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1. Introduction 
 
The neoclassical growth literature (Solow, 1956 and Swan, 1956) has long ago emphasized the 

importance of such factors as physical capital accumulation, changes in labor-force availability and 
exogenous technological progress in driving economic growth (both in the short and long-run). More 
recently, the new growth theory has made clear that other variables like purposeful R&D investment, 
human capital accumulation, population dynamics, institutions, and government spending also play a 
relevant role in increasing people’s wealth and living standards.1   

The contribution of our paper consists in modeling simultaneously, within the same theoretical 
framework, the dynamics of three growth-drivers: technological progress, population change, and the 
increase of productive public expenditure as a share of GDP. In other words, we combine in a consistent 
analytical structure three different hypothesis concerning, respectively, the cumulative nature of technical 
change, the self-limiting nature of population growth, and the logistic behavior of the public spending to 
GDP ratio over time. 

Since the pioneering work of Barro (1990) and Barro and Sala-i-Martin (1992), it is widely recognized 
that government's purchases of goods and services can affect economic growth. Indeed, it is found2 that in 
the long-run consumption, physical capital and output all grow at a common (constant) rate determined, 
among others, by the constant level of technology and of the labor force (strong scale effect)3 and by the 
constant ratio of public spending to GDP. With respect to this strand of the literature our paper introduces 
three important novelties. First of all we assume that the level of technology might increase exogenously 
and exponentially over time.  Secondly, we revive the Malthusian conjecture (Malthus, 1798) that there 
can exist an upper limit to population growth by modeling such a variable as a logistic process. Finally, 
we adopt a new view about the dynamics of the ratio of public expenditure to GDP and explicitly model 
the time-evolution of this ratio as a logistic process, as well.  

While the use of a logistic-like function for population change is not new,4 the logistic model 
assumption in describing the dynamics of the ratio of public expenditure to aggregate income is new in 
public economics and can be justified on strong theoretical and empirical grounds. Florio and Colautti 
(2005) were the first to introduce this hypothesis. In their work, they observe that over one hundred years 
the /G Y  ratio not only does change significantly in countries like US, UK, France, Germany, and Italy, 
but also that it follows a S-shaped trajectory over time. This fact implies that the time derivative of /G Y  
is first increasing and then decreasing. According to them, this evolution can be explained by the 
simultaneous presence of an elasticity of the demand of public services to income (the Wagner’s Law) 
greater than unity and of a brake represented by the excess burden of taxation (the Pigou’s effect). Thus, 
they conclude that under some conditions, namely balanced budget and offsetting changes in income 
growth and in the elasticity of the demand for public services to income, the trajectory of the ratio of 
public spending to aggregate income may well be modeled as a logistic process. In their paper, however, 
Florio and Colautti (2005) did not include the dynamics of the /G Y  ratio within a growth model, which 
represents instead the main novelty of the present work. 

                                                            
1 Elegant surveys of the different approaches to the so-called Endogenous Growth Theory are offered, among others, by Acemoglu (2009), 
Aghion and Howitt (2009), Barro and Sala-i-Martin (2004), Helpman (2004) and Lucas (2002). 
2 See Barro and Sala-i-Martin (2004), p.221, equation (4.42). 
3 Empirical evidence (Jones, 2005) appears to reject the strong scale effect. 
4 The first analytical treatment is due to Verhulst (1838), who showed that the size of population is asymptotically constant under logistic growth 
for any initial positive value of population. 
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After assuming a standard Cobb-Douglas aggregate production function, augmented with public 
spending, we show through formal examples and numerical simulations that the solution to the 
intertemporal optimization problem faced by a social planner, being constrained by the accumulation of 
private physical capital and the exogenous dynamics of technology, population and public spending (as a 
share of GDP), may be represented by an asymptotic balanced growth path equilibrium.  

In more detail, we organize the paper as follows. In section 2 we discuss the motivation behind our 
work and the conceptual framework we are going to use. Section 3 describes the model economy and 
presents the social planner’s optimization problem under a generic, concave, individual, instantaneous 
utility function. In Section 4 we focus on the case of CIES (constant intertemporal elasticity of 
substitution) preferences and obtain the necessary first order conditions to the social planner’s problem. In 
Section 5 we analyze the dynamics of the model under different assumptions on the inverse of the 
intertemporal elasticity of substitution in consumption and prove that, if this parameter is higher than a 
threshold value, then the ratio of aggregate consumption to aggregate private physical capital converges 
towards zero when time goes to infinity. By using two different examples we also show that, depending 
on the form of the underlying aggregate production function and on whether, for given aggregate 
production function, technological progress equals zero or a positive constant, our model may or may not 
yield an asymptotic balanced growth path equilibrium. In the same section we also see that, under a given 
set of parameters, the Barro (1990) model - in which the ratio /G Y  is supposed to be always constant 
over time - can be interpreted as the “limit” of our approach when t →+∞ . In Section 6 we focus on the 
special case where there is no exogenous technological progress and prove formally that an equilibrium in 
which population size, the ratio of government spending to total income and the one of consumption to 
private physical capital are all constant does exist and is stable. In Section 7 we turn to the more general 
case of positive, constant and exogenous technological progress and present numerical simulations of the 
dynamic behavior of some model’s key endogenous variables under parameter values either dictated by 
existing empirical estimates or suggested by previous theoretical papers. The numerical simulations show 
that in its more general possible formulation the model exhibits, indeed, an asymptotic balanced growth 
path equilibrium. Section 8 concludes, summarizes and proposes possible paths for future theoretical 
research. 
 
 
 

2. Motivation 
 

In this section we justify in more detail how and why we model the dynamics of technology ( A ), the 
labor-force ( L ) and the ratio of government spending to aggregate output ( /G Y ) in the framework of our 
model. Indeed, A , L , and /G Y  are all constant in the seminal papers by Barro (1990) and Barro and 
Sala-i-Martin (1992). This is clearly an unrealistic assumption and therefore we depart from it along three 
different directions. 

Concerning the time-evolution of A , since in the rest of the paper we do not model the way new ideas 
are discovered and developed, we stick to neoclassical growth theory and assume that this variable 
changes over time at a constant and exogenous rate.5  

The second difference with the two afore-mentioned works has to do with the way we model the 
population dynamics. Malthus (1798) was among the first to point out the existence of two distinct phases 
in the evolution of world population. The first phase is the one in which there is an explosion of the 
fertility rate (largely because of income growth) and, hence, of the population growth rate. The distinctive 
trait of the second phase, instead, is represented by a general tendency of the population growth rate to 
slow down (mainly because of the increase in the mortality rate, in turn induced by the competition across 
                                                            
5 R&D-based endogenous growth models have already made clear that inventing new ideas becomes harder and harder over time and that one 
important factor that increases R&D difficulty is represented by the size of the market (Dinopoulos and Segerstrom, 1999). For a deeper 
discussion about the so-called R&D difficulty-index see, among others, the excellent surveys by Dinopoulos and Thompson (1999), Dinopoulos 
and Sener (2006) and Jones (2005). 
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individuals for the relatively scarce output of productive land). This idea was later on formalized as a 
logistic process by Verhulst (1838), Pearl and Reed (1920), Lotka (1925) and Volterra (1931). According 
to up-to-date demographic forecasts (United Nations, 2000), the world population annual growth rate is 
expected to fall gradually from 1.8% (1950-2000) to 0.9% (2000-2050), before reaching a value of 0.2% 
between the years 2050 and 2100. As stated by the same study, the world population will stabilize at a 
level of about eleven billion people by 2200. Thus, even from an empirical point of view, it seems 
reasonable to model population size as following a logistic process. If we assume that the work-intensity 
per person in the population equals one, then population and the aggregate labor-force ( L ) do coincide. 
Hence, in what follows we shall assume that L  exhibits a logistic-type behavior over time. 

The last, and probably the most important, difference with respect to Barro (1990) and Barro and Sala-
i-Martin (1992) concern our assumption on the dynamics of /G Y . In our model G  is understood as 
productive government expenditure, including public investment and the provision of public services. In 
this context we consider government expenditure ( G ) as net of depreciation. Unlike Barro (1990) and 
Barro and Sala-i-Martin (1992), we assume that this ratio follows a logistic process, as well. Considering 
the ratio of government spending to aggregate output ( /G Y ) constant is unattractive because over the last 
century we observe a sustained and significant dynamics of this ratio. For instance, in the United States 
(general government, including federal and states expenditures) /G Y  was, according to Musgrave (1969) 
and Maddison (1995), in the range 0.068-0.079 around 1900 and it is well above 0.30 around 2000. This 
is nearly a fivefold increase over one hundred years. The corresponding increase was threefold in France 
and Italy, fourfold in Germany and UK. There is, however, clear evidence that the process of expansion 
of /G Y  has slowed down since at least the 1980s and has almost stopped after 2000. 

To explain why there could be a sustained demand for government services, one should think of public 
expenditures as complementary with other factor-inputs. As an example, public expenditure on education 
and health positively affects human capital investment, public infrastructures increase firms’ productivity, 
law and order protect intellectual property rights and, hence, spur knowledge accumulation. One of the 
earliest contributions to the study of the long-term trend of public services expenditure is Wagner (1894), 
which prompted a huge flow of literature reviewed by Peacock and Scott (2000). Under the so-called 
“Wagner's law”, public services are considered as a bundle of goods with elasticity to aggregate income 
greater than one. This idea is consistent with several recent empirical analyses (see Tanzi and Schuknecht, 
2000 for a review). Florio and Colautti (2005) prove that the combined action of the “Wagner's law” and 
the “Pigou's effect” (excess burden of taxation – Pigou, 1947)6, together with other specific assumptions 
on the parameter values, lead to an equation describing the dynamics over time of the ratio of public 
expenditure to GDP of the following type: 

2

t t t

t t t

G G Gd
dt Y Y Y

μ γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

where μ  and γ  are given parameters7. Clearly, this is the equation of a logistic function. In the same 
paper, Florio and Colautti (2005), by looking at five countries (France, Germany, Italy, UK and US) for 
more than one century (1870-1990), also show that representing the /G Y  ratio as a logistic process fits 
data better than an exponential process8 (the only exception being Italy, a country with a notoriously high 
public debt).  

Modeling the dynamics of /G Y  as a logistic process has a number of attractive features. The most 
important one for empirical analysis is probably represented by the fact that the two parameters μ  and γ  
have the property that their ratio ( /μ γ ) gives the upper limit of /G Y  when t →+∞ . Thus, if we could 
estimate these two parameters (together with a set of other country-specific variables) we might explicitly 
predict the exact behavior of this ratio both across countries and over time. 

                                                            
6 This effect is quadratic in the tax rate (T/Y) and under balnced budget G/Y = T/Y. 
7 The parameters are respectively related to the elasticity to income of the demand for government services and to the elasticity to their tax-price. 
8 See also Sideris (2007) for Greece. 
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In this paper we explore the dynamics of a growth model in which there exist deterministic constraints 
represented by the demographic trends, the technological progress and the time-evolution of the ratio of 
public expenditure to GDP. By using both numerical examples and simulations, we see that the model 
may yield an asymptotic balanced growth path equilibrium and that the Barro’s (1990) solution can be 
obtained (asymptotically) as a special case of our more general framework.  

 
 
 

3. The Model 
 
Consider a closed economy in which a homogeneous final good (Y) is produced by using private 

physical capital (hereafter simply physical capital, K), labor (L) and government’s expenditure (G). As 
already mentioned, we assume that the work-intensity per person in the population equals one9 and 
postulate an aggregate production function (the production function for a single representative firm) 
taking the Cobb-Douglas form: 

1
t t t t tY A K L Gα θ α θ− −= ,   ( )0,1α ∈ ,  [0,1)θ ∈ ,             (1) 

where tA  is a variable representing the state of technology at time t .  
Depending on the value of parameters α  and θ , Eq. (1) suggests that, for given A  and G , at the 

aggregate level there can be either decreasing ( 0 1α θ< + < ), or increasing ( 1α θ+ > ), or else constant 
( 1α θ+ = ) returns to scale in the rival inputs ( K  and L ) and that, for given L  and A , instead, there can 
be either decreasing or at most constant returns to scale to physical capital ( K ) and public expenditure 
( G ), jointly considered (i.e., 0 1 1θ< − ≤ ). Finally, for given level of technology, the aggregate 
production function of Eq. (1) reveals constant returns to scale to labor, physical capital and public 
expenditure together. Therefore, Eq. (1) appears sufficiently general to be able to embed two different 
versions of the same type of endogenous growth model with public spending (Barro, 1990 and Barro and 
Sala-i-Martin, 1992). Both versions of the model take the index of the level of technology and the 
aggregate labor force constant.  

In Barro (1990) the aggregate production function is:10 
1

t t tY AK Gα α−= . 

In Eq. (1), imposing 0θ =  (for each 0tL > ) and ( )0,1α ∈  yields the Barro’s (1990) aggregate 

production function with a non-constant index of the technology (time-varying A ), i.e.: 
1

t t t tY A K Gα α−= . 
In a companion paper, Barro and Sala-i-Martin (1992) have analyzed the specific case in which the 

governmental services are subject to congestion (in this situation the public goods are rival but, to some 
extent, non-excludable). In its simplest formulation11 the idea that some public services might be subject 
to congestion is formalized simply by re-writing the aggregate production function of Barro (1990) as: 

1

t
t t

t

GY AK
K

α−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

Hence, the production process is now visibly of the AK-type modified by the term that involves the 
congestion effect in public services ( )/t tG K . In particular, this formulation suggests that, as long as the 

                                                            
9 Hence, population and aggregate labor-force are the same. 
10 Barro and Sala-i-Martin (2004, pp. 220-223) provide a simplified version of Barro (1990). If we normalize L  to one in their Eq. (4.39), p. 221, 
we obtain exactly the aggregate production function written in the text. 
11 Barro and Sala-i-Martin (1992), Eq. (14), p.650. 
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government decides to maintain a given level of congestion ( /G K ), aggregate output displays constant 
returns to scale to private inputs ( K ). On the contrary, for given K , a decrease in G ,  by reducing the 
total amount of public services available at the aggregate level and, thus, increasing the congestion of 
these services, lowers Y . Clearly, we are able to obtain a production function displaying congestion 
effects in public goods and services by setting, again, 0θ =  (for each 0tL > ) and ( )0,1α ∈  in our model 

(Eq. 1). In this case the aggregate production function would read as: 
1

t t
t t t t t

t t

G GY A K A K f
K K

α−
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, ( )' 0f ⋅ > , ( )'' 0f ⋅ < , 

which is the aggregate production function of Barro and Sala-i-Martin (1992)12 with a non-constant A . 
Once produced, output (Y ) can be either consumed ( C ), or used for expenditure in public goods and 

services ( G ) or invested in private capital ( K ). Thus, the law of motion of the aggregate stock of 
physical capital is given by: 

t t K t t tK Y K C Gβ
•

= − − − ,                 (2) 
where (0,1)Kβ ∈   is the exogenous, instantaneous depreciation rate of K .  
As we said before, we depart from the two different versions of the same endogenous growth model 

with public spending mentioned above (i.e., Barro, 1990 and Barro and Sala-i-Martin, 1992) for the 
following three assumptions. As for the level of technology, we postulate a simple exponential exogenous 
growth process: 

t A tA g A
•

= ,                   (3) 
whereas we posit a logistic-type function for both population changes: 

( )2
t t tL nL d L

•

= − ,   0d > ,   0 0n dL− > ,            (4) 

and the time-evolution of the ratio of aggregate public expenditure to total income ( /t tG Y ):  
2

t t t

t t t

G G Gd
dt Y Y Y

μ γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,   0γ > ,   0

0

0G
Y

μ γ
⎛ ⎞

− >⎜ ⎟
⎝ ⎠

.                    (5) 

The law of motion in Eq. (3) assumes that the technology can grow forever without bounds at a 
constant and exogenous rate, Ag . The law of motion of population size (Eq. 4) allows replicating the 
Malthusian conjecture that the latter variable becomes asymptotically constant - i.e., population growth 
goes smoothly to zero when t →+∞ . In the same equation n  and d  are two parameters and 0 0L >  is 
the size of population at 0t = . Finally, while the ratio /G Y , although endogenously determined, is taken 
as constant in Barro (1990) and Barro and Sala-i-Martin (1992), in Eq. (5) we explicitly consider the case 
where the time-derivative of this ratio follows a logistic-type trajectory. As in the previous equation, in 
(5) μ  and γ  are two parameters and ( )0 0/ 0G Y >  is the ratio of public expenditure to total income at 

0t = . 
Mathematically, modeling the dynamics of /G Y  and population size as logistic processes has also the 

advantage, as we shall see in a moment, of contributing to make the dynamics of the underlying economic 
model much more interesting. 

                                                            
12 See also Barro and Sala-i-Martin (2004), p. 223, Eq. (4.45). According to them: “…The formulation assumes that G has to rise in relation to 
total output, Y… We could have assumed alternatively that G had to rise in relation to aggregate private capital, K, in order to raise the quantity 
of services. The results would be essentially the same under this specification” (p. 223). 
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In what follows we analyze the choices of a benevolent social planner who seeks to maximize, under 
constraints, the intertemporal utility of a society including a population of L  identical and infinitely-lived 
agents. The dynamic, intertemporal optimization problem that the benevolent social planner faces is: 

{ }
( )

0 0

Max  
t t

t
t t

c
U u c L e dtρ

∞
=

∞
−≡ ∫ ,   ( )' 0u c > ,   ( )" 0u c <            (6) 

 
subject to: 

( )

( )

2

2

0 0 0 0 00;   0;   0;   / 0

t t K t t t

t A t

t t t

t t t

t t t

K Y K C G

A g A

L nL d L

G G Gd
dt Y

K A L G

Y Y

Y

β

μ γ

•

•

•

⎧
⎪ = − − −
⎪
⎪ =
⎪
⎪ = −⎨
⎪

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
>⎩ > > >

⎪
⎪

               (7) 

 
The constraints in Eq. (7) describe, respectively, the evolution over time of the private capital stock 

( K ), the index of the state of technology ( A ), the population size ( L ) and the ratio of public expenditure 
to GDP ( /G Y ). In eq. (6), U  is the intertemporal social welfare function, ( )u c  is the instantaneous 

utility of each single member of the society, ρ  is the constant subjective discount rate, tL  denotes 

population size at time t and, finally, 0K , 0A , 0L  and ( )0 0/G Y  are the given initial conditions of the state 

variables. Note that the instantaneous utility of any single agent depends solely on the stream of real per 
capita consumption ( /t t tc C L≡ ). 

The system of dynamic constraints (7) can be reduced to only one differential equation in tK . In order 
to do this, first of all we recognize that the second differential equation is linear with solution given by: 

0
Ag t

tA A e= .                   (8) 
The third and fourth differential equations are of the Bernoulli-type and can be solved in closed-form, 

as well. In particular, the solution to the third differential equation is: 

0

t
nt

nL
nd d e
L

−

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

,                 (9) 

while the solution to the forth differential equation is represented by: 

0

0

t

t t

G
Y Y e

G
μ

μ
μγ γ −

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

.               (10) 

Combining Eqs. (10) and (1) implies: 
1

0

0

t t t t t
t

G A K L G
Y e

G

α θ α θ

μ

μ
μγ γ

− −

−

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

.             (11) 

According to Eq. (11) tG  is a function of tA , tL  and tK  since: 
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1

0

0

t t t t
t

G A K L
Y e

G

α θ

α θ

μ

μ
μγ γ

+

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥⎛ ⎞
⎢ ⎥+ −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

              (12) 

After plugging Eq. (12) into the production function Y , the differential equation in K  in (7) becomes: 
1

1

0 0

0 0

1t t t t K t t
t t

K A K L K C
Y Ye e

G G

α θ
α θ

α θ
α θ α θ α θ

μ μ

μ μ β
μ μγ γ γ γ

− −
+

•
+ + +

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥+ − + −⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

.        (13) 

Finally, defining a new variable tξ , 
1

1

0 0

0 0

1 1t t
t

t t t t

G G
Y Y Y Ye e

G G

α θ
α θ

α θ
α θ

μ μ

μ μξ
μ μγ γ γ γ

− −
+

− −
+

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎛ ⎞⎛ ⎞ ⎢ ⎥ ⎢ ⎥≡ − −⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎛ ⎞⎝ ⎠⎝ ⎠ ⎢ ⎥ ⎢ ⎥+ − + −⎜ ⎟ ⎜

=

⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

,                                         (14) 

and inserting Eqs. (8) and (9) into (13) yields: 

( )
1

0

0

Ag t
t t t K t t

nt

nK A e K K C
nd d e
L

θ
α θ

α
α θα θξ β

+

•
++

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= − −⎢ ⎥⎛ ⎞
⎢ ⎥+ −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

.           (15) 

 
Before proceeding with the assumptions on the preferences, we now introduce the definitions of 

Balanced Growth Path (BGP) and Asymptotic Balanced Growth Path (ABGP) equilibrium. 
 

DEFINITION:  Balanced Growth Path (BGP) and Asymptotic Balanced Growth Path (ABGP) 
 Equilibrium 

 
A BGP equilibrium is a long-run equilibrium in which all variables depending on time grow at 

constant exponential rates and in which this constant growth could continue forever. A BGP equilibrium 
will be said non-degenerate if all growth rates are strictly positive. 

 
An ABGP equilibrium is a long-run equilibrium in which the growth rates of all variables depending 

on time approach constant values when t →+∞ . An ABGP equilibrium will be said non-degenerate if all 
these constant values are strictly positive. 

 
 
 

4. Preferences 
 

In this section we develop the analysis under the assumption that the instantaneous utility function of 
each member of this economy takes the CIES (constant intertemporal elasticity of substitution) form: 
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1 1( )
1
t

t
cu c

ϕ

ϕ

− −
=

−
,   0ϕ > ,              (16) 

where ϕ  is the inverse of the intertemporal elasticity of substitution in consumption. Thus, the problem 
(6) can be recast as: 
 

{ } 0

1

0

1Max  U
1t t

tt
t

c

c L e dt
ϕ

ρ

ϕ∞
=

∞ −
−−

≡
−∫                (17) 

        

Replacing in the above-equation per-capita consumption ( )/t t tc C L≡ , in turn, implies: 
 

{ } ( )0

1 1

0

Max  U
1t t

tt t
t

C

C L L e dt
ϕ ϕ

ϕ ρ

ϕ∞
=

∞ − −
−−

≡
−∫              (17’) 

        
where tC  denotes aggregate consumption at time t.13  
 

Hence, the original dynamic optimization problem that a benevolent social planner faces (Eqs. 6 and 7) 
in the end can be written as: 

 

{ } ( )0

1

0

Max  U
1t t

tt
t

C

C L e dt
ϕ

ϕ ρ

ϕ∞
=

∞ −
−≡

−∫                (18) 

subject to: ( )
1

0

0

Ag t
t t t K t t

nt

nK A e K K C
nd d e
L

θ
α θ

α
α θα θξ β

+

•
++

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= − −⎢ ⎥⎛ ⎞
⎢ ⎥+ −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

. 

The Hamilton function (Η ) associated with the latest problem is: 

( )
1

1 t

tt
t tKt KC L e

ϕ
ϕ ρ λ

ϕ

−
−

•

= +Η
−

, 

where 
tKλ  is the co-state variable related to tK  and tK

•

 is given by Eq. (15). The necessary first order 

conditions (henceforth FOCs) are: 

( )0

1 1

0

H

H   

0            0

  A

tt
Kt

t t

g t
Kt KtKt t t K

t nt

t

t

L e
C C

nA e K
K nd d e

L

ϕ

ρ

θ
α θ

α
α θα θ

λ

αλ λ ξ β λ
α θ

−

+

• •−
++

−

⎧ ⎛ ⎞∂⎪ = ⇒ − =⎜ ⎟∂⎪ ⎝ ⎠
⎪
⎪⎪ ⎛ ⎞
⎨ ⎜ ⎟

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⇒
⎢ ⎥
⎢ ⎥

∂⎪ ⎜ ⎟= − − = −⎪ ⎜ ⎟∂ + ⎛ ⎞⎪ ⎜ ⎟+ −⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝⎢
⎩

⎥⎣ ⎦
⎠⎪

                      (19) 

                                                            
13 Since a constant has no influence on the maximization, the problem (17’) is equivalent to: 

 { } ( )0

1

0

Max  U
1t t

tt
t

C

C
L e dt

ϕ
ϕ ρ

ϕ∞
=

∞ −
−≡

−∫  
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together with the dynamic constraint (Eq. 15), the boundary conditions ( 0A , 0K , 0L , 0 0/G Y ) and the 
transversality condition: lim 0

tK tt
Kλ

→∞
= . 

 
 
 

5. Dynamics 
 
We have already showed (paragraph 3) that the system of four dynamic constraints (respectively in tK , 

tA , tL  and /t tG Y ) can be reduced to only one constraint (the differential equation in tK , see Eqs. 7 and 
15). Hence, in problem (18) aggregate consumption ( tC ) represents the control variable and aggregate 
physical capital ( tK ) is now the sole state variable. In this section we characterize the dynamics of the 
ratio /t tC K 14 under different values of the inverse of the intertemporal elasticity of substitution in 
consumption (ϕ ). At this aim, note that the first equation in (19) yields: 

t

t

t t K

t t K

L C
L C

ϕ ϕ ρ
λ
λ
•• •

− − =                                                                                                                             (20) 

 
Using (20), (15) and the second equation in (19) leads to: 
 

( )
t tt tK

K
t t t t

CC K L
C K K L

β α ρβ
ϕ ϕ α θ ϕ

• • •⎛ ⎞
⎜ ⎟= − + + −
⎜ ⎟+
⎝

+
⎠

+ .                                                                                  (21) 

 
We can now state the following theorem. 
 

THEOREM 1: 

Suppose ( )0,1α ∈ , ( )0,1θ ∈  and 1αϕ
α θ

= <
+

. In this case the differential equation (21) has a 

solution given by: 
( )

( )
0

0

0 00

K

K

t

t t

t st
s

C L e
K L K L e ds

C L

ρ α θ β θ
α

ρ α θ β θ
α

⎡ ⎤+ +
−⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤+ +
−⎢ ⎥
⎢ ⎥⎣ ⎦

=
⎡ ⎤
⎢ ⎥−
⎢ ⎥
⎣ ⎦
∫

          (22) 

 

Proof:  See Appendix B. 
 

                                                            
14 Suppose that  0θ =  and 1α =  (for each 0tL >  and 0tG > ). If these two parameter values were simultaneously possible, then the aggregate 

production function (1) would become: t t tY A K= . Thus, under this parameterization, our model would be also able to obtain an AK  model with 
a non-constant index of the technology (time-varying A ). As in the AK  model, we can study the transitional dynamics by analyzing the 
behaviour of the ratio /t tC K  over time (see Barro and Sala-i-Martin, 2004, p. 208). 
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Eq. (22) gives the optimal time-path of the ratio of aggregate consumption to the total stock of private 

capital ( / ttC K ) under the assumption that ϕ  equals α
α θ+

. From Theorem 1 the following corollary 

follows: 
 

COROLLARY 1:   

Assume ( ), 0,1α θ ∈ , 1αϕ
α θ

= <
+

 and 
( )

0

0 00

K s
sK L e ds

C L

ρ α θ β θ
α

⎡ ⎤+ ++∞ −⎢ ⎥
⎢ ⎥⎣ ⎦> ∫ .  Then 0t

t
t

Clim
K→+∞

= . 

 

Proof:  The proof immediately follows from Eq. (22). g 
 

We are now interested in characterizing the dynamics of /t tC K  in the case in which 
( )
αϕ

α θ
≥

+
. 

Indeed, using econometric and/or calibration methods, Hall (1988), Patterson and Pesaran (1992), 
Guvenen (2005), Favero (2005) and Harashima (2005), among others, have made clear that the 
intertemporal elasticity of substitution in consumption (1 /ϕ ) is lower that one, implying 1ϕ > . 

Therefore, analyzing what happens when 
( )
αϕ

α θ
≥

+
 seems to be both more realistic and in line with 

economic theory.  

When
( )
αϕ

α θ
≥

+
, since tA , tC , tK  and tL  are positive variables, if the pair ( , )ttC K  is a solution of the 

FOCs then it has to satisfy the following differential inequality: 
 

t tt tK
K

t t t t

CC K L
C K K L

β ρβ
ϕ ϕ

• • •

≤ − + + −++ , 

 
that is: 
 

2
tt t tK

K
t t t t

C C CL
K K L K

β ρβ
ϕ ϕ

•⎛ ⎞′⎛ ⎞ ⎛ ⎞⎜ ⎟≤ − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

, 

where t t

t t

C Cd
K dt K

⎛ ⎞ ⎛ ⎞
≡⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

′
.  

By applying a classical comparison theorem (see Szarski, 1967, Ch. III, p. 44), we may conclude that 

when 
( )
αϕ

α θ
≥

+
 the following inequality must be satisfied: 

0
0

0 00

K
K

K
K

t

t t
t st

s

C L e
K L K L e ds

C L

β ρβ
ϕ ϕ

β ρβ
ϕ ϕ

⎡ ⎤
− + −⎢ ⎥
⎣ ⎦

⎡ ⎤
− + −⎢ ⎥
⎣ ⎦

≤
⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦∫

           (23) 
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Eq. (23) implies that t

t

C
K

 is bounded from above when 
( )
αϕ

α θ
≥

+
. We can now enunciate the 

following two corollaries. 
 

COROLLARY 2:   

Assume ( ), 0,1α θ ∈ , 1
K

α ρϕ
α θ β

≤ < +
+

 and 0

0 00

K
K s

sK L e ds
C L

β ρβ
ϕ ϕ

⎡ ⎤+∞ − + −⎢ ⎥
⎣ ⎦> ∫ . Then 0t

t
t

Clim
K→+∞

= . 

 
Proof:  The proof immediately follows from equation 23. g 
 

COROLLARY 3:  

Assume ( ), 0,1α θ ∈ , 1
K

α ρϕ
α θ β

≤ < +
+

 and 0

0 00

K
K s

sK L e ds
C L

β ρβ
ϕ ϕ

⎡ ⎤+∞ − + −⎢ ⎥
⎣ ⎦> ∫  and let ( , )ttC K  be a solution of 

the FOCs.  Then t
K t

t

g lim
K
K

→

•

+∞
≡  is finite if and only if t

C t
t

Cg lim
C

•

→+∞
≡  is finite and the following relation does 

hold: 
( )

( )
K K

C

g
g

β θ α ρ α θ
ϕ α θ

− + − +
=

+
. 

Proof:  From Corollary 2 we get that 0t

t
t

Clim
K→+∞

= . Now the thesis follows from Eq. (21).  g 

 

Corollary 1 and 2 together imply that, if (as we would expect from empirical evidence) the inverse of 

the intertemporal elasticity of substitution satisfies the inequality 1
K

α ρϕ
α θ β

≤ < +
+

, then the condition    

0t

t
t

Clim
K→+∞

=  

is checked. We now present two examples showing, however, that compliance with this condition does 
not necessarily imply the existence of an asymptotic balanced growth path equilibrium. For the sake of 
simplicity, both examples will assume logarithmic preferences ( 1ϕ = ) and differ solely in the shape of 
the underlying aggregate production function, Y , that is whether technological progress is missing or not.  
 

 

EXAMPLE 1 
Consider the case in which the instantaneous utility is logarithmic ( 1ϕ = ), and the parameters of the 

aggregate production function are such that 0θ =  and ( )0,1α ∈ . Eq. (1) can be written as: 
1

1 t
t t t t t t

t

GY A K G A K
K

α

α α

−

− ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. 

The equation above resembles the aggregate production function that Barro (1990) and Barro and Sala-i-
Martin (1992) use, respectively, in their own versions of the growth model with productive government 
spending. The only difference with respect to their approach is that we postulate a non-constant index of 
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the technology ( A  is time-varying). Under these two parameter values, the maximization problem 
becomes:  

{ }
( )

0 0

Max  U log
t t

t
t t

C
C L e dtρ

∞
=

∞
−≡ ∫  

subject to: ( )
1

0
Ag t

t t t K t tK A e K K Cαξ β
•

= − − . 

 
and the FOCs are: 
 

0

A

t tt t

t t t t

g tt t
t K

t t

CC K L
C K K L

CK A e
K K

α

ρ

ξ β

• • •

•

⎧
⎪ = + −
⎪⎪
⎨
⎪

= −

+

−⎪
⎪⎩

 

 
By using the results provided earlier, if ( , )ttC K  is a solution of the FOCs, then: 
 

0 0

0 00

t
t t

t
t ss

C L e
K L K L e ds

C L

ρ

ρ

−

−

=
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦∫

. 

Suppose that 0

0 00

ssK L e ds
C L

ρ
+∞

−> ∫ . We can see that 0t

t
t

Clim
K→+∞

=  even if t t

t t
t t

K Clim lim
K C

• •

→+∞ →+∞
= = +∞ . In this 

case the model would display no asymptotic balanced growth path equilibrium. 
 

EXAMPLE 2 
Consider now the same case as before, that is 1ϕ = , 0θ =  and ( )0;1α ∈ , but with the further 

assumption that there is no technological progress ( 0Ag = ). If we normalize to one the initial level of 
technology ( 0 1A = ) the aggregate production function becomes: 

1
1 t

t t t t
t

GY K G K
K

α

α α

−

− ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. 

Again, this production function is similar to those used by Barro (1990) and Barro and Sala-i-Martin 
(1992) in that it displays a constant index of the technology, set equal to one. It is possible to show that in 
this situation the solution is represented by an asymptotic balanced growth equilibrium. Indeed, we now 
have: 

*lim t
Kt

t

C
C

ξ β ρ
•

→+∞
= − −   and  *lim t

Kt
t

K
K

ξ β
•

→+∞
= − , 

where 
1

* lim 1tt

α
αμ μξ ξ

γ γ

−

→+∞

⎛ ⎞⎛ ⎞
≡ = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
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and 

lim t

t
t

G
Y

μ
γ →+∞
= . 

Therefore, the ratio /G Y  is only asymptotically constant. In turn, this implies that: 
1

lim 1t
Kt

t

C G G
C Y Y

α
α

β ρ
−•

→+∞

⎛ ⎞⎛ ⎞= − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.                (24) 

If we compare Eq. (24) with the corresponding result in Barro (1990) it is immediate to verify that the 
latter model, in which the ratio /G Y  is supposed to be always constant over time, is the “limit” of our 
model when t →+∞  (see Appendix A for further details).  

In brief, with 1ϕ = , 0θ = , ( )0;1α ∈  and 0Ag = , our model yields an asymptotic balanced growth 

path equilibrium. When t →+∞ , our growth-rate solution approximates that of the basic Barro's (1990) 
model. Therefore, our framework can be seen as a generalization of the latter to the case of non-null 
(exponential) technological progress and logistic behavior over time of both population size and the ratio 
of public expenditure to GDP. 

As a final comment, by comparing the two examples presented above, one can also emphasize the 
importance of technological progress in this class of growth models with public spending. In particular, 
we realize that with logarithmic preferences and with labor not entering the aggregate production function 
as an input, the absence of any disembodied technological progress (example 2) may yield an asymptotic 
balanced growth path equilibrium. In the next section we further develop this point. 

 
 

     
6. Characterization of the “No-Technological-Progress” Equilibrium 

 

In the previous section we demonstrated that the ratio t

t

C
K

 converges towards zero when t →∞  and 

1
K

α ρϕ
α θ β

≤ < +
+

. Moreover, the two previous examples have also showed that, depending on the shape 

of the aggregate production function and the fact that the constant and exogenous technological progress 
equals zero or not, the model can admit an asymptotic balanced growth path equilibrium.  

The aim of this paragraph is to prove that, when the index of the technology is constant ( 0Ag = ), there 
exists an equilibrium in which, for each value of ϕ , population size ( L ), the ratio of government 
spending to total income ( /G Y ) and the ratio of consumption to physical capital ( /C K ) are constant as 
well, and that such constants are all positive.  

At this aim we introduce the following new variables: t
t

t

C
K

Ψ ≡  and 
1 1

t t t t tA K L
α θ

α θ α θ α θξ
−

+ + +Σ ≡ .  

By employing the two definitions of tΨ  and tΣ , Eqs. (21), (15), (8) and (9) and our assumptions on 

t

t

Gd
dt Y
⎛ ⎞
⎜ ⎟
⎝ ⎠

, /t tA A
•

 and /t tL L
•

 in (7), we end up with the following system of differential equations: 
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( )
( )

( )

2

1t t
K t t

t t

t tt A
t K t

t t t

t
A

t

t
t

t

t t t

t t t

L
L

g L
L

A g
A

L n dL
L

G G Gd
dt Y Y Y

α ϕ α θϕ ρβ
ϕ ϕ α θ ϕ

ξ θ β
ξ α θ α θ

μ γ

• •

•• •

•

•

⎧ ⎡ ⎤− +⎛ ⎞Ψ −⎪ = + Σ + Ψ + −⎢ ⎥⎜ ⎟⎪Ψ +⎢ ⎥⎝ ⎠ ⎣ ⎦⎪
⎡ ⎤⎪Σ ⎛ ⎞ ⎢ ⎥⎪ = + − Σ − −Ψ −⎜ ⎟ ⎢ ⎥Σ + +⎪ ⎝ ⎠ ⎣ ⎦⎪

⎪
⎪ =⎨
⎪
⎪
⎪ = −⎪
⎪
⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎪⎩

 

Using the definition of tξ  (Eq. 14), one can show that: 
2

1 1
1

t t

tt

t

t

t

t tt

G G
Y Y G

G Y
Y

ξ
ξ α

μ

μ γ
θ

γ•

−
+⎛

⎡ ⎤⎛ ⎞
⎢ ⎥− ⎜ ⎟
⎢ ⎥ ⎡ ⎤⎝ ⎠ ⎛ ⎞⎛ ⎞⎣ ⎦= − + −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎞ ⎢ ⎥⎝
⎠

⎣−⎜ ⎟ ⎦
⎝

⎠
. 

Hence, the previous system of differential equations can be recast as: 

( )
( )

( )

2

1 1

1

1

t t
K t t

t t

t t

t tt tt A
t K t

t t t

t

t

A

t

t

L
L

G G
Y Y G g L

Y L

A g                        

Y

A

G α θ

α ϕ α θϕ ρβ
ϕ ϕ α θ ϕ

μ γ
θμ γ β

α θ α θ

• •

• •

•

⎡ ⎤− +⎛ ⎞Ψ −
= + Σ + Ψ + −⎢ ⎥⎜ ⎟Ψ +⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥− ⎜ ⎟ ⎡ ⎤⎢ ⎥ ⎡ ⎤⎝ ⎠ ⎛ ⎞Σ ⎛ ⎞ ⎛ ⎞⎣ ⎦ ⎢ ⎥= − + − + − Σ − −Ψ −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥Σ + +⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠

−
+⎛ ⎞

−⎜ ⎟ ⎦
⎠

⎦

=

⎝
⎣ ⎣

2

(25)

t
t

t

t t t

t t t

                                                                                                                                           

L n dL
L

G G Gd
dt Y Y Y

μ γ

•

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨

= −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎪
⎪
⎪
⎪
⎪⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩
 

The following theorem states the existence and stability of an equilibrium for the system of differential 
equations (25). 
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THEOREM 2:   
Assume ( )0,1α ∈ , ( )0,1θ ∈  and 0ϕ > . Suppose also that there is no technological progress, 0Ag = . 

There exists an equilibrium in which, for each value of ϕ , population size ( L ), the ratio of government 
spending to total income ( /G Y ),  the ratio of consumption to physical capital ( /C KΨ ≡ ) and variable 
Σ  equal, respectively, some positive constants. Moreover, such equilibrium is a saddle point.  

 
Proof:   

Solving the last system of differential equations with 0Ag = , 0tL
•

= , ( / ) / 0t td G Y dt = , 0t

•

Ψ =  and 

0t

•

Σ = , after some algebra yields the following result: 
 

( )

( )

*

*

*

*

K K

K

nL
d

G
Y

α θ β ρ β
α

α θ β ρ
α

μ
γ

⎧ +⎛ ⎞Ψ = + −⎜ ⎟⎪ ⎝ ⎠⎪
⎪ +⎛ ⎞Σ = +⎪ ⎜ ⎟⎪ ⎝ ⎠
⎨
⎪ =
⎪
⎪
⎛ ⎞⎪ =⎜ ⎟⎪⎝ ⎠⎩

 

It is easy to see that, as long as α , θ , Kβ , μ , γ , d , n  and ρ  are positive, *Ψ , *Σ , *L  and ( )*/G Y  

will also be positive and independent of ϕ .  
To assess the stability of the equilibrium, we need to find the Jacobian matrix associated with the log-
linearized system of differential equations in (25) and evaluate it at the equilibrium values *Ψ , *Σ , *L  
and ( )*/G Y written above. This produces: 

( ) ( ) ( )
( )

( ) ( )

... ...

... ...

0 0 0
0 0 0

K K K

K K

n

α ϕ α θα θ θβ ρ β ρ β ρ
α α ϕ α θ

θ θβ ρ β ρ
α α

μ

⎡ ⎤⎛ ⎞− ++⎛ ⎞ ⎛ ⎞+ − + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥+ − +
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 
The eigenvalues of the Jacobian matrix are 1 nλ = − ,  2λ μ= − ,  3λ and  4λ  with 3 4λ λ ρ+ =  and  

1 2
( )( ) 0

( )
K

K
ρα θ β ρθλ λ β ρ

α ϕ α θ
⎡ ⎤+ +

= − + <⎢ ⎥+⎣ ⎦
 

It follows that one eigenvalue is positive and the others are negative and this implies the equilibrium is a 
saddle point (Simon and Blume (1994, Theorem 23.9)). g 
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7. A numerical simulation 
   

We now turn back to the most general possible version of the model (including positive, constant and 
exogenous technological progress) and present a numerical simulation of the dynamic behavior of some 
of its endogenous variables under a given set of parameter values. In choosing such values we draw either 
on existing empirical estimates or on baseline specifications coming from previous works. We use the 
following parameter-values: 

• 1/ 3α = . This is the conventional (see Denison, 1962; Maddison, 1982; Jorgenson et al., 1987; 
Mankiw et al., 1992) share of gross income accruing to a narrow concept of physical capital 
(structures and equipment); 

 

• ( )1 0.46α θ− − = . If we interpret ( )1 α θ− −  as the share of GDP allocated to government 

expenditures, then empirical evidence (Tanzi and Schuknecht, 2000, Table 1.1) for a sample of 
eleven OECD countries15 over the time-period 1990-1999 suggests that the average value of such 
share is approximately equal to 46% ; 

 

• 0.2θ = . With 1 / 3α =  and ( )1 0.46α θ− − =  it follows that the share of gross income accruing to 

labor, θ , should be set to about 20%; 
   
• 2%Ag = . This parameter is obtained by comparing two different studies in the tradition of the so-

called growth-accounting, respectively Christensen et al. (1980) and Jorgensen and Yip (2001).16 
The first paper covers Canada, France, Germany, Italy, Japan, Netherlands, UK and US for the time-
period 1947-1973 and finds that the annual growth rate of TFP has been on average (both across 
countries and time) of about 2.7%. The second paper, instead, reports data for the same set of 
countries as before (except Netherlands), but covers a more recent period, 1960-1995. In this case 
the authors find than on average (across countries and time) TFP has grown solely by 1.3% per year. 
The value we give to Ag  (i.e., 2%) derives from a combination of the results obtained by the two 
above-mentioned studies;17 

 
• 0.0144n = . The parameter n  in the logistic function giving the change of population size over time 

represents the so-called “growth rate coefficient”. We attribute to this parameter the value of 0.0144, 
which is the average growth rate of the labor-force in the U.S. private business sector over the period 
1948-1997 (Jones and Williams, 2000, Table 1, p.73). Such a value is not distant from the estimate 
of 0.019 obtained for the population of Great Britain from 1801 to 1971 (see Oliver, 1982, p. 360); 

 
• 0.0144 / 63d = . In the same paper, Oliver (1982) also estimates the saturation level of the 

population of Great Britain (assumed to follow a logistic process) and finds that it is close to 63 
million people. Accordingly, with this value and 0.0144n = , the last parameter of interest in the 
logistic curve for population ( d ) will equal 0.0144/63; 

 

                                                            
15 The sample includes: United States, Australia, Canada, Denmark, France, Germany, Italy, Japan, Spain, Sweden, United Kingdom. 
16 See the discussion in Barro and Sala-i-Martin (2004, p. 439, Table 10.1). 
17 Aghion and Howitt (2009, Table 5.1, p. 109) show that for OECD countries (1960-2000) the average annual growth rate of TFP has been of 
1.61%. It is worth mentioning here, however, that none of the works within the growth accounting-tradition mentioned thus far includes explicitly 
public expenditures as an input in the aggregate production function. 
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• 2ϕ = ; 0.04ρ = ; 0.05Kβ = . Concerning the inverse of the intertemporal elasticity in consumption 
(ϕ ), the subjective discount rate ( ρ ) and the instantaneous depreciation rate of physical capital 
( Kβ ) we follow the baseline specification of Mulligan and Sala-i-Martin (1993, p. 761); 

 
• μ = 0.05; γ = 0.10. These values are based on estimates in Florio and Colautti (2005). They report  

        μ = 0.05 for US, UK and Germany, 0.07 for France and 0.03 for Italy, while the limit of  
       /G Y is on average slightly above 0.50. This implies γ = 0.10, because μ/γ is the upper limit of /G Y . 
 
• Finally, we use the following values for the initial conditions: (0) 1L = , (0) 1A = , (0) 1K =  and  

0 0/ 8.5%G Y = . In particular, the latter value is close to the average level of /G Y  around 1900 in 
countries like United States, France, Italy, Germany and United Kingdom (as estimated by Florio 
and Colautti, 2005, based on a set of different data sources drawn from quantitative economic 
historians).  

 
Inspection of the following figures clearly suggests that, under the parameterization discussed above, 

our more general model leads to an asymptotic balanced growth path equilibrium.  
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8. Concluding Remarks 
 

Since the pioneering contributions of Barro (1990) and Barro and Sala-i-Martin (1992), it is widely 
recognized that public expenditure plays an important role in raising the economic potential of an 
economy. This paper contributes to this branch of growth literature by building an aggregative growth 
model that combines within the same framework three different assumptions that are absent in the first 
generation of public spending-based growth theories. First of all, we assume that the model economy 
never runs short of new ideas and that the rate at which new ideas are discovered is exogenous and 
remains constant over time (in other words, the variable reflecting the state of technology follows an 
exponential process). Moreover, we postulate a logistic-type evolution over time for both population size 
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and the ratio of public expenditure to GDP. While the view that population size might follow a logistic 
behavior with respect to time is not new (as it goes back to Malthus (1798) and Verhulst (1838)), recent 
forecasts (United Nations, 2000) having the world as unit of analysis, confirm that the annual growth rate 
of population is expected to fall gradually until 2100 and that world population will stabilize at a level of 
about eleven billion people by 2200. Thus, not only theoretically but also empirically, it seems reasonable 
to model population size as following a logistic process. On the other hand, the use of such a process in 
modeling the behavior over time of public expenditure as a fraction of total GDP is wholly new in the 
context of growth theory, and is due to Florio and Colautti (2005). When this idea, that has solid 
theoretical and empirical grounds, is introduced in a deterministic growth framework where a benevolent 
social planner is assumed to maximize the intertemporal utility of a society including L  identical and 
infinitely-lived agents, we find that the ratio of consumption to physical capital converges towards zero 
when time goes to infinity, provided that the inverse of the intertemporal elasticity of substitution in 
consumption is larger than a given threshold level. This requirement is consistent with the empirical 
evidence showing that the intertemporal elasticity of substitution in consumption is, indeed, lower than 
one. By using two different examples we also show that, depending on the form of the underlying 
aggregate production function and on whether, for given aggregate production function, technological 
progress equals zero or a positive constant, our model may or may not yield an asymptotic balanced 
growth path equilibrium. In particular, we see that with logarithmic preferences and in the absence of any 
technical change, our growth-rate solution approximates, when t →+∞ , that of Barro (1990), in which 
the ratio /G Y  is supposed to be always constant over time. When there is no exogenous technological 
progress at all, we formally prove that for each value of the intertemporal elasticity of substitution in 
consumption an equilibrium in which population size, the ratio of government spending to GDP and the 
ratio of consumption to physical capital are all constant. On the other hand, if technological progress is 
assumed to be positive, numerical simulations (using parameter values drawn either on existing empirical 
estimates or on previous works) show that the model still exhibits an asymptotic balanced growth path 
equilibrium. 

While the model we have proposed in this paper is extremely simplified in many respects, it has 
definitely the advantage of being more realistic than Barro (1990) and Barro and Sala-i-Martin (1992), as 
it removes from these approaches the assumption of a constant population and a time-invariant /G Y  
ratio.  

As for future research, we believe that our framework can be extended along different possible paths. 
We mention here just two of them. First of all, the stylized fact of increasing government expenditures 
over the last two centuries and the more recent fiscal restraint in many countries since the 1980s are both 
expression of a unique dynamic pattern, resulting from the combined effect of preferences for public 
services and welfare losses due to distortionary taxation. A more comprehensive approach would 
explicitly derive the key parameters of the public expenditure logistic function from the underlying 
optimization problem of the consumer-tax-payer.  

A second extension would consist in introducing in the model endogenous, rather than exogenous, 
technological progress, that is a separate R&D sector that produces ideas for the whole economy. This 
would certainly go in the direction of having a model closer to real world in which nothing comes in the 
form of “manna from heaven”. 
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APPENDIX A 
In this appendix we compare our model (when 1ϕ = , 0θ = , ( )0,1α ∈  and 0Ag = ) with Barro (1990). 

When 0θ =  and the initial index of the technology is normalized to one ( 0 1A = ), equation (1) in the main 
text becomes: 

1
t t tY K Gα α−= .                (A1) 
Note that this production function coincides exactly with that of Barro, 1990 (see Barro and Sala-i-

Martin, 2004, p. 221, equation 4.39) once we set 1t tA L= =  for each t in that model.18 Equation (A1) 
states that the only two inputs entering the production of the homogeneous final good (Y ) are private 
physical capital ( K ) and public expenditure ( G ). Therefore, labor ( L ) is not an input into the production 
process.19 With 1L = , per worker ( /c C L≡ ) and aggregate ( C ) consumption are clearly the same. 
Moreover, with A  also equal to one and logarithmic preferences ( 1ϕ = ), equation 4.42, p. 221, in Barro 
and Sala-i-Martin (2004) delivers: 

1

,C G
C Y

α
α

α δ ρ
−•

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

                    (A2) 

where /G Y  is the constant ratio of government purchases to GDP, δ  is the instantaneous depreciation 
rate of private physical capital and ρ  is the subjective discount rate. If /G Y  is taken to be equal to 
(1 )α− , then it is showed (see Barro and Sala-i-Martin, 2004, p.222) that the decentralized growth-rate 

solution coincides with that of a social planner. With ( )/ 1G Y α= − , equation (A2) above becomes: 

( )
1

1C
C

α
αα α δ ρ

•
−⎡ ⎤= − − −⎢ ⎥⎣ ⎦

.              (A3) 

If we set ( )/ 1G Y α= −  in Eq. (24) in the body-text, we would get: 

( )
1

lim 1t
Kt

t

C
C

α
αα α β ρ

•
−

→+∞

⎡ ⎤= − − −⎢ ⎥⎣ ⎦
,             (A4) 

where Kβ δ=  represents the instantaneous depreciation rate of private physical capital. Equation (A4) 
states that the solution for the equilibrium growth rate of consumption that our model suggests in the 
specific case in which 1ϕ = , ( )0,1α ∈ , 0θ =  and 0Ag =  coincides, when t →+∞ , with that of the basic 

Barro's (1990) model when the ratio /G Y  equals 1 α−  (i.e., when the decentralized and the social 
planner’s growth-rate solutions do coincide).  

It is worth emphasizing that, unlike Barro (1990) - where /G Y  is postulated to be always constant - in 
line with empirical evidence we explicitly assume that such a ratio follows a logistic trajectory. It is 
exactly because of this assumption we have that only at the limit, i.e. when t →+∞ , /G Y  equals a 
constant given by the ratio /μ γ , where μ  and γ  are the parameters of the logistic process postulated for 

/G Y . 
 

                                                            
18 In the simplified version of the Barro's model presented in Barro and Sala-i-Martin (2004, pp. 220-223) there is no disembodied technological 
progress and no growth in the aggregate labor force (A and L are given constants). If we normalize A and L to one, eq. 4.39 in Barro and Sala-i-
Martin (2004, p.221) collapses to the one written in (A1). 
19 We can think of labor as included implicitly in the form of human capital and lumped together with private physical capital, K  (see Rebelo, 
1991 as an example). 
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APPENDIX B:  Proof of Theorem 1  

Since we assume αϕ
α θ

=
+

 equation (21) in the main text can be rewritten as: 

( ) ( )t tt K t
K

t t t t

CC K L
C K K L

β α θ ρ α θ
β

α α

• • •

+ +
+ +

− = − + − .                                                                    (B1) 

By defining: 

t t

t t

C Cd
K dt K

⎛ ⎞ ⎛ ⎞
≡⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

′
, 

Eq. (B1), can be written as: 

( ) ( )tK t

t t

t
K

t t

t C LK
KC L

C
K

β α θ ρ α θ
β

α α

•
⎛ ⎞

⋅ + +
′ + +

= − + −⎜ ⎟
⎝ ⎠

.                                                                    (B2) 

As a final step, write (B2) as: 

( )t Kt t t

t t t t

C C C L
K K K L

ρ α θ θβ
α

•⎡ ⎤′ + +⎛ ⎞ ⎢ ⎥= −⎜ ⎟ ⎢ ⎥⎝ ⎣ ⎦
+

⎠
 

 
which is a Bernoulli-type equation whose solution is: 
 

( )

( )
0

0

0 00

K

K
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C L e
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C L
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