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Abstract

Understanding visuomotor coordination requires the study of tasks that engage

mechanisms for the integration of visual and motor information; in this paper we

choose a paradigmatic yet little studied example of such a task, namely realistic

drawing. On the one hand, our data indicate that the motor task has little influence

on which regions of the image are overall most likely to be fixated: salient features

are fixated most often. Viceversa, the effect of motor constraints is revealed in the

temporal aspect of the scanpaths: 1) subjects direct their gaze to an object mostly
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when they are acting upon (drawing) it; and 2) in suport of graphically continuous

hand movements, scanpaths resemble edge–following patterns along image contours.

For a better understanding of such properties, a computational model is proposed

in the form of a novel kind of Dynamic Bayesian Network, and simulation results

are compared with human eye–hand data.
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1 Introduction

In this paper we address the challenging problem of characterising the visuo-

motor behaviour of an agent engaged in a natural drawing task. Making a

realistic portrait of a visual scene requires accurate attentional control of fix-

ations, and imposes rigid constraints on eye–hand coordination, and as such

is a paradigmatic example of a visuomotor task.

The issue of eye–hand coordination in drawing has been addressed by a num-

ber of authors (Viviani and Flash, 1995; Cohen, 2005; Land, 2006; Gowen

and Miall, 2006; Tchalenko, 2007; Tchalenko and Miall, 2008). On a global

behavioural level, a consistent feature of human drawing strategies is the fol-

lowing execution cycle: fixation on the original image – saccade – fixation(s)

on the canvas – saccade – fixation on the original image (Tchalenko, 2007).

The specific kind of visual processing that takes place when fixating on the

original is still unclear in general, but two main positions have been outlined:

i) fixations on the original serve to encode image features to visual working

memory, and such mental image is later recalled and converted to a motor plan

∗ Corresponding author.
Email address: rcagli@aecom.yu.edu (Ruben Coen Cagli).

2



(Tchalenko et al., 2003); ii) the visuomotor mapping from image features to

hand motor activity takes place during fixations on the original image, with-

out the need to invoke working memory (Coen-Cagli et al., 2007; Tchalenko

and Miall, 2008).

This last view is consistent with results from the eye tracking experiments

presented in this paper, which explore how the scanpaths observed in human

subjects involved in drawing, differ from those obtained in free viewing control

experiments. The results discussed in Sec. 2.2 can be summarised by the ob-

servation that not only are eye movements in drawing strongly biased by the

task, but a precise dependency can be established between the peculiar mo-

tor constraints and the recorded scanpaths (this has been reported for other

motor tasks with low memory load and reduced stimulus complexity; see e.g.

Aivar et al. (2005); Brouwer and Knill (2007); Stritzke and Trommershäuser

(2007)). In particular, we show that the observed eye movements represent a

precise strategy to help satisfy the hand motor constraint of graphical conti-

nuity.

In order to make this notion more precise, we also address the issue of outlin-

ing a computational model of eye movements based on dynamical eye–hand

coupling (currently, to the best of our knowledge, there exist no theoretical

model of the processes underlying drawing). A model at the computational

level (Marr, 1982) should account for what is the goal of the computation, and

what is the logic of the strategy by which it can be carried out, thus abstract-

ing from algorithmic and physical realisation details. To this end, the Bayesian

approach is exploited as a sound framework (see Carter et al. (2006) for an

indepth discussion and review). Whether the model proposed here is amenable

to neural realisation is outside the scope of this paper; however, for a discus-
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(a) (b) (c) (d)

Fig. 1. 1(a) Layout of the experimental setup. 1(b), 1(c), 1(d) The original images

adopted in the experiments.

sion of plausibility of Bayesian computations one can refer to Carter et al.

(2006), Lee and Mumford (2003). The model is confronted with experimental

results obtained by human observers in Sec 2.3, and an overall discussion is

provided in Sec. 3.

2 Eye movements in drawing and free viewing subjects

2.1 Experimental methods

2.1.1 Participants

Two experimental sessions were realised, during which eye movements were

recorded and hand movements monitored. All subjects had normal or cor-

rected to normal vision; none of them had specific previous training in draw-

ing or painting. Subjects consisted of undergraduates, graduate students and

research fellows from the University of Salerno, from a range of academic disci-

plines. The experiments were undertaken with the understanding and written

consent of each subject.

For the first session 29 human subjects, 5 of which were left–handed, partic-
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ipated in the drawing task. The subjects were asked to perform an accurate

drawing of an original image; these instructions did not pose any constraints

on the execution time. The second session involved 6 subjects, who were asked

to watch the same images, without a specific task (free viewing).

2.1.2 Displays and protocol

The experimental setup for the drawing task is shown in Fig. 1(a). Subjects

were presented with a rectangular, vertical tablet 30 cm× 40 cm, viewed binoc-

ularly from a distance ranging from 35 cm to 45 cm depending on the subject’s

arm length. In the left half of the tablet, the original images were displayed,

while the right half was initially covered by a white sheet. The original images

(Fig. 1 shows the three discussed here), represent simple contours drawn by

hand with a black pencil on white paper, that occupy an area of approximately

15 cm × 15 cm, subtending a visual field of 10 to 12 deg in both the horizontal

and vertical direction. One image per trial was shown, and the subjects were

instructed to copy its contours as faithfully as possible, drawing on the right

hand sheet; these instructions did not pose any constraints on the execution

time. Each subject carried out one trial per image, always in the same order.

On completion of a trial, the original and copied images were manually re-

moved by the experimenters, and replaced respectively by a new original and

white paper. This allowed for a pause of about 5 seconds between trials. The

execution time varied across individuals and across trials; on average, the time

to complete a single trial was 17± 9 sec.

For the free viewing experiment, original images were digitised with a scanner,

and displayed on a 19–inch computer screen for 10 seconds each, interleaved

with a 5 seconds blank screen. Screen resolution and viewing distance were
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chosen in such a way that the images subtended a similar visual angle as in

the drawing trials.

2.1.3 Eye data acquisition

The subject’s left eye movements were recorded with a remote eye tracker

(ASL 5000 series) with the aid of a magnetic head tracker (Ascension Flock

of Birds), with the eye position sampled at the rate of 60 Hz. The instrument

can integrate eye and head data in real time and can deliver a record with an

accuracy of less than 1 deg in optimal light conditions. Fixations were detected

from raw data with the standard dispersion algorithm, with threshold set to

2.0 deg of visual angle and minimum fixation duration of 100 ms.

2.2 Data Analysis

At present, only very few eye tracking studies on drawing humans have been

conducted (Gowen and Miall, 2006; Coen-Cagli et al., 2007; Tchalenko, 2007;

Tchalenko and Miall, 2008), and no standard measures have been defined for

this task. The analyses presented here are aimed at highlighting the regularities

in the observed eye movement during the drawing task, as compared to free

viewing. We focus mainly on eye movements related to the segmentation of

the image in separate objects, and to the visuomotor mapping from visual

features to hand movements, because only fixations on the original image are

relevant to these sub–tasks, which allows for a direct comparison with purely

visual tasks. Therefore in the drawing task we analysed only fixations on the

left hemifield (i.e. the original image).
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2.2.1 Object commitment

First we consider the image displayed in Fig. 1(b), which is composed by two

closed contours that are spatially separated. We find that a peculiar feature of

the drawing behaviour is that the gaze does not move back and forth among

different objects, but proceeds sequentially, and most fixations on an object are

executed within a time interval in which no fixations occur on other objects.

(a) (b) (c)

Fig. 2. 2(a): The cumulative fixations executed by one subject in the drawing task,

trial 1, while drawing the first object (left) and the second object (right). Regions

of Interest are highlighted by the rectangles. 2(b) and 2(c): The distribution of

fixations over the ROI’s (R1, R2, OFF ), averaged across 9 subjects, during the first

and the second time intervals, respectively.

(a) (b)

Fig. 3. Scanpaths recorded in trial 2 from a single subject in free viewing (blue)

and drawing (red), respectively; dashed pink lines denote inter–object saccades, the

black dot represent the first fixation.
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This finding illustrates how the motor task influences object–based visual

attention, showing that gaze is directed to an object only when it becomes

relevant to the task, namely during the time that it is being copied.

To quantify this effect, we proceeded as follows. From qualitative analysis of

the data collected in drawing, it was clear that all subjects started drawing the

second object only after completion of the first one, irrespective of which of

the two objects was chosen as the first. Therefore, we were able to define, for

each subject, two time intervals, τ1 and τ2, corresponding to the two drawing

phases; these were found by inspection of the video data. Then we defined two

rectangular Regions Of Interest (ROI), R1, R2, each one containing one of the

two objects; Fig. 2(a) shows the fixations executed by one subject in each of

the two time intervals. Fixations were then classified in each time interval, as

falling in R1, R2 or outside (OFF ). Figures 2(b) and 2(c) show the histogram

of the fixations, averaged across 9 subjects, over the three ROI’s in each of

the two time intervals. We found that a) the maximum of the distribution is

always in the ROI corresponding to the time interval considered; and, most

notably, b) the percentage of fixations in the ‘wrong’ ROI is always below 27 %

for each subject, and below 10 % on average. Notice also that the percentage

of fixations in OFF increases when moving from τ1 to τ2; after one object O

has been completed, fixations located between O and the next object can be

used to evaluate information, such as the distance and relative size, that are

relevant for an accurate drawing.

In the free viewing task it is not possible to define two time intervals such as

τ1, τ2 above. Nevertheless, we can define inter–object saccades as the saccades

between two different objects; as an illustration, the scanpaths displayed in

Fig. 3 show that, for a single subject, there are clearly more inter–object
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(a) (b) (c)

Fig. 4. The fixation maps in free viewing 4(a) and drawing 4(b), in the trial corre-

sponding to Fig. 1(c). The saliency map is shown in 4(c).

saccades (pink dashed lines) in the free viewing task (3(a)) than in the drawing

task (3(b)). The mean ratio of inter–object saccades to total saccades confirms

this effect, the values being .36± .19 for free viewing and .08± .03 for drawing

(mean and standard deviation, averaged across all subjects; Wilcoxon rank–

sum test, p < .05).

2.2.2 Saliency drive

Next we try to assess the degree to which image saliency affects fixations. In the

following we define the saliency of a point as proportional to the local intensity

and orientation contrast, and define the saliency map as the collection of

saliency values at each location in the image (see Itti and Koch (2001) for

implementation details).

Although it is well known that in purely visual tasks, saliency models are able

to capture the spatial distribution of fixations (see e.g. Itti and Koch (2001)),

it was not obvious a priori that this should hold also in motor tasks. Here

we show that indeed a similar proportion of fixations in free viewing and in

the drawing task are found nearby high saliency regions of the image. This

suggests that saliency evaluation is taken into account even in the context of

a visuomotor task.
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We apply a ‘reverse engineering’ procedure, which allows us to recover the

underlying saliency map (namely the fixation map, Wooding (2002)) from the

cumulative fixations of all the subjects in each task, and compare it to the

saliency map of the image. First we divide the image in a fixed number of cells

(12 × 16), count the total number of fixations per cell by all subjects, assign

a 2D Gaussian centered on each cell multiplied by the corresponding value

(the covariance matrix is set to .8 times the identity matrix, corresponding to

horizontal and vertical standard deviations of ca. 0.9 deg). Then we normalise

the resulting matrix under the sum–to–one constraint. The map obtained this

way gives an estimate of the probability that a fixation is directed to each

region, which in turn is directly related to the saliency of that region. We

repeat this procedure for each of the three trials separately; Fig. 4 shows the

fixation and saliency maps on trial 2 (Fig. 1(c)) as an example.

To compare the maps in a given trial, let psal be the saliency map, and pfree and

pdraw the fixation maps for free viewing and drawing respectively, considered as

distributions; we measure how narrow a distribution p is by its entropy H(p),

and how much it differs from distribution q by the Kullback–Leibler divergence

KL(p||q) (see e.g. Cover and Thomas (1991) for the mathematical definitions).

We compute KL with respect to psal, and find similar values for free viewing

and drawing (KL(psal||pfree) = .78±.08 andKL(psal||pdraw) = .78±.09 respec-

tively, mean and SEM across the three trials), and significantly smaller than

those obtained comparing psal with random maps (KL(psal||prand) = 1.71±.11,

averaged over 10000 random distributions). This small KL values show that

fixations are distributed preferentially near high saliency regions. Notice also

that the KL value is not closer to zero because the entropy of the empirical

distributions of fixations is slightly larger than the entropy of the saliency
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Fig. 5. Average distance between pairs of fixation points as a function of the num-

ber of saccades, in the two conditions, across all subjects and trials. Distance is

expressed in pixels, with 1 pixel corresponding to ca. 0.05deg. Error bars denote

95% confidence interval.

map (the ratios being H(pfree)/H(psal) = 1.20± .03 and H(pdraw)/H(psal) =

1.19± .03), since the actual fixations are scattered away from the image con-

tours.

2.2.3 Motor continuity

In the drawing experiments, analysis of video recordings indicated that all of

our subjects used graphically continuous hand strokes (note that this was not

required by experimental instructions); this is, we hypothesise, a specific mo-

tor constraint that subjects had to contend with by means of some eye–hand

coordination strategy. We explored the specific strategy adopted by subjects,

and found that it is remarkably similar across subjects: first of all, there is

a clear effect of the drawing task on the length of saccades as well as on the

distance between fixations separated by more than one saccade; in addition,

most drawing scanpaths resemble an approximated edge–following of the im-

age contours, which parallels the sequence of hand strokes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. The sequence of eye and hand movements by one subject in the drawing task,

trial 1. In the upper row, cumulative fixations on the original image are represented

by red circles. In the lower row the solid black square denotes the gazepoint. In 6(h)

the circles denote the endpoints of each trajectory segment.

Fig. 7. The scanpath executed during the drawing task by 5 subjects in trial 2 (first

row), and 11 subjects in trial 3 (last two rows). The black circle represents the first

fixation point.

12



To assess the effect on the distance between pairs of fixations we show in

Fig. 5 that the mean distance (shown along with 95% confidence intervals,

averaged across all subjects and trials) between fixation points is significantly

smaller in the drawing task when the number of saccades that separates the

two fixations is smaller than 5 (Wilcoxon rank–sum test, p < .0005); in partic-

ular, saccade length (corresponding to the first point on the horizontal axis)

is almost halved in drawing. While this fact could be thought of as a strategy

to obtain a higher–resolution sampling of the image, which may be needed to

accurately reproduce it, we argue that instead this effect is, at least in part, a

consequence of the constraint posed by motor continuity.

Figure 6 depicts the cumulative plot of fixations, and the corresponding hand

position of one subject, at four subsequent stages, during trial 3 (Fig. 1(d)).

The snapshots correspond to the following observed sequence: hand stops -

fixation(s) on the left - saccade - fixation(s) on the right - hand moves. We

interpret the points where the hand stops as keypoints, at which the hand’s

action needs to be reprogrammed and thus fixations on the original image

become necessary. Qualitative inspection of Fig. 6 shows a general tendency

of the gaze to move orderly along the image contour. Such trend is confirmed

by the scanpaths of different subjects in trials 2 and 3, plotted in Fig. 7

(with the noticeable exception of the last subject in both trials, where the

edge–following is often interrupted by fixations offset from the line towards

the curvature center). Quantification of this effect is postponed to the end of

Sec. 2.3. This observations suggests that this peculiar form of the scanpaths

is a precise eye–hand coordination strategy in support of graphical continuity

of drawing gestures; the effect on saccade length is implied by this kind of

scanpaths.
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2.3 A computational model for sensorimotor coupling

The scanpaths discussed in the previous section are the result, we argue, of

a dynamical coupling between eye and hand movements. Here we introduce a

computational model of such coupling, and show that under minimal assump-

tions it produces edge–following scanpaths; subsequently, we give a quantita-

tive comparison of such scanpaths with human data, to assess how well the

latter are described as edge–followers.

Probabilistic approaches have a long history in models of eye movements (early

and seminal attempts were provided by Ellis and Smith (1985); Hacisalihzade

et al. (1992); Rimey and Brown (1991) who described the sequence of gaze

points in terms of Markov chains and Hidden Markov Models), primarily mo-

tivated by the fact that motor and perceptual neural signals are inherently

noisy (Kording and Wolpert, 2006). We adopt a Bayesian framework to model

the dependencies between eye and hand directions of movement on the basis of

sensory inputs, and to derive the optimal movements; these are then combined

with saliency information, to simulate the actual scanpaths.

We represent sensory inputs (visual and proprioceptive) and eye–hand motor

outputs as two pairs of random variables, (ue, uh) and (ye, yh) respectively; in

addition, the underlying dynamics of the process will be described in terms of

the “hidden” random variables (xe, xh). Notice that the introduction of hid-

den variables is a standard approach in generative models of processes whose

detailed mechanisms are not observable (Bishop, 2007). In the simulations

presented here, proprioceptive input is provided in the form of an estimate

of the hand direction of movement (radians), uh ∈
{

0, π
4
, . . . , 7π

4

}
; visual in-
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Fig. 8. The DBN representing two time slices (t, left, and t+1, right) of the evolution

in time of eye and hand direction of movement. Nodes stand for random variables,

edges denote conditional dependencies between variables. See text for the meaning

of the variables. Dotted connections in the hidden layer highlight the dependence of

the hand on the eye, whilst continuous connections denote the reverse dependence.

put is coded as a discrete angular value corresponding to the orientation of

the image contour in the currently fixated region, computed as the weighted

average of the orientation histogram, and discretized to the values (radians),

ue ∈
{

0, π
8
, . . . , 7π

8

}
. State variables code for the direction of movement (either

of the eye or of the hand) relative to the current position, and take values in

the same discrete set as uh. The outputs of the model, ye, yh, which are based

on estimates of the hidden states perturbed with Gaussian noise, code for the

continuous direction of eye and hand movements.

The dynamics on state variables is introduced by suitable dependencies in

time, represented by the Dynamic Bayesian Network (DBN, Murphy (2002))

shown in Fig. 8. Note that such a DBN represents the evolution in time of

states in terms of discrete time slices, two of which at times t, t+1 are shown.

The dynamics is composed by the following dependencies: 1) the temporal

dependency of the current eye state variable on the previous one (xet → xet+1);
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2) the analogous dependency for hand state variables (xht → xht+1); 3) the

dependency of current eye state on the previous hand state (xht → xet+1);

and 4) the coupling of current hand and eye states (xet+1 → xht+1). Notice

in 4) the causal relation between eye and hand: under normal conditions,

eye movements typically precede hand movements (e.g. Ballard et al. (1992);

Neggers and Bekkering (2000)).

At a given time instant t, to compute the actual outputs of the model, we first

infer the optimal eye–hand state pair (xe?t , x
h,?
t ), and then sample the outputs

from their conditional distribution p(yet , y
h
t |xe?t , xh?t ). Appendix A discusses

how to learn the distribution parameters and perform inference.

Eventually, we combine the outputs of the DBN with saliency information. We

multiply the saliency map by an oriented 2D Gaussian whose orientation is

provided by the inferred eye movement direction ye?t+1, and centered at distance

d from the previous fixation point along the chosen direction; d is set to the

experimental average saccade length (d = 33 pixels, see Fig. 5), the variance

along the main axis is set to d and the variance along the orthogonal axis to

d/2 (see Torralba (2003) for a probabilistic interpretation of a similar interplay

between bottom–up and top–down information). The actual fixation point is

then chosen as the location of the maximum of the resulting map.

2.3.1 Results

Comparison between scanpaths produced by distinct human behav-

iors, a saliency based algorithm and the proposed method. We have

run the DBN on the original image shown in Fig. 1(d). The resulting time

sequences of eye and hand states are shown in the two top rows of Fig. 9,
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and the final scanpath is depicted in Fig. 10(d). The latter can be compared

with a pure bottom–up scanpath, obtained by feeding the saliency map to a

winner–takes–all network endowed with Inhibition Of Return (IOR; Itti and

Koch, 2001). In Fig. 10 the saliency–based (10(a)) and the DBN (10(d)) scan-

paths are shown along with data from a human subject in the free viewing

(10(b)) and drawing (10(c)) conditions. Notice that the IOR mechanism is

not explicitly assumed in our model, but gained via motor conditioning on

eye movements: the joint distribution of eye–hand states is learned from a

dataset that promotes graphical continuity of hand movements, and penal-

izes eye movements that are inconsistent with the hand state. The resulting

scanpaths follow the contours of the image without turning back, therefore

implementing IOR.

Levenstein measure of similarity between scanpaths: the proposed

model approximately fits the human behavior in the drawing task.

To assess the similarity between human and simulated scanpaths, we start by

partitioning the image in a regular grid composed by N×M rectangular cells.

For all K fixations, each fixation occurring at spatial coordinates ~rk = (x, y),

k = 1 . . . K, is assigned to the corresponding cell. We can now define a discrete

version of the scanpath in a given trial, as the one dimensional time–ordered

sequence of fixated cells s(t) = (it − 1)M + jt where t is a discrete–time

parameter taking values in 1, 2, . . . K, and (it, jt) are the matrix coordinates

of the cell to which the t-th fixation belongs (i and j range from 1 to N and M

respectively). Then a temporal sequence of fixations is grouped into a single

event if they all fall in the same cell. This procedure replaces the scanpath

with a sequence of events, each one belonging to a single cell of the grid. Then

each cell is labelled with a symbol (an ASCII character in the interval ‘A’
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to ‘e’), and each sequence of events is converted to a string; this enables a

straightforward comparison between different scanpaths, by means of a string

matching algorithm (Privitera and Stark, 2000). This allows us to evaluate the

string similarity index as the Levenshtein distance (Levenshtein (1965), but

see Privitera and Stark (2000) for implementation details). The final result is

then normalised by the string length, to obtain a value in the [0, 1] interval.

Figure 11 summarises scanpath similarity values obtained by comparing either

11 scanpaths during the drawing task (Fig. 11(a)) or 6 free viewing scanpaths

(Fig. 11(b)), against: 1) (red bars) the sequence of gaze–points generated by

our model, which implements the edge–following (details are given in Sec.

2.3); 2) (blue bars) scanpaths generated by the saliency–based algorithm (de-

scribed in Sec. 2.2.1 and in Itti and Koch (2001) ); and 3) (green bars) random

scanpaths (averaged over 10000 cases). Notice that our model performs signifi-

cantly better than chance, as well as better than a purely bottom–up saliency–

based model, in the drawing task (Wilkoxon rank–sum test, p < .0001; ); vice

versa, the control experiment shows that both our and the saliency models are,

on average, as poor as chance in modelling free viewing scanpaths (p > .1).

3 Discussion

In this paper we have analysed the visuomotor behaviour of subjects involved

in a drawing task, which, we argued, can be considered as a paradigmatic

one as regards the problem of eye–hand coordination. We recorded the eye

movements of human subjects confronted with the task of copying simple

shapes. The results obtained, when confronted with data from free viewing

control experiments, confirm that there is a strong influence of hand motor
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Fig. 9. The simulated discrete–time evolution. From bottom to top: the bottom

row represents the sequence of visual inputs, namely the orientation of the foveated

image region (graphically coded as an oriented bar); the second row shows the joint

probability values associated to the Maximum A Posteriori eye–hand pair states,

namely p(xet , x
h
t |uet , uht ) (see appendix A); the third and fourth rows show the DBN

outputs, namely the eye and hand movement directions, respectively (depicted as

oriented bars departing from the central circular spot).

(a) (b) (c) (d)

Fig. 10. The scanpaths produced by: 10(a) a saliency–based algorithm; 10(b) a

free viewing human subject; 10(c) a human subject in the drawing task; 10(d) our

computational model. The first fixation for the models is on the top left; for the

human scanpaths, it is denoted by the black circle.

constraints on saccade direction (see Aivar et al. (2005); Brouwer and Knill

(2007); Stritzke and Trommershäuser (2007) for other reports of similar ef-

fects). To provide a formal account for this phenomenon, we have introduced

a computational model of eye–hand coupling, capable of learning the appro-
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(a) (b)

Fig. 11. 11(a) The similarity, as measured by the Levenstein distance, between

experimental scanpaths in the drawing task and those simulated by our model

(blue), by a saliency–based algorithm (green), and randomly generated (red); bars

denote the values for each subject, while triangles denote mean value and standard

deviation across subjects. 11(b) same as above, but with human data obtained in

the free viewing condition.

priate sensorimotor mapping for the drawing task, and of generating synthetic

scanpaths that can be directly compared to human data. A summary of most

relevant results of this paper follows.

The relevance of objects. When confronted with multiple shapes, subjects

fixate on each object mostly in the period during which they are drawing that

specific object (Fig. 2, 3). The fact that objects play an important role for

gaze shift is well known, (e.g. Desimone and Duncan (1995); see Scholl (2001)

for a review); in the context of a motor task, however, we find an enriched

notion of object: not only what subjects visually segment as an object, but the

units of visuomotor manipulation, namely what they can draw (manipulate)

in the course of time.

The role of saliency. The interplay between bottom-up and top-down mech-

anisms in determining attentional selection under natural viewing conditions
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has been for a long time under debate (see Findlay and Walker, 1999; Parkhurst

et al., 2002; Einhauser et al., 2008, for in-depth discussions). Bottom–up com-

putational models have been successful in reproducing the spatial distribution

of human fixations in static and dynamic scenes (Itti and Koch, 2001; Itti,

2006; Carmi and Itti, 2006). On the other hand, several measures of natural

image statistics at fixation locations reveal a more complex scenario, where

subsequent fixations are chosen so as to reduce uncertainty about the stimulus

(Najemnik and Geisler, 2005; Raj et al., 2005; Renninger et al., 2007; Nelson

and Cottrell, 2007; Najemnik and Geisler, 2008), which in turn depends on

subjects knowledge of where relevant information is likely to be located (Chen

and Zelinsky, 2006; Torralba et al., 2006; Droll et al., 2007).

The degree to which bottom–up mechanisms still contribute to eye movements

in highly constrained motor tasks, is still an open issue. We have explored this

issue using information-theoretic measures to compare the spatial distribu-

tion of fixations in a drawing task and in free-viewing, with the saliency map

of the images. What can be summarised from our results is that the fixa-

tion map, when used as a ”reverse engineered” saliency map, exhibits little

more information than that related to conspicuity of regions such as the cross-

ing, end points and varying curvature portions of the drawing. This finding

suggests that the motor task we studied has little effect on the spatial loca-

tions in the image that are more likely to be fixated: overall, subjects look at

salient regions most of the time. Vice versa, and most important, the effect

of motor constraints is clearly revealed in the temporal sequences of fixations,

the scanpaths (see Foulsham and Underwood (2008) and Privitera and Stark

(2000) for a discussion of spatial vs sequential aspects of eye movements and

idiosyncrasies of scanpaths in free viewing ).
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The signature of motor constraints. The drawing task reveals a peculiar

oculomotor strategy, that is quite regular across different subjects, and that

had not been reported before, to the best of our knowledge. Most of the ob-

served scanpaths are well described as edge–following patterns (Fig. 7). We

argued that this is the result of the tight coordination of eye movements and

drawing gestures: in fact, the interplay of task–related limb movements and

oculomotor behaviour has been documented in several cases (Ballard et al.,

1992; Land, 1992; Pelz et al., 2001; Johansson et al., 2001; Rothkopf et al.,

2007, e.g.), and there is evidence from recordings in the pre–motor areas of

the primate brain, that hands and eye compete for motor resources (Rizzolatti

et al., 1994; Sheliga et al., 1997; Rizzolatti et al., 1987).

On the other hand, different computational models have been conceived to

account for saccadic behaviour in a probabilistic setting (see, for instance,

Hacisalihzade et al. (1992); Rimey and Brown (1991); Torralba et al. (2006);

Torralba (2003); Feng (2006); Boccignone and Ferraro (2004); Itti and Baldi

(2006)). Differently from those works, we have provided a principled way to

chain eye movements with hand movements (but see Hayhoe and Ballard

(2005) for a model of visuomotor coordination in the algorithmic framework

of reinforcement learning). The model (Fig. 8) formalizes the dynamic eye–

hand coupling by suitable cross–connections between eye and hand–related

random variables. Due to the observers’ behaviour discussed above, the prob-

lem here was to contend with motor mechanisms peculiar of the drawing task.

As shown in Fig. 9, simulated eye and hand movements are qualitatively simi-

lar to the human behaviour; furthermore quantitative comparison of the scan-

paths, indicates that our model performs significantly better than chance, as

well as better than a purely bottom–up saliency–based model, in the drawing

task (Fig. 11(a); as a control, Fig. 11(b) shows that both our and the saliency

22



model are, on average, as poor as chance in modelling free viewing scanpaths).
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A DBN

To model eye–hand movements in a motor task, we introduce two variables

that account for sensory inputs, two state variables and two outputs. Specifi-

cally, we denote with ū = (ue, uh) the pair of variables representing the visual

and hand proprioceptive inputs, respectively, and with ȳ = (ye, yh) the pair of

variables accounting for eye and hand output signals; x̄ = (xe, xh) denotes the

corresponding pair of eye and hand (hidden) state variables, that we will use

to model the temporal dynamics. The simplest dynamics on the state vari-

ables is introduced by a dependency between the eye states at two subsequent

time steps (xet → xet+1), and similarly for the hand states; this corresponds

to two Input–Output Hidden Markov Models (IOHMM, Bengio and Frasconi,

1996; Feng, 2006). However, the most important point here is that the two

processes are not independent but rather modelled as coupled chains: at a

given time step the hand state depends on the eye state (xet+1 → xht+1), which

in turn depends on the previous hand state (xht → xet+1); indeed, these are the

conditional dependencies that model the very visuomotor nature of eye–hand

coordination. The resulting graphical model (Fig. 8) unifies the IOHMM and
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another kind of model known in the literature as the Coupled HMM (Murphy,

2002). We call the resulting network an Input–Output Coupled Hidden Markov

Model.

By generalising the two time slices snapshot of Fig. 8 to the time interval

[1, T ] the time dependent joint distribution of state and output variables, con-

ditioned on the input variables can be written as:

p(x̄1:T , ȳ1:T | ū1:T ) = p(xe1|ue1, uh1)p(ye1|xe1)p(xh1 |ue1, uh1 , xe1)p(yh1 |xh1)

·
T−1∏
t=1

[
p(xet+1|uet+1, u

h
t+1, x

e
t , x

h
t )p(y

e
t+1|xet+1)

· p(xht+1|uet+1, u
h
t+1, x

e
t+1, x

h
t )p(y

h
t+1|xht+1)

]
(A.1)

With the specification of variables introduced in Sec. 2.3, parameter learning

amounts to estimating the discrete conditional distribution over hidden states,

and the parameters of the output conditional distributions, by adapting the

Baum–Welch variant of the EM algorithm (Rabiner, 1989) to our network

(details provided in Coen-Cagli et al., 2008). To reduce the number of param-

eters, we assumed the output distributions to be Gaussian with mean equal

to the corresponding hidden value and σ = 10deg; in addition, we assumed

uht+1 = xht and mirror symmetry with respect to ue, which leaves us with a

total of 8000 parameters for the distributions over hidden states. The training

set was composed by 100000 synthetic two–step sequences, created by impos-

ing graphical continuity and edge–following on randomly generated short line

contours.

To generate the outputs, given the inputs at time step t + 1, we first evalu-

ate the distribution of hidden states p(x̄t+1|ū1:t+1), then take the Maximum

A Posteriori estimate (xe?t+1, x
h?
t+1) = arg max

[
p(xet+1, x

h
t+1|ū1:t+1)

]
, and eventu-

ally we generate the outputs by sampling p(yet+1, y
h
t+1|xe?t+1, x

h?
t+1). Notice that,
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according to the network structure, the hidden state at time t + 1 depends

only on the input subsequence ū1:t+1; thus, making use of eq. A.1 we find:

p(x̄t+1|ū1:t+1)

=
∑
x̄1:t

p(xet+1|uet+1, u
h
t+1, x

e
t , x

h
t )p(x

h
t+1|uet+1, u

h
t+1, x

e
t+1, x

h
t )p(x̄1:t|ū1:t) (A.2)

where the first two terms on the r.h.s. have been estimated in the learning

stage.Eq. A.2 is a particular case of recursive Bayesian filtering (Bishop, 2007).

References

Aivar, M., Hayhoe, M., Chizk, C., Mruczek, R., 2005. Spatial memory and

saccadic targeting in a natural task. Journal of Vision 5 (3), 177–193.

Ballard, D., Hayhoe, M., Li, F., Whitehead, S., 1992. Hand–eye coordination

during sequential tasks. Philosophical Transactions of the Royal Society of

London B: Biological Sciences 337, 331–338.

Bengio, Y., Frasconi, P., 1996. Input-output hmm’s for sequence processing.

IEEE Transactions on Neural Networks 7, 1231–1249.

Bishop, C., 2007. Pattern Recognition and Machine Learning. Springer, Berlin.

Boccignone, G., Ferraro, M., 2004. Modelling gaze shift as a constrained ran-

dom walk. Physica A: Statistical Mechanics and its Applications 331 (1-2),

207–218.

Brouwer, A., Knill, D., 2007. The role of memory in visually guided reaching.

Journal of Vision 7 (5), 6.

Carmi, R., Itti, L., 2006. The role of memory in guiding attention during

natural vision. Journal of Vision 6(9), 898–914.

Carter, N., Tenenbaum, J. B., Yuille, A., 2006. Probabilistic models of cogni-

tion: where next? Trends in Cognitive Sciences 10 (7), 292–293.

25



Chen, X., Zelinsky, G., 2006. Real-world visual search is dominated by top-

down guidance. Vision Research 46, 4118–4133.

Coen-Cagli, R., Coraggio, P., Boccignone, G., Napoletano, P., 2007. The

bayesian draughtsman: A model for visuomotor coordination in drawing.

In: Advances in Brain Vision and Artificial Intelligence. Vol. 4729 of LNCS.

Berlin: Springer-Verlag, pp. 161–170.

Coen-Cagli, R., Coraggio, P., Napoletano, P., Boccignone, G., 2008. What the

draughtsmans hand tells the draughtsmans eye: a sensorimotor account of

drawing. International Journal of Pattern Recognition and Artificial Intel-

ligence 5, 1015–1029.

Cohen, D. J., 2005. Look little, look often: The influence of gaze frequency on

drawing accuracy. Perception Psychophysics 67, 997–1007.

Cover, T., Thomas, J., 1991. Elements of Information Theory. Wiley and Sons,

New York, N.Y.

Desimone, R., Duncan, J., 1995. Neural mechanisms of selective visual atten-

tion. Annual Review of Neuroscience 18, 193–222.

Droll, J., Gigone, K., Hayhoe, M., 2007. Learning where to direct gaze during

change detection. Journal of Vision 7 (14), 1–12.

Einhauser, W., Rutishauser, U., Koch, C., 2008. Task–demands can immedi-

ately reverse the effects of sensory-driven saliency in complex visual stimuli.

Journal of Vision 8 (2), 1–19.

Ellis, S. R., Smith, J. D., 1985. Patterns of statistical dependency in visual

scanning. In: R. Groner, G. W., McConkie, Menz, C. (Eds.), Eye movements

and human information processing. Amsterdam: Elsevier, pp. 221–238.

Feng, G., 2006. Eye movements as time-series random variables: A stochastic

model of eye movement control in reading. Cognitive Systems Research 7,

70–95.

26



Findlay, J., Walker, R., 1999. A model of saccadic eye movement genera-

tion based on parallel processing and competitive inhibition. Behavioral

and Brain Science 22, 661–674.

Foulsham, T., Underwood, G., 2008. What can saliency models predict about

eye movements? Spatial and sequential aspects of fixations during encoding

and recognition. Journal of Vision 8 (2), 1–17.

Gowen, E., Miall, R., 2006. Eye-hand interactions in tracing and drawing

tasks. Human Movement Science 25, 568–585.

Hacisalihzade, S. S., Stark, L. W., Allen, J. S., 1992. Visual perception and

sequences of eye movement fixations: a stochastic modeling approach. IEEE

Transactions on Systems, Man and Cybernetics 22, 474–481.

Hayhoe, M., Ballard, D., 2005. Eye movements in natural behavior. Trends in

Cognitive Sciences 9 (4).

Itti, L., 2006. Quantitative modeling of perceptual salience at human eye po-

sition. Visual Cognition 14, 959–984.

Itti, L., Baldi, P., 2006. Bayesian surprise attracts human attention. In: Ad-

vances in Neural Information Processing Systems. Vol. 18. MIT Press, pp.

1–8.

Itti, L., Koch, C., 2001. Computational modelling of visual attention. Nature

Reviews - Neuroscience 2, 1–11.

Johansson, R., Westling, G., Backstrom, A., Randall Flanagan, J., 2001.

Eye–hand coordination in object manipulation. Journal of Neuroscience 21,

6917–6932.

Kording, K., Wolpert, D., 2006. Bayesian decision theory in sensorimotor con-

trol. Trends in Cognitive Sciences 10 (7), 319–326.

Land, M., 1992. Predictable eye-head coordination during driving. Nature 359,

318–320.

27



Land, M., 2006. Eye movements and the control of actions in everyday life.

Progress in Retinal and Eye Research 25, 296–324.

Lee, T., Mumford, D., 2003. Hierarchical bayesian inference in the visual cor-

tex. Journal of the Optical Society of America A 20 (7), 1434–1448.

Levenshtein, V., 1965. Binary codes capable of correcting deletions, insertions

and reversals. Doklady Akademii. Nauk SSSR 163, 845–848.

Marr, D., 1982. Vision. Freeman, S. Francisco,CA.

Murphy, K., 2002. Dynamic bayesian networks: Representation, inference and

learning. Phd dissertation, Berkeley, University of California, Computer Sci-

ence Division.

Najemnik, J., Geisler, W., 2005. Optimal eye movement strategies in visual

search. Nature 434, 387–391.

Najemnik, J., Geisler, W., 2008. Eye movement statistics in humans are con-

sistent with an optimal search strategy. Journal of Vision 8 (3), 1–14.

Neggers, S., Bekkering, H., 2000. Ocular Gaze is Anchored to the Target of an

Ongoing Pointing Movement. Journal of Neurophysiology 83 (2), 639–651.

Nelson, J., Cottrell, G., 2007. A probabilistic model of eye movements in

concept formation. Neurocomputing 70, 2256–2272.

Parkhurst, D., K.Law, Niebur, E., 2002. Modeling the role of salience in the

allocation of overt visual attention. Vision Research 42, 107–123.

Pelz, J., Hayhoe, M., Loeber, R., 2001. The coordination of eye, head, and

hand movements in a natural task. Experimental Brain Research 139, 266–

277.

Privitera, C., Stark, L., 2000. Algorithms for defining visual regions-of-interest:

Comparison with eye fixations. IEEE Transactions on Pattern Analysis and

Machine Intelligence 22 (9), 970–982.

Rabiner, L., 1989. A tutorial on hmm and selected applications in speech

28



recognition. In: Proceedings of IEEE. pp. 257–286.

Raj, R., Geisler, W., Frazor, R., Bovik, A., 2005. Contrast statistics for

foveated visual systems: Fixation selection by minimizing contrast entropy.

Journal of the Optical Society of America A: Optics, Image Science, and

Vision 22, 2039–2049.

Renninger, L., Verghese, P., Coughlan, J., 2007. Where to look next? eye

movements reduce local uncertainty. Journal of Vision 7 (3), 1–17.

Rimey, R. D., Brown, C. M., 1991. Controlling eye movements with hidden

markov models. International Journal of Computer Vision 7 (1), 47–65.

Rizzolatti, G., Riggio, L., Dascola, I., Umiltà, C., 1987. Reorienting attention
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