Efficient SOAP Message Exchange and Evaluation
Through XML Similarity

Ernesto Damiani
DTI - Universita degli Studi di Milano
via Bramante, 65
26013 Crema (CR), ltaly
damiani@dti.unimi.it

ABSTRACT

This paper investigates the possibility of using an XML tree
similarity based approach in order to individuate similar
SOAP messages, that can be aggregated by the Web Service
Provider in a single message before checking it according to
WS-Policy, saving time and computational costs.

Categories and Subject Descriptors

D.4.6, K.4.2 [Security and Protection]: [Cryptographic
control]

General Terms

Security, Performance

Keywords

Web-Services, SOAP messages, XML Encryption, XML sim-
ilarity

1. INTRODUCTION

In Services-Oriented Architectures (SOA) functionality is
grouped around business processes and packaged as interop-
erable services, which communicate using the SOAP proto-
col. SOA technology enables more dynamic, loosely-coupled
and asynchronous interactions between inter-domain appli-
cations, compared to traditional approaches [2, 1, 3]. Since
SOAP messages may carry vital business information, their
integrity and confidentiality needs to be protected and SOAP
Message security assurance is a challenging part of SOA in-
tegration. Using SOAP header to host security related in-
formation is a time-honored technique (see [7]); but while
protecting messages confidentiality is of paramount impor-
tance, it is often desirable to encrypt only parts of a message
that is being sent from one entity to another, so that inter-
mediate nodes between the two entities can process the mes-
sage appropriately. For example, a purchase order service
may contain a customer’s credit card details, which must
be accessible to authorized parties only. However other in-
formation in the same message, such as product description

Permission to make digital or hard copies of all or part of this work for

Stefania Marrara
DTI - Universita degli Studi di Milano
via Bramante, 65
26013 Crema (CR), Italy
marrara@dti.unimi.it

and purchase quantity, is provided as clear text in order to
be accessible by all organizational routing services that need
to process the purchase order message. SOAP is based on
XML and therefore inherits all XML’s verbosity disadvan-
tages. When there are many transactions involving similar
messages, one by one differential encryption, decryption and
signature checking of SOAP messages can generate a very
large amount of work overload for the service requester and
provider. In the work [10], the authors propose a multicast
protocol to aggregate messages on the basis of XML tree
similarity in order to reduce the transmission traffic in low
bandwidth environments. However, while a great effort has
been made to optimize SOAP performances in transmission,
less attention has been given to the problem of reducing the
overhead of applying security policy rules to a large number
of messages to be transmitted. This paper investigates the
possibility of using a similarity-based approach in order to
identify similar SOAP messages to be aggregated in a single
message at the sender side before performing encryption and
signing. Such an aggregation would also support collective
checking of WS-Policy conditions at the receiver side.

1.1 Related Work

Recently several solutions have been proposed to improve
SOAP performance, either using binary encoding for XML
(as opposed to text encoding) [20, 12], caching (at the client
side by increasing the locality of objects) [11], compression
(by reducing the size of XML payload) [13] or optimizing
SOAP run-time implementation (e.g. by efficient optimiza-
tion of the kernel).

Several techniques exist for comparing XML data items
[8, 23]. Some of them try to find the least edit-distance be-
tween XML data items A and B by identifying the number
of edit operation required to turn A into B. Many papers
are available on structure-based similarity of semi-structured
documents [19]; structure can also be used to find the simi-
larity between XML DTDs or Schemata [18]. The paper [4]
summarizes three approaches on structure similarity: 7Tag
Similarity, Tree Edit Distance (TED), and Fourier Trans-
form Similarity. In [5] a fast approach is proposed using
some properties of trees (such as height, degree, label his-

personal or classroom use is granted without fee provided that copies aretograms, etc.) to assess their similarity. The work [9] pro-
not made or distributed for profit or commercial advantage and that copies poses an approach to evaluate the similarity between com-

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SWS’080ctober 31, 2008, Fairfax, Virginia, USA.
Copyright 2008 ACM 978-1-60558-292-4/08/10 ...$5.00.

lex patterns. In this case the similarity between two simple
patterns of the same type is an aggregation of the similar-
ity of structure and the similarity of measurement (content).



2. WEB SERVICES

Web services are based on the interaction of three types of
entities: the service requestor, the service provider and the
service registry. Generally speaking, the service provider
advertises its services in a service registry. The service re-
questor finds a suitable service from the service registry, and
subsequently interacts with the associated service provider.
This architectural model is shown in Figure 1. In order
to implement web services based on this architecture, three
core building blocks are used: SOAP [21], WSDL [22] and
UDDI [17]. SOAP was designed as a uniform, unidirectional
messaging mechanism to transport XML messages from one
node to another. It is a protocol that underlies all inter-
actions between web services. WSDL is an XML-based in-
terface description language used to describe services in a
standardized way. UDDI is used as a service registry to
support a standard way of publishing and locating services.

2.1 Web Services Security

We now give a short summary of key security standards
adopted for securing web services, in useful as basis of the
comprehension of this work.

2.1.1 WS Security

The WS-Security specification [16] defines a common for-
mat for securing SOAP messages using XML Encryption
and XML Signatures to protect message confidentiality and
integrity. It also provides a way of passing security to-
kens, such as X.509 certificates [16] or Kerberos tickets [16],
through SOAP headers. Offering message-level security, WS-
Security is instrumental in providing end-to-end web services
security as each message can be encrypted or signed inde-
pendently, and thus self-protected. The SOAP header block
is used for attaching security related information targeted
at a specific recipient in the form of a SOAP actor/role.
Conversely, on the receiver side or Web Service provider,
a SOAP envelope is accepted as valid and passed to the
application if its policy is satisfied for this envelope. This
technique is in contrast to transport-level security which pro-
vides point-to-point security through, for example, a secure
channel established using the SSL/TLS protocol (see [14]
for a detailed description of differences). Although message-
level security provides finer granularity than transport-level
security in terms of selective message protection, this granu-
larity potentially causes significant performance issues. This
is because each message needs to be processed separately
and different security tokens may be used within the same
message or from message to message.

2.1.2 SAML

This standard defines methods for specifying trust asser-
tions in XML [15]. These methods enable portable trust in
the sense that assertions applied to an individual are at-
tached to a message and they can be transported from one
point to another with the message. SAML assertions take
the form of authentication, authorization or attributes of en-
tities. The SAML authorization assertion request/response
protocol is usually run between a Policy Enforcement Point
(PEP) and a Policy Decision Point (PDP), typically with
to support enforcement of XACML policies [16]. It is also
often used by a PEP to request attribute assertions from a
Policy information Point (PIP).

2.1.3 WS-Policy

WS-Security describes how to attach signature and en-
cryption headers to SOAP messages as well as how to attach
security tokens. While WS-Security provides a framework
to secure a SOAP message using existing techniques (e.g.
encryption, signature), WS-Policy and WS-SecurePolicy de-
scribe the capabilities and constraints of the security (and
other business) policies on intermediaries and endpoints (e.g.
required security tokens, supported encryption algorithms).
For example, a service provider may only accept a X.509
security token which can be described using the declarative
syntax of WS-Policy and WS-SecurePolicy.

3. SMP OVERVIEW

The basis of our approach is [10] which proposes a SOAP
multicast technique, called Similarity-based Multicast Proto-
col (SMP), which takes into account the similarity of SOAP
messages. SMP was designed to deal with SOAP perfor-
mance issues by exploiting the similar structure of SOAP
messages. The goal is to reduce the total traffic generated
over a network when sending SOAP responses from servers
to clients. SMP allows similar SOAP messages that share
some parts of the SOAP template to be sent as a single
customized SMP message instead of being sent as multi-
ple copies. Clients’ addresses are represented as strings and
stored in the SMP header, which is encapsulated inside the
SOAP message body. The SMP body is also embedded in-
side the SOAP message body.

There are two sections in the SMP body:

1. the Common section containing common values and
structures of all messages addressed to clients encoded
in the SMP header;

2. the Distinctive section containing individual different
parts for each response message.

The outermost envelope is referred to as an SMP message.
The destination of an SMP message, which is specified in
the SOAP header, is the next router in a network when the
message is forwarded to all clients given in its SMP header.
Figure 2 explains the operations of SMP through a sample
network of 1 sender and 2 receivers. Two SMP messages are
sent out from the source s to its next-hop router r1. At r1,
the SMP message header is parsed to find out what clients
the message is addressed to and the two messages are divided
and sent to their final destination. Despite its advantage of
saving network traffic, SMP has a remarkable disadvantage:
it uses a conventional routing protocol (OSPF) to deliver
messages to clients. Since OSPF uses Dijkstra’s algorithm,
SMP messages are routed along their shortest paths to des-
tinations. Two nodes of a network are often connected with
multiple paths. Therefore, sending messages just along least
hop paths does not maximize the saving of traffic resulted
from the similarity of messages. In addition, SMP has a
user-configured time frame. During this time period, outgo-
ing SOAP response messages will be lined in a queue if their
similarity level falls within a threshold limit. When a new
request message arrives at the server, the server generates
its corresponding SOAP response message and computes its
similarity against existing on-queue messages. If the com-
puted similarity satisfies the threshold then it is inserted
into the queue. If not, the messages that already reside in
the queue are sent out as an aggregated SMP message. As



WSDL /

Service registry

WSDL /

uDDI

SOAP
Service provider

UDDI

Service requestor

Figure 1: The basic Web Services architecture

SMP
|:| header O
address
distinctive (c1,c2)
part dist(m1)
dist(m2)
|:| common common
part (m1,m2)
|:| unicast SOAP
message

Figure 2: SMP protocol behavior

a result, the queue is empty for new requests and the above
aggregation steps can be repeatedly carried out again. Mes-
sages in the queue can also be dispatched automatically after
the defined time period. It is important to note that to de-
ploy SMP in a real network, all routers in the network need
to be SMP-compatible. This can be done by installing an
SMP software, which is an implementation of the proposed
SMP, on each router to enable it to interpret SMP messages.
The SOAP header in an SMP message specifies the next hop
router as the message’s destination. Therefore, when an in-
termediary router receives an SMP message, it processes the
message as if it is the final destination of the message. Since
an SMP-compatible router operates on the application layer,
it has full access to the message’s envelope and parses the
SOAP body to get the list of clients encoded in the SMP
header and the actual payload in the SMP body.

4. OUTLINE OF THE APPROACH

Our proposed approach is based on the SOAP-based Mul-
ticast Protocol (SMP) proposed in [10] and described in the
previous section. The idea is to use XML similarity to recog-
nize SOAP messages that contain common parts and there-
fore can be grouped by the service provider together before

checking them against the security policy rules. In this pa-
per, for the sake of simplicity, we only deal with a single
sender and a single receiver, focusing on the problem of ag-
gregating similar messages; however, the approach can be
straightforwardly extended to the case of multiple receivers.
Figure 3 shows the general architecture of a SOAP message
exchange. On the sender side or Web Service Requester in
Figure 3, the Requester will first acquire the required se-
curity token from the Security Token Service and then the
protocol stack generates SOAP envelopes that satisfy its pol-
icy. It adds integrity and confidentiality credentials under
the <Security> header that is defined according to the WS-
Security standard.

The basic idea of the approach consists in aggregating the
common message structure and data values of multiple mes-
sages and their distinctive parts in a single message in order
to apply once the rules of the security policy instead of re-
peating the same procedure on duplicated parts in many
messages. In other words, the signed message at step 5 in
Figure 3 is not a single message but an aggregate of simi-
lar SOAP messages. To do this the idea is to measure the
similarity level between the messages to determine if they
have sustainable parts in common that can justify the extra
processing time at the web service provider. The following
sub-sections will describe the idea for similarity measure-
ments and message generation.

4.1 Using XML similarity to aggregate SOAP
messages

This section presents the data model for the formulation
of the similarity to be used for message aggregation. Since a
SOAP message has an XML format, it is a hierarchical doc-
ument with nested tags. As such, a SOAP message can be
modeled as a rooted ordered tree, as shown in the definition
below.

Definition 1. A SOAP message tree T is a rooted ordered
tree, where each node n is a pair n = (tag, content); tag is
the node name and content is the node value.

Most SOAP messages that are generated by the same ser-
vice provider will have some common message structure (or

'For the sake of simplicity in this paper we suppose that
content can be of primitive type only. An effective similarity
measure involving complex types is target of the next step
of our research.



1. token request

\ 4

Security Token service

Applying WS-Policy to
SOAP message

- 2. token to be added to SOAP messages
A
Checking SOAP
according to WS- 6. token to be
Policy validated
Web Service
A
Requester
5. signed
3.request SOAP

|__message ,,. 4. signed A 4 \

message

7. response message

Web Service Provider

A

Figure 3: General architecture of a secure SOAP transmission

template). Specifically, they will have similar information
provided in the header and the same structure in the body
if they are generated to query the same operation. Based
on this observation, it is possible to define the similarity
between two SOAP messages Soap: and Soaps labeled as
sim(Soapi, Soap2) as a function of the similarity between
the two message templates and the similarity between the
data values of the messages, as described below. The func-
tion adopted to aggregate similarities is a T-norm ( Triangu-
lar norms) function. Triangular norms are operations which
generalize the logical conjunction in the semantics of math-
ematical fuzzy logics and they are commonly used to com-
bine criteria in multi-criteria decision making. Examples of
T-norms are the minimum or Gédel t-norm, the product t-
norm, and the Lukasiewicz t-norm. The choice of the most
suitable t-norm can be done on the basis of application de-
pendant considerations. As instance, the min function has
the property to guarantee that aggregate messages have both
kind of similarity higher that a certain threshold.

Next, it is further explained how each type of similarity
is computed. SOAP messages are based on XML templates
which are formed by a number of node tags definitions, the
assumption is that both sender and receiver knows this tem-
plate; therefore, node tags can be used as a basic metric for
measuring the similarity between SOAP message templates
which is defined as follows.

Definition 2. simiemp(Soapl, Soap2) = \m|
where: N is the number of common nodes tags (excluding
closing tags) between Soapl and Soap2; Np is the number
of node tags that Soapl has; N> is the number of node tags
that Soap2 has.

A major limitations of existing similarity measurement
methods used in XML database querying [6] is that they
usually compare the values of two XML documents that
have the same template (the same path from a node to the
root). On the contrary, the technique proposed here allows
any XML documents be compared by counting the number

of common node tags shared in the documents. This sim-
plification holds because we assume that both sender and
receiver knows the message templates, and hence can recog-
nize different messages sharing the same template. Instead,
the similarity between the values of two nodes is measured
based on the Levenshtein distance (or edit distance) method.
The edit distance is a well established method for weighting
the difference between two strings. It measures the mini-
mum number of token insertions, deletions, and substitu-
tions required to transform one string into another using a
dynamic programming algorithm. For example, the edit dis-
tance between the two strings cat and bat equals 1 because
one substitution is required to change the string cat into
bat. Hence we can compute the similarity between the two
strings as $iMyaly valy = 1 — m =1-1/3=0,67
where ¢ is the number of required substituted characters,
and ¢; and c2 are the number of characters composing vali
and vals respectively.

Two SOAP messages are considered syntactically simi-
lar if their similarity degree sim(Soapl, Soap2) is equal or
greater than a parameter p, called the similarity threshold,
which is dependent on the application domain.

For example if we consider the two messages in 4 that re-
fer to two different purchases of the same person using once
a credit card (a string) and the other time using cash (an
integer), we will see that the messages share 7 node tags on
8. Hence we can say that simiemp(Soapl, Soap2) = 7/8 =
0.875. From the content point of view, we see that only
two leaf nodes are different. Hence we compute the string
similarity only on these nodes. The first node presenting
differences in the content value of messages (a) and (b) is
<OrderDate>. The edit distance between the two content
values is 1, hence s$imyaiy,val; = 1 — 1/10 = 0.9. The sec-
ond difference between messages (a) and (b) is given by the
nodes <CreditCard> and <cash> that appear only in one
message and not in the other. In this case the two nodes are
ignored in the similarity value measure because it is unlikely
that two nodes of different data types have similar values.



At the end of the computation sim(Soapl, Soap2) =
min(simeemp(Soapl, Soap2), siMyai, ,vai, (Soapl, Soap2)) =
0.875 that is likely above a common predefined similarity
threshold (e.g., 0,75).

5. SOAP AGGREGATE MESSAGE STRUC-
TURE

This section explains the structure of a SOAP aggregate

message supporting optimization of security policy rules check-

ing.

Figure 5 shows the structure of the aggregate message.
The original messages ids are stored in the aggregate header
which is encapsulated inside the SOAP message body as
shown in figure. There are two sections in the aggregate
message body:

e the common section containing common values and
structures of all messages to be aggregated;

e the distinctive section containing individual different
parts for each original message.

The aggregate message generation mechanism is explained
through an example. Let assume we have two messages con-
taining the credit cards details of Alice coming from two
different orders. Figure 4 illustrates a SOAP message con-
taining Alice’s details. The security policy asks that credit
cards numbers should be signed and encrypted before trans-
mission.

Upon receiving similar messages to be secured and deter-
mining that the similarity degree of the messages is equal
or greater than the similarity threshold p (see section 4.1),
the server will generate an aggregate message to capture
all information to be secured. In our example, the ag-
gregate message should include the <OrderDetails> struc-
ture (as presented in Figure 4) and the data values of the

<CustomerInfo> and <CreditCard> nodes in the <Common>

tag of the aggregate message since the two orders belong to
the same customer. And in the <Distinctive> tag, there
should be two <part> elements, each <part> element con-
tains the values of each order, their order dates and the
products bought. In this way the signature could be applied
directly in the common part once.

5.1 Discussion on times and costs

In the traditional multicast scenario, when a client sends
a request to the server, the server will not respond to it
promptly but rather it will wait for a number of other re-
quests from other clients who are requesting the same service
operation. This is because the server needs to get a reason-
able number of the same requests from the clients before
sending a multicast message out. This waiting period, de-
noted by tprocserver(multicast), is significant and does not
exist in the unicast scheme. Our approach works in a similar
way: when the service provider receives a message it does
not send it immediately to the policy evaluator, but waits
for a number of other messages that can be aggregated in
a single message before checking it against the ws-policy.
Hence also in our context we must take into account a wait-
ing time tprocserver (Message), and it is necessary to evaluate
under which conditions our approach pays well w.r.t the tra-
ditional unicast approach (where each message is received,
policy checked, and processed, one by one). Generally our
multicast approach shows its benefits when:

<soap:Envelope>

<soap:Header>

Address of the receiver </soap:Header>
<soap:Body>

<aggregate:Header>

ids of messages that compose this
aggregate

</aggregate:Header>
<aggregate:Body>

<Distinctive>

<part>

<messagelDs>

messages that share this distinctive part
</messages|Ds>

<data>

Data values of the distinctive part
</data>

</part>

<part>

<messagelDs>

messages that share this distinctive part
</messagelDs>

<data>

Data values of the distinctive part
</data>

</part>

</Distinctive>

<Common>

Common structure and data values
</Common>

</aggregate:Body>

</soap:Body>

</soap:Envelope>

Figure 5: The aggregate message structure

Definition 3. tprocServer(message)+tprocserver(aggregate)+

tevaluatar(aggregate) <
Efv (tprocServer(uniCGSt) + tevazuatw(um’cast)) where

® tprocServer(Message) is the time the server wait to col-
lect the N messages to be aggregated;

® tprocServer(@ggregate) is the time required to create
the aggregate message;

® tevatuator(aggregate) is the time required by the policy
evaluator to check the aggregate message

® {procServer(unicast) is the time required to receive a
message and teyaiuator(unicast) is the time required
to evaluate it in the unicast approach.

Hence if we suppose that teygiuator (unicast)

& tevaluator(aggregate), it is clear that the approach bot-
tleneck lays in the algorithm used to compute the messages
similarity and to create the aggregate message. The algo-
rithm proposed in [10], which combines the complexities of
the SMP aggregation and splitting processes at the client
side, has a complexity of O(d*log(d) + N), where d is the
length of a data value in a SOAP message and N is the
number of service requestors.



<soap:Envelope>

<soap:Body>

<OrderDetails>
<OrderDate>2006-06-12</OrderDate>
<Customerinfo>
<CustomerName>Alice</CustomerName>
<CustomerCity>New York</CustomerCity>
</Customerinfo>

<Good>

<Product>Blue polo</Product>
<Price>49%$</Price>

</Good>

<Good>

<Product>Women shoes</Product>
<Price>69%</Price>

</Good>

<CreditCard>VISA 1324 6487 2265</CreditCard>
</OrderDetails>

</soap:Body>

</soap:Envelope>

(@)

<soap:Envelope>

<soap:Body>

<OrderDetails>
<OrderDate>2006-06-13</OrderDate>
<Customerinfo>
<CustomerName>Alice</CustomerName>
<CustomerCity>New York</CustomerCity>
</Customerinfo>

<Good>

<Product>shirt</Product>
<Price>110$</Price>

</Good>

<Good>

<Product>Prada handbag</Product>
<Price>842%</Price>

</Good>

<cash>952</cash>

</OrderDetails>

</soap:Body>

</soap:Envelope>

(b)

Figure 4: Sample SOAP messages

6. CONCLUSIONS AND FUTURE WORK

This paper proposes an XML similarity approach to aggre-
gate SOAP messages in order to improve the performance
of a policy rules evaluator. The idea develops on SMP, a
similarity based protocol studied to improve transmission
performances. Future work of this idea include extensive ex-
perimentation of the performance gain of the policy evalua-
tor, and a comparative analysis of XML similarity for SOAP
messages templates.

Acknowledgements

This work was supported in part by the European Com-
mission within the SecureSCM project in the FP7-ICT Pro-

Proceedings of the IEEE International Conference on
Web Services, page 540, Washington, DC, USA, 2004.
IEEE Computer Society.

Ernesto Damiani and Letizia Tanca. Blind queries to
XML data. In Database and Expert Systems
Applications, pages 345-356, 2000.

Stefano Paraboschi Ernesto Damiani, Sabrina De
Capitani di Vimercati and Pierangela Samarati.
Securing soap e-services. International Journal of
Information Security, 1(2):100-115, 2002.

S. Abiteboul G. Gobena and A. Marian. Detecting
changes in XML documents. In In International
Conference on Data Engineering, pages 41 (j52, 2002.
Paolo Ciaccia Ilaria Bartolini and Marco Patella. A

[6]

[7]

8]

gramme under contract n.AOR 213531, and by contract/grant
sponsor FIRB research fund of MIUR, research project TEKNE
(contract/grant n.RBNE0SFKZ2).

7. REFERENCES

[1] Corba official web site,

http://www.corba.org/.

Dce portal, http://opengroup.org/dce/.

Eai and web services overview,
http://www.bitpipe.com/data/web/bpmd/
eai/eai_overview.jsp.

A. Guitton A. Boudani and B. Cousin. Gxcast:
Generalized explicit multicast routing protocol. In In
Proceedings of the ninth international Symposium on
Computers and Communications, pages
1012&1017,Piscataway, USA, 2004. IEEE Press.

C. Buschmann C. Werner and S. Fischer. Compressing
soapmessages by using differential encoding. In In

(10]

(11]

(12]

framework for the comparison for complex patterns. In
In Proc. 1st International Workshop on Pattern
Representation and Management (PaRMaS04), Crete,
Greece, March 200.

Zahir Tari Khoi Anh Phan and Peter Bertok.
Optimizing web services performance by using
similarity-based multicast protocol. Web Services,
2006. ECOWS °06. 4th European Conference on,
pages 119-128, Dec. 2006.

X. Liu and R. Deters. An efficient dual caching
strategy for web service-enabled pdas. In In
Proceedings of the 22nd Annual ACM symposium on
Applied Computing, pages 788-794, Seoul, Korea,
2007. ACM Press.

J. Marsh M. Nagy M. Fernandez, A. Malhotra and

N. Walsh. Xquery 1.0 and xpath 2.0 data model
(XDM). In World Wide Web Consortium (W3C)
January 2007.



[13]

T. Naumowicz H. Ritter M. Tian, T. Voigt and

J. Schiller. Performance considerations for mobile web
services. In Computer Communication,
27(11):1097-1105, July 200/.

A. Schaad M.A. Ramahan and M. Rits. Towards
secure SOAP message exchange in a SOA. In In

Secure Web Services 2006, Alexandria, Virginia, USA.

OASIS. Oasis security services (SAML) TC
http://www.oasis-open.org/committees
/tc_home.php/wg_abbrev=security.

OASIS. Oasis standards and other applications,
http://www.oasis-open.org/specs/index.php#wssv1.0.
OASIS. Oasis UDDI specification tc
http://www.oasis-open.org/committees
/tc_home.php?wg_abbrev=uddi-spec.

S. Castano S. Bergamaschi and M. Vincini. Semantic
integration of semistructured and structured data
sources. In In SIGMOD Record, vol. 28, 1999.

(19]

20]

(21]

(22]

23]

Klaas-Jan Winkel Theodore Dalamagas, Tao Cheng
and Timos Sellis. Clustering XML documents using
structural summaries. In In Proceeding of ClustWeb -
International Workshop on Clustering Information
over the Web in conjunction with IntSl Conference on
Extending Database Technology (EDBT 04), Heraklion
- Crete, Greece, 14 Mar. 2004.

K. Chiu W. Lu and D. Gannon. Building a generic
soap framework over binary XML. In In Proceedings
of the 5th International Conference on Computer and
Information Technology, pages 136-140, Shangai,
China, September 2005. IEEE Computer Society.
W3C. Soap version 1.2 part 2: Adjuncts (second
edition). World Wide Web Consortium (W3C)
January 2007.

W3C. Web services description language (WSDL) 1.1.
World Wide Web Consortium (W3C) March 2001.

D. Dewitt Y. Wang and J. Y. Cai. An effective change
detection algorithm for XML documents. In 2003.



