On a Liouville-type equation with sign-changing weight
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Abstract
In this paper we study the existence, nonexistence and multiplicity
of non-negative solutions for the family of problems

—Au = \(a(x)e" + f(z,u)), v HHQ)

where €2 is a bounded domain in R? and A > 0 is a parameter. The
coefficient a(x) is allowed to change sign. The techniques used in the
proofs are a combination of upper and lower solutions, the Trudinger-
Moser inequality and variational methods. Note that when f(x,u) =0
the equation is of Liouville type.
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1 Introduction

In this paper we study equations of Liouville-type (also called Gelfand
equations), which have the form

—Au = Ma(z)e* in QCR?
(1.1)

u=0 on 0Of2
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Here, ) C R? is a bounded domain, A is a positive parameter, and a(z) is a
bounded coefficient. This and related equations have received much attention
in recent years.

On the one hand, this is due to the wide range of applications of this
equation: it is used in astrophysics [4] and combustion theory [11], it is related
to the prescribed Gaussian curvature problem in Riemannian geometry [14],
to the mean field limit of vortices in Euler flows [6], to Onsager’s formulation
in statistical mechanics [3], to the Keller-Siegel system of chemotaxis [21], to
the Chern-Simon-Higgs gauge theory [5], [19], and it has many other physical
applications.

On the other hand, equation (1.1) is mathematically appealing since it has
an interesting solution structure: If one assumes that the coefficient a(z) is
positive (as is done in most cases studied in the literature), one may easily
prove, upon multiplication of the equation by the first eigenfunction of the
Laplacian and subsequent integration, that equation (1.1) has no solution for
A large. On the other hand, for A > 0 close to zero, a positive solution exists,
and it is a local minimizer for the corresponding energy functional. One easily
verifies that this solution tends to zero as A — 0. A second ”large” solution
was first found in [20], see also [7]; it corresponds to a Mountain-Pass solution,
and one shows that it blows up for A — 0.

Such a solution structure is in fact also present in higher dimensions, in
problems with so-called ”concave-convex” nonlinearities, see the pioneering
paper of Ambrosetti-Brezis-Cerami [1]; a particular example of an equation
with such a structure is

—Au= I4+u" 1in
u>0 in O (1.2)
u=>0 on 02 ,

where 0 < g < 1 < p. This equation was extensively studied in [1], and it was
in particular shown there that if p < 2*—1, where 2* = %, N > 3, then there
exists 0 < A < oo such that (1.2) has at least two solutions for A < A, at least
one solution for A = A, and no solution for A > A. More recently, in [8] and
[9], more general nonlinearities were considered which include nonlinearities
of the form f(z,u) = Aa(x)u? + b(x)uP, where the coefficients a(x), b(x) are
allowed to change sign.

We also refer to the paper of F. Mignot, F. Murat and J.P. Puel; in [17]
they consider equation (1.1) in dimensions 3 < N < 10, and prove that there
exists a Ag > 0 such that the equation has at least one solution for 0 < A < Aq,
and no solution for A > \q. Particular attention is given to the behavior of the
solutions near the "turning point” A\y. This problem was also considered in the
paper [13] by D.D. Joseph and T.S. Lundgren, who considered the equation on
2 = B;(0), the unit ball in R”, and studied in great detail the solution behavior
for radial solutions; an interesting dependence of the solution structure on the
dimension of the domain was found.
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Returning to two dimensions, we note that exponential growth is in some
sense a critical growth; Brezis-Merle showed in [2] that all distributional
solutions of equation (1.1) are bounded, and they give examples of (positive)
coefficients a(x) such that the equation

~Au=a(r)e” in Q,u=0 on 99

has unbounded distributional solutions for o > 1.

Interesting studies have recently been done concerning the blow-up of
solutions of equation (1.1) when A — 0, with a(x) > 0. Based on the results by
Brezis-Merle it was shown in [15], [18] that the solutions necessarily blow up in
”integer multiples” of 87, more precisely, one has limy_ [, Aa(z)e" = m 8,
for some m € N. In an interesting paper by M. del Pino, M. Kowalczik and
M. Musso [10] it was recently shown that for any given m € N such solutions
indeed exist, provided that € is not simply connected.

In this paper we will consider the case that the coefficient a(x) in equation
(1.1) changes sign. In particular, we will assume that a(x) is negative in a
neighborhood of the boundary 0f2, and is strictly positive on some open set in
). We will show that then a similar solution behavior as the one mentioned
above can be proved regarding non-negative solutions: we will show that there
exist constants 0 < Ay < Ag such that

e for A > Aj equation (1.1) has no non-negative solution
e for 0 < A < Ay equation (1.1) has at least two non-negative solutions

We emphasize that we look for non-negative solutions; we do not know whether
there is non-existence for other type of solutions, for large A. Also, we do not
know if the non-negative solutions we find for small A are strictly positive, or
if they could be equal to zero on some subset of 2.

As far as applications are concerned, we note that in the models in physics
and biology it is reasonable to have negative reaction forces (i.e. a(z) < 0)
near the boundary of a domain. Also the search for non-negative solutions is
well motivated, considering that u(x) may be interpreted as a concentration
or population density.

2 Statement of the results

Suppose that @ C R? is a smooth bounded domain. We will consider the
following more general form of equation (1.1):

—Au = Aa(z) e + f(z,u)) in Q
u>0,uz0 in (2.1)
u=>0 on 0f) ,
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where A > 0 is a parameter, a € L>(2), and f : Q2 x R — R is a Caratheodory
function. Throughout this paper we suppose that f(z,s) = 0 for all s < 0.
We make the following assumptions on the coefficient a(z):

(A_) There ezists a positive constant § such that
Qs ={reQ: d(z,00) <o} C{re: a(x) <0},
and
(Ay) there exists a positive constant dg > 0 and a ball By C Q such that

a(x) >y for all x € By.
On the function f(x,s) we assume that it is a Caratheodory function
satisfying the following hypotheses

(G) There exist positive constants dy, dy and o such that
|f(z,8)| < dy + das®
for a.e. x € Q and all s > 0.
(P) There exist positive constants ¢y, ca and So, and q < 2 such that
F(z,s) — f(x,s) <c1+cps?,
fora.e. x € Q and all s > sy, where F is given by F(x,s) = [ f(x,t)dt.

(Hy) There exist positive constants o1, by, by, and constants q1,qo > 1 such
that
—by s < F(x,s) < by s®

for a.e. x € Q and all 0 < s < 4y .

The main results are the following

Theorem 2.1 (Multiplicity result). Under the assumptions (G), (A-), (P)
and (Hy) there exists a Ay > 0 such that Problem (2.1) has at least two non-
negative solutions for all 0 < A < As.

Theorem 2.2 (Non-ezistence result). Under the assumptions of Theorem 2.1
and the hypothesis

(Hs) Let By be as in hypothesis (Ay), and assume that there exists 0 < m(x) €
L"(By)\{0}, for some r > 1, such that

a(z)e® + f(x,s) > m(x)s forall x € By and s> 0 .

Then there exists a Ao > 0 such that Problem (2.1) has no non-negative
solutions for all X > Ay. We note that Ny may be chosen as A\i(m(x), ),
the first eigenvalue with weight m on €y, where 2y is a ball with 2y CC By.
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3 The auxiliary problem

We consider first the following auxiliary problems, with k € N

(3.1)

—Au = \(a(x)e" e + flz,u)) inQ
u=20 on 0f) .

The associated energy functionals are given by

Te(u) == %/QWU]Q—/Q)\(Gk(x,u)—i—F(x,u)) Je s HYQ) SR,

where

o a(x) (ef — 1) if s>0
Gi(z,5) = { %a(z) (eks —1) if s<0 (3.2)

The following lemma concerns the Palais-Smale condition for the
functionals J;, defined above

Lemma 3.1 Under the assumptions (G), (A-) and (P) the functionals Jy,
k € N, satisfy the Palais-Smale condition.

Proof. Let {u,} be a (PS), sequence, i.e. satisfying

Cp = %HUTLHQ — /Q A (Gk(x,un) + F(x,un)> —c, (3.3)

and
‘/QVuanb— /Q)\ (a(m)eku;@ui +f(m,un)>¢’ <eolldll, Vo e HL(Q) .

(3.4)
From (3.3), (3.2) and (A_) we have
1 9 ut
5 llall” + Ma(z)]e™ =
Q5ﬂ{un>0}
:/)\F(:E,un)—i-/ )\a(az:)e“i —/ Aa(x)
Q Q¢ N {un>0} {un>0}

(3.5)

1 _
—l—/ A—a(:c)(ek“" —1)+cn
(un<0y K

< / AF(x,uy,) —|—/ /\a(x)e“’t + 4
Q Q5 N{un>0}
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On the other hand, let ¢ € C2°(§2) be such that ¢ =1in Q§f and 0 < ¢ < 1in
2s. By (3.4) we can then estimate

/ A a(a:)e“I < / A |a(m)|e“¢

Q5 N {u,>0} Qs N {un>0}

+ / Ma(e)| 5 / A (@ un)d + a8l + ealld (3.6)
{Un<0} Q

ut
<[ Male — [ Ao+ Cat o] + el
Qs N {un>0} Q
And so, by combining inequalities (3.5) and (3.6) we obtain

1
Fllunll” < / A(F(@,un) = f(z,un)d) + Cs + ual 0] +ealldll  (3.7)
Q

On the other hand, from condition (P) it is not difficult to show that there
exist constants Cy, C such that

J A 0) = F0)9) < Cillua+ Co. 3:5)
Q
with ¢ < 2. Hence, by (3.7) and (3.8) we conclude that the Palais-Smale
sequence {u,} is bounded.

Thus, {u,} has a subsequence which converges weakly in H} (), u,(x) —

u(x) pointwise for a.e. x € Q, and u,, — u in LP(Q?), for every 1 < p < +o0.
From this we obtain, by choosing ¢ = u,, — u in (3.4), that

’/VUHV(UH —u)dx‘ <
Q
< ‘ /Q)\(a(x)ekuneuz + f(;[7un))(un — u)dl" + 5n||un - UH

up
< A(lla(@)e™ e |2 + I1f (2, w22 ) lum = ullzz + enllien — u]

Clearly, || f(z,un)||z2 < ¢, and also

L ([
la(@)et e 2, < |afie / 2l gy < ¢ / Gty S
Q Q
ull ‘2
2

’ u+n uj;
< c/e = 6|| I dr < et |
Q
by the Trudinger-Moser inequality [16] which says that

sup /e““2§c, if a<d4dr.
Q

Jull 3 <1
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Hence,

lim / |Vu,|?dr = lim VunVud:B:/ |Vul*dx |
Q Q Q

n—oo n—oo

and thus u,, — u in H}(Q).
m

Next, we prove the existence of Mountain-Pass solutions for the auxiliary
equations (3.1).

Lemma 3.2 Under the assumptions (G), (A_) , (Ay), (P) and (Hy) there
exists a Ny > 0 and ay > 0 such for all X € (0,As) equation (3.1) has, for
all k € N, a nontrivial solution uy which is mountain pass critical point of Jy
verifying Jy(ug) > a, for all k € N.

Proof. We note that conditions (G) and (P) imply that there exist s; > sq
and ¢ > ¢ such that

F(x,8) < f(z,8) +c1+cas? < c3+c48°

for a.e. z € Q and all s > s;. Thus from condition (H;) we have that there
exists a large enough positive constant bs such that

F(x,5) < bys® +b3s?, forall s >0. (3.9)

Let A > 0, and set [Jul| = A* with 0 < o < 3. Thus from (3.9), Sobolev
embeddings and the Trudinger-Moser inequality, for A small enough, we have
that there exist constants C, Cs, C3 > 0 such that

J(u) = %A?a—/{m}m(@(eiA”‘—1)]dx

1
- / A =a(z)(e"* = 1))dx — / A F(x,u)dx
{u<0} k Q
1 _
> 5)\26“ — AOp — Oy 2ot O 7ot

And so we can obtain a Ay > 0 sufficiently small, such that for all 0 < A < Ay
there is a a, > 0 such that

Je(u) > ay , for |Jul| =A%, forall keN. (3.10)
Now let ¢ € C°(Q2), ¢ > 0, be such that supp¢ C By. Based on Lemmas

3.1 and 3.2 above and the classical Mountain Pass Theorem, to obtain a
nontrivial solution it is sufficient to show that

lim Ji(tp) = —oc0 (3.11)

t——+o0
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Indeed, there exist a natural number m > max{2, ¢ + 1} and a constant c¢,,
such that e* — 1 > ¢, u™ for u > 0. Thus from (3.9), (4;) and (G) we have

DN | —

J(te) < t? IVo|* — Xem t™ do d™ + ADqto! / ¢° + D,

Bo By Bo

where Dy, Dy are constants. Therefore (3.11) holds and so there exists a
solution uy, verifying Ji(uy) > . [ ]

In the next Lemma we prove the existence of solutions which are local
minima.

Lemma 3.3 Under the assumptions (G), (A-) , (P) and (Hy) there exist
Ao > 0 and ¢y > 0 such for all X € (0, \) the equation (3.1) has a nontrivial
solution vy, which is a local minimum of Jy verifying Jp(vy) < —ca, for all
k e N.

Proof. Let ¢ € C®(By) as above. Using that e — 1 > t¢, we obtain for
t > 0 small enough

Ji(tp) < Ly |V¢]2—)\t/ a(x)p+ by At [ || (3.12)
2 Bog Bo Bog

Thus for every A > 0 there exists ¢, c) > 0 such that
It oll < A* and Ji(tp) < —ca (3.13)

And so, by using (3.10) and (3.13) there is a Ag > 0 for all A € (0,Ay)
there exists a critical point v, such that [|vg|| < A% is a local minimum with
Jk(vk) < —Cy. ]

4 Proof of the multiplicity result

We now prove the main result Theorem 2.1. From Lemma 3.2 there exists a
As > 0 and a, > 0 such for all A € (0, Ay) equation (3.1) has a weak nontrivial
solution wuy, with Ji(uz) > ay, that is, for all ¢ € H}(Q) we have

/QVungo = )\/Q(a(x)ek“'ﬁ“z + f(z,ug))p . (4.1)

By using the same argument as in Lemma 3.2 we have that there is a constant ¢
such that ||ug|| < ¢ for all k € N, and then the sequence {uy} converges weakly
to some function @ in Hg (). It follows by the Trudinger-Moser inequality that

+

+
“ + Yk )2 +12
N 2k |luf| (—E)2 4l | 12
/\euk 2dz = / e luyl < [ eIl <epy el < eppre. (4.2)
Q Q Q
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By assumption (G) we have that the sequence { [, | f(x, u;)[*dz} is bounded,
and so the sequence {a(z)e* st + f(z,uy)} is bounded in L2(€2). Thus by
L?-regularity we have that |lug|w=22 < c. This implies that ||ug|co. < ¢,
0 < a < 1, and hence, for a subsequence, u;, — @ in C°. We now distinguish
two cases:

- if 2 € © is such that u(z) < 0, then

a(z) b OHE@ 0 and  f(z, u(@))ug (2) — 0
- if # € Q such that u(z) > 0, then

(CL(:E) okuy @)+l (2) + f(z, uk(x))u];(x) =0

Thus, by using the classical dominated convergence theorem, we can conclude
that

/(a(:v)e’“‘fr“ﬁ + flx,u))u, — 0.
Q

Now, by passing to the limit £ — oo in (4.1), with ¢ = u, , we obtain 4~ = 0.
Finally, taking the limit & — oo in (4.1) we get

[ vave = [ @neoe” + fwwye =2 [ @@ e + fe)

Q

since @ > 0. Thus, @ is a non-negative solution of (2.1) with Jy(u) > ay,

where /|Vu|2 / (G(x,u) + F(x,u)),

and G(z,s) == a(x) (e — 1), s € R.

Proceeding in a similar way, via Lemma 3.3, allows us to show the existence
of second non-negative solution v of Problem (2.1) with J,(7) < —c,.

Thus, since the energy levels of the solutions @ and v are different, we have
found two distinct nontrivial and non-negative solutions of equation (2.1).

5 Proof of the non-existence result

Let g(x,s) = a(z)e® + f(x,s) and consider the following eigenvalue problem

{—Aw = Am(z)w in Q, (5.1)

w = 0 on 08 ,

where €); is a ball verifying 0y CC By and m(x) # 0 in ;. We will show that
problem (2.1) has no solutions for all A > A\{(m(x)), where A;(m(x)) is the
first eigenvalue of (5.1). In fact, suppose to the contrary that problem (2.1)
has a solution for some A > A (m(x)). We denote this solution by @ which
may be assumed to be of class C'; indeed, since @ € H} () it follows by the
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Trudinger-Moser inequality and the assumptions on a(z) and f(x,s) that the
righthand side of (2.1) is in LP(2), for any p > 1. Hence 4@ € W?P(Q), for any
p > 1, and so 4 € C'(Q) by the classical Sobolev embedding.

We now choose a g which satisfies < X and g € (A (m(x)), Aa(m(z))).
Let p € C°(£2;) with ¢ > 0. By (Hz) we have

ViV = [ Mt + fai)e = [ miig

o o o

Thus the function @ is a weak super-solution of Problem (5.1) for A = u. But
we may easily show that if ¢; is the first eigenfunction of (5.1), then for all
t > 0 we have that ¢ ¢, is a sub-solution of Problem (5.1) for A = p. On the

other hand, there exists a constant by > 0 such that
a(z) > by for all x € Q. (5.2)
In fact, from hypotheses (A,) and (H;y) we have
—At = Ma(z)e® + f(z, @) >0, forall ze By

The strong maximum principle can thus be applied (cf. e.g. Theorem 8.19 in
[12]), which yields @(x) > 0 for all z € By, and so we have (5.2). Finally by
taking ¢ small enough we have that the sub-solution t¢; satisfies t ¢; < 4. Thus
we obtain a solution of (5.1) for A = p with g € (A;(m(z)), Aa(m(x))). This
is clearly a contradiction because equation (5.1) has only the trivial solution
for such p.
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