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Abstract 
 

The Jurassic was a time of important changes in the ocean/continent configuration: 

important reorganization of oceanic and climatic conditions are underlined by a most 

remarkable widespread shift from mostly siliceous to mainly calcareous sedimentation. In the 

western Tethys Ocean the beginning of the Late Jurassic was a time of exceptionally low 

carbonate accumulation rates, while the uppermost Jurassic is characterized by high 

sedimentation rates and the deposition of calcareous nannofossil oozes. During the Late 

Jurassic calcareous nannoplankton experienced a progressive increase in diversity, abundance 

and degree of calcification, culminating in the Middle Tithonian – Lower Berriasian interval.  

Upper Callovian – Lower Berriasian sections from the Southern Alps (Northern Italy) have 

been analyzed for calcareous nannofossil biostratigraphy in order to revise and improve the 

available biostratigraphic schemes and integrate nannofossil events with magnetostratigraphy. 

Few sections (Southern Alps) and the DSDP Site 534 A (Atlantic Ocean) were quantitatively 

investigated for calcareous nannofossil relative and absolute abundances and to derive 

nannofossil paleo-fluxes.  

Biostratigraphic investigations resulted in a refined taxonomy and improved 

biostratigraphy: three new biozones and two new subzones are here proposed. Quantitative 

investigations and derived paleo-fluxes show a calcareous nannofossil increase in diversity, 

abundance and calcification, inducing a major change in pelagic sedimentation from 

predominantly siliceous (lower part of the Rosso ad Aptici) to mostly calcareous (Rosso ad 

Aptici – Maiolica transition and Maiolica). In particular, a spectacular speciation 

episodestarted in the Tithonian, including the first occurrence and early diversification of 

nannoliths and nannoconids. The increase in abundance of coccoliths and nannoliths affected 

the ocean carbonate system, especially because of the high rates of some nannolith 

calcification. These nannoplankton calcification events (NCEs) occurred during times of low 

spreading rates, low pCO2, low Mg/Ca ratio, cool climatic conditions and relatively 

oligotrophic oceans. Available data suggest that calcareous phytoplankton was stimulated by 

environmental stability rather than perturbations. This is consistent with modern 

coccolithophorid distribution, showing highest diversity and abundance as well as calcification 



 

in stable oligotrophic oceanic areas.  A precise stratigraphic control allows the modeling of the 

Late Jurassic nannofossil speciation episode and the abundance increase of high-calcified 

genera (Conusphaera, Polycostella, Faviconus, Nannoconus), evaluating environmental causes 

and consequences of evolution. The obtained results suggest that the Late Jurassic 

nannoplankton evolution was mostly controlled by the following factors: A) a decrease in 

pCO2 due to decreased spreading rates and/or increased weathering rates (87Sr/86Sr); B) a 

decrease in oceanic Mg/Ca ratio values promoting low Mg-CaCO3 and CaCO3 

biomineralization; C) cool climatic conditions (Price, 1999). 

The Tithonian time interval provides examples of accelerated intra- and inter-generic 

evolutionary rates (originations) under stable environmental conditions, in absence of 

ecosystem preturbations. It provides an excellent opportunity to characterize nannoplankton 

evolutionary behaviour, and on the basis on the achieved stratigraphic and time framework, 

evolutionary trends of calcareous nannoplankton were quantified: example of Philetic 

Gradualism, Punctuated Equilibrium and Punctuated Gradualisms as well were identified. 

Evolutionary modes also suggest that at specific level both nannoliths and coccoliths gradually 

evolve in a time interval of more that 1 Ma, while at generic level a rapid speciation is most 

common. 

 

  

 

 



         1. Introduction 

 

1. INTRODUCTION 
 

This PhD project has been focused on calcareous nannofossil of the latest Callovian – earliest 

Berriasian time interval in the western Tethys Ocean. The Jurassic was a time of important 

changes in the ocean/continent configuration. Hydrothermal activity associated to the 

fragmentation of Pangea was accelerated during this time interval, as mirrored by the decrease 

of strontium isotope ratio, reaching the lowest values of the Mesozoic (Sheridan, 1983; Jones 

et al., 1994; Mc Arthur et al., 2001). The separation of Eurasia and Gondwana triggered the 

opening of the Hispanic corridor, a seaway connecting the western Tethys and Pacific oceans. 

The oceanic circulation was superficial at that time. The gradual widening and deepening of 

the Hispanic Corridor (Haq et al., 1988), allowed significant water mass exchanges between 

western Tethys and Pacific during the Late Jurassic (Winterer, 1991; Hotinski & Toggweiler, 

2003). It has been shown that modification of the oceanic connection between oceanic basins 

have a strong influence on ocean circulation and global climate. The opening of the Hispanic 

Corridor triggered an improvement of latitudinal heat exchange due to a large-scale change in 

ocean currents pattern (Hotinski & Toggweiler, 2003).  

The study of Late Jurassic sediments provides evidence for an important reorganization of 

oceanic and climatic condition. Most remarkable is the widespread shift from mostly siliceous 

to mainly calcareous sediments. The beginning of Late Jurassic was a time of exceptionally 

low carbonate accumulation rates, while the uppermost Jurassic is characterized by high 

sedimentation rates and the widespread deposition of calcareous nannofossil oozes. Around the 

Middle-Late Jurassic transition, the Tethys Ocean was almost free of carbonate sediments on a 

global scale (Dromart et al., 2003a, 2003b): the pelagic sedimentation was dominated by 

radiolarian ooze and hardgrounds formed along shallow shelf environments and on submarine 

highs (Baumgartner, 1987; Dromart et al., 2003a, 2003b). A drastic change in sediment 

production occurred during the Middle Oxfordian with the explosion of calcareous nannofossil 

(Cecca et al., 2005), reaching lithogenic abundances during the Tithonian (Roth, 1983; Erba & 

Quadrio, 1987; Bornemann et al., 2003).  

During the Late Jurassic to earliest Cretaceous interval, eustatic sea-level reached a 

maximum in the early Tithonian (Haq et al., 1987), probably as a consequence of increased 
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sea-floor spreading and rifting of the Pangea continent (Sheridan, 1983, 1997). Most of the 

Tithonian was characterized by a sea-level high followed by a drop at the Jurassic/Cretaceous 

boundary (Haq et al., 1987; Hallam, 1988). Long sea-level fall was probably initiated by a 

major decrease in spreading rate, causing numerous semi-restricted epicontinental seas, which 

might have favoured the evolution of endemic taxa. Provincialism in the Tithonian to 

Berriasian time interval has been documented for many marine floral and faunal groups on a 

global scale (belemnite, ammonite). Similar patterns are also reflected by calcareous 

nannofossil, exhibiting distinctive latitudinal differences (Mutterlose & Kessels, 2000; Steet & 

Bown, 2000). 

The paleoclimatic conditions of the latest Jurassic and earliest Cretaceous are still poorly 

constrained. According to Price (1999), the latest Jurassic was characterized by an episode of 

cold and subfreezing polar conditions, with possible polar ice sheets approximately about one-

third of the size of those at present day. The hypothesis of cooler temperatures and presence of 

polar ice sheets is supported by the oxygen isotope record from the high latitudes (Podlaha et 

al., 1998) and by global circulation model (GCM) for the Late Jurassic (Moore et al., 1992a; 

Moore et al., 1992b). The GCM allows the presence of ephemeral ice. Based on palynomorphs, 

dry climate conditions are thought to have prevailed in western Europe and in the Atlantic 

region in the latest Jurassic (Hallam, 1985; Wignall & Ruffell, 1990; Abbink et al., 2001). In 

the earliest Cretaceous climatic conditions changed to more humid and relatively warmer.  

 

Main objectives and general outline of this study 
The purposes of this study are: 

• high-resolution bio-magneto stratigraphy of sections, mainly from the Southern Alps, in 

order to achieve a revised stratigraphic framework for the Upper Jurassic – lowermost 

Cretaceous interval.  

• quantification the calcareous nannofossil contribution to the biogenic calcite 

sedimentation in the Tithonian – Berriasian time interval, characterized by a major 

change in pelagic sedimentation from predominantly siliceous to mostly calcareous.  

• Characterization of the calcareous nannofossil Tithonian speciation episode: it provides 

an example of accelerated intra- and inter-generic evolutionary rates during a time period 

of environmental stability, without perturbations, thus providing an excellent opportunity 
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to study calcareous nannofossil evolutionary behaviour. This study aims at reconstruction 

of both tempo and mode of nannoplankton evolution during the Tithonian speciation 

episode.  

 

In Chapter 2 the state of the Late Jurassic calcareous nannofossil biostratigraphy, and 

nannofloral potential as paleoceanographic and/or paleoclimatic proxies are summarized.  

Chapter 3 describes the sample preparation techniques and the abundance (semi-

quantitative and quantitative) analysis adopted for calcareous nannofossil investigations. 

Particularly, the modus operandi used for calcareous nannofossil paleo-fluxes computing is 

presented. 

In Chapter 4 the descriptions of western Tethys and Central Atlantic oceans 

paleogeographic settings are reported. Then follows a detailed description of the location, 

paleogeography and lithology of each investigated section. 

The thesis results are presented in Chapter 5: the high-resolution bio-magnetostratigraphy 

of the uppermost Callovian – Lower Berriasian interval; the description of calcareous 

nannofossil relative and absolute abundances fluctuations and derived paleo-fluxes. Then a 

brief definition of the nannofacies observed in the Tithonian interval is following. Finally 

calcareous nannofossil data regarding the Tithonian speciation episode are summarized. 

Chapter 6 is the discussion of calcareous nannofossil data: a revised calcareous nannofossil 

biostratigraphic scheme is proposed for the Upper Jurassic; biogenic calcite fluxes are 

interpreted and their implications and applications are presented. Nannofossil Calcification 

Events (NCEs) are described and interpreted, and their impact on the sedimentation of western 

Tethys ocean is discussed. Possible paleoceanographic and paleoclimatic controlling factors of 

NCEs are taken into account and evaluated. Finally, calcareous nannofossil evolutionary tempo 

& mode are discussed. 

The conclusions are compiled in Chapter 7. 

A taxonomic index and some notes on selected calcareous nannofossil taxa are reported in 

Chapter 8, while calcareous nannofossil plates constitute Chapter 9. 

 

A CD is provided with the printout. It contains: detailed lithologic profile of every studied 

section; calcareous nannofossil range charts of every investigated section; the achieved semi-
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quantitative data sets of Torre de Busi, Monte Pernice and Foza A sections, and the absolute 

abundances and derived paleo-fluxes data sets of Torre de Busi, Monte Pernice sections, and 

DSDP Site 534a. A copy of all figures included in thesis is also provided. A copy of all the 

abstracts presented at international meetings during the PhD is included.  
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2. LATE JURASSIC CALCAREOUS NANNOFOSSIL OVERVIEW 
 

2.1. Calcareous Nannofossil biostratigraphy 
The term calcareous nannofossil is usually used to include all calcareous fossils smaller 

than 30 µm and comprises a wide and diverse range of organisms, ascidian spicules, 

calcispheres (calcareous dinoflagellates) or juvenile foraminifera, but the main proportion is 

represented by calcitic remains of haptophyte algae. Calcareous nannofossils are thus mainly 

constituted by disc-like calcite plates, a clear analogues of coccoliths produced by 

coccolithophorids (living haptophytes), and by a significant number of variously-shaped 

nannoliths, whose biological affinities are less certain due to the lack of a living analogue, 

presumably also of algal origin. Calcisphere are not considered as nannoliths since they have 

been produced by dinoflagellates (Lohmann, 1909; Perch-Nielsen, 1987; Bown & Young, 

1998). 

Calcareous nannofossils were widespread in ancient oceans, similarly to modern calcareous 

nannoplankton, distributed from coastal areas to open ocean settings: this is one of the reason 

they are a powerful stratigraphic tool. The uppermost Jurassic – Lower Cretaceous calcareous 

nannofossil biostratigraphic scheme was first proposed by Thierstein (1971, 1973). In recent 

years it has been applied, improved or modified by different authors (Erba & Quadrio, 1987; 

Bralower et al., 1989; De Kaenel et al., 1996; Bown, 1998; Mattioli & Erba, 1999). A brief 

summary is presented in Figure 2.1.1. No Thetyan zonation has been yet formalized for the 

Late Bathonian – Late Kimmeridgian time interval. This study aims to explore and propose a 

revised calcareous nannofossil biostratigraphic scheme for the Middle to Late Jurassic. 

Biostratigraphic events will be calibrated with magnetostratigraphic data in order to obtain an 

integrated stratigraphy applicable to the Tethyan Realm.   

The biostratigraphic scheme proposed by Bralower et al. (1989) has been preferred for my 

biostratigraphic investigations for two reasons: it was integrated to the available magnetic 

polarity chron sequence, thus resulting more appropriate to our aim, and was previously 

applied to few Italian (Tethyan) land sections, providing some basic guidelines to regional 

biostratigraphy. The biozonation of Bralower et al. (1989) is described below. 
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2. Late Jurassic calcareous nannofossil overview 

 
 

Fig. 2.1.1 – Comparative chart of calcareous nannofossi zonations available for the Tethyan Realm: Roth 
et al, (1986), Bralower et al. (1989), De Kaenel et al. (1996). 
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Vagalapilla stradneri  Zone, NJ-19 

Definition: interval from the first occurrence of Vagalapilla stradneri (Rood, Hay and 

Bernard, 1971; Thierstein, 1973) to the first occurrence of Conusphaera mexicana 

(Trejo, 1969) subsp, minor Bralower and Thierstein, 1989. 

Range: Upper Oxfordian to lowermost Tithonian. 

Subzones:    - Zeugrhabdotus embergeri Subzone, NJ-19B 

Definition: interval from the first occurrence of Zeugrhabdotus embergeri 

(Noël, 1959; Bralower, Monechi & Thierstein, 1989) to the first 

occurrence of Conusphaera mexicana (Trejo, 1969) subsp. minor 

(Bralower and Thierstein, 1989). 

Range: Kimmeridgian-Tithonian boundary interval. 

 

Conusphaera mexicana Zone (NJ-20) 

Definition: interval from the first occurrence of Conusphaera mexicana (Trejo, 1969) 

subsp, minor Bralower and Thierstein, 1989 to the first occurrence of Microstaurus 

chiastius (Worsley, 1971). 

Range: Lower and Middle Tithonian. 

Subzones:   - Hexapodorhabdus cuvillieri Subzone, NJ-20A 

Definition: interval from the first occurrence of Conusphaera mexicana 

(Trejo, 1969) subsp. minor Bralower and Thierstein, 1989 to the 

first occurrence of Polycostella beckmannii (Thierstein, 1971). 

  Range: Lower Tithonian. 

 - Polycostella beckmannii Subzone, NJ-20B 

Definition: interval from the first occurrence of Polycostella beckmannii 

(Thierstein, 1971) to the first occurrence of Microstaurus chiastius 

(Worsley, 1971) Bralower,  Monechi and Thierstein, 1989. 

Range: middle Tithonian. 

 

Microstaurus chiastius Zone, NJK 

Definition: interval from the first occurrence of Microstaurus chiastius (Worsley, 1971) 

Bralower, Monechi and Thierstein, 1989 to the first occurrence of Nannoconus 
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steinmannii (Kamptner, 1931) subsp. steinmannii. 

Range: Upper Tithonian, across the Jurassic/Cretaceous boundary, to lowermost 

Berriasian. 

Subzones:     - Hexalithus noeliae Subzone, NJK-A 

Definition: interval from the first occurrence of Hexalithus noeliae (Noël, 

1956) Loeblich and Tappan, 1964 to the first occurrence of Umbria 

granulosa subsp. granulosa Bralower and Thierstein in Bralower, 

Monechi and Thierstein, 1989. 

 Range: Upper Tithonian. 

- Umbria granulosa subsp.granulosa Subzone, NJK-B 

Definition: interval from the first occurrence of Umbria granulosa subsp. 

granulosa Bralower and Thierstein in Bralower, Monechi and 

Thierstein, 1989 to the first occurrence of Rotellapillus laffittei (Noël, 

1956) Noël, 1973. 

  Range: Upper Tithonian. 

- Rotellapillus laffittei Subzone, NJK-C 

Definition: interval from the first occurrence of Rotellapillus laffittei 

(Noël, 1956) Noël, 1973 to the first occurrence of Nannoconus 

steinmannii (Kamptner, 1931) subsp, minor Dares and Achéritéguy, 

1980. 

  Range: Upper Tithonian through the Jurassic/Cretaceous boundary. 

- Nannoconus steinmannii subsp. minor Subzone, NJK-D 

Definition: interval from the first occurrence of Nannoconus steinmannii 

(Kamptner, 1931) subsp, minor Dares and Achéritéguy, 1980 to the 

first occurrence of Nannoconus steinmannii (Kamptner, 1931) subsp. 

steinmannii. 

Range: across the Jurassic/Cretaceous boundary to lowermost Berriasian. 

 

Nannoconus steinmannii subsp. steinmannii Zone, NK-1 

Definition: interval from the first occurrence of Nannoconus steinmannii (Kamptner, 1931) 

subsp. steinmannii to the first occurrence of Cretarhabdus angustiforatus (Black, 1971) 
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Bukry, 1973. 

Range: middle Berriasian. 

 

Cretarhabdus angustiforatus Zone, NK-2 

Definition: interval from the first occurrence of Cretarhabdus angustiforatus (Black, 1971) 

Bukry, 1973 to the first occurrence of Calcicalathina oblongata (Worsley, 1971) 

Thierstein, 1971. 

Range: middle Berriasian to Lower Valanginian. 

Subzones:     - Assipetra infracretacea Subzone, NK-2A 

Definition: interval from the first occurrence of Cretarhabdus 

angustiforatus (Black, 1971) Bukry, 1973 to the first occurrence of 

Percivalia fenestrata (Worsley 1971) Wise, 1983. 

Range: middle and Upper Berriasian. 

 - Percivalia fenestrata Subzone, NK-2B 

Definition: interval from the first occurrence of Percivalia fenestrata 

(Worsley 1971) Wise, 1983 to the first occurrence of Calcicalathina 

oblongata (Worsley, 1971) Thierstein, 1971. 

Range: This zone spans the Berriasian/Valanginian boundary. 

 

2.2. The Tithonian – Berriasian time interval at low latitudes 
The Callovian – Berriasian pelagic successions recorded a major change in pelagic 

sedimentation from predominantly siliceous to mostly calcareous through time (Fig. 2.2.1).  

This transitional change, which affected the low latitude pelagic sedimentation of both 

Tethys and Atlantic oceans, has been linked to a shift of carbonate deposition from the shallow 

seas and shelf areas to the open-ocean, due to a major increase in calcareous nannofossil 

carbonate production (Kuenen Event, Roth, 1986), then lately interpreted as consequence of 

carbonate compensation depth (CCD) fluctuations (Winterer & Bosellini, 1981; Roth, 1989), 

or a tectonic plate drifting (Muttoni et al., 2005; Channell et al., 2007), or of a change in 

oceanic circulation (Hotinski & Toggweiler, 2003; Rais et al., 2007) (See Chapters 2 and 6 for 

details).  
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Fig. 2.2.1 – Private quarry near Kaberlaba (Asiago Plateau, Southern Alps, North Italy). 
The picture shows the change in pelagic sedimentation from predominantly siliceous (red nodular 

limestones) to mostly calcareous (white limestones) through time. 
 

Calcareous nannofossils, which are considered to be widespread in the ancient oceans as 

nowadays marine calcareous nannoplankton, started to bio-calcify approximately 220 Ma: the 

appearance of calcified nannofossils strongly affected marine ecosystem changing significantly 

the pelagic sedimentation. Particularly, the uppermost Jurassic is characterized by a speciation 

episode among nannofossils: several new genera and species first occurred and rapidly evolved 

reaching lithogenic abundances and are considered since then one of the most effective 

producers of calcite in the oceanic system. Calcareous nannofossil evolutionary history is 

grossly coeval with major events such as climate and sea level changes, large igneous episodes 

and variations in ocean structure and composition, suggesting that calcareous nannofossil are 

intimately linked to environmental and climatic modifications (Erba, 2006). Here after are 
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reported several factors that may influence, and in some cases are influenced by calcareous 

nannofossil patterns, such as fluctuations in diversity, abundance or calcification degree:  

• The bio-calcification chemical reaction directly influences CO2 oceanic/atmospheric 

concentrations as for every CaCO3 molecule synthesized a CO2 molecule is released in the 

oceanic/atmospheric system, consequently calcareous phytoplankton can directly influence 

both the short and long time C-cycle. On the other hand oceanic/atmospheric CO2 

concentration could directly control calcareous nannofossil bio-mineralization processes, 

as pCO2 increases provoke a calcification loss, particularly among planktonic bio-

calcifiers. The geological record suggests that large pCO2 increases provoked biogenic 

calcite paleo-flux reductions, while low pCO2 concentration stimulated an increase of 

calcareous nannofossil calcification degree and diversity. 

• Eustatic sea level fluctuations can also influence calcareous nannofossil diversity: marine 

transgressions or high-standing phases let calcareous nannoplankton to conquer numerous 

new ecological niches thus stimulating a diversity increase; on the contrary marine 

regressions or low-standing phases could provoke diversity turnovers until extinction 

episodes. 

• Oceanic chemical composition has changed through the Phanerozoic: wide fluctuations of 

Ca+2 and Mg+2 ions concentration, and thus of Mg/Ca ratio, have been used to subdivide 

the Phaneozoic in two types of time intervals characterized respectively by aragonitic or 

calcitic oceanic composition. Calcareous nannofossil evolution apparently follows Ca2+ 

and Mg/Ca ratio fluctuations. 

• Calcareous nannofossil abundance and diversity mainly reflect trophic regime of 

superficial marine waters. Coccolitophorids live in stable meso- to oligo-trophic 

environments: stable environmental conditions and scarce nutrients can promote 

diversification and abundance increases, while high fertility (nutrients and/or metals like 

Fe or Zn) and unstable environmental conditions may cause abundance losses or 

intoxications. 

For all these reasons, calcareous nannofossil quantitative analysis could represents a useful 

tool to investigate linkages between the documented changes in pelagic sedimentation from 

predominantly siliceous to mostly calcareous and any related paleoceanographic condition 

across the Tithonian – Berriasian time interval. One aim of this project is to quantify the 
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calcareous nannofossil biogenic calcite contributions to the sedimentation on two sections from 

the Lombardian Basin (Torre de Busi section), from Trento Plateau - Lombardian Basin 

boundary (Monte Pernice section), and on DSDP site 534A from the Atlantic Ocean.  

 

2.3. Evolution theories and uppermost Jurassic calcareous nannofossil  
The Tithonian is characterized by a major calcareous nannofossil speciation episode: 

several successful genera and species of both coccoliths and nannoliths first appear and rapidly 

evolve, reaching a high diversity, abundances, dimensions and calcification degree. The history 

of calcareous nannofossils indicates that such times of accelerated rates of radiations or 

extinctions correlate with global changes in the geosphere, hydrosphere and atmosphere 

suggesting that evolutionary patterns are intimately linked to environmental modifications 

(Erba, 2006) (see for detail paragraph 2.2). Nevertheless, the Tithonian interval provides 

examples of accelerated intra- and inter-generic evolutionary rates (a speciation event) during a 

time period of environmental stability, in absence of coeval environmental change evidence 

(Fig. 2.3.1).  

The modern paleobiology is trying to understand the mechanisms that force the 

evolution of life, but is still elusive how biotic or abiotic factors trigger speciation or/and 

extinction. Two different evolutionary hypotheses emphasize this discrepancy between biotic 

or abiotic factors as the evolution drivers: the Red Queen Hypothesis (Van Valen, 1973) and 

the Stationary Model (Stenseth & Maynard Smith, 1984). In the first one, evolution is seen as a 

response to biotic interactions operating even in absence of enviromental changes (“It takes all 

the running you can do, to keep in the same place”, by L.Carroll from Alice’s adventures in 

Wonderland). The second one postulates that evolution is largely driven just by abiotic 

changes, thus operates during enviromental changes and is slowed down under environmental 

quiescence. Indipendently from the discussion on the evolution driving factors, different 

evolution modes have been proposed since Darwin’s Evolutionary Theory (Fig. 2.3.2): 

Phyletic Gradualism (Darwin, 1859), Punctuated Equilibrium (Gould & Eldredge, 1977) and 

Punctuated Gradualism (Malmgren et al., 1984). Phyletic gradualism holds that new species 

arise from slow, steady transformation of populations providing gradational fossil series 

linking separate phylogenetic species. Punctuated gradualism implies long-lasting 

evolutionary stasis interrupted by rapid, but gradual phyletic transformation without lineage  

 12 



2. Late Jurassic calcareous nannofossil overview 

 
 

Fig. 2.3.1 – Tihonian calcareous nannofossil speciation episode: severa events (mainly FO) are reposted 
against magneto chron sequence (data after Bralower et al., 1989)  
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2. Late Jurassic calcareous nannofossil overview 

splitting. Punctuated equilibrium explains the appearance of new species by rapid speciation 

occurring in small peripheral isolated populations, followed by migration to other areas where 

fossil sequence usually shows a series of sharp morphological breaks. 

 

 
Fig. 2.3.2 – Sketches representing the three evolutionary models described in the text 

 

 

The Tithonian calcareous nannofossil speciation event provides an excellent opportunity 

to investigate nannoplankton evolutionary behaviour during a period of inferred climatic and 

environmental stability. On the basis of the stratigraphic and time framework, this study aims 

to: quantify tempo and mode of evolutionary trends of calcareous nannoplankton in a time 

interval marked by origination rates higher than “normal”; separate evolutionary changes of 

coccoliths versus nannoliths. 
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

 

3. GEOLOGY, PALEOGEOGRAPHY AND LITHOSTRATIGRAPHY 

OF INVESTIGATED SECTIONS 
 

3.1 Geology and local paleogeography of North-Western Tethys Ocean (Southern 

Alps, Northern Italy)  
The studied area is situated in the Southern Alps (Orobic Alps and Asiago Plateau), 

Northeast Italy. The Southern Alps formed mostly in the Cretaceous and Tertiary during the 

Alpine Orogeny. In the Mesozoic they were a part of the southern Tethyan passive margin and 

belonged to an Africa promontory or to the Adria plate, bordered to the North and West by the 

Liguria-Piemonte segment of the Tethys Ocean (Alpine Tethys), and to the East by the Neo-

Tethys Ocean (Baumgartner et al., 2001; Stampfli et al., 2001). 

In the Lower Mesozoic this continental margin experienced two major phases of 

extentional tectonic. A first rifting phase (Middle Triassic) which led to a progressive 

disintegration of wide Upper Triassic - Lowermost Jurassic carbonate platforms creating 

numerous shallow basins lately filled by sediments. A second more incisive rifting phase 

fragmented the margin in a Horst and Graben structure, and lasted until the beginning of the 

Alpine Orogeny (Bernoulli & Jenkyns, 1974; Winterer & Bosellini, 1981).  

The Tethyan Upper Jurassic – Lower Cretaceous sedimentary sequences are well known 

since fourty years (Bernoulli, 1964; Pasquarè, 1965; Bernoulli et al., 1979; Bosellini et al., 

1980; Winterer & Bosellini, 1981) and recently a number of studies have improved the 

stratigraphy of the Upper Jurassic sections (Erba & Quadrio, 1987; Baumgartner et al., 2001; 

Bersezio et al., 2002; Martire et al., 2006). The Jurassic sedimentary evolution of Southern 

Tethyan margin is well documented and exposed in the Italian Southern Alps.  

The Jurassic extensional phase led to the formation of four different paleogeographic 

domains (Fig 3.1.1): the deep pelagic Lombardian Basin; the pelagic submarine high of Trento 

Plateau; the relatively deep pelagic Belluno Basin; the shallow Friuli Platform. These domains 

are still arranged in their original pre-Alpine order, and allow a relatively clear 

paleogeographic reconstruction (Bernoulli et al., 1979; Winterer & Bosellini, 1981; 

Baumgartner et al., 2001). During the Middle - Late Jurassic reef limestones characterized the  
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

 
 

Fig. 3.1.1 – Present-day position of paleogeographic units and schematic paleogeographic cross sections, 
Uppermost Jurassic. (Compiled by Smuc, 2005 after Bosellini et al., 1981 and Martire, 1992) 

 

Friuli Platform while limestones composed of resedimented shallow water debris with in-situ 

and resedimented pelagic material were deposited in the Belluno Basin, which was essentially 

a slope joining the Friuli Platform and the Trento Plateau (Bosellini et al., 1980; Winterer & 

Bosellini, 1981). The Middle Jurassic – Lowermost Cretaceous sequence (Fig 3.1.2) of the 

Trento Plateau comprised red condensed nodular pelagic limestones (Rosso Ammonitico 

Formation) followed by white-grey micritic pseudo-nodular pelagic limestones with chert 

(Maiolica or Biancone Formation), whereas coeval section of the adjacent Belluno Basin 

consists of red cherty marls and limestones (Calcare Selcifero di Fonzaso) followed 

transitionally by white-grey pelagic limestones (Biancone Formation). Several studies on 

regional sedimentology and lithostratigraphy (Baumgartner et al., 2001; Martire, 2003; Martire 

et al., 2006 and references therein), on radiolarite (Baumgartner et al., 1995) or ammonite 

associations (Clari et al., 1984; Martire et al. 1991; Martire, 1996) let to attribute the Rosso 

Ammonitico Inferiore to the Upper Bajocian - Upper Callovian interval, the Rosso 

Ammonitico Medio and correlated Calcare Selcifero di Fonzaso to Upper Callovian – Middle 
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

Oxfordian interval and the Rosso Ammonitico Superiore to Middle Oxfordian – Tithonian 

interval (Fig.3.1.2). 

A similar and coeval Middle Jurassic – Lowermost Cretaceous succession deposited in the 

deeper Lombardian basin: violet, red to greenish siliceous marls and siliceous limestones 

(Radiolarite Formation) transitionally followed by red siliceous to calcareous limestones with 

red chert lists and nodules (Rosso ad Aptici Formation) which transitionally change into white 

calcareous limestones with grey chert nodules (Maiolica formation).  

The sedimentary sequence of the Southern Alps is everywhere characterized by a 

progressive up-ward decrease of siliceous content, coeval with an increase of calcareous 

content. Different hypotheses are reported to explain this regional change: a) a carbonate 

compensation depth (CCD) fluctuation during the rifting phase (Winterer & Bosellini, 1981); 

b) a plate drifting initially toward and then away from a near equatorial upwelling zone of 

biosiliceous productivity (Muttoni et al., 2005; Channell et al., 2007); c) a change in ocean 

circulation due to the opening of a new seaway at a time of progressive collapse of Pangea 

(Rais et al., 2007; Hotinski & Toggweiler, 2003). 

 

 
 

Fig. 3.1.2 – Chronostratigraphic synopsis of Jurassic formation of Southern Alps, based mainly on 
ammonites, radiolarian and calcareous nannofossil data Lombardian Basin, from Trento Plateau and 

Belluno Trough (after Baumgartner et al., 2001). 
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

3.2 Tethys Ocean sections 
3.2.1. Torre de Busi  

Location: The outcrop is located on the road SP 179 that goes from Torre de Busi village to 

Sogno village and Colle di Sogno (Lombardy, North Italy) (Fig. 3.2.1).  

 

 
Fig 3.2.1 – Geographic position of Torre de Busi section (1:250000). 

 

Remarks: The investigated section spans the upper part the Radiolariti, the Rosso ad Aptici and 

the lowermost part of the Maiolica. Samples were collected for calcareous nannofossil 

biostratigraphic and quantitative investigations, and for geochemical analysis. Additional 

sampling for paleomagnetic investigation was also performed (see Fig.4.1 for details). (A 

detailed profile is given on the attached digital support).    

Stratigraphic range: Upper Oxfordian – Lower Berriasian 
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

Paleogeography: The section belongs to the Lombardian Basin. 

Lithology: Violet-red listed chert (Radiolarite) gradually changing into red cherty marlstones 

and cherty limestones (Rosso ad Aptici) followed by grey, light brown to white limestones 

with chert nodules (Maiolica). 

 

3.2.2. Monte Pernice 

Location: The outcrop is located near Monte Pernice, on the secondary road going from 

Aquilini village to Uccellada Magnoli (Lombardy, North Italy) (Fig. 3.2.2).  

 

 
Fig. 3.2.2 – Geographic position of Monte Pernice section (1:250000). 

 

Remarks: The investigated section spans the transitional interval between the Rosso ad Aptici 

and the lowermost Maiolica. Samples were collected for calcareous nannofossil 

quantitative investigations (see Fig. 4.1 for detail and also Erba & Quadrio, 1987).  
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

Stratigraphic range: Lower Tithonian – lowermost Berriasian 

Paleogeography: The section belongs to the easternmost part of the Sebino Through, close to 

the  Lombardian Basin / Trento Plateau boundary. 

Lithology: transitional interval between red cherty marlstones and red limestones with red chert 

nodules (Rosso ad Aptici) and grey, light brown to white limestones with chert nodules 

(Maiolica). 

 

3.2.3. Colme di Vignola 

Location: The outcrop is located along the secondary road going from Brentonico village to 

Monte Vignola (Asiago Plateau, Veneto, North East Italy) (Fig. 3.2.3). 
 

 
Fig. 3.2.3 – Geographic position of Colme di Vignola (1:250000). 

Remarks: The investigated section spans the Calcare Selcifero di Fonzaso, the Rosso 

Ammonitico Superiore and the lowermost part of the Biancone. Samples were collected for 

paleomagnetic and biostratigraphic investigations (see Fig. 4.1 for details). (A detailed 

profile is given on the attached digital support).    

 20 



3. Geology, paleogeography and lithostratigraphy of investigated sections 

Stratigraphic range: uppermost Kimmeridgian – Lower Berriasian 

Paleogeography: The section belongs to the Trento Plateau. 

Lithology: Red nodular cherty marlstones (Calcare Selcifero di Fonzaso) followed by reddish-

pinkish nodular limestones with chert nodules (Rosso Ammonitico Superiore) and then 

followed by whitish pseudo-nodular limestones with red chert nodules of the lowermost 

part of the Biancone. 

 

3.2.4. Foza A, B  

Location: The outcrop is located along the road SP 76 going from Gallio village to Foza 

village (Asiago Plateau, Veneto, North East Italy). The two sections outcrop on the two 

different sides of a road curve: Foza B outcrops first, then Foza A after the corner (Fig. 

3.2.4). 

Remarks: The investigated sections span the upper part of Rosso Ammonitico Inferiore and the 

lowermost part of Biancone. Samples were collected for paleomagnetic and biostratigraphic 

investigations (see Fig. 4.1 for details). (A detailed profile is given on the attached digital 

support).    

Stratigraphic range: Lower Kimmeridgian – Upper Berriasian 

Paleogeography: The sections belong to the Trento Plateau. 

Lithology: Red nodular condensed limestones and cherty marls (Rosso Ammonitico Inferiore) 

followed by red nodular cherty marlstones (Calcare Selcifero di Fonzaso / Rosso 

Ammonitico Medio), then by reddish-pinkish nodular condensed limestones with chert 

nodules (Rosso Ammonitico Superiore) and finally by whitish pseudo-nodular limestones 

with red chert nodules of the lowermost part of the Biancone. 

 

3.2.5. Frisoni  

Location: The outcrop is located along the road SP 76 that goes from Foza village to Frisoni 

village before the Valgadena bridge (Asiago Plateau, Veneto, North East Italy) (Fig. 3.2.4).  

Remarks: The investigated sections span the upper part of the Rosso Ammonitico Superiore 

and the lowermost part of the Biancone. Samples were collected for paleomagnetic and 

biostratigraphic investigations (see Fig. 4.1 for details). (A detailed profile is given on the 

attached digital support).    
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

Stratigraphic range: uppermost Kimmeridgian – Lower Berriasian 

Paleogeography: The sections belong to the Trento Plateau. 

Lithology: Reddish nodular condensed limestones with shaly interbeds (Rosso Ammonitico 

Superiore) followed by pinkish to white pseudo-nodular limestones with red chert nodules 

(lowermost Biancone). 

 

3.2.6. Bombatierle quarry 

Location: The section is located in an active quarry, where Rosso Ammonitico is excavated as 

ornamental stones. The quarry is located in the surrounding of Asiago village, near Monte 

Kaberlaba (Asiago Plaetau, Veneto, North East Italy) (Fig. 3.2.4).  

Remarks: The investigated sections spans the upper part of the Rosso Ammonitico Inferiore to 

the lowermost part of the Biancone. Samples were collected for paleomagnetic and 

biostratigraphic investigations (see Fig.4.1 for details). (A detailed profile is given on the 

attached digital support).    

Stratigraphic range: Upper Callovian – Middle/Upper Tithonian 

Paleogeography: The section belongs to the Trento Plateau. 

Lithology: Red nodular condensed limestones and grey to pinkish less nodular limestones 

characterized by hardgrounds and burrowings (Rosso Ammonitico Inferiore); red-brown 

cherty marls (Calcare Selcifero di Fonzaso or Rosso Ammonitico Medio) characterized by 

a distinct bentonite layer; red-brown listed Radiolarite followed by red nodular condensed 

cherty limestones with red chert nodules (Rosso Ammonitico Superiore); pinkish to white 

nodular to pseudo-nodular limestones with chert nodules (Biancone). 

 

3.2.7. Sciapala quarry 

Location: The section is located in an abandoned quarry, where Rosso Ammonitico was 

excavated as ornamental stones. The quarry is located in the surroundings of Asiago 

village, near Cima Echar (Asiago Plaetau, Veneto, North-East Italy) (Fig. 3.2.4).  
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

 
Fig. 3.2.4 – Geographic position of Foza A, B and Frisoni sections, Bombatierle and Sciapala quarries 

(1:250000). 
 

Remarks: The investigated sections spans the upper part of the Rosso Ammonitico Inferiore to 

the lowermost part of the Biancone. Samples were collected for paleomagnetic and 

biostratigraphic investigations (see Fig. 4.1 for details). (A detailed profile is given on the 

attached digital support).    

Stratigraphic range: Middle Oxfordian – Upper Tithonian 

Paleogeography: The section belongs to the Trento Plateau. 

Lithology: Red nodular condensed limestones and grey to pinkish less nodular limestones 

characterized by hardgrounds and burrowings (Rosso Ammonitico Inferiore); red nodular 

condensed to pinkish pseudo-nodular cherty limestones with red chert nodules (Rosso 

Ammonitico Superiore); pinkish to white nodular to pseudo-nodular limestones with chert 

nodules (Biancone). 
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

3.3 Geology and paleogeography of the central Atlantic Ocean (DSDP site 534A, 

Blake-Bahama Basin, Atlantic Ocean)  
The opening of the Central Atlantic Ocean started in the Middle Jurassic between North 

America and North-Western Africa, with the oldest sediments of Callovian age (Sheridan, 

1983). During the Late Jurassic time interval the Central Atlantic was a NE-SW oriented basin 

with a maximum length of approximately 6000 km extending from the equator to 30°N. It was 

of minor oceanographic importance due to its relatively small size and restricted geography in 

comparison to the Tethys Ocean or modern Atlantic Ocean. The central Atlantic Ocean was 

episodically connected with the Pacific Ocean (to the West), with the Arctic-Boreal Sea (to the 

North) while a permanent seaway connected Central Atlantic to the Alpine-Tethys (East side).  

 

 
 

Fig. 3.3.1 – Palaeogeographic setting of Central Atlantic (after Bornemann et al., 2003). The hatched area 
in Central America indicates the possible gateway between the Atlantic and Pacific Ocean according to 

the plate-tectonic reconstructions of Ross and Scotese (1988). Black lines and arrows show the 
hypothesized surface water circulation.  
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

During Late Jurassic to Early Cretaceous time a clockwise surface water circulation system is 

suggested in the Central Atlantic (Bornemann et al., 2003), sustained by a circum-equatorial 

current system linked to a low-latitude circumglobal passage (Berggren & Hollister, 1977; 

Winterer, 1991; Adatte et al., 1996; Hotinski & Toggweiler, 2003). Plate-tectonic 

reconstructions suggest a permanent connection via the Strait of Panama gateway established 

in the latest Tithonian, CM19 Magnetochron, Calpionellid Zone B (Ross and Scotese, 1988). 

The Middle Jurassic to lowermost Cretaceous sedimentary sequence, recovered at DSDP 

sites 105, 367 and 534, is characterized by interbedded light grey limestones, green-grey 

claystones and greyish-red calcareous claystones with rare ammonites (Cat Gap Formation, 

Lower Tithonian); nannofossil-radiolarian micritic limestones, nannofossil chalks, marls, 

claystones and siltstones are following (Blake-Bahama Formation, Upper Tithonian – Lower 

Berriasian).  

The carbonate content generally increases upwards, while the siliceous content decreases 

during the Callovian – Tithonian interval. This situation has been explained by a lowering of 

the CCD (Roth, 1983) but other explanations are not excluded due to changing in ocean-

circulation or plate motions (see paragraph 3.1). 

 

3.4 Atlantic Ocean DSDP site 534 A 
Location: DSDP Site 534 A is located east of Florida near the center of Blake-Bahama Basin at 

28°26.6’N, 75°22.9’W at a water depth of 4976 meter (Roth, 1983) (see Fig. 3.4.1). 

Remarks: The studied interval is 130 m thick. It spans the Cat Gap Formation and the Blake-

Bahama Formation. Samples were collected for calcareous nannofossil quantitative 

investigations (see Fig. 4.1 for details).    

Investigation: Calcareous nannofossil absolute abundances have been achieved on the basis of 

the calcareous nannofossil biostratigraphy published by Bralower and others (1989). 

Stratigraphic range: Kimmeridgian – Upper Tithonian 

Paleogeography: The section belongs to Blake-Bahama Basin, Western Atlantic Ocean. 

Lithology: The Cat Gap formation consists of interbedded light grey limestones and green-grey 

claystones (cores 76-543A-111 to 76-543A-103) followed by greysh to red calcareous 

claystones with rare ammonites (cores 76-543A-103 to 76-543A-92). The Blake-Bahama 

Formation consists of cemented limestones with minor claystone partings (core 543-A 91 to 
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3. Geology, paleogeography and lithostratigraphy of investigated sections 

85) followed by laminated nannofossil chalk, bioturbated chalk, claystone and siltstone 

(cores 76-543A-84 to 76-543A-75).  

 

 

 
Fig. 3.4.1 – Geographic setting of Central Atlantic (after Gradstein & Sheridan, 2003)  

and DSDP site 534 A. 
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4. Materials & Methods 

 
4. MATERIALS & METHODS 

 
Different kinds of investigation have been carried out during this PhD project. A first 

phase has been focused on the integrated stratigraphy (lithostratigraphy, calcareous nannofossil 

and calpionellid biostratigraphy, magnetostratigraphy, sable isotope chemostratigraphy and 

carbonate content analysis) of several new and/or historical sections. A second phase has been 

focused on paleoceanographic reconstructions derived from calcareous nannofossil (and where 

available from calpionellid) absolute abundances (Fig. 4.1). Based on semiquantitative and 

quantitative analysis, evolutionary trends of some coccolith and nannolith groups have been 

reconstructed. Where magnetic investigation has been performed, every sample was prepared 

from un-heated magneto-core end-pieces, and analyzed with a polarizing light microscope at 

1250x magnification. 

 

4.1. Sample preparations techniques  
4.1.1. Smear slide  

Calcareous nannofossil biostratigraphic investigation has been performed on smear slide 

prepared following the procedure described by Bown (1998). A total of 514 samples of 

different lithologies have been chosen: marlstones for Radiolarite marly interbeds and from 

Calcare Selcifero di Fonzaso; marlstones and limestones form Rosso Ammonitico inter-

nodular micrite; limestones from Maiolica. A small amount of rock material has been 

powdered adding few drops of bi-distillate water. The obtained suspension has been mounted 

onto a microscope slide, covered with a slide cover and fixed with Norland Optical Adhesive, 

without centrifuging, ultrasonic cleaning or settling the sediment in order to retain the original 

composition. 

 

4.1.2. Ultra-thin section  

A total 135 thin section has been prepared following a standard preparation technique. 

Thin sections were prepared in order to investigate calcareous nannofossil and calpionellid 

absolute abundances: while calpionellids are countable on a normal thin section (25 µm thick),  
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4. Materials & Methods 

 

Bio-
stratigraphy

Paleocea-
nography 

total smear slides 
prepared and 

analized and their 
sampling rate

ultra-thin sections Calpionellid 
biostratigraphy

Chemo-    
stratigraphy

Magneto-   
stratigraphy

BOMBATIERLE 
quarry Asiago 
Plateau, Italy

Channell et al., in 
prep. X

a total of 53 total; 
one sample every 40-

50 cm circa
X

COLMA DI 
VIGNOLE       

Trento Plateau, Italy

Channell et al., in 
prep. X

a total of 45; one 
sample every 40-50 

cm circa
X

DSDP site 534 A   
Blake Bahama 
Basin, Atlantic 

Oceans

Ogg, 1983; Roth, 
1983; Bralower et 

al., 1989; Bornemann 
et al., 2003; 

Tremolada et al., 
2006

X X

a total of 18; one 
sample every core 

(from core  76-534A-
102 to 76-534A-90) - 

preliminar data 

X

FOZA A          
Asiago Plateau, 

Italy

Bralower et al., 
1989; Weissert & 
Channell, 1989; 

Channell et al., in 
prep.

X
a total of 99; one 

sample every 30-40 
cm circa

X

FOZA B          
Asiago Plateau, 

Italy

Bralower et al., 
1989; Weissert & 
Channell, 1989; 

Channell et al., in 
prep.

X
a total of 22; one 

sample every 80-100 
cm circa

X

FRISONI          
Trento Plateau, Italy

Weissert & Channell, 
1989; Channell et al., 

in prep.
X

a total of 42; one 
sample every 40 cm 

circa
13C       X

MONTE PERNICE 
Lombardian basin, 

Italy

Erba & Quadrio, 
1987 X X

a total of 16; one 
sample every 100-

120 cm circa

a total of 16; one 
sample every 100-

120 cm circa
X

SCIAPALA quarry 
Asiago Plateau, 

Italy

Channell et al., in 
prep. X

a total of 56; one 
sample every 20-50 

cm circa
X

TORRE DE BUSI 
Lombardian basin, 

Italy

Rais, PhD thesis; 
Channell et al., in 

prep.
X X

a total of 181; one 
sample every 20-40 

cm circa

a total of 101; one 
sample every 40 cm 

circa
X 13C       X

ANALYSIS
CALCAREOUS 

NANNOFOSSIL -
this thesis           

OTHERS

SECTION LITTERATURE

Fig. 4.1 – Summary of performed investigations and applied methodologies. 
Calpionellid biostratigraphic investigation performed by G.Andreini. 

 

calcareous nannofossils need a thinner thin section (7-8 µm thick) to be visible, for that reason 

every thin section has been thinned using different kind of emery. A total of 117 thin sections 

from marly limestones of Rosso ad Aptici and Maiolica limestones (Torre de Busi and Monte 
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4. Materials & Methods 

Pernice sections, see paragraphs 3.2.1 and 3.2.2) have been thinned using an emery powder 

mixed with water. 

18 thin sections from soft marly shale of Cat Gap Formation and calcareous shale of 

Blake-Bahama Formation (DSDP Site 534 A, see paragraph 3.4) have been thinned using an 

emery paper, as the ones made from soft marlstones were water-soluble. 

 

 4.2. Preservation and abundance analysis 
4.2.1. Preservation 

The preservation was characterized adopting the codes described by Roth (1983) (Fig. 

4.2). 
 

ETCHING DESCRIPTION 

E1 slight etching: many coccolith show serrate outlines; delicate structures 
have been somewhat affected by dissolution but are generally preserved. 

E2 
moderate etching: the more delicate species have been preferentially 
dissolved; delicate central structures have been destroyed in many 

specimens; irregular outlines of shields are common. 

E3 strong dissolution: salmpe contains mainly dissolution-resistant species, 
more delicate forms are very rare; nannofossil fragments are abundant. 

OVERGROWTH DESCRIPTION 

O1 slight overgrowth: irregular secondary growth of crystallites and slight 
thickening of central area structures. 

O2 
moderate overgrowth: delicate central structures are frequently 

overgrowth to a degree that makes them difficult to be recognized; 
irregular growth of crystallites in common.  

O3 strong overgrowth: delicate species are often so much covered with 
secondary calcite that identification is nearly impossible. 

notes 

frequently slight to moderate etching and slight to moderate overgrowth 
has been observed in the same sample, which might be indicative of 

secondary overgrowth on larger forms at the expense of the delicate/tiny 
ones. 

 

Fig. 4.2 - Scheme used to quantify the preservation of calcareous nannofossil (after Roth, 1983) 
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4. Materials & Methods 

A preservation estimate of the analyzed ultra-thin section was qualitatively carried out as 

reported in Figure 4.6. 
 

ESTIMATE OF ROCK PRESERVATION 

G Good: less than 5 field of view per mm2 is affected by secondary calcite veins 
or micrite recristallization 

M 
Moderate: few until several field of view per mm2 are affected by micrite 
recristallization, coccolith or nannoliths overgrowth and secondaru calcite 

viens 

B 
Bad: less than 1 every 10 field of view is well preserved: micrite is often 

obliterated by diagenesis, recristallization or/and secondary calite veins or 
patches  

 

Fig. 4.6 - Qualitative scheme used to quantified rock preservation 
 

4.2.2. Biostratigraphy (semiquantitative abundances) 

Calcareous nannofossil biostratigraphy and relative abundance were achieved on smear 

slides. Biostratigraphy was based on at least 200 microscope fields of view per sample, in order 

to observe and describe the assemblage, and, when necessary, additional 200 fields of view 

were investigated to identify rare and/or marker taxa. The nannofloral abundance was coded as 

reported in Figure 4.3.  
 

ESTIMATE OF NANNOFOSSIL ABUNDANCES 

A Abundant: more than 10 specimens per field of view 

C Common: 1-10 specimens per field of view 

F Few: 1 speciment every 1 - 1o field of view 

R Rare: 1 speciment every 11 - 1oo field of view 

B Barren: no specimen has been found 

 

Fig. 4.3 - Qualitative scheme used to quantified single taxon abundance 
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4. Materials & Methods 

4.2.3. Relative abundances 

Relative abundances were quantified counting at least 300 specimens in each sample. Total 

abundance is the number of specimens per field of view; relative abundances species were 

calculated as percentage of the total nannoflora assemblage. 

 

4.2.4. Absolute abundances and derived biogenic calcite paleo-fluxes 

One of the main goals of this study was the reconstruction of nannofossil biogenic calcite 

paleo-fluxes across the investigated interval (see Chapter 5 for details). Several steps are 

required to achieve paleo-fluxes as the amount of biogenic calcite [CaCO3 µgr] per unit area 

[mm2] per unit of time [yr]: 1) absolute abundance of single taxon (number of specimens per 

mm2); 2) volume of single taxon [µm3] to calculate its calcite mass [µgr]; 3) sedimentation rate 

[m/Ma; µm/yr]; 4) Paleo-fluxes [CaCO3 µgr / mm2/yr]. Every step is described in detail below. 

 

1) Absolute abundances - Calcareous nannofossil absolute abundances have been obtained 

counting all specimens recognized in 1 mm2 of ultra-thin sections (7 µm thick) (1 mm2 = 50 

fields of view at 1250x magnification).  

 

2) Taxon volume and mass weigh – Volumes and weights of individual taxa were partially 

derived from available data (Tremolada & Young, 2002; Bornemann et al., 2003) and partially 

estimated in this study approximating nannofossil forms to simple geometric solids. Then 

volumes were calculated based on holotype dimensions (data mainly from Bralower et al., 

1989). The dimensions and derived average volumes and masses are summarized in Fig. 4.4.  

Gen. Watznaueria – Each Watznaueria species shows huge size fluctuations. Since the 

genus Watznaueria is one of the most abundant across the studied interval, was divided into six 

dimensional groups on the basis of coccolith greatest axis (Fig.4.4), then available factor shape 

(Ks, Tremolada & Young, 2002) was applied to each group. 

Gen. Cyclagelosphaera – As the genus Cyclagelosphaera, it was divided in three 

dimensional groups on the basis of coccolith diameter (Fig. 4.4), then available Ks was 

applied. 
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4. Materials & Methods 

COUNTED SPECIES         
(and dimensional group) Ks FACTOR LENGHT 

range (µm)

WIDTH  
range   
(µm) 

mean 
VOLUME 

(µm3)

mean 
MASS 

Braarudosphaera regularis … 3,0 - 5,0 … 38 ** 103 **
Micrantholithus ssp. 1,41 - 0,85** 3,0 - 6,0 … 97,5 262,275

Conusphaera mexicana minor … 3,0 - 4,0 ... 8,3 * 22,4 *
C. mexicana maxicana … 5,0 - 10,0 … 55,3 * 149,3 *

Pseudolithraphidites ssp. … 8,5 - 11,5 0,7 - 1,0 5,67 15,2523
Lithraphidites ssp. … 26 2,5 42,48 114,2712

Faviconus multicolumnatus I … 6,0 - 12,0 4,0 - 6,0 231 623.7
F. multicolumnatus II … 12,0 - 15,0 6,0 - 9,0 604,3 1625,6

Hexalitus noeliae … 4,0 - 6,0 ... 23 59,8
Hexalitus sp. I … <5,0 … 23,4 62,946
Hexalitus sp. II … >5,0 … 186,8 502,492

Nannoconus compressus … 5,0 - 7,5 * … 119,2 * 321,8 * 
N.infans … 2,0 - 6,5 * … 38,3 * 103,4 *

N.wintereri … 4,0 - 8,0 4,0 - 8,0 70,6 189,9
N.globulus minor … 3,0 - 6,0 4,0 - 8,5 55,6 149,6

N. globulus globulus … 6,0 - 12,0 8,5 - 14,0 368,7 991,8
N.steinmanni minor … 8,0 - 10,0 7,0 - 9,0 183,7 * 496 *

N.steinmanni steinmanni … 10,0 - 20,0 7,0 - 13,0 509,7 1371,1
N.kamptneri minor … 6,0 - 10,0* 4,0 - 6,0* 169,1* 456,6*

N.kamptneri kamptneri … 15,0 - 22,0 6,0 - 12,0 438 1258,9
Polycostella beckmannii … 3,0 - 6,0 … 24,2 * 65,3 *
Watznaueria barnesiae I 0,122 * 3,0 - 5,0 … 7,8 20,982

W.barnesiae II A 0,122 * 5,0 - 7,0 … 26,4 71,016
W.barnesiae II B 0,122 * 7,0 - 9,0 … 62,5 168,125
W. manivitae III 0,129 * 9,0 - 12,0 … 210,8 567,052
W. manivitae IV 0,129 * 12,0 - 15,0 … 353,98 952,2062
W. manivitae V 0,129 * > 15,0 … 528,38 1421,342
W. britannica I 0,011* 3,0 -13 ,0 … 13,87 37,3103

W.britannica II A 0,011* 5,0 - 7,0 … 23,97 64,4793
W.britannica II B 0,011* 7,0 - 9,0 … 56,8 152,792
W.britannica III 0,011* 9,0 - 12,0 … 128,5 345,665
W. fossacincta I 0,111 * 3,0 - 5,0 … 10,1 27,169
W.fossacincta II 0,111 * 5,0 - 7,0 … 18,5 49,765
W.communis I 0,122 * 3,0 - 5,0 … 7,8 20,982

W.communis II A 0,122 * 5,0 - 7,0 … 26,4 71,016
W.communis II B 0,122 * 7,0 - 9,0 … 62,5 168,125
W.communis III 0,129 * 9,0 - 12,0 … 210,8 567,052

Cyclagelosphaera margereli (I) 0,0565* 3,0 - 8,0 ... 15,20  40.9 
C.tubulata (I) 0,0505 5,0 - 7,0 … 10.9 29.3

C. argoensis (II) 0,0565-0.116 8,0 - 9,0 … 52.9 142.3
C. deflandrei (III) 0.116* 9,0 - 13,0 ... 154.3 415.1
C.ryadensis (III) 0.116 13,0 - 15,0 … 381.3 1025,7

Diazomatolithus lehemanii 0,048-0.053 * 3,0 - 5,0 … 3 * 8,1 *
Zeogrhabdotus embergeri 0,094-0,095 * 7,0 - 10,0 * … 58,8* 200,3*

Z.cooperi 0,094-0,095 * 7,0 - 10,0 * … 58,8* 200,3*
Z.erectus 0,044* 3,2 - 5,7* … 4,1* 15,5*

Umbria granulosa minor 0,053* 4,0 - 6,0 … 6,6 17,754
U. granulosa granulosa 0,053* 4,0 - 10,0 … 18,2 48,958

Rhagodiscus asper 0,058* 4,0 - 8,0 … 6,7* 18,1*
Cretarhabdus ssp. 0,072* 6,0 - 9,0 … 31,43* 84,9*

Cruciellipsis cuvillieri 0,066-0,081 * 7,0 - 10,0 * … 49,9 * 133,1 *

 
Fig. 4.4 – Taxa counted on ulta-thin sections, related Ks factors, dimensions and derived mean volume 

and mean masses. *: data from Bornemann et al. (2003); **: data from Tremolada & Young (2002). 
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4. Materials & Methods 

Gen. Hexalithus – H.noeliae (see Chapter 8 for details) volume was calculated as a six 

irregular rhombuses volume sum, computing its holotype dimensions. Hexalithus sp.1 volume 

was calculated as a six irregular tetrahedron volume sum, computing observed dimensions.  

Two dimensional groups were considered to best approximate volume fluctuations due to 

nannolith dimensional changes (Fig. 4.4). 

Gen. Faviconus – Two dimensional groups were observed characterized by the same 

outline. F.multicolumatus volume was approximated to a cylinder and two semi-spherical caps 

sum. following the Bralower and others (1989) holotype dimension (group I) and the ones 

observed during this study (Fig. 4.4).  

Gen. Nannoconus – Volume computing for nannoconids has been more complicated than 

other taxa since longitudinal cuttings, the only ones diagnostic at species level, are few in 

ultra-thin section and most of the nannoconids result cut in any oblique or axial section by the 

ultra-thin section surface. For that reason Nannoconus absolute abundances were achieved 

mainly as the number of nannoconid oblique or axial sections subdivided in four dimensionals 

groups on the basis of their minimum diameter (Fig. 4.5).  

 

 
Fig. 4.5 – Nannoconus dimensional groups. 
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Every group may correspond both to the aptical part of a big conical nannoconid or to the 

basal part of a small conical one. In this way every diameter possibility between the aptical part 

to the basal one of both smallest and biggest conical shaped nannoconids is automatically taken 

into account; in the same way any dimension increase of certain Nannoconus sp. (as 

N.steinmanni minor vs N.steinmannii steinmannii) is also accounted. 

 

 
Fig. 4.6 – The stratigraphic distribution of the Nannoconus four dimensional groups.  

 

To calculate nannoconid paleo-fluxes it has been necessary to couple a calcite mass 

estimation to each dimensional group, which has been assumed as the average mass of every 

Nannoconus sp. belonging to that dimensional group. The stratigraphic distribution of the four 

dimensional groups is given in Figure 4.6.  

 

3) Sedimentation rate – it was calculated for each magnetochron thickness: its relative time 

duration was extrapolated directly from the Time Scale of Channell and others (1995). For the 

Monte Pernice section magnetostratigraphy is not available: in this case biostratigraphy was 

taken into account (Fig. 4.7). 

 

4) Paleo-fluxes - Nannofossil paleofluxes have been calculated for the micrite-constituting 

nannofossils, taking into account absolute abundances of the most common taxa, volume/mass 
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4. Materials & Methods 

of individual taxon, unit area [mm2], and unit time [1 yr]. The latter was derived from 

sedimentation rates (see point 3). Depending on sedimentation rates, the thickness of thin 

sections (= 7 µm) represents different time duration. Then all absolute abundances have been 

normalized to one year. Paleo-fluxes were achieved as biogenic CaCO3 µgr / mm2 / yr. 

 
 

 

base of each 
magnetochr
on (meter 

level)

thickness 
(m)

sedimentation 
rate (m/My)

base of each 
magnetochro

n (meter 
level)

thickness 
(m)

sedimentation 
rate (m/My)

CM16N 1,36 1269,01 5,8 4,264706
CM16R 0,65 1276,59 7,58 11,66154
CM17N 0,39 1283,22 6,63 17
CM17R 1,61 1313,24 30,02 18,64596
CM18N 0,71 5,5 … 1323,02 9,78 13,77465
CM18R 0,41 9,66 4,16 10,14634 1328,38 5,36 13,07317
CM19N 1,44 23,33 13,67 9,493056 1356,35 27,97 19,42361
CM19R 0,29 25,33 2 6,896552 1363,21 6,86 23,65517
CM20N 1,34 36,83 11,5 8,58209 1373,07 9,86 7,358209
CM20R 0,82 39,83 3 3,658537 1377,89 4,82 5,878049
CM21N 1,04 43,5 3,67 3,528846
CM21R 0,5 44,85 1,35 2,7
CM22N 1,73 …
CM22R 0,7

CM22AN 0,23
CM22AR 0,32
CM23N 0,89 1428,16 7,49 8,41573
CM23R 0,47

TORRE DE' BUSI

CHRON DURATION 
(My)

42,78 9,4646021420,67

DSDP site 534A

 

Fig. 4.7 – Sedimentation rate calculated for Torre de ction and DSDP site 534A on available 

 

 

Calcareous 
Nannofossil 

Subzones 
duration

Calcareous 
nannofossil 
Subzones 
thickness 

(m)

sedimentation 
rate (m/My)

NJK-D 1,178 5,8 4,923599
NJK-C 1,107 4 3,613369
NJK-B 0,714 3,9 5,462185
NJK-A 2,107 2,1 0,996678
NJ-20 0,857 6,2 7,234539

MONTE PERNICE

Calcareous 
Nannofossil 
Subzones

 
 Busi se

magnetochrons; for Monte Pernice section biostratigraphy was taken into account.  
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5. Results 

 

5. RESULTS 
 

5.1. High-resolution bio-magnetostratigraphy of the Oxfordian-Berriasian interval 
In this study a detailed lithostratigraphy and calcareous nannofossil biostratigraphy were 

integrated with calpionellid biostratigraphy (Andreini, in prep.) and magnetostratigraphy 

(Channell et al., in prep.) to establish a high-resolution integrated stratigraphic framework for 

the Upper Jurassic – lowermost Cretaceous of the Southern Alps. In Figure 5.1 the nannofossil 

biostratigraphy of individual sections is plotted against magnetostratigraphy and calpionellid 

biostratigraphy, where available. 

As discussed in Chapter 2 the calcareous nannofossil biozonation of Bralower et al. (1989) 

was adopted. Calcareous nannofossils are common since the lower Tithonian and become 

common to abundant from the uppermost lower Tithonian. Most events, Zones and Subzones 

have been recognized, reported from the base to the top of the studied interval:  

• Main events: 

- First occurrence (FO) of Faviconus multicolumnatus, M.quadratus, C.deflandrei, 

C.mexicana minor, C.mexicana mexicana, P.beckmannii, M.chiastius, H.noeliae, 

N.globulus minor, N.wintereri, N.steinmannii minor, N.kamptneri minor, 

N.steinmannii steinmannii, N.kamptneri kamptneri, C.angustiforatus. 

- Last occurrence (LO) of C.wiedmannii, L.sigillatus. 

• Secondary events:  

- First occurrence (FO) of P.senaria, Hexalithus sp.1, Nannoconus sp.1, N.infans, 

U.granulosa, R.asper, C.surirellus, C.cuvillieri, C.octofenestratus. 

- Last occurrence (LO) of L.crucicentralis, A.helvetica, U.granulosa. 

 

• Zones: C.mexicana (NJ-20); M.chiastius (NJK); N.steinmannii steinmannii (NK-1); 

C.angustiforatus (NK-2). 

• Subzones: H.cuvillieri (NJ-20A); P.beckmannii (NJ-20B); H.noeliae (NJK-A); 

N.steinmannii minor (NJK-D). 

 

 37



Fig. 5.1 - Lithostratigraphy, interpreted magneto-stratigraphy, calcareous nannofossil events & derived bio-stratigraphy of studied sections (Following Bralower et al., 1989) 
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5. Results 

With the respect to the biostratigraphic scheme adopted, some differences have been noted, 

mainly due to the high-resolution sampling rate (Fig. 4.1) or, on the other hand, to the poor 

preservation of condensed lithologies studied (Chapter 3). Differences in nannofossil 

biostratigraphy are described below from the base to the top of the studied interval: 

- The LO of C.wiedmannii and L.sigillatus represent secondary events due to rareness 

in all studied samples.  

- The FO of V.stradneri was never identified, and, consequently, the base of V.stradneri 

Zone was not recognized.  

-  The FO U.granulosa subsp. granulosa does not represent a replicable event in the 

majority of the studied sections, probably due to diagenesis, which affect the most 

delicate form: as a consequence U.granulosa subsp. granulosa Subzone (NJK-B) was 

difficult to recognize, and often was approximated with the FO of N.globulus minor.  

- The FO of R.laffittei was never identified in the studied sections mainly as it is 

extremely rare in Tethyan land sections (Bralower et al., 1989). As a consequence the 

base of the R. laffittei Subzone (NJK-C) was identified on the FO of C.surirellus. 

  

Some events, when integrated with the magnetostratigraphy, occur at different levels 

than reported in literature and/or occur at different levels in the studied sections (Fig. 5.1). 

- The FOs of C.mexicana mexicana and P.beckmannii were identified whitin the CM21, 

while at Torre de Busi they occur during CM22n. This discrepancy is possibly due to 

sample preparation, since while rock samples are powdered, several nannoliths are 

destroyed. Indeed, the older FOs of C.mexicana mexicana and P.beckmannii at Torre 

de Busi derive from ultra-thin section investigations, preserving the original micrite. 

Moreover, C.mexicana mexicana and P.beckmannii are rare at the beginning of their 

stratigraphic range and most probably the FOs whitin CM21 correspond to the first 

common occurrences, while the FOs in CM22n are presumably the “real” FOs.  

- The FO of M.chiastius (and H.noeliae) is correlatable with the base of CM20r in all 

sections, while in Torre de Busi it correlates with the upper part of CM19n. In both 

cases this event is older than reported by Bralower et al. (1989).  
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- The FOs of Nannoconus sp.1 and N.infans, representing the nannoconid primitive 

forms, span from the CM20r (Sciapala quarry) to the upper part of CM20n (Foza A). 

N.infans occurs at levels older than reported by Bralower et al. (1989) (CM19n). 

- The FO of C.angustiforatus correlates with the uppermost part of CM17n at Foza, so 

slightly before the FO reported in the literature. 

 

5.2. Calcareous nannofossil relative abundances in the Tithonian-Berriasian 

interval 
Calcareous nannofossil relative abundances have been investigated at Torre de Busi, Monte 

Pernice and Foza A sections (see Figure 5.2.1, 5.2.2, 5.2.3, respectively). The nannofossil 

preservation is lithology dependent. In siliceous samples they have a high etching degree, 

while in the marly ones nannofossils are characterized by low etching and overgrowth degrees. 

The most calcareous samples reveal generally a good nannofossil preservation: the most 

delicate and tiny coccoliths are usually slightly to strongly etched, viceversa the most calcified 

nannoliths or the dissolution resistant coccoliths often present a moderate to high overgrowth.  

Quantitative analyses reveal that only few taxa (Watznaueria spp., Cyclagelosphaera spp., 

Conusphaera spp., Polycostella spp. and Nannoconus spp.) contribute to the 50-70% of the 

total nannoflora (see Figure 5.2.1, 5.2.2, 5.2.3 for each taxa relative abundances curves). In 

particular, the genera Watznaueria and Cyclagelosphaera are the most abundant taxa along the 

entire studied interval: the highest abundance of these genera occurs through the M.chiastius 

Zone in Torre de Busi and Monte Pernice sections, while it is lower, from the upper part of 

V.stradneri Zone to the upper most part of H.cuvillieri Subzone in Foza section. As far as the 

genus Waznaueria is concerned, fluctuations in both size and abundance of different 

Watznaueria species were recognized through the V.stradneri Zone: the lower part of this zone 

is often characterized by an increase of W.britannica and W.britannica large forms; while from 

the middle part of this Zone (approximatively from the first occurrence of M.quadratus) to the 

first occurrence of C.mexicana minor an increase in both size and abundance of W.manivitiae, 

W.communis and their respective large forms were observed. As far as the genus 

Cyclagelosphaera is concerned no evident abundance fluctuations were observed: 

C.margerelii, the most abundant species, is present in all investigated samples and represents 

the 2% up to 20% of the total assemblage.  
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Fig. 5.2.1 – Calcareous nannofossil relative abundances of Torre de Busi section. 
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Fig. 5.2.2 – Calcareous nannofossil relative abundances of Monte Pernice section. 

 
 

 42 



5. Results 

 
Fig. 5.2.3 – Calcareous nannofossil relative abundances of Foza A section. 
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The most significant fluctuations in the investigated interval are those of the nannoliths 

Faviconus spp., Conusphaera spp., Polycostella spp. and Nannoconus spp. The first 

occurrence of Faviconus multicolumnatus lies in the V.stradneri Zone, around CM22r in 

Colme di Vignola and Foza A sections, while it is somewhat older in Torre de Busi section, 

Bombatierle and Sciapala quarries. Faviconus multicolumnatus abundance is around 1% and 

reaches a maximum of 5% (Torre de Busi section) in the C.mexicana Zone to the lower part of 

M.chiastius Zone. 

The genus Conusphaera is one of the most abundant taxa from the C.mexicana Zone: the 

first occurrence of Conusphaera mexicana minor lies in the mid part in CM22n of every 

section but of Foza A, where it lies at the base of CM22n; the first occurrence of Conusphaera 

mexicana mexicana lies in the lower part of CM21r or somewhat before in Torre de Busi 

section. Conusphaera spp. average abundance is around 20% through out the studied interval, 

but is characterized by notable fluctuations: in the interval between its first occurrence and the 

U.granulosa granulosa Subzone it reaches its highest values from 70% to 90% of the total 

assemblages, then slightly decreases around an average of 40% in N.steinmanni minor 

Subzone, then progressively reaches an average of 20% of the total assemblages. 

Polycostella beckmannii is also one of the most abundant nannoliths and shows a similar 

distribution pattern like the genus Conusphaera. The first occurrence of P.beckmannii lies 

between the mid part of CM21r and the mid part of CM21n. Sooner after this level it reaches 

its highest abundance, around 10% to 20% until U.granulosa granulosa Subzone, then declines 

around an average of 5% maximum of the total assemblages and in N.steinmanni minor 

Subzone becomes very rare. 

The genus Nannoconus, also one of the most abundant nannolith of the studied interval, 

shows a specular distribution pattern like the genus Conusphaera and Polycostella. The first 

occurrence of small and primitive Nannoconus sp. lies between in CM20n of all section but at 

Colme di Vignola where it lies in the middle part of CM19n. Soon after this level the genus 

Nannoconus rapidly evolves increasing in number of species, dimension, calcification degree 

and abundance. The abundance of Nannoconus spp. is characterized by an increasing trend 

through the M.chiastius Zone to the top of the studied interval: it reaches values below 10% in 

the R.laffittei Subzone, then starts to increase reaching 20% around the base of the 

N.steinmanni minor Subzone, then slightly increases to a maximum of 40% of the total 
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assemblages. 

Other coccolith taxa such as Crepidolithus spp., Biscutum spp., Diazomatolithus lehmanii, 

Microstaurus spp., Zeugrhabdotus spp., Miravetesina favula, Cruciellipsis cuvillieri, 

Rhagodiscus spp., Umbria spp., Cretarhabdus spp. and Percivalia fenestrata combined 

together account for less than 5%; while other nannolith taxa like Schizosphaerella sp., 

Hexalithus spp., Pseudolithraphidites sp., Lithraphidites carniolensis, Assipetra infracretacea 

and Micrantholithus spp. combined account for less than 2% of the total assemblage.  

 

5.3. Biogenic calcite paleo-fluxes in the Tithonian-Berriasian interval 
The Tithonian-Berriasian interval is characterized by a major calcareous nannofossil 

speciation episode and the appearance of calpionellids: several nannoliths (particularly the 

nannoconid group) and coccolith genera and species first appear and rapidly evolve, showing 

an increase in diversity, abundance and calcification degree. Calcareous nannofossil absolute 

abundances have been performed on Torre de Busi and Monte Pernice sections and on DSDP 

Site 534 site to reconstruct nannofossil biogenic calcite paleo-fluxes (Figures 5.3.1, 5.3.2, 

5.3.3, 5.3.4).  

Absolute abundances confirm that only few calcareous nannofossil taxa (Watznaueria spp., 

Cyclagelosphaera spp., Faviconus spp., Conusphaera spp., Polycostella spp. and Nannoconus 

spp; Figures 5.3.1, 5.3.3, 5.3.4) display significant values, and also that only two calpionellid 

taxa contribute to calcite paleo-fluxes (Crassicollaria spp. and Calpionella spp.; Figures 5.3.2 

and 5.3.3). Quantitative calpionellid and nannofossil analyses point out major changes during 

the Tithonian – Berriasian interval: nannolith taxa (F.multicolumnatus, C.mexicana, 

P.beckmannii) increase in abundance, size and calcification degree in discrete steps in the 

Lower Tithonian (Rosso ad Aptici and Rosso ad Aptici – Maiolica transition interval; DSDP 

Site 534 from core 100 to core 94); immediately after their acme level the first calcified 

calpionellids (Tintinnopsella) occur. Then nannoconids appear and rapidly develop reaching 

high abundances and lithogenetic amounts in the Upper Tithonian to Lower Berriasian (Rosso 

ad Aptici – Maiolica transition and Maiolica; DSDP Site 534 core 95 to core 90). Nannoconids 

and calcified calpionellids (Crassicollaria, Calpionella, Remaniella) increase across the 

Tithonian/Berriasian boundary interval reaching lithogenetic abundances: the rise in high-

calcified nannoconids roughly corresponds with the Acme of C. alpina spherical forms. 
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Fig. 5.3.1 – Calcareous nannofossil absolute abundances (coloured lines) and derived paleo-fluxes (red 

line) of Torre de Busi section. 
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Fig. 5.3.2 – Calpionellid absolute abundances (coloured lines) and derived paleo-fluxes (red line) of Torre 

de Busi section. 
 

The genera Watznaueria and Cyclagelosphaera are confirmed to be one of the most 

abundant taxa through the entire studied interval. The highest absolute abundances of these 

genera occur from the middle of P.beckmannii Subzone to the middle part of R.laffittei 

Subzone where they reach an average of 1500 specimens per unit of area corresponding to an 

average paleo-flux of 0,09 to 0.1.106 CaCO3 µgr / mm2 / yr at Torre de Busi section and DSDP 

534A. From the middle part of the R.laffittei Subzone to the top of the studied interval they 

fluctuate around 500 specimens per 1 mm2 corresponding to an average paleo-flux of 0.05.106 
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CaCO3 µgr / mm2 / yr. Nevertheless genera Watznaueria and Cyclagelosphaera derived paleo-

fluxes contribute less than other nannolith taxa to biogenic calcite production as they are less 

calcified. 

 The most significant fluctuations in the investigated interval, confirmed by absolute 

abundances, are those of nannoliths Faviconous spp., Conusphaera spp., Polycostella spp. and 

Nannoconus spp.. 

Faviconus multicolumnatus reaches its maximum absolute abundance from the uppermost 

part of V.stradneri Zone and H.noeliae Subzone, then decreases and becomes rare. The acme 

interval is characterized by an average of 45 specimens per 1 mm2 corresponding to an average 

paleo-flux of 0.02.106 CaCO3 µgr / mm2 / yr. Faviconus reaches an absolute maximum of 450 

specimens at Torre de Busi section, and circa 250 elements at DSDP Site 534A both falling in 

the middle part of C.mexicana Zone, the derived paleo-flux contribute to biogenic calcite 

production for an amount of circa 0.35.106 CaCO3 µgr / mm2 / yr. 

The genus Conusphaera is revealed by absolute abundances to be the most abundant taxa 

from the base of the C.mexicana Zone to the top of the H.noeliae Subzone. From the 

C.mexicana Zone to the base of the U.gr.granulosa Subzone Conusphaera sp. is characterized 

by an average absolute abundance around 1300 specimens per 1 mm2, corresponding to an 

average paleo-flux of 0.09 to 0.1.106 CaCO3 µgr / mm2 / yr. In the same interval it reaches a 

maximum of 4500 at Torre de Busi section and 3100 circa at DSDP Site 534, corresponding to 

paleo-fluxes of 0.25.106 CaCO3 µgr / mm2 / yr. From the U.gr.granulosa Subzone to the top of 

the studied interval Conusphaera spp. slightly decreases to an average of 750 specimens per 1 

mm2, corresponding to an average paleo-flux of 0.05.106 CaCO3 µgr / mm2 / yr: this decrease is 

due to C.mexicana minor which is more abundant than C.mexicana mexicana but smaller in 

size and lighter in weight, thus contributing less to calcite paleo-fluxes.  

P.beckmannii also shows high absolute abundance with a similar pattern like the genus 

Conusphaera. P.beckmannii reaches its highest abundance from P.beckmannii Subzone to the 

top of the H.noeliae Subzone with an average of 330 specimens per 1 mm2 at Torre de Busi 

section, corresponding to an average paleo-flux of 0.02.106 CaCO3 µgr / mm2 / yr; at DSDP site 

534A it reaches an average of 600 specimens per 1 mm2 corresponding to an average paleo-

flux of 0.03.106 CaCO3 µgr / mm2 / yr. Then Polycostella sp. declines to an average of 30 

specimens per 1 mm2 at the base of the N.steinmanni minor Subzone, corresponding to an 
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average paleo-flux of 0.002.106 CaCO3 µgr / mm2 / yr, and then becomes very rare. 

Absolute abundances of the genus Nannoconus reveal that it is the most abundant 

nannolith, characterized by an exponential increasing trend from the base of the M.chiastius 

Zone to the top of the studied interval. It is possible to subdivide its trend in three intervals: 1) 

from the base of the H.noeliae Subzone to the top of the U.gr.granulosa Subzone: Nannoconus 

sp. reaches an average of 300 specimens per 1 mm2 at Torre de Busi and Monte Pernice 

sections, corresponding to an average paleo-flux of 0.05.106 CaCO3 µgr / mm2 / yr, while at 

DSDP Site 534 it reaches an average of 550 specimens per 1 mm2 and an average paleo-flux of 

0.1.106 CaCO3 µgr / mm2 / yr; 2) Nannoconus sp. starts to increase up to the base of the 

N.steinmannii minor Subzone reaching an average of 1100 specimens per 1 mm2 at Torre de 

Busi sections and DSDP Site 534, corresponding to an average paleo-flux of 0.4.106 CaCO3 

µgr / mm2 / yr; 3) from the FO of N.steinmanni minor nannoconid absolute abundances 

exponentially increase to an average of 2500-3000 specimens per 1 mm2, corresponding to a 

maximum average paleo-flux of 1.1.106 – 1.3.106 CaCO3 µgr / mm2 / yr. 

 

As far as Calpionellids is concernes the genera Crassicollaria and Calpionella are 

confirmed to be one of the most abundant taxa in the studied interval. The genus Crassicollaria 

shows fluctuation in absolute abundances around an average of 50 specimens per 1 cm2 from A 

Zone to the base of B Zone, corresponding to average paleo-flux of 0.1.106 CaCO3 µgr / cm2 / 

yr (0.001.106 CaCO3 µgr / mm2 / yr). The genus Calpionella shows an increase from the base of 

A Zone to the top of the studied interval. It is possible to recognize two intervals: 1) the 

calpionellid A Zone is characterized by 30 specimens per 1 cm2 corresponding to an average 

paleo-flux of 1.5.106 CaCO3 µgr / cm2 / yr (0.015.106 CaCO3 µgr / mm2 / yr); 2) the upper part 

of the studied interval is characterized by 70 specimens per 1 cm2 corresponding to an average 

paleo-flux of 0.27.106 CaCO3 µgr / cm2 / yr (0.0027.106 CaCO3 µgr / mm2 / yr). These paleo-

fluxes discrepancies are due to Calpionella alpina large form and Calpionella alpina spherical 

form: the first one is less abundant but being larger in size and heavier in mass it contributes 

more to paleo-fluxes. On the contrary Calpionella alpina spherical form is more abundant, but 

contribute less to biogenic calcite paleo-fluxes. 
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Fig. 5.3.3 – Calcareous nannofossil (above) and calpionellid (below) absolute abundances (coloured lines) 

and derived paleo-fluxes (red line) of Monte Pernice section. 
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Fig. 5.2.4 – Calcareous nannofossil absolute abundances (coloured lines) and derived paleo-fluxes (red 

line) of DSDP Site 534A. 
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5.4. Nannofacies in the Tithonian – early Berriasian interval 
The Callovian – Berriasian pelagic successions recorded a major change in sedimentation 

from predominantly siliceous to mostly calcareous. The investigation of nannofossil 

assemblages in ultra-thin section (Torre de Busi, Monte Pernice, DSDP Site 534A) revealed 

substantially different proportions of some taxa. As a result, the micrite can be classified as 

produced by one-two nannofossil groups, regarded as rock forming. Seven different types of 

nanno-facies (observed at 1250x magnification) were distinguished from bottom to top (Fig. 

5.4.1). 

 

 
Fig. 5.4.1 – Stratigraphic distribution of nannofacies. 
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1. Large Watznaueria nannofacies. Marly micrite characterized by a large amount of 

W.manivitiae (large forms) and by few C.deflandrei (Fig. 5.4.2-1). The micrite is reddish 

due to limonitic oxides (lower Rosso ad Aptici and/or Cat Gap formations).  

2. Faviconus nannofacies. Micrite characterized by a huge amount of F.multicolumnatus 

fragments and spheres or aggregates, W.manivitiae (large forms), and by few calcareous 

dinoflagellate calcispheres. Faviconus aggregates are particularly abundant and can reach 

a maximum of 8-10 specimens, lenght greater than 15µm and width greater than 5µm (Fig. 

5.4.2-2) (lower – middle Rosso ad Aptici and/or Cat Gap formations, CM22n-CM21r).  

3. Conusphaera nannofacies. Micrite consisting of huge amounts of C.mexicana mexicana, 

few C.mexicana mexicana spheres and calcareous dinoflagellate calcispheres. C.mexicana 

mexicana spheres are made by a variable number of specimens (up to 20-25 specimens), 

reaching a diameter greater than 30µm (Fig. 5.4.2-3) (upper Rosso ad Aptici and/or Cat 

Gap formations, CM21n). 

4. Polycostella nannofacies. Micrite characterized by a huge amount of P.beckmannii 

specimens and spheres or aggregates. At DSDP Site 534 sphere/aggregates can reach 

different dimensions and, proportionally, number of specimens. This nannofacies is also 

characterized by abundant C.mexicana mexicana (Fig. 5.4.2-4) (upper Rosso ad Aptici 

and/or Cat Gap fm.– Blake-Bahama fm. transition, uppermost CM21n – upper CM20r).  

5. Conusphaera and Polycostella nannofacies. The micrite is characterized by few to 

common Conusphaera sp. and P.beckmannii (uppermost Rosso ad Aptici and/or Cat Gap 

formations, uppermost CM20r – lower CM20n). 

6. Conusphaera, Polycostella and small nannoconids nannofacies. The micrite is 

characterized by few to common Conusphaera sp., P.beckmannii and primitive small 

nannoconids, which are generally smaller than 6µm (Fig. 5.4.2-4) (Rosso ad Aptici – 

Maiolica transition and/or upper Cat Gap formations, lower CM20n – lower CM19n). 

7. Nannoconus nannofacies. The micrite is made of nannoconids (Nannoconite), which are 

usually greater than 6µm (Fig. 5.4.2-6) (Maiolica and Blake-Bahama formations, lower 

CM19n – top of the studied interval). 
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Fig. 5.4.2 – Nannofacies examples: 1. large Watznaueria and Cyclagelosphaera micrite; 2. Faviconus 
multicolumnatus micrite; 3. Conusphaera mexicana mexicana micrite; 4. Polycostella beckmannii 

micrite; 5. Small nannoconids micrite; 6. Nannoconids micrite (Nannoconite). Pictures are from Torre de 
Busi section and DSDP site 534A. 

 

5.5. Calcareous nannofossil evolution modes in the latest Jurassic – earliest 

Cretaceous interval 
The latest Kimmeridgian - early Berriasian interval provides an example of accelerated 

intra- and intergeneric evolutionary rates, namely a speciation episode, occurred during a time 

period of environmental stability or characterized by the absence of evidence of coeval 
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environmental changes. In particular, the Tithonian - Berrisian interval is characterized by a 

distinct speciation episode (Fig. 2.3.1; Fig.5.5.1): several new nannolith and coccolith genera 

and species first occur and rapidly evolve, reaching high diversity, abundances, dimensions and 

calcification degree. This speciation episode provides an excellent opportunity to study tempo 

and mode of calcareous nannofossil evolution in absence of environmental change, which is 

believed to drive species evolution (see Chapter 2, paragraph 2.2).  

 This speciation episode is characterized by the first occurrence of several new nannolith genera 

(Conusphaera, Polycostella, Pseudolithraphidites and Lithraphidites, Nannoconus, Assipetra), 

few new coccoliths genera (Umbria, Rhagodiscus, Cruciellipsis) and several coccoliths and 

nannolith new species (M.chiastius, H.noeliae, C.surirellus, C.octofenestratus, 

C.angustiforatus). A sequence of events is illustrated in figure 5.5.1. Most new species rapidly 

evolved generating related new species or subspecies, often in a time interval shorter than two 

million of years.  

Three cases have been analyzed in detail: 

1. Generally the majority of ancestral species survives and both the ancestral and the 

descendant species are found together in the same association. Usually ancestral and 

descendant species are very similar and differ only for the whole nannolith/coccolith 

dimension or for the coccoliths central area dimension. C.mexicana minor and C.mexicana 

mexicana provide an example among nannoliths, while Z.erectus and Z.embergeri is an 

example of coccoliths (Fig. 5.5.2).  
2. Sometimes the ancestral species disappears just after or at the same time of the descendant 

species appearance, like U.granulosa minor and U.granulosa granulosa.  

3. Occasionally, the descendant species are preceded by peculiar morphotypes characterized 

by transitional features between the ancestral and the descendant ones, as was observed for 

Nannoconus sp. 2 and N.steinmannii minor, or for R.asper and R.nebulosus.  
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Fig 5.5.1 – Tithonian – early Berriasian speciation episode and ranges of the most abundant or peculiar 

species, (data from this study and Bralower et al., 1989) 
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Fig. 5.5.2 – Z.erectus and Z.embergeri transitional forms. 

 

 57



5. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 58 



6. Discussions 

 
6. DISCUSSIONS 

 
6.1. Callovian – Tithonian revised biostratigraphy.  

In this study high-resolution calcareous nannofossil biostratigraphy has been achieved for 

the Upper Jurassic – lowermost Cretaceous (Fig 5.1). The nannofossil biozonation after 

Bralower et al. (1989) was adopted (see paragraph 2.1), however, as that scheme does not 

formalize any zone or subzone for the Late Bathonian – Late Kimmeridgian time interval, 

other studies (De Kaenel et al., 1996, Bown & Cooper, 1998, Mattioli & Erba, 1999) were 

chosen as guidelines. The revised calcareous nannofossil biostratigraphic scheme here 

proposed for the Middle to Late Jurassic time interval is based on primary and secondary 

events used to emend previous zone and/or propose new biozone/subzones. All events are 

calibrated with magnetostratigraphy (Channell et al., in prep.) from CM24 to CM16 (Fig. 6.1). 

Despite the uppermost Callovian – Kimmeridgian interval is represented by nodular siliceous 

marlstones or limestones (Calcare Selcifero di Fonzaso, or Rosso Ammonitico from Trento 

Plateau, and Radiolarite - Rosso ad Aptici transition from Lombardian Basin) often severely 

affected by diagenesis, nannofossil biostratigraphy was obtained. In the Upper Callovian - 

Oxfordian interval nannofossil bioevents are calibrated against ammonite biostratigraphy. A 

chronologic datum is given by a bentonite layer, outcropping at Sciapala and Bombatierle 

quarries, which has been dated as latest Middle Oxfordian (Bernoulli & Peters, 1970, 1974).  

A description of the calcareous nannofossil biostratigraphic scheme (Fig. 6.1) proposed in 

this study is coded following the Tethyan Jurassic biozones of Mattioli & Erba (1999) and 

therefore the lower zone in this study is NJT-12, following the W.barnesiae Zone (NJT-11) of 

Bathonian age. 

 

Zone NJT-12 

Definition: interval between the FO C.wiedmannii and the LO of C.wiedmannii.  

Range: uppermost Bathonian – uppermost Callovian.  

Reference Sections: Bombatierle quarry (upper part of NJT-12 Zone, since the FO of 

C.wiedmannii in not observed). 

Remarks: the upper part of this zone is also characterized by the occurrence W.manivitiae 

large form (see Chapter 8 for detail) and by the LO A.helvetica. 
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Comments: This zone is correlatable to the NJ-12, NJ-13 zones and the lower part of NJ-14 

Zone of Bown et al. (1988) and Bown & Cooper (1998). 

 

NJT-13 Zone  

Definition: interval between the LO of C.wiedmannii and the LO of L.sigillatus.  

Range: uppermost Callovian – Middle Oxfordian.  

Reference Sections: Bombatierle and Sciapala quarries. 

Remarks: this interval is also characterized by the LO of L.crucicientralis.  

Comments: This zone correlates with the base of Vagalapilla stradneri Zone (NJ-19) of 

Bralower et al. (1989). The Vagalapilla stradneri Zone (NJ-19) is only applicable to 

Northern Europe and the Western North Atlantic, whereas is cannot be identified in 

the Tethyan sections because V.stradneri does not appears until the Berriasian 

(Thierstein, 1973; Bralower et al., 1989). This zone is also correlatable to the upper 

part of NJ-14 and the lower part of NJ-15a Zone of Bown et al., (1988) and Bown & 

Cooper (1998).  

 

NJT-14 Zone  

Definition: interval between the LO of L.sigillatus and the FO of C.mexicana subsp. minor.  

Range: Middle Oxfordian - Lower Tithonian (upper CM22n).  

Reference Sections: Bombatierle and Sciapala quarries for Subzone NTJ-14a; Bombatierle 

and Sciapala quarries and Torre de Busi section for Subzone NTJ-14b. 

Remarks: this interval is characterized by the appearance of M.quadratus, 

F.multicolumnatus and C.deflandrei. In the lower part of this zone a distinct increase 

in abundance and dimension of W.communis was observed, followed by a parallel 

slight increase in abundance and dimension of W.britannica. As this interval is 

poorly characterized due to unsuitable lithology, it is difficult to place precisely this 

event; further biostratigraphic and quantitative investigations on more calcareous 

sections are needed.  

Comments: This zone correlates with the Vagalapilla stradneri Zone (NJ-19) of Bralower 

et al. (1989).  

Subzones:  - Subzone NJT-14a 
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Definition: interval between the LO of L.sigillatus and the FO of 

F.multicolumnatus.  

Range: Middle Oxfordian – uppermost Oxfordian 

Reference Sections: Bombatierle and Sciapala quarries for Subzone.  

Remarks: this interval is characterized by the appearance of M.quadratus, 

but, this event is difficult to be placed and further investigations on 

more calcareous sections are needed.  

- Subzone NJT-14b 

Definition: interval between the FO of F.multicolumnatus and the FO of 

C.mexicana subsp. minor. 

Range: uppermost Oxfordian (CM25n) – Lower Tithonian (upper 

CM22n). 

Reference Sections: Bombatierle and Sciapala quarries and Torre de Busi 

section. 

Remarks: this interval is also characterized by the LO of 

T.beaminsterensis (base of CM24) and by the FO of C.deflandrei 

(base of CM23n). The very upper part of this zone, spanning the 

Kimmeridgian/Tithonian boundary interval, is characterized by a 

dramatic increase in size and abundances of F.multicolumnatus, 

mainly from observations on ultra-thin sections. 

Comment: The FO of F.multicolumnatus could be use to approximate the 

Oxfordian/Kimmeridgian boundary, but precisely studies are needed 

to further calibrate this event with other stratigraphic tools. The FO of 

C.deflandrei is reported as a secondary event as further studies are 

needed to better calibrate this event. 

 

Zone NJT-15 

Definition: interval between the FO C.mexicana subsp. minor and the FOs of M.chiastius 

and H.noeliae. 

Range: Lower Tithonian (CM22n - base of CM20) 

Comments: This zone is essentially the same as the Conusphaera mexicana Zone (NJ-20) 
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of Bralower et al. (1989). We have emended its name as the FOs of M.chiastius and 

H.noeliae where found significantly below that what reported by Bralower et al. 

(1989) (Fig. 6.1).  

Subzones:  - Subzone NJT-15a 

     Definition: interval from the FO of C. mexicana subsp. minor to the FO of 

P.beckmannii. 

Range: Lower Tithonian (uppermost CM22n – upper CM21r). 

Remarks: this interval is also characterized by the FO of C.mexicana 

subsp. mexicana. 

Comments: This subzone has the same definition of the 

Hexapodorhabdus cuvillieri Subzone (NJ-20a) of Bralower et al. 

(1989), however its base is older, as P.beckmannii appears before than 

what reported by Bralower et al. (1989).  

- Subzone NJT-15b 

Definition: interval from the FO of P.beckmannii to the FO of M.chiastius 

and H.noeliae. 

Range: Lower Tithonian (uppermost CM21r – top of CM21n). 

Comments: This subzone has the same definition of the Polycostella 

beckmannii Subzone (NJ-20b) of Bralower et al. (1989), however its 

base is older, as the FOs of P.bckmannii, M.chiastius and H.noeliae 

where found significantly before that what reported by Bralower et al. 

(1989) (Fig. 6.1).  

 

Zone NJT-16 

Definition: interval from the FOs of M.chiastius and H.noeliae to the FO of N.globulus 

minor. 

Range: upper Lower Tithonian (base of CM20r – CM19r) to lowermost Berriasian 

(CM17r). 

Remarks: the lowermost part of this zone is also characterized by the FOs of P.senaria and 

Hexalithus sp.1 and by the appearance of the primitive nannoconids N.infans and 

Nannoconus sp.1 (see Chapter 8 for details). 
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Comments: This correlates with the H.noeliae Subzone (NJK-A) of Bralower et al. (1989), 

but it has a different definition, since the FO U.granulosa subsp. granulosa does 

not represent a replicable event in the majority of the studied sections and is 

considered here as a secondary event. For this reason the FO of N.globulus minor 

has been chosen as the main event to define the top of this zone. 

 

Zone NJT-17 

Definition: interval from the FO of N.globulus subsp. minor to the FO N. steinmannii 

subsp. minor. 

Range: Upper Tithonian to lowermost Berriasian (CM19r – CM18r). 

Remarks: this zone is also characterized by the FO of N.wintereri and secondarily by the 

FOs of U.granulosa subsp. granulosa, R.asper, C.surirellus, C.cuvillieri. 

Comment: this zone correlates with the U.granulosa subsp. granulosa (NJK-B) and 

R.laffittei (NJK-C) subzones of Bralower et al. (1989). R.laffittei is virtually 

absent in the investigated sections, while U.granulosa subsp. granulosa is 

considered here as a secondary event due to poor preservation and an every 

gradual change from U.granulosa subsp. minor. For this reason N.globulus 

minor has been chosen as the main event to define the base of this zone, as it is 

easily recognizable and occurs in all studied sections. 

 

Zone NJT-18 

Definition: interval from the FO of N.steinmannii subsp. minor to the FO of N.s steinmannii 

subsp. steinmannii. 

Range: lowermost Berriasian (CM18r – CM17r). 

Remarks: this zone is also characterized by the FO of C.octofenestratus 

Comment: this zone corresponds to the N.steinmannii subsp. minor Subzone (NJK-D) of 

Bralower et al. (1989).  

 

 

 63



6. Discussions 

 
Fig. 6.1.1 – The calcareous nannofossil biostratigraphic scheme proposed in this study. 
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6.2. Calcareous nannofossil acme events in the Tithonian – Berriasian interval: 

implications and applications. 
Calcareous nannofossil quantitative data achieved for the Torre de Busi and Monte Pernice 

sections (Tethys Ocean), and preliminary data from DSDP site 534 (Atlantic Ocean) (Chapter 

5, paragraph 5.3), clearly indicate that a major change in the nannofossil associations occurred 

during the Tithonian – Berriasian interval, mainly due to a spectacular increase in nannolith 

taxa (Fig. 5.3.1, 5.3.3, 5.3.4). Coccoliths of the genera Watznaueria and Cyclagelosphaera also 

increase in abundance, but never reach lithogenetic proportions, while nannolith taxa of genera 

Faviconus, Conusphaera, Polycostella and Nannoconus increase significantly in abundance, as 

well as in size and degree of calcification gaining lithogenetic proportions during the Tithonian 

– Berriasian interval. Four “Acme intervals” (equated to intervals with maximum abundance) 

are recognized as follows (Fig.6.2.1): 

- F.multicolumnatus acme: from the lower to middle Rosso ad Aptici and/or Cat Gap 

formation (CM22n – upper CM21r) (500 specimens per mm2).  

- C.mexicana acme: from the upper Rosso ad Aptici and/or Cat Gap formation (CM21n) 

(3000 to 4000 specimens per mm2). 

- P.beckmannii acme: upper Rosso ad Aptici and/or Cat Gap fm.– Blake-Bahama fm. 

transition (lower CM20r) (2000 specimens per mm2).  

- Nannoconus acme: exponential increase from the base of the Maiolica and/or Blake-

Bahama formation until the top of the studied interval (lower CM19n – top of the studied 

interval). The acme is reached in the lower Maiolica and/or Blake-Bahama formation 

(CM18r) (3000 specimens per mm2), concomitant with the acme of C.alpina spherical 

form.  

As far as absolute abundances are concerned Faviconus, Polycostella, Conusphaera, and 

Nannoconus nannoliths are the most abundant calcareous nannoplankton forms during the 

Tithonian - Berriasian interval. It is also evident from paleo-fluxes that these nannoliths were 

the major producers of pelagic micrite, as they were the most abundant forms, were bigger in 

volume and heavier in mass than all other nannoliths and coccoliths. In particular, the most 

effective calcite producer was the genus Conusphaera during the early Tithonian and the genus 

Nannoconus during the late Tithonian to the top of the studied interval. Interestingly, 

nannoconids result less abundant in number than Conusphaera sp., but as they are bigger in 
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volume and heavier in mass, contribute more to biogenic calcite production.  

 
 

Fig. 6.2.1 – Calcareous nannofossil acme intervals. 
Calcareous nannofossil and calpionellid contributions to the sedimentation at Torre de 
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Busi and Monte Pernice sections were compared to extract the impact of each fossil group on 

the lithology: calcareous nannofossil paleo-fluxes are obviously one hundred times greater that 

calpionellid paleo-fluxes. The cumulative calcareous nannofossil and calpionellid paleo-fluxes 

curve at Torre de Busi is reported in Figure 6.2.2, and clearly shows that biogenic calcite 

contribution to the sedimentation is controlled by nannofossils, particularly by nannoliths. 
 

 
 

Fig. 6.2.2 – nannofossil cumulative paleo-fluxes and calpionellid cumulative paleo-fluxes comparison. 
 

The described quantitative trends, interpreted and defined as nannofossil acme intervals 
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(Fig.6.2.1), have important implications for the amount of biogenic calcite production in the 

ocean and, consequently, for the pelagic sedimentation. A comparison between the nannofacies 

(Paragraphs 5.4) and the acme intervals (Fig. 6.2.1) reveals the linkage between the lithological 

changes from Rosso ad Aptici (Cat Gap formation) to Maiolica (Balke-Bahama formation) and 

the appearance, diversification and increase in absolute abundance of genera Faviconus, 

Polycostella, Conusphaera, and Nannoconus (see also Paragraph 6.3). The described 

quantitative trends have also important applications: their calibration with magnetostratigraphy 

indicates that they could be very useful as additional biostratigraphic tools in the Tithonian – 

lower Berriarian interval, and eventually for determining the Jurassic/Cretaceous boundary, 

especially when ammonites are absent as in the Tethyan Maiolica. Nannofossil acme intervals 

provide new reliable stratigraphic events for the Tithonian - Berriasian interval: Conusphaera 

and Polycostella acme intervals might roughly approximate upper Lower Tithonian (CM21n – 

CM20r), while Nannoconus acme event roughly approximate the Jurassic/Cretaceous boundary 

interval (upper CM19n – lower CM18r). 

 

6.3. Nannofossil calcification events (NCEs) in the Tithonian – Berriasian interval 
6.3.1. Nannofossil Calcification Event (NCEs) 

Nannofossil Calcification Events (NCEs) were first outlined by Bornemann et al. (2003) 

after the analysis of Tithonian – Berriasian sediments and nannofossil assemblages in the 

central Atlantic Ocean (DSDP Sites 105, 367, 534A). Their results concerning both biogenic 

nannofossil carbonate estimates and the measured bulk-rock carbonate, reveal a period 

characterized by an increasing in the nannofossil carbonate accumulation caused by mass 

occurrences of strongly calcified taxa (C. mexicana, P. beckmannii, Nannoconus spp., 

W.manivitiae), increasing in both abundance and size. This episode was named ‘Nannofossil 

Calcification Event’ (NCE) also because of the dramatic increase in size of those taxa 

(Bornemann, pers. comm., 2007). Bornemann et al. (2003) point out the presence of a second 

interval of enhanced carbonate production in the late Berriasian, related to the rise in absolute 

abundances of nannofossils and amplified by an overall increase of the sedimentation rate. 

In this study calcareous nannofossil (and calpionellid) paleo-fluxes were achieved (see 

Chapter 5 and paragraph 6.2) on two sections from the Southern Alps, Tethys Ocean, and on  
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Fig. 6.3.1 – NCE I and NCE II (A and B) at Torre de Busi, plotted against lithology, magnetostratigraphy 

and carbonate content.   
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the same samples analyzed by Bornemann et al. (2003) on DSDP Site 534A from the Atlantic 

Ocean. The results presented in Chapter 5 allow to revise the NCEs definition and 

characterization. The calcareous nannofossil paleo-fluxes obtained in this study allow the 

identification of two different intervals characterized by a dramatic increase in nannofossil 

number, size and consequently in biogenic calcite. Therefore, two Nannofossils Calcification 

Events (NCE I and NCE II) were identified (Fig. 6.3.1). The first event, NCE I, corresponds to 

the NCE previously identified by Bornemann et al. (2003), and is related to the increase in 

abundance of nannolith genera Faviconus, Conusphaera and Polycostella, gaining lithogenetic 

abundances in the middle Lower Tithonian (CM21-CM20). NCE I is mainly determined by the 

increase in number and size of C.mexicana mexicana, which contributes to most of biogenic 

calcite paleo-flux. The second event, NCE II, was not identified by Bornemann et al. (2003) 

and is mainly related to the exponential increase in diversification, abundance and dimensions 

of nannoconids, gaining lithogenetic abundance in the uppermost Tithonian – lower Berriasian 

(CM19n-CM18). NCE II is also characterized by high abundances of the genus Conusphaera 

and by the appearance of calcified calpionellids (genera Crassicollaria and Calpionella). 

Within NCE II, two additional intervals were distinguished, namely NCE IIA and NCE IIB, 

characterized by an increase in nannoconid abundance and diversity and by an “explosion” of 

large nannoconids (N.steinmannii subsp. minor, N.kamptneri subsp. minor, N.steinmannii 

subsp. steinmannii, N.kamptneri subsp. kamptneri), respectively. 

 

6.3.2. Impact of NCEs on western Tethys Ocean sedimentation. 

NCEs have important implications on the pelagic sedimentation, particularly in the western 

Tethys Ocean (Fig. 2.2.1). The nannofossil cumulative paleo-flux curve plotted against the 

carbonate content curve and the lithostratigraphic framework permit an interpretation of the 

transition from predominantly siliceous sediments (Radiolariti) through an interval of siliceous 

marlstones and limestones (Rosso ad Aptici) to mostly calcareous ones (Maiolica). The Torre 

de Busi section is taken as a representative of the pelagic sedimentation (relatively expanded) 

in the Southern Alps. The link between nannoplankton evolution, diversification and 

abundance, its calcite paleo-fluxes, carbonate content are interpreted to understand the role (if 

any) of coccoliths/nannolith production of pelagic sediments. In the Late Jurassic of the 

western Tethys three sedimentary intervals are distinguished from bottom to top: a siliceous, a 
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siliceous-calcareous and a calcareous intervals. Indeed, at Torre de Busi these three intervals 

correspond to three lithostraigraphic units, namely the Radiolariti, the Rosso ad Aptici and the 

Maiolica formations. At Torre de Busi is possible to identify five intervals (Fig.6.3.1): 

1) A first increase in carbonate content from 20% to 60% correlates with the upper 

Radiolariti to lowermost Rosso ad Aptici interval, but no change in nannofossil paleo-flux 

was observed.  

2) A second increase in carbonate content up to 60% to 80% correlates with the middle-upper 

Rosso ad Aptici. This increase correlates with the explosion of nannolith genera 

Conusphaera and Polycostella paleo-fluxes. 

3) A third interval, marked by CaCO3 slightly increasing but still in a 60-80% range, 

corresponds to the NCE I during the transition from Rosso ad Aptici to Maiolica 

formations.  

4) A fourth interval is characterized by CaCO3 fluctuating between 80 and 90%, and roughly 

correlates with the lower part of NCE II (NCE IIA). 

5) The fifth interval, with CaCO3 between 90 and 100%, corresponds to the Maiolica 

limestones sensu strictu and NCE IIB. 

Similar pelagic sedimentation changes occurred in the western Tethys and central Atlantic 

oceans, and different interpretation has been forwarded, such as:  

- A deepening of the calcite compensation depth (CCD) after a major shallowing in the 

Middle Jurassic (Winterer & Bosellini, 1981); 

- a shift of carbonate deposition from the shallow seas and shelf areas to the open-ocean, 

due to a major increase in calcareous nannofossil carbonate production (Kuenen Event, 

Roth, 1986); 

- a tectonic plate drifting initially towards, and subsequently away from, a near-equatorial 

upwelling zone of high biosiliceous productivity (Muttoni et al., 2005; Channell et al., 

2007). 

The results presented in Chapter 5 show that the transition from siliceous sediments 

(Radiolariti) to calcareous limestones (Rosso ad Aptici) are independent from the calcareous 

nannofossil calcification history, and most probably is related to a tectonic plate drifting 

history. On the other hand, the middle Rosso ad Aptici to Rosso ad Aptici-Maiolica transition 

correlates with the increase in abundance of nannoliths Conusphaera and Polycostella, and 
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specifically with NCE I. This gradual increase in carbonate content in thus linked to the 

calcareous nannofossil evolution, which directly affected the oceanic inorganic carbon pool 

and acted as a driving factor of pelagic sedimentation, at least for the western Tethys and 

central Atlantic oceans. Finally, the Maiolica is undoubtedly controlled by the diversification 

and explosion of the nannoconid group, and correlates with NCE II. In this case, the 

appearance, diversification and production of nannoconids determined almost pure micritic 

limestones (80-100% CaCO3). The Maiolica (Biancone, Blake-Bahama formation) is 

essentially a “nannoconites”, resulting from proliferation of nannoconids in the Early 

Cretaceous western Tethys and central Atlantic oceans. 

  
6.3.3. Paleoceanographic and climatic factors controlling NCEs at low latitudes (Tethyan 

Realm) 

Temporal and spatial changes in the distribution and abundance of calcareous 

nannoplankton are controlled by climatic and oceanographic factors; consequently calcareous 

nannofossil can be used as proxies of paleoceanographic condition in the past.  

Quantitative data show that only few taxa are occurring in lithogenetic proportion during 

the studied interval. The common genus Watznaueria is considered to be a cosmopolitan form, 

indicating oligotrophic surface water conditions (Premoli-Silva et al., 1989; Pittet & Mattioli, 

2002). High abundances of Watznaueria coccoliths during the studied interval let to suggest a 

low to moderate surface water nutrient levels for the Tethys Ocean, as well as Central Atlantic 

(Bornemann et al., 2003). The Tithonian interval is mainly characterized by high abundances 

of incertae sedis nannolith taxa such as Faviconus, Conusphaera, Polycostella and 

Nannoconus. Nannoconus is interpreted as an inhabitant of the lower photic (Erba, 1994). In 

this study, Faviconus is interpreted as a precursor of Nannoconus (see paragraph 6.4), thus is 

considered as an inhabitant of the same ecological niche. The ecological affinities of the genera 

Conusphaera and Polycostella are unknown, but due to some similarities with Nannoconus as 

far as form and/or structure, these groups possibly inhabited a similar ecological niche. It was 

suggested that the onsets of these four nannolith acmes reflect either a competition between 

these groups for the ecological niche or/and slight differences in their ecological affinities 

(Bornemann et al., 2003).  
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The present PhD project pointed out that huge change in size and calcification degree of 

genera Faviconus, Conusphaera and Nannoconus are at least partly controlled by changes of 

the paleoenvironment or palaeoceanography. In the Tithonian – lower Berriasian high 

abundances of strongly calcified nannoliths co-occur with large Watznaueria, highly calcified 

dinoflagellate cysts and calcified calpionellids, thus reflecting a global increase in calcification 

of planktonic calcifiers. This PhD project results suggest that the Tithonian mass occurrences 

of strongly calcified nannoplankton and its evolution are coeval with: low oceanic Mg/Ca ratio 

values, low pCO2 value and cool climatic conditions (Fig.6.3.2).  

 

pCO2. A factor which is considered to control the calcification among coccolithophorids is 

the atmospheric pCO2 and the resulting seawater pH: in culture studies, lower pCO2 levels 

allow an increase in calcification rates of modern coccolithophores, whereas high pCO2 

inhibits calcification. In the Late Jurassic a decrease of atmospheric pCO2 levels is predicted 

(Berner & Kothavala, 2001, Berner, 2006). This is in agreement with low spreading rates 

(Sheridan, 1983), dry climate (Abbink et al., 2001) and cool temperatures at high latitudes 

(Price, 1999; Price et al., 2002). The synchroneity of predicted low pCO2 levels and 

nannofossil calcification events leads to hypothesize that the increase in calcification of 

calcareous nannofossils during the Tithonian – lower Berriasian NCEs was facilitated by low 

pCO2, relatively cold and stable conditions. Nevertheless, due to the absence of reliable 

pCO2/pH proxies, the poor knowledge of the buffer capacities of the oceans and the influence 

of seawater pH on the biogenic calcification on geological timescales, the interpretation of 

these factors remains speculative.  

 

Mg/Ca ratio. Starting in the Middle Jurassic, the Mg/Ca ratio shows a significant and 

continuous decrease, associated to a coeval increase of sea water Ca concentration. Mg/Ca 

secular variations seem to be controlled by the rate of ocean crust formation (Hardie, 1996): in 

areas of seafloor formation Mg is removed from seawater and Ca is released through 

hydrothermal activity. Thus, when rates of the sea floor formation rise, the Mg/Ca ratio 

declines. A minimum in isotopic strontium values (due to high rate of oceanic crust production 

and/or volcanic activity) was predicted for the Kimmeridgian - early Tithonian (Sheridan, 

1983). From a thermodynamic point of view, the decrease in the Mg content could promote a  
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Fig. 6.3.2 – General overview on nannofossil diversity evolution, sea level, humidity/aridity reconstuction 
and Mg/Ca ratio in the Mesozoic. 
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shift from a prevalent “aragonite” toward “low-Mg calcite” biocalcification. Such conditions 

could generally stimulate nannoplankton biocalcification and perhaps favor and/or solicit the 

highly calcified forms, promoting low Mg-CaCO3 and CaCO3 biomineralization (nannofossil 

fertilization sensu Stanley, 2006). 

 

Cool climatic condition. The relative sea-level change curve (Haq et al., 1987) shows a 

regressive episode in the middle-upper Tithonian, and was related to a minor global cooling 

event (Price, 1999), as supported by the occurrence of dropstones and glendonites. Studies on 

modern coccolithophores in culture reveal that at low water temperatures coccolithophorids 

experience an enlargement of both chloroplasts and cell dimensions and are stimulated to 

produce coccoliths, so are stimulated to bio-calcify (Sorrosa et al., 2005). A climatic change 

with a northward expansion of the dry climate zone (Abbink et al., 2001) accompanied by 

cooler temperatures (at least at high latitudes) may have stimulated nannofossil 

biocalcification, and perhaps favoured nannolith production in the late Tithonian.  

 

Stable VS unstable conditions. The Tithonian can be regarded as a “quiet” interval as far as 

the oceanic environment is concerned. The δ13C curve shows a gradual minor decline after the 

Oxfordian anomalies and prior to the Valanginian event. No major paleoceanographic episodes 

have been pointed out and, therefore, the Tithonian may be regarded as a stable interval. The 

nannofossil changes pointed out in this PhD thesis and specifically the accelerated originations, 

increase in abundance and calcification degree, thus correlate with stable environmental 

conditions, without significant perturbations. It is well possible that stable condition favoured 

diversification and expansion of calcareous nannoplankton, more adapted to oligotrophic 

oceans, but suffering under high-fertility and upwelling settings. If so, the onset of the massive 

nannoplankton diversification, abundance and calcification might represent the beginning of a 

stable environment under low pCO2 and relatively cool climate.  
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Fig. 6.3.3 – General overview of Tihonian stable interval. 
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6.4. Calcareous nannofossil evolution: tempo & mode interpretations 
Tithonian calcareous nannofossils speciation event provides an excellent opportunity to 

investigate nannofossil evolutionary modes and their timing, during a period of climatic and 

environmental stability. This speciation episode, characterized by the first occurrence of 

several new genera and few new species (figure 5.5.1), has been interpreted in the light of all 

the speciation modes proposed since Darwin’s Evolutionary Theory: Phyletic Gradualism 

(Darwin, 1859), Punctuated Equilibrium (Gould & Eldredge, 1977) and Punctuated 

Gradualism (Malmgren et al., 1984). On the basis of magnetostratigraphy each mode duration 

(kyr) has been evaluated. 

 

Phyletic Gradualism (Darwin, 1859). New species arise from slow, steady transformation 

of populations providing gradational fossil series linking separate phylogenetic species.  

A) U.granulosa minor - U.granulosa granulosa. Total shield size and central area structure of 

Umbria granulosa change stratigraphically: the maximum diameter increase from 4µm 

(U.gr.minor) to 8-10µm (U.gr.granulosa), and the central area is grey and cloudy at all 

orientations in early specimens (U.gr.minor) and become more calcified and birifrangent 

in later forms (U.gr.granulosa). The subspecies are divided based on these changes 

(Bralower et al., 1989). A fair amount of gradation between the two forms has been 

observed from the FO of U.gr.minor (mid CM20n) to the FO of U.gr.granulosa (early 

CM19n) and interpreted as an example of Phyletic Gradualism (Fig.6.4.1). The transition 

interval has been evaluated of 1.2 My circa.  
B) F.multicolumnatus - N.dolomiticus. The genus Faviconus appears to be a precursor to the 

genus Nannoconus (Bralower et al., 1989). Faviconus has a similar general construction to 

Nannoconus. Transitional forms between Faviconus and N.dolomiticus have been 

observed in the lowermost Berriasian, suggesting a direct linkage between the two genera. 

Faviconus is here interpreted as a precursor of N.dolomiticus. Faviconus evolution toward 

bigger and more calcified specimens, assumed as N.dolomiticus, represent an example of 

Philetic Gradualism (Fig. 6.4.1). The transition interval from the last true 

F.multicolumnatus (CM19n reversal) to the first N.dolomiticus (base of CM17r) is 

estimated as 1.6 My circa. 
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Fig. 6.4.1 – Titonian speciation episode and related examples of phyletic gradualism, punctuated 
equilibrium and punctuated gradualism. 

 

Punctuated Equilibrium (Gould & Eldredge, 1977). New species appear by rapid 

speciation occurring in small isolated populations, followed by migration to other areas where 

fossil sequence usually shows sharp morphological breaks.  

 78 



6. Discussions 

A) F.multicolumnatus – Nannoconus. Faviconus is considered a precursor to Nannoconus, 

which presents a similar general construction (Bralower et al., 1989). Nannoconus species 

such as small and primitive form like Nannoconus sp.1 and N.infans is thought to derive 

by Faviconus. This evolutionary trend is interpreted as an example of punctuated 

equilibrium (Fig. 6.4.1).  

 

Punctuated Gradualism (Malmgren et al., 1984). It implies long-lasting evolutionary stasis 

interrupted by rapid, but gradual phyletic transformation without lineage splitting.  

A) Z.erectus - Z.embergeri. Total shield size and thickness and the central area structure of 

Z.erectus change stratigraphically: shield size and its thickness increase, and the outline of 

the central bridge changes from lath-shaped to rhomboid/elliptical. Numerous authors 

adopt the species Z.salillum and Z.noelii (forms with a thicker cross bar and a wider wall 

than Z.erectus), while others suggest that these species are intermediate in the evolutionary 

lineage between Z.erectus and Z.embergeri (Thierstein, 1976; Wind, 1978; Roth, 1983; 

Bralower et al., 1989). Indeed, a complete gradation between true Z.erectus and true 

Z.embergeri have been observed in this study, but discrimination into separate species is 

still in progress. Thus, Z.erectus evolution toward Z.embergeri is interpreted as an 

example of Punctuated Gradualism. 

B) C.mexicana minor - C.mexicana mexicana: C.mexicana minor clearly represent a 

precursor to C.mexicana mexicana (Bralower et al., 1989). The dimensions of C.mexicana 

minor increase stratigraphically. The earliest C.mexicana minor forms are often less than 

2µm in length and the later C.mexicana mexicana forms are up to 12µm in length. A fair 

amount of gradation between the two forms has been observed, and interpreted as an 

example of Punctuated Gradualism (Fig. 6.4.1). The interval characterized by the 

occurrences of transitional forms lasts 0.6 My circa. 

C) M.quadratus - M.chiastius. The two species are differentiated by the dimension and shape 

of the central cross. The central cross of M.chiastius is small and have a blocky shape, 

while the central cross of M.quadratus is greater, have often a pointy ends and the 

dimensions of the two arms are often unequal in length. A clear evolutionary transition is 

observed between M.quadratus and M. chiastius. There is a complete gradation between 
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the typical cross structure of the two taxa: for this reason it has been interpreted as an 

example of Punctuated gradualism. 

D) Nannoconus. The investigations performed during this PhD project confirm that Berriasian 

nannoconids might have a precursor of smaller size in the Tithonian, as proposed by 

Bralower et al. (1989). In addition, our results contribute to the interpretation of the 

evolution lineage of this genus. The size, calcification degree and the central canal 

dimensions of Nannoconus cleary change stratigraphically. Nannoconids characterized by 

conical outline and narrow canal show an increase of the maximum diameter from less 

than 4µm (Nannoconus sp.1), to 6-8µm (Nannoconus sp.2), to 8-10µm (N.steinmannii 

minor) to 10-20µm (N.steinmannii steinamnnii). The same trend has been observed for 

N.kampneri minor and N.kamptneri kamptneri. These changes provide examples of 

punctuated gradualism (Fig. 6.4.1). Particularly, the interval between the FO of 

Nannoconus sp.2 and the FO of N.steinmannii minor is characterized by the occurrences of 

transitional forms and lasts 0.7 My circa, while the interval between the FO of 

N.steinmannii minor and the FO of N.steinmannii steinamnniii lasts 1.6 My circa. 

 

As discussed above, the Tithonian mass occurrences of highly calcified nannoplankton and 

its evolution (NCEs) were possibly controlled by abiotic factors, such as seawater chemistry 

(Mg/Ca ratio values and pCO2) and temperature (cool climatic episode). On the other hand 

Tithonian speciation episode correspond to an interval of environmental stability: stable 

condition probably favouring diversification and expansion of calcareous nannoplankton, 

adapted to oligotrophic oceans. If so, the onset of the massive nannoplankton diversification 

might represent the onset of a stable environment under low pCO2 and relatively cool climate. 

Particularly, nannoliths seem to have experienced all three evolutionary modes, while 

coccoliths provide examples for only two of them. Evolutionary interpretations permit the 

following considerations: on a specific level both nannoliths and coccoliths seem to prefer 

evolutionary modes implying a gradual transformation from a ancestor species to a descendant 

one, during time intervals of more that 1 Ma; while on a generic level a by rapid speciation is 

preferred. 

 

 

 80 



7. Conclusions 

 

7. CONCLUSIONS 
 

High-resolution calcareous nannofossil biostratigraphy of several sections from the 

Southern Alps (Tethys Ocean) was obtained and integrated with magnetostratigraphy and, 

where available, with calpionellid biostratigraphy, to achieve a high-resolution stratigraphic 

framework for the Upper Jurassic – lowermost Cretaceous. A revised calcareous nannofossil 

biostratigraphic scheme is proposed for the Callovian – Tithonian time interval in the Tethyan 

Realm: three new Zones and two new Subzones are proposed on the base of primary and 

secondary events, and four Zone, previously defined by Bralower et al. (1989), are here 

revised. 

 

Calcareous nannofossil quantitative analysis were performed on selected sections from the 

Southern Alps and on DSDP Site 534 A from the Atlantic Ocean, to calculate nannofossil 

biogenic calcite paleo-fluxes and to monitor their impact on pelagic sedimentation during a 

time interval characterized by a shift from mostly siliceous to mainly calcareous sedimentation.  

• Based on ultra-thin section analysis, seven nannofacies (Large Watznaueria; 

Conusphaera; Polycostella; Conusphaera and Polycostella; Conusphaera, Polycostella 

and small nannoconids; Nannoconus nannofacies) are documented and proposed as 

additional biostratigraphic tools.  

• Absolute abundance data show that in the uppermost Tithonian abundances of 

F.multicolumnatus, C.mexicana and P.beckmannii increase significantly. Nannoconids 

appear and rapidly develop reaching high abundances in the uppermost Tithonian. On the 

basis of absolute abundances, four Acme intervals (F.multicolumnatus, C.mexicana, 

P.beckmannii and Nannoconus acmes), defined as intervals of specific taxa maximum 

abundance, are recognized integrated with nannofacies and integrated with nannofossil 

biozones.  

• Based on the obtained paleo-fluxes, the Nannofossil Calcification Events (NCEs) are 

recognized, and interpreted in relation to western Tethys Ocean sedimentation is 

discussed. Calcareous biogenic paleo-fluxes point out a link between the lithologic 

changes and calcified plankton evolution across the early Tithonian to early Berriasian 
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interval. During Early Tithonian (Rosso ad Aptici) a first calcification event (NCE I) is 

characterized by nannolith (F.multicolumnatus, C.mexicana, P.beckmannii) increase in 

abundance, size and calcification degree, followed by the occurrence of the first calcified 

calpionellid (Tintinnopsella). In the Late Tithonian to Early Berriasian (Rosso ad Aptici – 

Maiolica transition and Maiolica) a second bigger calcification event (NCE II) is 

characterized by a dramatic increase in nannoconid abundance and calcification, reaching 

lithogenetic amounts, concomitant with a moderate abundance increase of calcified 

calpionellids (genera Crassicollaria, Calpionella, Remaniella).  

• Paleoceanographic and climatic factors controlling NCEs at low latitudes (Tethyan Realm) 

are discussed. The Late Jurassic nannoplankton evolution was mostly controlled by the 

following factors: A) a decrease in pCO2 due to decreased spreading rates; B) a decrease in 

oceanic Mg/Ca ratio values promoting low Mg-CaCO3 and CaCO3 biomineralization 

(“nannofossil fertilization” sensu Stanley, 2006); C) cool climatic conditions (Price, 1999; 

Sorrosa et al., 2005); D) stable environmental conditions, without significant 

perturbations, favouring diversification and expansion of calcareous nannoplankton. 

 

The calcareous nannofossil speciation episode during the Tithonian was investigated to 

monitor nannofossil evolutionary behaviour during an interval of inferred 

paleoceanographic and paleoclimatic stability. This speciation episode provides examples 

of all the three speciation models: Phyletic Gradualism, Punctuated Equilibrium and 

Punctuated Gradualism. Evolutionary modes also suggest that at specific level both 

nannoliths and coccoliths gradually evolve in a time interval of more that 1 Ma, while at 

generic level a rapid speciation is most common. 
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8. TAXONOMIC INDEX and NOTES ON SELECTED CALCAREOUS 

NANNOFOSSIL TAXA 
 

8.1. Taxonomic Index 
Calcareous nannofossil species recognized (digital range chart available on the digital support 

attached), here listed in species alphabetic order. 

 
Anfractus harrisonii Medd, 1979  
Ansulasphaera helvetica Grün and Zweili, 1980 
Assipetra infracretacea (Thierstein, 1973) Roth, 1973 
Axopodorhabdus cylindratus (Noël, 1965) Wind and Wise, 1977 
Biscutum constans (Gorkl, 1957) Black ex Black and Barnes, 1959 
Biscutum dubium (Noël, 1965) Grün in Grün et al., 1974 
Braarudosphaera regularis Black, 1973 
Conusphaera mexicana (Trejo, 1969) subsp. mexicana Bralower and Thierstein, 1989 
Conusphaera mexicana (Trejo, 1969) subsp. minor Bralower and Thierstein, 1989 
Crepidolithus crassus (Deflandre in Deflandre and Fert, 1954) Noël, 1965 
Crepidolithus perforata (Medd, 1979) Grün and Zweili, 1980 
Cretarhabdus angustiforatus (Black, 1971) Bukry, 1973 
Cretarhabdus conicus Bramlette and Martini, 1964 
Cretarhabdus octofenestratus Bralower and Thierstein, 1989 
Cretarhabdus surirellus (Deflandre, 1954) Reinhardt, 1970 
Cruciellipsis cuvillieri (Manivit, 1956) Thierstein, 1971 
Cyclagelosphaera argoensis Bown, 1992b 
Cyclagelosphaera deflandrei Manivit, 1966 
Cyclagelosphaera margerelii Noël, 1965 
Cyclagelosphaera sp.1 (Noël, 1965), this study 
Cyclagelosphaera riyadhensis Varol, 2006 
Cyclagelosphaera tubulata (Grün and Zweili, 1980) Cooper, 1987 
Cyclagelosphaera wiedmannii Reale and Monechi, 1994 
Diazomatolithus lehmanii Noël,1965 
Discorhabdus rotatorius (Bukry, 1969) Thierstein, 1973 
Ethmorhabdus gallicus Noël, 1965 
Faviconus multicolumnatus (Bralower in Bralower, Monechi and Thierstein, 1989), 

emended in this study 
Hexalithus noeliae (Noël, 1956) Loeblich and Tappan, 1965 
Hexalithus sp. 1 (Loeblich and Tappan, 1964), this study 
Hexapodorhabdus cuvillieri Noël, 1965 
Lithraphidites carniolensis Deflandre, 1963 
Lotharingius barozii Noël, 1973 
Lotharingius crucicentralis (Medd, 1971) Grün and Zweili, 1980 
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Lotharingius hauffii Grün and Zweili in Grün et al., 1974 
Lotharingius sigillatus  (Stradner, 1971) Prins in Grün et al., 1974 
Manivitella pemmatoidea (Deflandre ex Manivit, 1965) Thierstein, 1971 
Markalius circumradiatus (Stover, 1966) Perch-Nielsen, 1968 
Micrantholithus hoschulzii (Reinhardt, 1966) Thierstein, 1971 
Micrantholithus obtusus Stradner, 1963 
Microstaurus chiastius (Worsley, 1971) Bralower, Monechi and Thierstein, 1989 
Microstaurus quadratus Black, 1971 
Miravetesina favula Grün In Grün and Allemann, 1975 
Nannoconus bermudezii Brönnimann, 1955 
Nannoconus boneti Trejo, 1959 
Nannoconus bronnimannii Trejo, 1959 
Nannoconus colomii (de Lapparent, 1931) Kamptner, 1938 
Nannoconus compressus Bralower and Thierstein in Bralower, Monechi and Thierstein, 

1989 
Nannoconus dolomiticus Cita and Pasquarè, 1959 
Nannoconus globulus (Brönnimann, 1955) subsp, globulus Bralower and Thierstein in 

Bralower, Monechi and Thierstein, 1989 
Nannoconus globulus (Brönnimann, 1955) subsp, minor Bralower and Thierstein in 

Bralower, Monechi and Thierstein, 1989 
Nannoconus infans Bralower in Bralower, Monechi and Thierstein, 1989 
Nannoconus kamptneri (Brönnimann, 1955) subsp, kamptneri Bralower and Thierstein in 

Bralower, Monechi and Thierstein, 1989 
Nannoconus kamptneri (Brönnimann, 1955) subsp. minor Bralower and Thierstein in 

Bralower, Monechi and Thierstein, 1989 
Nannoconus sp.1, this study  
Nannoconus sp.2 this study  
Nannoconus steinmannii (Kamptner, 1931) subsp, minor Dares and Achéritéguy, 1980 
Nannoconus steinmannii (Kamptner, 1931) subsp. steinmannii 
Nannoconus wintereri Bralower and Thierstein in Bralower, Monechi and Thierstein, 1989 
Parhabdolithus splendens (Deflandre, 1953) Noël, 1969 
Percivalia fenestrata (Worsley 1971) Wise, 1983 
Polycostella sp.1, this study 
Polycostella beckmannii Thierstein, 1971  
Polycostella senaria Thierstein, 1971 
Polypodorhabdus escaigii Noël, 1965 
Pseudolithraphidites quattruobacillus Keupp, 1976 
Rhagodiscus asper (Stradner, 1963) Manivit, 1971 
Rhagodiscus nebulosus Bralower and Thierstein in Bralower, Monechi and Thierstein, 

1989 
Rotellapillus laffittei (Noël, 1956) Noël, 1973 
Rucinolithus wisei Thierstein, 1971 
Schizosphaerella punctulata Deflandre and Dangeard, 1938 
Triscutum beaminsterensis Dockerill, 1987 
Triscutum expansus (Medd, 1979) Deckerill, 1987 
Umbria granulosa subsp. granulosa Bralower and Thierstein in Bralower, Monechi and 
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Thierstein, 1989 
Umbria granulosa subsp. minor Bralower and Thierstein in Bralower, Monechi and 

Thierstein, 1989 
Vagalapilla stradneri (Rood, Hay end Bernard, 1971) Thierstein, 1973 
Watznaueria sp.3 Cobianchi et al., 1992 
Watznaueria barnesiae (Black, 1959) Perch-Nielsen, 1968 
Watznaueria biporta Bukry, 1969 
Watznaueria britannica (Stradner, 1963) Reinhardt, 1964 
Watznaueria britannica (Stradner, 1963) Reinhardt, 1964, large form, this study 
Watznaueria communis (Reinhardt, 1964) 
Watznaueria communis (Reinhardt, 1964) large form, this study 
Watznaueria contracta (Bown and Cooper, 1989) Cobianchi, Erba and Pirini Radrizzani, 

1992 
Watznaueria crucicentralis (Medd, 1971) Thierstein, 1976 
Watznaueria fossacincta (Black, 1971a) Bown in Bown and Cooper, 1989a  
Watznaueria manivitiae (Bukry, 1973) Moshkovitz and Ehrlich, 1987 
Watznaueria manivitiae (Bukry, 1973) Moshkovitz and Ehrlich, 1987, large form, this 

study 
Watznaueria rawsonii Crux, 1987  
Watznaueria sp.3 Cobianchi, Erba and Pirini Radrizzani, 1992  
Zeugrhabdotus cooperi Bown, 1992b  
Zeugrhabdotus embergeri (Noël,1959) Bralower, Monechi and Thierstein, 1989 
Zeugrhabdotus erectus (Deflandre, 1954) Bralower, Monechi and Thierstein, 1989 
 
 

8.2. Notes on selected calcareous nannofossil taxa 
 
8.2.1. Genus Cyclagelosphaera (Noël, 1965)  

Cyclagelosphaera sp.1   
(Plate VIII, Fig. 4-11) 

 
Description: Circular coccolith with a distal shield composed by 19-25 elements and a 

proximal one slightly smaller than the former, the two shields are connected by a 
central circular tube, which determine a central hole. 

Remarks: This form is distinguished form C.margerelii by its bigger diameter, from 
C.deflandrei by its smaller diameter and from C.wiedmannii by its smaller 
diameter and white colours. 

Dimension: C.margerelii and C.deflandrei, show maximum diameter of 6 µm and a 
minimum diameter 9 µm, respectively. The form observed both in smear slide 
and thin section from several sections have a diameter between 6 µm and 9 µm; 
overgrowth of C.margerelii has been excluded.  

Distribution: Lower Tithonian (Nannofossil Zone NJT-15, CM21) to Berriasian 
(Nannofossil Zone NK-2). 
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8.2.2. Genus Faviconus Bralower in Bralower, Monechi and Thierstein, 1989 
          Faviconus multicolumnatus Bralower in Bralower, Monechi and Thierstein, 1989 

(Plate I) 
 
1978 ?Nannoconus sp. aff. N.bermudezi Brönnimann, 1955 in Wind, pl. 1, figs. 

14, 20. 
1978 ?Nannoconus sp. Wind, pl. 1, figs. 18, 19. 

             1989 Faviconus multicolumnatus Bralower in Bralower, Monechi and Thierstein, 
1989 

 
Description: Numerous stacked wedges are separated by thin axial canals.  
Remarks: This species is often seen as broken pieces in smear slides, while in thin section 

large aggregate of numerous individuals (up to a maximum of ten) are recognizable. 
This form is distinguished form N.dolomiticus by its smaller dimensions. 

Dimension: The forms previously described (Bralower, Monechi and Thierstein, 1989) 
consist of a maximum length of 6-12 µm and a maximum width of 4-6 µm. The forms 
observed in thin section from Torre de Busi and Monte Pernice and DSDP Site 534 A 
are bigger both in length and width; overgrowth bias is excluded.  

       Length: 6-20 µm; Width: 4-10 µm. 
Distribution: Upper Oxfordian (Nannofossil Zone NJT-14) - Upper Tithonian (top of 

chron CM19n; Nannofossil Zone NJT-17). 
Known range: uppermost Oxfordian (Bimmammatum Tethyan Ammonite Zone and 

Rosenkrantzi Boreal Ammonite Zone, De Kaenel et al., 1996) to Upper Tithonian (top 
in chron CM19n, Bralower, Monechi and Thierstein, 1989). 

 
8.2.3. Genus Hexalithus Gardet, 1955 

 Hexalithus sp. 1 
 (Plate IV, Fig. 9) 

 
1956 Hexalithus hexalithus Noël, 1956, p.329, pl.5, figs. 39, 40 a-c 
1965 Hexalithus noeliae Loeblich and Tappan, 1965 

 
Description: hexagonal nannolith composed of six triangular elements adjacent one to the 

other. Every single element has a straight rim, no flare is present at the end of petals.  
Remarks: This form is distinguished form H. noeliae by its always linear outer margin, 

and its bigger dimension. 
Dimension: Diameter 4-8 µm 
Distribution: Upper Tithonian (CM19n; upper Nannofossil Zone NJT-17) - Lower 

Berriasian? (CM17r; Nannofossil Zone NK-1) 
 
8.2.4. Genus Nannoconus Kamptner, 1931 
          Nannoconus sp.1  

(Plate II, fig.1) 
 

Description: very small and primitive nannoconid with a variable shape: square or 
sausage-shape. This form has a large canal and narrow apical and basal apertures. 
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Individual wedges outline are very difficult to be seen in the light microscope. 
Remarks: It is distinguished from Nannoconus infans by its larger axial canal, and from 

Nannoconus globulus minor by its smaller size. This species is rare in smear slides 
since it is very small and delicate, but is easily observed in thin-section, as it is one of 
the first (primitive) nannoconids to appear. 

Dimension: Length: 1-4.5 µm; Width: 2-4.5 µm. 
Distribution: rare individuals are reported from Lower Tithonian to Upper Tithonian 

(Nannofossil Zone NJT-16; CM20).  
 

8.2.5. Genus Nannoconus Kamptner, 1931 
Nannoconus sp.2  
(Plate II, figs. 5-6) 

 
Description: rectangular to elongate oval outline toward slightly conical. This form has 

narrow axial canal and wedges from adjacent walls are closely juxtaposed, also apical 
and basal apertures are narrow.  

Remarks: This form is considered to represent a intermediate form between N.compressus 
and N. steinmannii minor since a complete gradation in shape and size was observed. 
It is distinguished from Nannoconus compressus by its slightly conical outline, from 
Nannoconus steinmannii minor by its less conical outline and from Nannoconus 
wintereri by its very narrow axial canal.  

Dimension: Length: 6-8 µm; Width: 4-6 µm. 
Distribution: rare individuals are reported from Upper Tithonian to Lower Berriasian 

(Nannofossil Zone NJT-17; CM19n).  
 

8.2.6. Genus Watznaueria Reinhardt, 1964 
Watznaueria britannica large form 
(Plate VII, fig. 12) 

 
Remarks: In the studied sections along with normal size W.britannica, several large 

morphotypes were observed. These specimens are identical for ultrastructure to 
W.britannica holotype, but their size is always greater.  

Dimension: Length > 9 µm; Width > 7 µm. 
Distribution: Oxfordian (Nannofossil Zone NJT-14) to Lower Tithonian (Nannofossil 

Zone NJT-16).  
 

8.2.7. Genus Watznaueria Reinhardt, 1964 
Watznaueria communis large form 
(Plate VIII, fig. 3) 

 
Remarks: In the studied sections along with normal size W.communis, several large 

morphotypes were observed. These specimens are identical for ultrastructure to 
W.communis holotype, but their size is always greater.  

Dimension: Length > 9 µm; Width > 7 µm. 
Distribution: Oxfordian (Nannofossil Zone NJT-14) to Berriasian (Nannofossil Zone NK-

2).  
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8.2.8. Genus Watznaueria Reinhardt, 1964 
Watznaueria manivitiae large form 
(Plate VII, fig. 8-9) 

 
Remarks: In the studied sections along with normal size W.manivitiae, several large 

morphotypes were observed. These specimens are identical for ultrastructure to 
W.manivitiae holotype, but their size is always greater.  

Dimension: Length > 12 µm; Width > 10 µm. 
Distribution: Upper Callovian (Nannofossil Zone NJT-12) to Lower Tithonian 

(Nannofossil Subzone NJT-14b). 
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9. CALCAREOUS NANNOFOSSIL PLATES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PLATE I 
 
1-4. Faviconus multicolumnatus (Bralower and Thierstein, 1989) subsp. sp.1  
 

1- cross-polarized light, DSDP site 534 A 101-04; 98-99, ultra-thin section.  
2- cross-polarized light, DSDP site 534 A 102-01; 111-112, ultra-thin section.  
3- cross-polarized light, Torre de Busi, sample/level TdB 30,15, smear slide.  
4- cross-polarized light, DSDP site 534 A 099-01; 38-39, ultra-thin section.  

 
5-6. Faviconus multicolumnatus (Bralower and Thierstein, 1989) subsp. sp.2  
 

5- cross-polarized light, Torre de Busi, sample/level TdB 7,50, smear slide. 
6- cross-polarized light, DSDP site 534 A 099-01; 38-39, ultra-thin section. 

 
7-8. Spheres of Faviconus multicolumnatus (Bralower and Thierstein, 1989) subsp. sp.2  
 

7- cross-polarized light, DSDP site 534 A 097-01; 43-44, ultra-thin section. 
8- cross-polarized light, Monte Pernice, sample M7, ultra-thin section. 
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9. Calcareous nannofossil plates 

 
PLATE I 
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9. Calcareous nannofossil plates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PLATE II 
 
1- Nannoconus sp.1, this work 

cross-polarized light, Colma di Vignole, sample/level CdV 8,70, smear slide.  
 

2-3. Nannoconus infans Bralower, 1989  
 

2- cross-polarized light, Monte Pernice, sample/level M3/4,60, ultra-thin section.  
3- cross-polarized light, Foza A, sample/level FZa 12,38, smear slide. 
  

4- Nannoconus compressus Bralower and Thierstein, 1989  
cross-polarized light, Foza B, sample/level FZb 53,15, smear slide.  

 
5-6. Nannoconus sp.2, this work 
 

5- cross-polarized light, Bombatierle, sample/level BOM 1,28, smear slide. 
      6- cross-polarized light, Colma di Vignole, sample/level CdV 7,04, smear slide.  

 
 
7. Micrite made by small nannoconids (“nannoconites”)  
     cross-polarized light, DSDP site 534 A 090-03; 21-22, ultra-thin section.  
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PLATE II 
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9. Calcareous nannofossil plates 

 
 
 
 
 
 
 
 
 
 
 
 
 

PLATE III 
 

1- Nannoconus globulus (Brönnimann, 1955) subsp, minor Bralower and Thierstein, 1989 
    cross-polarized light, Foza A, sample/level FZa 15,20, smear slide. 
 
2-3. Nannoconus globulus (Brönnimann, 1955) subsp, globulus Bralower and Thierstein, 1989 

 
2- cross-polarized light, Foza B, sample/level FZb 63,02, smear slide. 
3- cross-polarized light, Foza B, sample/level FZb 74,95, smear slide. 

 
4-6. Nannoconus wintereri Bralower and Thierstein, 1989 

 
4- cross-polarized light, Torre de Busi, sample/level TdB 4,90, smear slide. 
5- cross-polarized light, Foza B, sample/level FZb 52,33, smear slide. 
6- cross-polarized light, Torre de Busi, sample/level TdB 4,90, smear slide. 

 
7-8. Nannoconus steinmannii (Kamptner, 1931) subsp, minor Dares and Achéritéguy, 1980 

 
7- cross-polarized light, Foza B, sample/level FZb 50,50, smear slide. 
8- cross-polarized light, Foza B, sample/level FZb 63,20, smear slide. 
 

9-10. Nannoconus steinmannii (Kamptner, 1931) subsp. steinmannii 
 
9- cross-polarized light, Foza A, sample/level FZa 15,20, smear slide. 
10- cross-polarized light, Monte Pernice, sample/level M4/5,40, ultra-thin section.  
 

11- Nannoconus kamptneri (Brönnimann, 1955) subsp. minor Bralower and Thierstein, 1989 
      cross-polarized light, Foza B, sample/level FZb 73,85, smear slide. 

 
12- Nannoconus kamptneri (Brönnimann, 1955) subsp, kamptneri Bralower and Thierstein,     

1989 
      fragment, cross-polarized light, Foza B, sample/level FZb 74,95, smear slide. 
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PLATE III 
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9. Calcareous nannofossil plates 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
PLATE IV 
 
1-2. Conusphaera mexicana (Trejo, 1969) subsp, mexicana Bralower and Thierstein, 1989 
 

1- cross-polarized light, Monte Pernice, sample/level M16/22,00, ultra-thin section.  
2- cross-polarized light, Foza A, sample/level FZa 9,60, smear slide 

  
3-6. Polycostella beckmannii Thierstein, 1971  
 

3- cross-polarized light, Colma di Vignole, sample/level CdV 10,52, smear slide. 
4- cross-polarized light, Colma di Vignole, sample/level CdV 9,28, smear slide. 
5- cross-polarized light, Colma di Vignole, sample/level CdV 10,52, smear slide. 
6- cross-polarized light, Foza A, sample/level FZa 3,40, smear slide. 

 
7-8. Hexalithus noeliae (Noël, 1956) Loebllch and Tappan, 1964 
 

7- cross-polarized light, Torre de Busi, sample/level TdB 15,05, smear slide. 
8- cross-polarized light, Torre de Busi, sample/level TdB 13,30, ultra-thin section.  

 
9. Hexalithus sp.1 (Noël, 1956) this work 
    cross-polarized light, Torre de Busi, sample/level TdB 3,25, ultra-thin section.  
 
10-12. Micrantholithus hoschulzii (Reinhardt, 1966) Thierstein, 1971 transitional to               

Micrantholithus obtusus Stradner, 1963 
 

10- M.hoschulzii cross-polarized light, DSDP site 534 A 091-05; 104-105, ultra-thin 
section.  

11- transitional form, cross-polarized light, Foza B, sample/level FZb 59,0, smear slide. 
12- M.obtusus cross-polarized light, DSDP site 534 A 091-05; 104-105, ultra-thin section.  
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9. Calcareous nannofossil plates 

 
PLATE IV 
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9. Calcareous nannofossil plates 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PLATE V 
 
1-3. Microstaurus quadratus Black, 1971 
 

1- cross-polarized light, Torre de Busi, sample/level TdB 14,59, smear slide. 
2- cross-polarized light, Torre de Busi, sample/level TdB 5,22, smear slide. 
3- cross-polarized light, Torre de Busi, sample/level TdB 50,20, smear slide. 

  
4-5. Microstaurus chiastius (Worsley, 1971) Bralower et al., 1989 
 

4- cross-polarized light, Foza A, sample/level FZa 15,20, smear slide. 
5- cross-polarized light, Foza B, sample/level FZb 74,95, smear slide. 

 
6. Cruciellipsis cuvillieri (Manivit, 1956) Thierstein, 1971 

cross-polarized light, Foza B, sample/level FZb 62,60, smear slide. 
 
7. Cretarhabdus surirellus (Deflandre, 1954) Reinhardt, 1970 
cross-polarized light, Torre de Busi, sample/level TdB 6,18, smear slide. 
 
8-9. Cretarhabdus octofenestratus Bralower and Thierstein, 1989 
 

8- cross-polarized light, Foza B, sample/level FZb 59,0, smear slide. 
9- cross-polarized light, Foza A, sample/level FZa 6,55, smear slide. 

 
10-12. Cretarhabdus angustiforatus (Black, 1971) Bukry, 1973 
 

10- cross-polarized light, Foza B, sample/level FZb 68,95, smear slide. 
11- cross-polarized light, Foza B, sample/level FZb 69,90, smear slide. 
12- cross-polarized light, Foza B, sample/level FZb 66,10, smear slide. 
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PLATE V 
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9. Calcareous nannofossil plates 

 
 
 
 
 
 
 
 
 
 
 
PLATE VI 
 
1-2. Umbria granulosa subsp. granulosa Bralower and Thierstein, 1989 
 

1- cross-polarized light, Torre de Busi, sample/level TdB 4,02, smear slide. 
2- cross-polarized light, Torre de Busi, sample/level TdB 15,50, smear slide. 

 
3-4. Rhagodiscus asper (Stradner, 1963) Manivit, 1971 
 

3- cross-polarized light, Foza B, sample/level FZb 66,10, smear slide. 
4- cross-polarized light, Torre de Busi, sample/level TdB 4,28, smear slide. 

 
5. Rhagodiscus nebulosus Bralower and Thierstein, 1989 
cross-polarized light, Foza B, sample/level FZb 68,95, smear slide. 
 
6-7. Percivalia fenestrata (Worsley 1971) Wise, 1983 
 

6- cross-polarized light, Foza B, sample/level FZb 59,0, smear slide. 
7- cross-polarized light, Foza B, sample/level FZb 63,20, smear slide. 

 
8. Zeugrhabdotus erectus (Deflandre, 1954) Bralower et al.,1989 
cross-polarized light, DSDP site 534 A 102-02; 93-94, ultra-thin section.  
 
9-10. Zeugrhabdotus erectus (Deflandre, 1954) Bralower et al.,1989 transitional to 
Zeugrhabdotus embergeri (Noël,1959) Bralower et al., 1989 
 

9- cross-polarized light, Torre de Busi, sample/level TdB 2,95, smear slide. 
10- cross-polarized light, Torre de Busi, sample/level TdB 17,54, smear slide. 

 
11. Zeugrhabdotus embergeri (Noël,1959) Bralower et al., 1989 
cross-polarized light, Foza A, sample/level FZa 9,60, smear slide. 
 
12. Zeugrhabdotus cooperi Bown, 1992b  
 cross-polarized light, Torre de Busi, sample/level TdB 4,46, smear slide. 
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PLATE VI 
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9. Calcareous nannofossil plates 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
PLATE VII 
 
1-2. Lotharingius hauffii Grün and Zweili in Grün et al., 1974 
 

1- cross-polarized light, Bombatierle, sample/level BOM 8,19, smear slide. 
2- cross-polarized light, Colma di Vignole, sample/level CdV 8,37, smear slide. 

 
3-4. Watznaueria fossacincta (Black, 1971a) Bown in Bown and Cooper, 1989a  
 

3- cross-polarized light, Colma di Vignole, sample/level CdV 8,37, smear slide. 
4- cross-polarized light, Foza A, sample/level FZa 14,15, smear slide. 

 
5-6. Watznaueria barnesiae (Black, 1959) Perch-Nielsen, 1968 
 

5- cross-polarized light, Foza B, sample/level FZb 51,05, smear slide. 
6- cross-polarized light, Monte Pernice, sample/level M13/16,20, smear slide. 

 
7. Watznaueria sp.3 (Cobianchi et al., 1992) 
cross-polarized light, Colma di Vignole, sample/level CdV 18,00, smear slide. 
 
8-9. Watznaueria manivitae (Bukry, 1973) Moshkovitz and Ehrlich, 1987 
 

8- cross-polarized light, Torre de Busi, sample/level TdB 53,20, smear slide. 
9- large form; cross-polarized light, DSDP site 534 A 100-02; 87-88, ultra-thin section.  

 
10-12. Watznaueria britannica (Stradner, 1963) Reinhardt, 1964 
 

10- cross-polarized light, Foza A, sample/level FZa 9,60, smear slide. 
11- cross-polarized light, Colma di Vignole, sample/level CdV 8,70, smear slide. 
12- large form; cross-polarized light, Foza A, sample/level FZa 2,23, smear slide. 
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9. Calcareous nannofossil plates 

 
PLATE VII 
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9. Calcareous nannofossil plates 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PLATE VIII 
 
1-3. Watznaueria communis (Reinhardt, 1964) 
 

1- cross-polarized light, Monte Pernice, sample/level M4/5,40, smear slide. 
2- cross-polarized light, Foza A, sample/level FZa 22,00, smear slide. 
3- large form; cross-polarized light, Foza A, sample/level FZa 23,17, smear slide. 

 
4. Cyclagelosphaera tubulata (Grün and Zweili, 1980) Cooper, 1987 
 cross-polarized light, Foza B, sample/level FZb 82,01, smear slide. 
 
5-7. Cyclagelosphaera margerelii Noël, 1965 
 

5- cross-polarized light, Foza A, DSDP site 534 A 100-02; 87-88, ultra-thin section.  
6- cross-polarized light, Foza A, sample/level FZa 23,17, smear slide. 
7- cross-polarized light, Torre de Busi, sample/level TdB 4,46, smear slide. 

 
8-9. Cyclagelosphaera argoensis Bown, 1992b 
 

8- cross-polarized light, Torre de Busi, sample/level TdB 15,50, smear slide. 
9- cross-polarized light, Torre de Busi, sample/level TdB 4,02, smear slide. 

 
10-11. Cyclagelosphaera deflandrei Manivit, 1966 
 

10- cross-polarized light, DSDP site 534 A 091-05; 104-105, ultra-thin section.  
11- cross-polarized light, DSDP site 534 A 100-02; 87-88, ultra-thin section.  
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PLATE VIII 

 

 
   

 105



9. Calcareous nannofossil plates 

 

 

 

 

 

 

 106 



10. References 

 
10. REFERENCES 
 
Abbink, O., Targarona, J., Brinkhuis, H. & Visscher, H. (2001). Late Jurassic to earliest 

Cretaceous paleoclimatic evolution of the southern North Sea. Global and Planetary 
Change 30, 231-256. 

Adatte, T., Stinnesbeck, W., Remane, J. & Hubberten, H. (1996). Paleoceanographic 
changes at the Jurassic-Cretaceous boundary in the Western Tethys, northeastern Mexico. 
Cretaceous Research 17, 671-689. 

Andreini, G., Caracuel, J.E. & Parisi, G. (2007). Calpionellid biostratigraphy of the Upper 
Tithonian-Upper Valanginian interval in western Sicily. Swiss j. geosci. 100, 179-198. 

Cecca, F., Garin, B.M., Marchand, D., Lathuiliere, B. & Bartolini, A. (2005). Paleoclimatic 
control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during 
the Oxfordian (Late Jurassic). Palaeogeo. Palaeoclim. Palaeoeco. 222: 10-32.  

Barberis, A., Fossati, S., Bersezio, R. & Erba, E. (1990). Lithostratigraphy and 
biostratgraphy of the Maiolica formation from the Lombardy Basin (Souther Alps). 
Memorie della Società Geologica Italiana 45, 111-117. 

Bartolini, A., Baumgartner, P.O. & Guex, J. (1999). Middle and Late Jurassic radiolarian 
paleoecology versus carbon-isotope stratigraphy. Palaeogeo. Palaeoclim. Palaeoeco. 145, 
43-60. 

Bartolini, A., Pittet, B., Mattioli, E. & Hunziker, J.C. (2003). Shallow-platform 
paleoenvironmental conditions recordered in deep-shelf sediments: C and O stable isotopes 
in Upper Jurassic sections of Southern Germany (Oxfordian-Kimmeridgian). Sedimentary 
Geology 160, 107-130. 

Baumann, K., Andruleit, H., Bockel, B., Geisen, M., & Kinkel, H. (2005). The significance 
of extant coccolithophores as indicators of ocean water masses, surface water temperatures, 
and paleoproductivity: a review. Palaontologische Zeitschrift 79 (1), 93-112. 

Baumgartner, P.O. (1984). Age and genesis of the Tethyan Jurassic Radiolarite. Eclogae 
Geologicae Helvetiae 80 (3), 831-879. 

Baumgartner, P.O. (1987). Age and genesis of the Tethyan Jurassic Radiolarite. Eclogae 
Geologicae Helvetiae 80(3), 831-879. 

Baumgartner, P.O. , Martire, L., Gorican, S., O’Dogherty, L., Erba, E. & Pillevuit, A. 
(1995). New Middle and Upper Jurassic radiolarian assemblages co-occurring with 
ammonites and nannofossil from the Southern Apls (Northen Italy). In: Baumgartner P.O. 
et al. (Eds.) – Middle Jurssic to Lower Cretaceous radiolaria of Tethys; occurrences, 
systematics, biochronology. Mem. Geol. Lausanne, 23, 737-750, Lausanne.  

Baumgartner, P.O., Bernoulli, D. & Martire, L. (2001). Mesozoic pelagic facies of the 
Southern Alps: Paleotectonics and paleoceanography. IAS 2001 Davos: Excursion A1. 

Berggren, W.A. & Hollister, C.D. (1977). Plate tectonics and Paleocirculation – Commotion 
in the ocean.  Tectonophysics 38, 11-48 

Berner, R.A & Kothavala, Z. (2001). GEOCARB III: a revised model of atmospheric CO2 
over Phanerozoic time. American Journal of Science 301, 182-204. 

Berner R.A (2006). GEOCARBSULF:  a combined model for Phanerozoic atmospheric O2 
and CO2. Geochimica et Cosmichimica acta 70, 5653-5664. 

Bernoulli, D. (1964). Zur Geologie des Monte Generoso (Lombardische alpen). Beitr. Z. Geol. 
Karte Schweiz, Neue Folge, Bern, 134p. 

 107



10. References 

Bernoulli, D. & Peters, T. (1970). Traces of rhyolitic-trachytic volcanism in the Upper 
Jurassic of the Southern Alps. Ecl. Geol. Helv. 63, 609-621.   

Bernoulli, D. & Peters, T. (1974). Traces of rhyolitic-trachytic volcanism in the Upper 
Jurassic of the Southern Alps: reply. Ecl. Geol. Helv. 67, 209-213. 

Bernoulli, D. & Jenkyns, H.C. (1974). Alpine, Mediterranean, and central Atlantic Mesozoic 
facies in relation to the early evolution of the Tethys. Spec. Publ. Soc. Econ. Paleont. 
Mineral., 19, 129-160. 

Bernoulli, D., Caron, C., Homewood, P., Kälin, O. & Stuijvenberg, J.V. (1979).  Evolution 
of continental margin in the Alps. Schweizerische Mineralogische Petrographische 
Mitteilungen 59, 165-170. 

Bersezio, R., Erba, E., Gorza, M. & Riva, A. (2002). Berriasian-Aptian black shales of the 
Maiolica formation (Lombardian Basin, Southern Alps, Northen Italy): local to global 
events. Palaeogeo. Palaeoclim. Palaeoeco. 180, 253-275. 

Bornemann, A., Aschwer, U & Mutterlose, J. (2003). The impact of calcareous Nannofossils 
on the pelagic carbonate accumulation across the Jurassic-Cretaceous Boundary. 
Palaeogeo. Palaeoclim. Palaeoeco. 199, 187-228. 

Bosellini, A., Lobitzer, H., Brandner, R., Resch, W. & Castellarin, A. (1980). The complex 
basin of the Calcareous Alps and Paleomargins.  Abh. Geol. B-A. 34, 287-325. 

Bown, P.R, Cooper M.K.E. & Lord A.R. (1988). A Calcareous nannofossil biozonation 
scheme for early to mid Mesozoic. Newsletters Staratigraphy 20(2), 91-114. 

Bown, P.R. & Cooper, M.K.E. (1989b). Conical calcareous nannofossils in the Mesozoic. In: 
Crux, J.A. & Van Heck, S.E. (Eds.) - Nannofossils and their applications. Proc. of the 
International Nannofossil Association Conference, London 1987, 98-106 

Bown, P.R. (1992). New calcareous nannofossil taxa from the Jurassic/Cretaceous boundary 
interval of site 765 and 261, Argo Abissal Plain. Proc. ODP, scientific results 123, 369-379 

Bown, P.R. & Cooper M.K.E. (1998). Jurassic. In: Bown P.R. (ed.), Calcareous nannofossil 
biostratigraphy. Kluwer Academic Publishers, London, UK, 34-85. 

Bown, P.R. and Young J.R. (1998). Techniques. In: Bown P.R. (ed.), Calcareous nannofossil 
biostratigraphy. Kluwer Academic Publishers, London, UK, 16-28. 

Bown, P.R. and Young J.R. (1998). Introduction. In: Bown P.R. (ed.), Calcareous nannofossil 
biostratigraphy. Kluwer Academic Publishers, London, UK, 1-15. 

Bown, P.R., Cooper, M.K.E. & Lord, A.R. (1988). A Calcareous nannofossil biozonation 
scheme for early to mid Mesozoic. Newsletters Staratigraphy 20 (2), 91-114 

Bown, P.R., Lees, J.A. & Young, J.R. (2004). Calcareous nannoplankton evolution and 
diversity through time. In: Thierstein H.R. & Young J.R. (Eds.) - Coccolithophores from 
molecular processes to global impact, 481-508. 

Bralower, T.J., Monechi, S. & Thierstein, H.R. (1989). Calcareous Nannofossils Zonation of 
the Jurassic-Cretaceous Boundary Interval and Correlation with the Geomagnetic Polarity 
Timescale. Mar. Micropal. 14, 153-235 

Busson, G. & Noel, D. (1991). Les nannoconides indicateurs environnementaux des oceans et 
mers epicontinentales du Jurassique terminal et du Cretace Inferieur. Oceanologica Acta 14 
(4), 333-356 

Carroll, L. D. (1865). Alice’s adventures in Wonderland.  
Cecca, F., Garin, B.M., Marchand, D., Lathuiliere, B. & Bartolini, A. (2005). Paleoclimatic 

control of biogeographic and sedimentary events in Tethyan nd peri-Tethyan areas during 
the Oxfordian (Late Jurassic). Palaeogeo. Palaeoclim. Palaeoeco. 222; 10-32 

 108 



10. References 

Cecca, F., Savary, B., Bartolini, A., Remane, J. & Cordey, F. (2001). The Middle Jurassic - 
Lower Cretaceous Rosso Ammonitico successon of Monte Inici (Trapanese domain, 
western Sicily): sedimentology, biostratigraphy and isotope stratigraphy. Bull. Soc. geol. 
France 172 (5), 647-660 

Channell, J.E.T. & Grandesso, P. (1987). A revised correlation of Mesozoic polarity chrons 
and calpionellid zones.  Earth and Planetary Science Letters 85, 222-240 

Channell, J.E.T., Bralower, T.J. & Grandesso, P. (1987). Biostratigraphic correlation of 
Mesozoic polarity chrons CM1 to CM23 at Capriolo and Xausa (Southern Alps, Italy). 
Earth and Planetary Science Letters 85, 203-221 

Channell, J.E.T., Massari, F. & Benedetti, A. (1990). Magnetostratigraphy and 
biostratigraphy of Callovian-Oxfordian limestones fron Trento plateau (Monte Lessini, 
Northen Italy). Paleogeogr. Paleoclimatol.Paleoecol. 79(3-4): 289-303. 

Channel, J.E.T., Erba, E., Nakanishm, I. & Tamaki, K. (1995). Late Jurassic – Early 
Cretaceous time scales and oceanic magnetic anomaly block models. In: Geocronology 
Time Scales and Global Stratigraphic Correlation, SEPM special publication 54 

Channell, J.E.T., Muttoni, G., Casellato, C.E. & Erba, E. (2007). Polarity and polar wander 
at the Jurassic-Cretaceous boundary in the Southern Alps, Italy, AGU 2007 

Charlson, R.J., Lovelock, J.E., Andreae, M.O. & Warren, S.G. (1987). Oceanic 
phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326; 655-661 

Chiari, M., Cobianchi, M. & Picotti V. (2007). Integrated stratigraphy (radiorarians and 
calcareous nannofossils) of the Middle to Upper Jurassic alpine Radiolarites Lombardian 
basin, Ialy): constrains to their genetic interpretation. Paleogeogr. Paleoclimatol.Paleoecol. 
249, 233-270. 

Clari, P.A., Marini, P., Pastorini, M. & Pavia, G. (1984). Il Rosso Ammonitico Inferiore 
(Bajociano-Calloviano) nei Monti Lessini Settentrionali (Verona). Rivista Italiana di 
Paleontologia e Stratigrafia 90(1), 15-86. 

Cobianchi, M., Erba, E. & Pirini Radrzzani, C. (1992). Evolutionary trends of calcareous 
nannofossil genera Lotharingius and Watznaueria during the Early and Middle Jurassic. 
Memorie di Scienze Geologiche XLIII; 19-25 

Danelian, T. & Johnson, K.G. (2001). Patterns of biotic changes in Middle Jurassic to Early 
Cretaceous Tethyan radiolaria. Marine Micropaleontology 43, 239-260. 

Darwin, C. (1859). L’Origine delle specie. In: L’Evoluzione. Newton, 1994 
De Kaenel, E., Bergen, J.A. and Perch-Nielsen, K. (1996). Jurassic calcareous nannofossil 

biostratigraphy of Western Europe. Compilation of recent studies and calibration of 
bioevents. Bull. Soc. geol. France 167(1), 15-28. 

De Wever, P. & Baudin, F. (1996). Paleogeography of radiolarite and organic-rich deposits in 
Mesozoic Tethys. Geol. Rundsch. 85, 310-326. 

Dromart, G., Garcia, J.P., Gaumet, F., Picard, S., Rousseau, M., Atrops, F., Lecuyer, C. 
& Sheppard, S.M.F. (2003). Perturbation of the carbon cycle at the Middle/Late Jurassic 
transition: geological and geochemical evidences. American Journal of Science 303, 667-
707. 

Dromart, G., Garcia, J.P., Picard, S., Atrops, F., Lecuyer, C. & Sheppard, S.M.F. (2003). 
Ice age at the Middle-Late Jurassic transition? Earth and Planetary Science Letters 213, 
205-220. 

 109



10. References 

Erba, E. & Quadrio, B. (1987). Biostratigrafia a Nannofossili calcarei, Calpionellidi e 
Foraminiferi planctonici della Maiolica (Titoniano sup-Aptiano) nella Prealpi Bergamasche 
(Italia settentrionale). Riv. It. Paleont. Strat. 93(1), 3-108 

Erba, E. (1989). Upper Jurassic to Lower Cretaceous Nannoconus distribution in some 
sections from northern and central Italy. Mem. Sci. Geol. 41, 255 – 261. 

Erba, E. (1994). Nannofossil and superplumes: the Early Aptian "nannoconid crisis". 
Paleoceanography 9(3), 483-501. 

Erba, E. (2004). Calcareous nannofossils and Mesozoic ocean anoxic events. Mar. Micropal. 
52, 85-106 

Erba, E. (2006). The first 150 million years history of calcareous nannoplankton: Biosphere - 
Geosphere interaction. Paleogeogr. Paleoclimatol.Paleoecol. 232, 237-250. 

Gould, S.J. & Eldredge, N. (1977). Punctuated equilibria: the tempo and mode of evolution 
reconsidered. Paleobiology 3:115-151. 

Grabowski, J. & Pszczòlkowski, A. (2006). Magneto- and biostratigraphy of the Tithonian-
Berriasian pelagic sediments in the Tatra Mountains (central Western Carpathians, Poland): 
sedimentary and rock magnetic changes at the Jurassic/Cretaceous boundary. Cretaceous 
research 27, 398-417. 

Gradstein, F.M. & Sheridan, R.E. (1983). Introduction to initial reports of DSDP Leg.76. 
Init. Rep. DSDP 76, 5-18. 

Gröcke, D.R., Price, G.D., Ruffell, A.H., Mutterlose, J. & Baraboshkin, E. (2003). Isotopic 
evidence for Late Jurassic – Early Creaceous climate change. Palaeogeo. Palaeoclim. 
Palaeoeco. 202, 97-118 

Grün, B. & Blau, J. (1997). New aspects of calpionellid biochronology: proposal for a revised 
calpionellid zonal and subzonal division. Revue de Paléobiologie16, 197–214. 

Hallam, A. (1985). A review of Mesozoic climates. J. Geol. Soc. London, vol.142, 433-445 
Hallam, A. (1988). A re-evaluation of Jurassic eustasy in the light of new data and the revised 

Exxon curve. SEMP Spec. Publ. 42, 261-273. 
Hallam, A. (2001). A review of the broad pattern of Jurassic sea-level changes and their 

possible causes in the light of current knowledge. Palaeogeo. Palaeoclim. Palaeoeco. 167, 
23-37 

Haq, B.U., Hardenbol, J. & Vail, P.R. (1988). Mesozoic and Cenozoic chronostratigraphy 
and cycles of sea-level change. In: Wilgus Cheryl, K. et al. (Editors), Sea level changes: an 
integrated approach. Soc. Econ. Paleonto. Mineralo., SEMP Spec. Publ. 72-108.  

Hardie, L.A. (1996). Secular variation in seawater chemistry: an explanation for the coupled 
secular variation in the mineralogies of marine limestones and potash evaporites over the 
past 600 m.y. Geology 24, 279–283. 

Hay, W.W. (2004). Carbonate fluxes and calcareous nannoplankton. In: Thierstein, H.R., 
Young, J.R. (Eds.), Coccolithophores. From  Molecular Processes to Global Impact. 
Springer-Verlag, Berlin, pp. 509 – 528. 

Hotinski, M.R. & Toggweiler, J.R. (2003). Impact of a Tethyan circumglobal passage on 
ocean heat transport and "equable" climates. Paleoceanography 18(1), 1007, 
doi:10.1029/2001PA000730. 

Housa, V., Krs, M., Krsova, M., Man, O., Pruner, P. & Venhodova, D. (1999). High-
resolution magnetostratigraphy and micropaleontology across the J/K boundary stata at 
Brodno near Zilina, western Slovakia: summary results. Cretaceous research 20, 699-717. 

 

 110 



10. References 

Housa, V., Krs, M., Man, O., Pruner, P., Venhodova, D., Cecca, F., Nardi, G. & Piscitello, 
M. (2004). Combined magnetostratigraphic, paleomagnetic and calpionellid investigations 
across Jurassic/Cretaceous boundary strata in the Bosso Valley, Umbria, central Italy. 
Cretaceous research 25, 771-185. 

Jones, C.E., Jenkyns, H.C., Coe, A.L. & Hesselbo, S.P. (1994). Strontium isotopic variations 
in Jurassic and Cretaceous seawater. Geochim. Cosmochi. Acta, 58(14), 3061-3074. 

Lohmann, H. (1902). Die Coccolithophoridae, eine Monographie der coccolithen bildenden 
Flagellaten, zugleich ein Beitrat zur Kenntnis des Mittelmeerauftriebs. Archiv für 
Protistenkunde. 1, 89-165 

Lohmann, H. (1909). Die Gehause und Gallertblasen der Appendicularien ind ihre Bedeutung 
fur die Erforschung des Lebens im Meer. Verhandlungen Deutsche Zoologische 
Geselleschaft. 19, 200-239. 

Lowrie, W. & Channell, J.E.T. (1983). Magnetostratigraphy of the Jurassic/Cretaceous 
boundary in the Maiolica limestone (Umbria, Italy). Geology 12, 44-47. 

Malmgren, B.A., Berggren, W.A. & Lohmann, G.P. (1984). Species formation through 
Punctuated Gradualism in Planktonic Foraminifera. Science 225, 317-319 

Martire, L, Clari, P.A. & Pavia, G. (1991).  Il significato stratigrafico della sezione di Cima 
Campo di Luserna (Giurassico delle Alpi meridionali, Italia nord-orientale). Paleopelagos 
1, 57-65. 

Martire, L. (1996). Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso 
Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies 35, 209-236.  

Martire, L. (2003). Sequence stratigraphy and condensed pelagic sediments. An example from 
the Rosso Ammonitico Veronese, northeastern Italy. Palaeogeo. Palaeoclim. Palaeoeco. 
94, 169-191. 

Martire, L., Clari, P., Lozar, F. and Pavia, G. (2006). The Rosso Ammonitico Veronese 
(Middle-Upper Jurassic of Trento Plateau): a proposal of lithostratigrafic ordering and 
formalization. Rivista Italiana di Paleontologia e Stratigrafia 112(2), 227-250. 

Mattioli, E. & Erba, E. (1999). Synthesis of Calcareous Nannofossil events in Tethyan Lower 
and Middle Jurassic successions. Rivista Italiana di Paleontologia e Stratigrafia 105(3), 
343-376. 

Mc Arthur, J.M., Howarth, R.J. & Bailey, T.R. (2001). Strontium isotope stratigraphy; 
LOWESS Version 3; best fit to the marine Sr-isotope curve for 0-509 Ma and 
accompanying look-up table for deriving numerical age. J. Geol. 109(2), 155-170. 

Moore, G.T., Hayashida, D.N., Ross, C.A. & Jacobson, S.R. (1992a). Palaeoclimatic of the 
Kimmeridgian-Tithonian (Late Jurassic) world: I. Result using a general cicurlation model. 
Palaeogeo. Palaeoclim. Palaeoeco. 93, 113-150 

Moore, G.T., Hayashida, D.N., Ross, C.A. & Jacobson, S.R. (1992b). Palaeoclimatic of the 
Kimmeridgian-Tithonian (Late Jurassic) world: II. Sensivity tests comparing three different 
palaeotopographic settings. Palaeogeo. Palaeoclim. Palaeoeco. 95, 229-252 

Moshkovitz, S. & Ehrlich, A. (1987). Watznaueria manivitae, Bukry – Taxonomic problems 
and distribution in the Jurassic – Lower Cretaceous sediments of Israel and other Tethian 
areas. Geo. Surv. Isr. Jerusalem, 9, 110-114 

Mutterlose, J. & Kessels, K. (2000). Early Cretaceous calcareous nannofossils from High 
latitudes: implications for paleobiogeography and paleoclimate. Palaeogeo. Palaeoclim. 
Palaeoeco. 160(2), 347-372. 

 

 111



10. References 

Muttoni, G., Erba, E., Kent, V.D. & Bachtadse, V. (2005). Mesozoic Alpine facies 
deposition as a result of past latitudinal palte motion. Nature 434, 59-63. 

Ogg, J.G. (1981). Sedimentology and paleomagnetism of Jurassic pelagic limestones: 
“Ammonitico Rosso” facies. Ph.D. thesis, La Jolla, California, Scripss Institution of 
Oceanography, 212 p. 

Ogg, J.G. & Lowrie, W. (1986). Magnetostratigraphy of the Jurassic/Cretaceous boundary. 
Geology 14, 547-550. 

Ogg, J.G., Hasenyager, R.W., Wimbledon, W.A., Channell, J.E.T. & Bralower, T.J. 
(1991). Magnetostratigraphy of the Jurassic/Cretaceous boundary interval - Tethyan and 
English fauna realms. Cretaceous research 12, 455-482.  

Olóriz, F., Caracuel, J.E., Marques, B. &. Rodríguez-Tovar, F.J. (1995). Asociaciones de 
Tintinnoides en facies Ammonitico Rosso de la Sierra Norte (Mallorca). Revista Española 
de Paleontología, N° Homenaje al Dr. G. Colom, 77–93. 

Pasquarè, G. (1965). Il Giurassico Superiore nelle prealpi Lombarde. Memorie della Rivista 
Italiana di Paleontologia e Stratigrafia XI. 

Perch-Nielsen, K. (1985a). Mesozoic calcareous nannofossil. In: Plankton Stratigraphy (Eds. 
Bolli, H.M., Saunders, J.B. & Perch-Nielsen K.), Cambridge University Press. 329-426. 

Pittet, B. & Mattioli, E. (2002). The carbonate signal and calcareous nannofossil distribution 
in an Upper Jurassic section (Balingen-Tieringen, Late Oxfordian, southern Germany). 
Palaeogeo. Palaeoclim. Palaeoeco.  179, 71-96. 

Podlaha, O.G., Mutterlose, J. & Veizer, J. (1998). Preservation of delta 18O and delta 13C 
in belemnite rostra from the Jurassic/Early Cretaceous successions. American Journal of 
Science 298, 324-347. 

Pop, G. (1994b) Calpionellid evolutive events and their use in biostratigraphy. Romanian 
Journal of Stratigraphy 76, 7–24. 

Premoli-Silva, I., Erba, E. & Tornaghi, M.E. (1989). Paleoenvironmental signals and 
changes in surface water fertility in mid Cretaceous Corg-rich pelagic facies of the Fucoidi 
Marls (Central Italy). Geobios Mem. Spec. 11, 225-236. 

Price, G.D. (1999). The evidence and implications of polar ice during the Mesozoic. Earth- 
Science Reviews 48, 183-210. 

Price, G.D. & Groecke, D.R. (2002). Strontium-isotope stratigraphy and oxygen- and carbon-
isotope variation during the Middle Jurassic-Early Cretaceous of the Falkland Plateau, 
South Atlantic. Palaeogeo. Palaeoclim. Palaeoeco. 183, 209-222. 

Rais, P., Louis-Schmid, B., Bernasconi, S.M. & Weissert, H. (2007). Paleoceanographic and 
paleoclimatic reorganization around the Middle-Late Jurassic transition. Palaeogeo. 
Palaeoclim. Palaeoeco. 251, 527-546. 

Reháková, D. & Michalík, J. (1997) Evolution and distribution of calpionellidsthe most 
characteristic constituents of Lower Cretaceous Tethyan microplankton. Cretaceous 
Research 18, 493–504. 

Remane, J. (1971). Les Calpionelles protozoaires planctoniques des mer mesogennes de 
l’epoque secondaire. Annales Guebhard Neuchatel 47, 370–393. 

Ross, M. & Scotese, C.R. (1988). A Hierarchical tectonic model of the Gulf of Mexico and 
Caribbean region.  Tectonophysics 155, 139-168. 

Roth, P.H. (1983). Jurrassic and Lower Cretaceous calcareous nannofossil in the Western 
North Atlantic (site 534): biostratigraphy, presenvation, and some observation on 
biogeography and paleoceanography. Init. Rep. DSDP 76, 587-621. 

 112 



10. References 

Sheridan, R.E. (1983).  Phenomena of pulsation tectonics related to the breakup of eastern 
North American contnental margin. Init. Rep. DSDP 76, 897-909. 

Sheridan, R.E. & Gradstein, F.M., et al. (1983). Site 534: Blake-Bahama Basin (Shipboard 
Scientific Party). Init. Rep. DSDP 76,141– 340. 

Smuc, A. (2005). Jurassic and Cretaceous stratigraphy and sedimatary evolution of the Julian 
Alps, NW Slovenia. / Andrej Smuc; [jezikovni pregled Glenn S Jaecks]. – Ljubljana: 
Zalozba ZRC, ZRC SAZU, 2005 

Sorrosa, J.M., Satoh, M. & Shiraiwa, Y. (2005). Low temperature stimulates cell 
enlargement and intracellular calcification of coccosphere. Marine Biotechnology 7, 128-
133. 

Stampfli, G.M., Mosar, J., Favre, P., Pillevuit, A. & Vannay, J-C. (2001). Permo-Mesozoic 
evolution of the Western Tethys realm: The Neo-Tethys East Mediterranean Basin 
connection. In:  Ziegler, P.A., Cavazza, W., Robertson, A.H.F. & Crasquin-Soleau, S. (eds). 
Peri Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basin and passive Margins. Memoires du 
Museum national d’historie naturelle 186, 51-108. 

Stanley S.M. (2006). Influence of seawater chemistry on biomineralization throughout 
Phanerozoic tome: Paleontological and experimental evidence. Palaeogeo. Palaeoclim. 
Palaeoeco.  232, 214-236. 

Stenseth, N.C. & Maynard Smith, J. (1984). Coevolution in ecosystems: rred queen 
evolution or stasis? Evolution 38, 870-880. 

Street, C. & Bown, P.R. (2000). Paleobiogeography of Early Cretaceous (Berriasian-
Barremian) calcareous nannoplankton. Marine Micropaleontology 39, 265-291. 

Tavera, J.M., Aguado, R., Company, M. & Oloriz, F. (1994). Integrated biostratigraphy of 
the Durangites and Jacobi zones (J/B boundary) at the Puerto Escano section in Southern 
Spain (Province of Cordoba). Geobios 17, 469-476. 

Thierstein H.R. (1971). Tentative Lower Cretaceous Cacareous Nannoplankton zonation. 
Eclogae Geologicae Helvetiae. 64(3), 459-488. 

Thierstein, H.R. (1973). Lower Cretaceous calcareous nannoplankton biostratigraphy. 
Abhandlungen der Geologischen Bundesanstalt. 29, 1-52.  

Tremolada, F. & Joung, J.R. (2002). Volume calculation of cretaceous calcareous 
nannofossils. J. nannoplankton reasearch 24(3), 199-202. 

Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory 1:1-30. 
Weissert, H. & Channell, J.E.T. (1989). Tethyan carbonate carbon isotope stratigraphy 

across the Jurassic/Cretaceous boundary: an indicator of decelerated global carbon cycling? 
Paleoceanography 4(4), 483-494. 

Weissert, H. & Mohr, H. (1996). Late Jurassic climate and its impact on carbon cycling. 
Palaeogeo. Palaeoclim. Palaeoeco. 122, 27-43. 

Weissert, H. & Erba, E. (2004). Volcanism, CO2 and palaeoclimate: a Late Jurassic – Early 
Cretaceous carbon and oxygen isotope record. Jour. Geol. Soc., London, 161, 1-8. 

Wignall, P.B. & Ruffell, A.H. (1990). The influence of a sudden climatic change on marine 
deposition in the Kimmeridgian of northwest Europe.  J. Geol. Soc. London 147, 365-371. 

Winterer, E.L. & Bosellini, A. (1981). Subsidence and sedimentation on Jurassic Passive 
Continental Margin, Southern Alps, Italy. AAPG Bulletin 65, 394-421. 

Winterer, E.L. (1991).  The Tethyan Pacific during Late Jurassic and Cretaceous time. 
Palaeogeo. Palaeoclim. Palaeoeco. 87, 253-267. 

 

 113



10. References 

 
 
 
 
 
 
 
 
 

 114 



Acknowledgements 

Acknowledgements 
 
First of all I would like to express my thanks to all the ones who have been 
fundamental to my scientific growth (and more than that) during these years. 
 
I am so much grateful to Elisabetta Erba for the wonderful opportunity she gave me 
with this PhD project. Thank You for Your teachings and Your willingness, for every 
advice and continuous encouragement. Thank You for the multiple opportunities I had 
to travel and attend international congresses, and for being involved in the 
Jurassic/Cretaceous boundary never ending story.  
 
Many thanks to Isabella Premoli for her constant willingness and for every good 
suggestion. And for the time spent together in Vienna and in Bristol. 
 
Thanks to Jim Channell and Giovanni Muttoni for the wonderful days spent together 
in the field collecting samples, for the scientific discussions during dinners, and for the 
opportunity I received to become (or try to…) a “biostratigrapher” that You gave me 
with this project. 
 
A sincere thank to Daniele Tiraboschi, who suffered my temper during the last two 
years! Principally, thank You for the time spent together arguing about fanta-science 
and for every good burst of laughter. 
 
Thanks to Jörg Mutterlose for hospitality, for the time dedicated to me talking about 
my diagenesis-affected stuff and discussing any differences between low and high 
latitudes Jurassic worlds. 
 
Thanks to Jens Herrle for the good time spent together, for each chat, and for each 
good advice. 
 
Thanks to André Bornemann for every useful scientific discussion and confrontation 
on Late Jurassic calcareous nannofossils. 
 
Thank to Johann Schnyder, for the pleasant trip in Paris, and for every scientific 
confrontation we had in Tunisia. 
 
Much thanks to Bianca De Bernardi and Maria Teresa Galli for the constant help they 
gave me during these three years. 
 
 
 
 

 



Acknowledgements 

Then, heartily thank to… 
 
My Dad and my Ma’: without Your help, your presence, your good advices this could 
not have been possible!  
 
My Andrea, just for having been faithful by my side, trusting me. 
(…gestendo con acume e pacatezza il difficile equilibrio del mio scafo…) 
 
Emme… just because! 
 
Alice and Mussu for having been present during these ten years, for every good chat 
and confrontation, for every journey and every glass of wine! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Funds for this research were provided by  
“Progetto Giovani Promettenti”, the University of Milan,  

and also by MIUR-COFIN 2005044839_001 to I. Premoli Silva. 
 

This research project used samples and data provided by the Ocean Drilling Program 
(ODP). 

 
This thesis benefited from the reviews of E.Erba and I.Premoli Silva.  

 




