 2003), 2003.

[10] D. Chamberlin, D. Florescu, and J. Robie. Xquery update
facility. W3C working draft, May 2006.

[11] G. M. Sur, J. Hammer, and J. Simeon. updatex-an xquery-
based language for processing updates in xml.In Proc. of
the 2004 International Workshop on Programming Language
Technologies for XML (PLAN-XML), 2004.

[12] I. Tatarinov, Z. G. Yves, A. Y. Halevy, and D. S. Weld. Updating
xml. In Proc. of ACM SIGMOD, 2001.

[13] Cuppens F., Cuppens-Boulahia N., Sans T.: Protection of
relationships in xml documents with the xml-bb model. In Proc.
of ICISS2005.

[14] Kodali N., Wijesekera D.: Regulating access to SMIL formatted
pay-per-view movies. In Proc. of the 2002 ACM workshop on
XML security.

[15] De Capitani di Vimercati S. and Marrara S. and Samarati P.:
An access control for querying xml data. In Proc. of SWS05
workshop.

[16] Fan W. and Chan C. and Garofalakis M.: Secure XML Querying
with security views. In Proc. of SIGMOD 2004 Conference.

[17] Finance B., Medjdoub S., Pucheral P.: The Case for access
control on xml relationships. In Proc. of CIKM 2005.

[18] Gabillon A.: A formal access control model for XMl databases.
In Proc. of the 2005 VLDB Workshop on Secure Data
Management (SDM).

[19] Mohan S., Sengupta A., Wu Y., Klinginsmith J.: Access Control
for XML - a dynamic query rewriting approach. In Pro c. of
VLDB 2005 Conference.

[20] Luo B., Lee D., Lee W., Liu P.: QFilter: Fine-Grained run-
time XML Access Control via NFA-based Query Rewriting. In
Proc. of CIKM 2004.

[21] Murata M., Tozawa A., Kudo M.: XML Access Control using
Static Analysis. In Proc. of CCS 2003.

[22] Kudo M., Hada S.: XML document security based on
provisional authorization. In Proc. of ACM CCS 2000.

[23] Kuper G., Massaci F., Rassadko N.: Generalized xml security
views. In Proc. of the 10th SACMAT, 2005.

[24] Bouganim L., Ngoc F. D., Pucheral P.: Client-Based Access
Control Management for XML documents. In Proc. of the 30th
VLDB Conference, 2004.

[25] Clark J., DeRose S.: XML Path Language (XPath). W3C
Recommendation, 1999. http://www.w3.org/TR/xpath.

[26] Gabillon A., Bruno E.: Regulating Access to XML documents.
In Proc. of the 15th Annual IFIP WG 11.3 Working Conference
on Database Security, 2001.

[27] Fan W., Geerts F., Jia X. Kementsietsidis A.: SMOQE: A
System for Providing Secure Access to XML. In Proc. of the
32nd VLDB Conference, 2006.

[28] E. Damiani, M. Fansi, A. Gabillon, and S. Marrara. A
general approach to securely querying xml.In Proc. of the
5th International Workshop on Security in Information Systems
(WOSIS 2007), June, 2007.

[29] http://xml.coverpages.org/xacml.html
[30] http://xml.coverpages.org/xacml.html

