
LEMP: a Language Engineering Model-driven
Process

Angelo Gargantini1, Elvinia Riccobene2, and Patrizia Scandurra1

1 Università di Bergamo, Italy
{angelo.gargantini,patrizia.scandurra}@unibg.it

2 Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. In this paper, we propose LEMP as a model-driven process
to develop a language endowed with a set of derived artifacts (syntax,
interchange format, APIs, ...) and with a well defined formal seman-
tics. The process exploits the Model Driven Engineering principles of
metamodeling, model transformation and automatic generation of lan-
guage processing tools. We describe the requirements to fulfill and the
development steps of this language engineering life cycle, including the
validation activities regarding the syntactic and semantic aspects. As a
proof-of-concepts, we apply LEMP to the Finite State Machines and we
report our experience in developing a language for the Abstract State
Machine formal method.

Key words: software language, language engineering, model-driven en-
gineering, metamodeling, language artifacts development, semantics spec-
ification and validation

1 Introduction

In the context of (software) language engineering, Model-driven Engineering
(MDE) [5, 25, 36] is beginning to take a more prominent role, thanks to its basic
concepts of models, which are considered as first class artifacts of the develop-
ment process, and of automatic model transformations, which drive the overall
design flow from requirements elicitation till final implementation toward specific
platforms. We refer to model-driven language engineering when language devel-
opment is carried out following the principles of the model-driven approach.

Among software languages, a distinction can be made between programming
languages, which are used to develop software code running on a given plat-
form and satisfying certain computational paradigms, and modeling languages,
which are used for high level, platform-independent software design and that are
increasingly being defined (as domain-specific languages or DSLs) for specific
domains of interest.

Traditionally, programming language construction follows a well-defined path
[2], which consists of (1) defining the language syntax by means of an EBNF
grammar, (2) generating a parser, (3) defining a type-system, (4) developing al-
gorithms that walk the abstract syntax tree and check the well-typedness of the

2 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

program. On the contrary, a modeling languages development process diverges
from traditional language design [23] since modeling languages are usually intro-
duced to model specific domain concepts, should be easy and fast to define, and
should allow re-use of previously defined artifacts. Modeling language syntaxes
are expressed in an abstract way by means of (usually object-oriented) mod-
els, called metamodels, so separating the abstract syntax and semantics of the
language constructs from their different concrete notations. Language syntaxes
should be suitable for different applications: model transformations, to change
design abstraction level, compose modeling aspects, relate platform-independent
models with platform specific ones; design space exploration, to generate opti-
mized variants of models; and correct-by construction design, where expressive
syntactic rules are used in conjunction with a suitable behavioral semantics to
statically identify models with bad behavioral properties. Furthermore, a way to
express and prove structural and behavioral formal properties of models should
be provided. Structural properties concern the specification, representation, and
manipulation of models as expressed in some (domain-specific) syntax. Behav-
ioral properties focus on the specification and analysis of (domain-specific) exe-
cution semantics.

A process to engineer modeling languages must, therefore, address several as-
pects of a language: structure, constraints, textual and graphical representation,
parser/compiler, transformational and executable behavior. Up to now, research
usually faced on one aspect at a time: definition of (domain-specific) language
metamodels [22, 38, 33, 12], development or derivation of concrete syntaxes (tex-
tual or graphical) from metamodels [31], model implementation, etc. And whilst
many metamodelling environments (Eclipse/Ecore, GME/MetaGME, AMMA/-
KM3, XMF-Mosaic/Xcore, etc.) exist that allow to cope with syntactic and
transformation definition issues, very limited effort was spent for language se-
mantics definition, which is usually given in natural language. However, a precise
formalization of model behavior is strongly required for the purposes of verifi-
cation and simulation [23], and it still remains an open issue in the context of
modeling language definition [3].

The definition of a language development methodology covering all aspects
mentioned above is still missing, and the lack of such a process is addressed
in [29] as the reason why the decision to develop a DSL is often postponed
indefinitely, if considered at all, and most DSLs never get beyond the application
library stage. A well-established language engineering process, should organize
all the development activities by setting precise (sequential or parallel) relations
among them on the base of their input/output artifacts. The definition of such an
engineering language process can take advantage of the traditional programming
language development process, but it can not ignore the different goal, nature,
and artifacts of modeling languages w.r.t. programming languages.

In this paper, we propose LEMP (Language Engineering Model-driven Pro-
cess) as a process to develop a language endowed with a set of derived artifacts
(syntax, interchange format, APIs, etc.) and a well defined formal semantics.
The process exploits the MDE principles of metamodelling, model transforma-

LEMP: a Language Engineering Model-driven Process 3

tion and automatic generation of language processing tools. The novelty aspects
of LEMP are (a) the completeness of the language development process from
requirements to final artifacts implementation, and (b) a validation activity, re-
garding both syntactic and semantic aspects, to asses language correctness.

LEMP is the result of our experience in applying the principle of the model-
driven approach to develop a unified abstract notation for the Abstract State
Machine (ASM) formal method [6], and to tackle the problem of ASM tool
inter-operability. This effort brought us to the development of the ASMETA
(ASM mETA modeling) tool-set [4, 16], a set of tools around ASMs, and to the
definition of a general framework to endow metamodel-based languages with a
formal semantics [17].

As a proof-of-concepts, we show the application of the LEMP activities by
developing a language for the Finite State Machines (FSMs), and then we briefly
report our experience in the development of the ASMETA tool-set. The choice
of the FSMs is intentional and due to the fact that a language for FSMs is easy
to understand, small enough that a complete description of the LEMP steps
is feasible to be presented in a small room, and covers all language aspects
mentioned above.

The remainder of this paper is organized as follows. Sect. 2 introduces basic
concepts underlying ASMs. Sect. 3 presents the overall process of engineering
a metamodel-based language by LEMP and shows its applycation to the FSMs
case study. Sect. 4 reports our experience on applying the LEMP process to the
ASM domain. Finally, related work and conclusions are given in Sect. 5.

2 Abstract State Machines

Finite State Machines (FSMs) are a well-known formalism for modeling and de-
signing, so we avoid any introduction here. Abstract State Machines (ASMs) are
an extension of FSMs, where unstructured “internal” control states are replaced
by states comprising arbitrary complex data. The states of an ASM are multi-
sorted first-order structures, i.e. domains of objects with functions and predicates
defined on them. The transition relation is specified by “rules” describing the
modification of the functions from one state to the next. The basic form of a
transition rule is the guarded update having form if Condition then Updates,
where Updates are a set of function updates of the form f(t1, . . . , tn) := t and
are simultaneously executed1 when Condition is true.

ASMs can be understood as pseudo-code or virtual machines working over
abstract data structures. The notion of ASMs moves from a definition which for-
malizes simultaneous parallel actions of a single agent, either in an atomic way,
Basic ASMs, and in a structured and recursive way, Structured or Turbo ASMs,
to a generalization where multiple agents interact Multi-agent ASMs. Appropri-

1 f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To fire this
rule to a state Si, i ≥ 0, evaluate all terms t1, . . . , tn, t at Si and update the function
f to t on parameters t1, . . . , tn. This produces another state Si+1 which differs from
Si in the new interpretation of f .

4 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

Fig. 1. The LEMP process

ate rule constructors also allow non-determinism (existential quantification) and
unrestricted synchronous parallelism (universal quantification).

A complete mathematical definition of the ASM method can be found in [6],
together with an overview of the great variety of its applications like: definition
of industrial standards for programming and modeling languages, design and re-
engineering of industrial control systems, modeling e-commerce and web services,
design and analysis of protocols, architectural design, verification of compilation
schema and compiler back-ends, etc.

3 A language engineering model driven process: LEMP

A language definition process should specify the steps a designer has to under-
take in order to provide the essential ingredients of a language, namely (at least)
a syntax, a semantics and a set of tools for language processing. The language
engineering process we here present exploits the basic concepts of (a) metamod-
eling, (b) model transformations, (c) automatic generation of code from models
of the model-driven engineering approach to system development.

The overall LEMP (Language Engineering Model-driven Process) process for
developing a metamodel-based language is depicted in Fig. 1. The diagram shows
the process activities and makes explicit their dependency. LEMP consists of the
following steps:

1. language requirements capture and analysis;
2. choice of a metamodeling framework and supporting technologies;
3. language design by metamodeling;
4. definition of language concrete syntaxes, i.e. metamodel derivatives (also

called language artifacts), to handle – i.e. create, store, control, exchange,
access, manipulate — models;

5. validation of the language concrete syntaxes;
6. language semantics definition;
7. validation of the language semantics;
8. development of language processing tools, exploiting the chosen metamod-

eling framework and the language artifacts

The LEMP process may be iterative: often it has to come back to previous
steps and make corrections. The activities of defining language concrete syntaxes
and semantics, together with their subsequent validation steps, can, in princi-
ple, be performed in parallel. However, a synchronization is required by LEMP

LEMP: a Language Engineering Model-driven Process 5

between the syntax definition and the semantic validation, since, as better ex-
plained in Sect. 3.7, the latter requires the availability of models to simulate that
have to be expressed in terms of a concrete syntax.

3.1 Language requirements analysis

This design step consists in pointing out the language computation paradigm
and the constructs representing the expressive power of the language. To this
purpose, any official documentation of the language should be taken in consid-
eration, and, if language dialects already exist, it should be make clear if their
characteristics have to be included in the new language, or not.

FSM. Many mathematical models for FSMs exist in literature. We choose their
formal representation as the tuple (�,�, S, S0, �) where � is the input alphabet
(a finite, non-empty set of symbols), � is the output alphabet (a finite, non-
empty set of symbols), S is a finite, non-empty set of states, S0 ⊆ S is a set of
initial states, � ⊆ S×�×�×S is the transition relation such that (sj , i, o, sk) ∈ �
if the machine is in the state sj and receives the input i, then it produces the
output o and moves to the state sk.

Many notations for FSMs exist, as the FSMLanguage2, the State Machine
Compiler3, the FSMCreator4, just to name a few. A simple FSM language was
also presented in [32]. To represent the above mathematical model, our notation
denotes a FSM by: its name, an input and an output alphabet whose symbols
are simple characters, a set of named states, and a set of named transitions. A
state can be an initial state. A transition has a source state, an input character
that triggers the transition, an output character, and a target state.

3.2 Choice of a metamodeling framework

Many meta-modeling frameworks implementing the model-driven engineering
principles exist in literature. Among them, the most commonly used are the
OMG framework with the MOF (Meta Object Facility) as meta-language, the
AMMA metamodeling platform, the Xactium XMF Mosaic initiative, the Soft-
ware Factories and their Microsoft DSL Tools, the Model-integrated Computing
(MIC), the Generic Modeling Environment for domain-specific modeling, and
the Eclipse Modeling Framework (EMF).

In principle, the choice of a specific meta-modeling framework should not pre-
vent the use of models in other different meta-modeling spaces, since model-tran-
sformations among meta-modeling framework should be theoretically supported
by the environments. However, although in theory one could switch framework
later, a commitment with a precise metamodeling framework has to be done
very early in the development process. Indeed, at the light of our experience,
model transformations (model-to model, model-to-text, etc.) are not supported
by all metamodeling environments in the same way, and problems can arise
upon context change. We suggest that the choice of the metamodeling frame-

2 http://hthreads.csce.uark.edu/wiki/FSMLanguage
3 http://smc.sourceforge.net
4 http://www.jugend-weinheim.de/fsm

6 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

Fig. 2. FSM metamodel

work should be prescribed by the language artifacts one likes to generate from
the metamodel. For example, if the language designer is interested into develop-
ing a concrete notation in textual form, he/she must prefer a framework where
model-to-text transformations are well-mastered.

FSM. As metamodeling framework, we commit with the EMF since it is based
on the extensible, open-source Eclipse framework, it is becoming the standard
de-facto MDE platform, and it provides a great variety of supporting technologies
and tools.

3.3 Language design by metamodeling

In a model-driven approach, the abstract syntax of a language is defined in terms
of a metamodel describing the vocabulary of concepts provided by the language,
the relationships existing among those concepts, and how they may be combined
to create models. This step leads to an instantiation of the chosen metamodeling
framework for a specific domain of interest.

A metamodel based abstract syntax definition has the great advantage of
being suitable to derive from the same metamodel (through mappings or pro-
jections) different alternative concrete notations, textual or graphical or both,
for various scopes like graphical rendering, model interchange, standard encod-
ing in programming languages, and so on, still maintaining the same semantics.
Therefore, a metamodel could be intended as a standard representation of the
language notation.

FSM. Figure 2 shows the metamodel for the FSMs we propose. Fsm, State, and
Transition are subclasses of NamedElement since they all share their attribute
name that is the identifier. A Fsm has an input alphabet and an output alphabet
as string attributes (since input/output symbols are characters), and consists of
a (non-empty) set of states and of a set of transitions. A state can be the starting
state. Each transition is labeled by an input and (possibly) and by an output
character and is associated with its source and target states.

3.4 Language concrete syntaxes

Whenever a language is specified in terms of a metamodel, it is possible to
automatically (or semi-automatically) generate several concrete syntaxes – here

LEMP: a Language Engineering Model-driven Process 7

referred to us as language artifacts. Each one is defined by exploiting standard
or proprietary projections from the metamodeling framework to other technical
spaces [26], as for ex. the Javaware, XMLware, and grammarware spaces.

Language concrete notations can be classified as human-comprehensible (tex-
tual, graphical or both) for human use to edit models conforming to the meta-
model, and as machine-comprehensible for model handling by software applica-
tions. An XMI (XML Metadata Interchange) format and Java APIs are examples
of machine-comprehensible concrete syntaxes. The former allows serializing lan-
guage models and it is necessary for an easy interchange of data and metadata
between tools; the latter allow model representation in terms of programmable
objects, and they are useful to develop language processing tools able to access
and manipulate models in a model repository.

FSM. In [14], we defined general rules on how to derive a context-free EBNF
grammar from a metamodel, and we also provided guidance on how to automat-
ically assemble a script file and give it as input to the JavaCC parser generator
to generate a parser for the EBNF grammar of the textual notation. This parser
is more than a grammar checker: it is able to process models conforming to
their metamodel, to check for their well-formedness with respect to the OCL
constraints of the metamodel, and to create instances of the metamodel through
the use of the Java APIs.

By using these mapping rules, the following EBNF grammar has been de-
rived from the FSM metamodel in Fig 2 to represent the lexical and syntactical
structure of FSM text files:

Fsm = ''fsm'' id ''inputAlphabet'' string ''outputAlphabet'' string
''states'' (State)+ ''transitions'' (Transition)*

State = [''start''] id
Transition = id '':'' id ''−'' char [''/'' char] ''−>'' id '';''

The terminal symbol char represents single characters, string represents a
string of characters, and id represents identifier strings starting with a letter.

There exist several tools able to define (or derive) concrete grammars for
metamodel-based languages. For example, EMFText [21] allows the user to de-
fine text syntax for languages described by an Ecore metamodel and it gen-
erates an ANTLR grammar file. TCS [24] (Textual Concrete Syntax) enables
the specification of textual concrete syntaxes for Domain-Specific Languages
(DSLs) by attaching syntactic information to metamodels written in KM3. A
similar approach is followed by the TEF (Textual Editing Framework)5. All
these approaches in which the abstract syntax (metamodel) is defined before
the concrete syntax are completely compatible with the LEMP approach. Other
tools, like the Xtext by openArchitectureWare6, feature the derivation of the
language metamodel from its concrete textual grammar. They can be integrated
with LEMP provided that the user compares the metamodel generated from the
grammar with the metamodel developed at stage 3 to find inconsistencies. For

5 http://www2.informatik.hu-berlin.de/sam/meta-tools/tef
6 http://www.openarchitectureware.org/

8 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

our FSM language we have developed both a EMFText .cs file and a Xtext .xtxt
file, which can be downloaded from the web site www.ameta.sf.net/lemp.

3.5 Syntax Validation

The first goal of the validation phase is to validate the abstract syntax obtained
by the metamodeling activity. Besides a manual inspection of the metamodel,
possibly performed by experts of the language, LEMP proposes to validate the
abstract syntax by validating the concrete syntaxes to provide confidence that
the metamodel correctly captures the language constructs. We believe that vali-
dating the abstract syntax without any concrete syntax requires a greater effort
and is more error prone than developing some concrete syntaxes and use them.
The validation is performed by instantiating several terminal models7. The best
way to carry on this activity is to use a concrete textual syntax and its parser to
read a model pool that would act as benchmark. Using the APIs and program-
maticaly instantiate models in the language is another alternative. We assume
that a textual syntax has been defined, a syntax checker has been introduced
that checks the conformance of the model with respect to the metamodel con-
straints (for example by checking that the OCL constraints are satisfied or not)
and the models are written as text files. During this activity it is important
that the user collects the information about the coverage of language constructs
to check that all the language constructs (classes, attributes and relations) are
actually used by the examples. Writing wrong models and checking that they
are not accepted by the parser is important as well. The coverage evaluation
can be performed by using a code coverage tool and instrumenting the parser
accordingly.

FSM. We have developed several examples of simple FSMs to check the validity
of our grammar. Table 3 reports two different FSMs taken from the literature
[17, 32]. The entire set of benchmarks we used contains about 15 machines, some
simple other complex, some corrected while others are incomplete or contain
syntactical errors. Table 1 reports the coverage measured by the EclEmma Java
tool while parsing our examples.

model set description coverage model set description coverage

I1 only FSM declara-
tion

24.1 I2 missing states and
transitions

35.4

C only states without
transitions

43.3 R realistic examples 64.5

E1 basic errors 65.3 E2 complex errors 73,5
Table 1. Parser coverage

7 According to the definition in [27], a terminal model is a model written in the
language L and conforming to the language metamodel.

LEMP: a Language Engineering Model-driven Process 9

// taken from [32]
// determines if a binary number has an
// odd or even number of zero digits.
fsm evenFsm
inputAlphabet ”01”
// Char ’e’ for even and ’o’ for odd
outputAlphabet ”eo”
states
start even odd
transitions
t1: even − 0 / o −> odd ;
t2: even − 1 / e −> even ;
t3: odd − 0 / e −> even ;
t4: odd − 1 / o −> odd ;

// taken from [17]
// emits 1 when it changes state, 0
// when it remains in the current state
fsm myFSM
inputAlphabet ”01”
outputAlphabet ”01”
states
start s1 s2
transitions
s1 − 1 / 0 −> s1 ;
s1 − 0 / 1 −> s2 ;
s2 − 0 / 0 −> s2 ;
s2 − 1 / 1 −> s1 ;

Fig. 3. Example of FSMs

3.6 Language semantics

The definition of a means for specifying language semantics rigorously and na-
tively within their metamodels is currently an open and crucial issue in the
MDE context. We believe this goal can be achieved by integrating metamod-
eling techniques with formal methods providing the requested and lacked rigor
and preciseness [17]. LEMP provides a way to define metamodel-based language
semantics (possible executable) by using a formal semantic framework based on
the ASM formal method [17].

A language L has a well-defined semantics if a semantic domain S is identified
and a semantic mapping MS from the language metamodel A to S is provided
[20]. As semantic domain S, we assume the semantic domain SAsmM of the
ASM language, namely the first-order logic extended with a logic for function
updates and for transition rule constructors formally defined in [6]. Therefore,
the semantic mapping MS : A→ SAsmM which associates a well-formed terminal
model m conforming to A with its semantic model MS(m), can be defined as

MS = MSAsmM
∘M

where MSAsmM
is the semantic mapping (of the ASM language) that associates

a theory conforming to the SAsmM logic with a model conforming to AsmM
(the metamodel of the ASM language), and the function M : A −→ AsmM
associates an ASM to a terminal model m. The function M hooks the semantics
of a metamodel to the SAsmM domain and, therefore, the problem of giving
the language semantics is reduced to define the function M as shown in Fig. 4.
Formally, the hooking function M is given by

M(m) = �A(�A,m)

for all m conforming to A, where:

10 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

A

MS

''
M // AsmM

MSAsmM // SAsmM

m

conforms

OO

� M(m) // asm

conforms

OO

Fig. 4. The hooking function M

– �A: AsmM , is an abstract state machine which contains only declarations
of functions and domains (the signature) and the behavioral semantics of L in
terms of ASM transition rules;

– �A: AsmM × A −→ AsmM , properly initializes the machine. �A is defined on
an ASM a and a terminal model m instance of A; it navigates m and sets the
initial values for the functions and the initial elements in the domains declared
in the signature of a. The �A function is applied to �A and to the terminal model
m for which it yields the final ASM.

By exploiting this approach, the semantics of a metamodel-based language
L is expressed in terms of ASM transition rules. The result of this activity is
therefore an executable semantic model for the input language which can be
make available in a model repository either in textual form using AsmetaL or
also in abstract form as instance model of the AsmM metamodel.

FSM. Listing 1.1 reports a possible �FSM for the FSM metamodel in Fig.2.
It introduces an abstract domain for the FSMs themselves (the Fsm domain),
transitions and states. Further signature elements (in addition to those inferred
from the FSM metamodel), a controlled function currentState store the cur-
rent state of a FSM, a monitored function currentInput provides the input
events to a FSM, while the out function currentOutput returns the output
of a FSM. The behavior of a generic FSM is given by the two rules: r run,
for non-deterministically choosing an enabled transition (i.e. a transition whose
source state is the current state and the input event of the transition matches
the present input) to fire, and r fire, for the effective firing of the selected
transition. The main rule executes all machines in the Fsm domain.

One has also to define a function �FSM which adds to �FSM the initialization
necessary to make the ASM model �FSM executable. Any model transformation
tool can be used to automatize the �FSM mapping. Fig. 5 shows the complete sce-
nario using the ATL model transformation engine: for any terminal FSM model
myFSM, the ASM model �FSM is refined into the target ASM model �FSM myFSM

by retrieving data from myFSM and creating the corresponding ASM initial state
in the ASM model �FSM . Essentially, for each class instance of the terminal
model myFSM, a static 0-ary function is created in the signature of the ASM model
�FSM in order to initialize the domain corresponding to the underlying class.
Moreover, class instances with their properties values and links are inspected to

LEMP: a Language Engineering Model-driven Process 11

initialize the ASM functions declared in the ASM signature. For example, for
the even automaton shown in Fig. 3, the provided �FSM mapping would auto-
matically add to the original �FSM the initial state partially shown in Listing
1.2. The initialization of the abstract domains Fsm, Transition, and State, and
of all functions defined over these domains, are added to the original �FSM . All
files (the ATL transformation, models and metamodels) involved in this trans-
formation scenario are available for download at www.ameta.sf.net/lemp.

Listing 1.1. �FSM

asm gamma FSM //Semantic hooking: gamma for the FSM metamodel
import StandardLibrary
signature:
//Signature derived automatically from the FSM metamodel:

abstract domain NamedElement
dynamic domain Fsm subsetof NamedElement
dynamic domain State subsetof NamedElement
dynamic domain Transition subsetof NamedElement

//Functions on NamedElement
controlled name : NamedElement−>String

//Functions on Fsm
controlled inputAlphabet: Fsm −> String
controlled outputAlphabet: Fsm −> String
controlled states: Fsm −> Powerset(State)
controlled transitions: Fsm −> Powerset(Transition)

//Functions on State
controlled isStart: State −> Boolean

//Functions on Transition
controlled input: Transition −> String
controlled output: Transition −> String
controlled from: Transition −> State
controlled to: Transition −> State

//Added signature:
controlled currentState: Fsm −> State
monitored currentInput: Fsm −> String
out currentOutput: Fsm −> String

definitions:
rule r fire ($m in Fsm, $t in Transition) = par

currentOutput($m) := output($t)
currentState($m):= to($t)

endpar

rule r run ($m in Fsm)= choose $t in transitions($m)
with input($t)=currentInput($m) and currentState($m)=from($t$)
do r fire[$m,$t]

main rule r Main = forall $m in Fsm do r run[$m]

Listing 1.2. ASM for a terminal FSM model by hooking

asm ASM evenFsm
signature:

....
static evenFsm : Fsm
static even:State
static odd:State
static t1:Transition
static t2:Transition

12 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

Fig. 5. �FSM transformation scenario

static t3:Transition
static t4:Transition
....

default init s0:
//Functions on NamedElement
function name($e in NamedElement) = at({evenFsm−>”evenFsm”,even−>”even”,odd−>”odd”,

t1−>”t1”,t2−>”t2”,t3−>”t3”,t4−>”t4”}, $e)

//Functions on Fsm
function inputAlphabet($m in Fsm) = at({evenFsm −> ”01”},$m)
function outputAlphabet($m in Fsm) = at({evenFsm −> ”oe”},$m)
function states($m in Fsm) = at({evenFsm−>{even,odd}},$m)
function transitions($s in Fsm)= at({evenFsm−>{t1,t2,t3,t4}},$s)

//functions on State
function isStart($s in State) = at({even−>true,odd−>false},$s)

//Functions on Transition
function input($t in Transition) = at({t2−>”1”,t1−>”0”,t3−>”0”,t4−>”1”},$t)
function output($t in Transition) = at({t2−>”e”,t1−>”o”,t3−>”e”,t4−>”o”},$t)
function from($t in Transition) = at({t2−>even,t1−>even,t3−>odd,t4−>odd},$t)
function to($t in Transition) = at({t2−>even,t1−>odd,t3−>even,t4−>odd},$t)

function currentState($m in Fsm) = chooseone({$s in states($m) ∣ isStart($s) : $s})

3.7 Semantics Validation

The ASM-based semantic framework supports language semantic validation by
exploiting the ASMETA tool-set (simulator, validator, etc.), a set of tools around
the ASMs (see Sect. 4 for details). Indeed, semantic validation is performed in
LEMP through the validation of the hooking function M presented in Section 3.6
by applying it to a collection of meaningful examples. The ASM models obtained
form the application of M to the examples can be validated in different ways
providing increasing degrees of confidence in the semantics correctness. A simple

LEMP: a Language Engineering Model-driven Process 13

Fig. 6. Semantic validation by AsmetaV

validation can be performed by randomly simulating the ASM models with the
ASM simulator (see Sect. 4) to check if errors like inconsistent updates and type
errors, occur. Interactive simulation can provide evidence that the semantics
captures the intended behavior, but it requires the user to provide the correct
inputs and to judge the correctness of the observed behavior. The most powerful
validation approach is the scenario-based validation [7] by the ASM validator (see
Sect. 4). As shown in Fig. 6, a suitable set of models are selected as benchmark
for language semantic validation; these models are translated into ASM models
by the hooking function M ; moreover, a set of scenarios specifying the expected
behavior of the models must be provided by the user and are used for validation.
These scenarios can be written from scratch in the Avalla language (see Sect. 4),
or alternatively, if the language L has already a simulator LS , these scenarios
may be derived from the execution traces generated by LS . The second approach
is useful to check the conformance of the semantics implemented by LS with
respect to the semantics defined by the hooking function M . The ASM validator
provides also useful information about the coverage obtained by the scenarios.

FSM. A scenario example for the even FSM given in Fig. 3, is reported below.
It was useful to discover a fault in a preliminary verision of �FSM , namely the
missing control of the currentState in the r run rule.

scenario test1
load ASM evenFsm.asm
check name(currentState(evenFsm)) = ”even”; // check ”even” as currentState
set currentInput(evenFsm) := ”0” ; // provide ”0” as input
step // perform an execution step
check name(currentState(evenFsm)) = ”odd”; // check ”odd” as the target state

3.8 Development and integration of tools

The metamodel and the language artifacts establish the foundations over which
new tools can be developed. LEMP classifies the artifacts and tools in: generated,
based, and integrated, as shown in Fig. 7, depending on the decreasing use of
generative technologies the designer exploits to develop them. Generally, the
effort required by the user increases, too.

Generated artifacts/tools are derivatives obtained (semi-)automatically by
applying appropriate projections to the technical spaces Javaware, XMLware,
and grammarware. The language concrete syntaxes presented in Sect 3.4 are
considered derivatives.

14 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

Fig. 7. Language processing tools

Based tools are those developed exploiting the metamodeling environment
and related derivatives; they may use the APIs and other concrete syntaxes, but
they also contain a considerable amount of code that has not been generated.
An example of such a tool may be a tool that reads the language models in
XMI format, uses the APIs to access the model data, but then it performs some
operations written in Java code from scratch.

Integrated tools are external and existing tools that are connected to the
language artifacts. The integration can be realized at different levels: a tool may
use just the XML interchange format, other tools may take advantage of the
APIs or of other derivatives. A goal of LEMP is to support an open and flexible
architecture to make easier the development of new tools and the integration
with other existing tools. If the designer wants to develop a new tool, he/she
can reuse many artifacts already developed in order to ease the development
process and to obtain the interoperability with other tools.

FSM. For the FSM language, we have developed four artifacts: the Java APIs,
the ANTLR parser, and two small tools. The first tool is a simple editor gen-
erated starting from the definition of the grammar by the Xtext eclipse plugin.
The result is shown in Fig. 8. The second tool is a small exporter to graphviz
developed in order to have a visual pretty-printer for FSMs; it is based on the
Xpand eclipse plugin. Fig. 9 shows the Xpand script, the resulting graphviz .dot
file obtained form the even FSM, and the resulting picture.

4 The ASMETA Case study

Here we report our experience in engineering a metamodel-based language for the
Abstract State Machines. By following the steps suggested by the LEMP design
process, we have developed the ASMs Metamodeling (ASMETA) framework
[4]. We have defined concrete syntaxes useful to create, store, access, validate,
exchange and manipulate ASM models, and we have built a general framework
suitable for developing new ASM tools and for the integration of existing ones
[16]. We also have defined a general framework to rigorously specify executable
semantics of metamodel-based languages [17].

Language requirements analysis. We started collecting all material available
on the ASM theory and tool support. As official documentation about the ASM
theory, we took [6] and, in order to design a language that could serve as a

LEMP: a Language Engineering Model-driven Process 15

Fig. 8. FSM editor

standard interlingua for the ASM specific domain of interest, we considered to
include constructs (i.e. particular forms of domains, special terms, derived rule
schemes) taken from ASM dialects.

Choice of a metamodeling framework As metamodeling framework, we
initially chose the OMG MDA/MOF framework, the mainstream at the time
we started. Later, we moved the ASMETA framework to the EMF/Ecore [10]
meta-environment for the reasons explained in Sect. 3.2.

Language design by metamodeling The Abstract State Machines Meta-
model (AsmM) results into class diagrams representing all ASM concepts and
constructs and their relationships. AsmM is available in both MDR/MOF and
EMF/Ecore formats, but only the latter is actively maintained. The complete
metamodel is organized in one package called ASMETA containing 115 classes, 114
associations, and 150 OCL class invariants, approximatively.

Language concrete syntaxes By exploiting projections from EMF to other
technical spaces, several concrete syntaxes have been obtained automatically (or
semi-automatically) in a generative8 manner from the AsmM.

As machine-comprehensible notations, we derived (a) an XMI interchange
format for ASMs, and (b) Java APIs to represent ASMs in terms of Java objects.
Both formalisms are useful to speed up the tooling activity around ASMs.

As human-comprehensible notations, we derived (c) a textual notation, called
AsmetaL (ASMETA Language)9, and its parser; (d) a graphical notation, to
represent ASM models in a visual form, by means of the Eclipse Graphical

8 These activities sometimes required some customization of the standard techniques
made available from the EMF framework.

9 The EBNF (Extended Backus-Naur Form) grammar of the AsmetaL textual notation
can be found in [4]

16 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

Listing 1.3. Xpand pretty printer

≪IMPORT FSM≫
≪DEFINE Root FOR fsm::FSM≫
≪FILE ”fsm gv.dot”≫
digraph ≪name≫ {
rankdir=LR;
node [shape = circle]
≪FOREACH states AS a≫ ≪a.name≫
≪ENDFOREACH≫ ;
≪FOREACH transitions AS t≫
≪t.from.name≫ −> ≪t.to.name≫
[label = ”≪t.name≫ : ≪t.input≫/

≪t.output≫”];
≪ENDFOREACH≫}
≪ENDFILE≫
≪ENDDEFINE≫

Listing 1.4. .dot file

digraph even {
rankdir=LR;
node [shape = circle] even odd;
even −> odd [label = ”t1 : 0/o”];
even −> even [label = ”t2 : 1/e”];
odd −> even [label = ”t3 : 0/e”];
odd −> odd [label = ”t4 : 1/o”];
}

Fig. 9. GraphViz exporter for FSMs

Modeling Framework (GMF) technology [1] that allows to derive graphical model
editors from metamodels.

Syntax Validation By encoding a great number of specifications (up to now we
have about 140 ASM specification files in [4]), we validated the expressive power
of AsmetaL, namely its capability of encoding in a natural and straightforward
way not trivial ASM mathematical models. We also validated the capability
of AsmetaL to textually represents ASM specifications written in different ASM
dialects. Moreover, we evaluated the coverage of the metamodel by instrumenting
the parser of AsmetaL with EclEmma and by parsing all the examples. We
checked that all the metamodel constructs were covered at least once.

Language semantics definition and validation Following the semantic
hooking approach described in Sect. 3.6, we have to specify an ASM �AsmM

containing declarations of functions and domains (the signature) and the be-
havioral semantics of the AsmM metamodel itself in terms of ASM transition
rules. This work is still in progress. To validate the semantics, as suggested by
LEMP, we have to apply the scenario-based approach for the validation of the
semantics. Since the language semantics definition is not complete, the semantic
validation activity is also in progress and we here report the way we are pro-
ceeding. First, we have to collected a set of AsmetaL examples encompassing
all ASM constructs, and then we have to validate their semantics by building
suitable scenarios. In order to build an extensive set of scenario specifying the
expected behavior, instead of writing the scenario by hand, we plan to simulate
the original examples with AsmetaS (the simulator of AsmetaL specifications,
see Sect. 4) itself, and parse the log files produced by AsmetaS in order to ob-
tain valid scenario files in the Avalla syntax. Then we will run the validator

LEMP: a Language Engineering Model-driven Process 17

with these scenarios and the input examples. In this way we would have checked
the conformance of AsmetaS with the semantics of the ASM as defined by the
hooking function.

Development and integration of tools Following the LEMP process and
taking advantage of the metamodelling approach, we have developed a set of
tools for ASMs – the ASMETA (ASM mETAmodeling) tool-set available in [4].

As generated tools, the ASMETA tool-set includes (among other things) a
textual notation, AsmetaL, to write ASM models (conforming to the AsmM),
and a text-to-model compiler, AsmetaLc, to parse AsmetaL models and check
for their consistency w.r.t. the AsmM OCL constraints. As based tools, we devel-
oped: a simulator, AsmetaS [15], to execute ASM models; a validator, AsmetaV
[7], with its language Avalla to express scenarios, for scenario-based validation of
ASM models; and a graphical front-end, ASMEE (ASM Eclipse Environment),
which acts as IDE and it is an eclipse plug-in. As integrated tool, we have mod-
ified the ATGT [13] tool that is an ASM-based test case generator based upon
the SPIN model checker.

5 Related work and conclusions

The process LEMP has been defined with the aim to give a complete view of all
steps necessary to engineer a metamodel-based language. It tries to establish all
the steps, together with their dependency relations, to define a metamodel-based
language and manage the tooling activity around the language.

Language engineering processes have been the object of study in many con-
texts of software engineering, see for example [11, 18]. Many proposals have been
presented, which pay attention to the fact that language descriptions take dif-
ferent form in different technical spaces (e.g. metamodels, schemas, grammars,
and ontologies) and typically multiple languages (from different technical spaces)
need to be used together and integrated in most software development scenarios.
As already stated, a process to engineer languages address several aspects of a
language: structure, constraints, textual and graphical representation, parser/-
compiler, transformational and executional behavior. Research usually faced only
one of these aspects, therefore, a comparison with related work can be often done
considering single aspects of a language development process.

Concerning the metamodelling technique for language engineering, we can
mention the official metamodels supported by the OMG for the MOF itself, the
UML, the OCL, etc. Formal methods communities like the Graph Transforma-
tion community [22, 38] and the Petri Net community [33], have also started to
settle their tools on general metamodels and XML-based formats. A metamodel
for the ITU language SDL-2000 has been also developed [12].

Regarding the derivation of concrete grammars for metamodels, several tools
exist: EMFText [21] working for Ecore metamodels, TCS [24] (Textual Concrete
Syntax) for metamodels written in KM3, TEF (Textual Editing Framework) for
EMF-based metamodels, etc. Viceversa, Xtext by openArchitectureWare allows
to derive a language metamodel from the language concrete textual grammar.
An overview of textual grammars and metamodel is given in [31].

18 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

Concerning the lack of a framework to formally define metamodel-based lan-
guage semantics that LEMP tries to overcomes, some recent works have ad-
dressed the problem of providing executability into current MDE frameworks.
Work described in [35] and those supported by the XMF-Mosaic/Xcore [39] en-
vironment and Kermeta [30], are some examples in this direction.

Concerning the application of ASMs for specifying the executable seman-
tics of metamodel-based languages, we can mention the semantic anchoring ap-
proach described in [8, 9]. Formal models of computation expressed in AsmL (an
ASM dialect) are used to give executable semantics to domain specific languages.
A further result [19] shows how to use the ASMs as pseudo-code to express be-
havioral semantics of a domain specific language and achieve model execution.
They apply metamodel-based technologies for the creation of a language descrip-
tion for Sudoku.

On the aspect of language semantics validation that we consider an important
feature of LEMP, in [34], Maude is exploited to perform simulation, reachability
and model-checking analysis of Domain Specific Visual Language semantics given
in a declarative way by the graph transformation technique.

The challenges of tool integration are discussed in [37], where the authors
present a software language engineering solution technique that uses Model-
Driven Engineering to address tool interoperability.

On the basis of our experience in developing the AsmM/ASMETA toolset,
we believe a modeling language development can gain benefits from the use of
MDE automation means. Indeed, the metamodel-based approach has the ad-
vantage of being suitable to derive from the same metamodel several language
artifacts and a flexible infrastructure for language processing tools development
and inter-operability. As future work, we plan to extend LEMP in order to sup-
port model evolution activities [28] such as model refinement, model refactoring,
model inconsistency management, etc. Today, only limited support is available
in model-driven development tools for these activities, but a lot of research is
being carried out in this particular field, especially for language engineering, to
establish synergies between model-driven approaches and many other areas of
software engineering including software reverse and re-engineering, generative
techniques, grammarware, ontologies, aspect-oriented programming, etc.

References

1. The Eclipse Graphical Modeling framework. http://www.eclipse.org/gmf/.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

3. M. Aksit, E. Kindler, A. McNeile, and E. Roubtsova, editors. Behaviour Modelling
in Model Driven Architecture, CTIT Workshop Proceedings Series WP09-04, 2009.

4. The Abstract State Machine Metamodel website. http://asmeta.sf.net/, 2006.

5. J. Bézivin. On the unification power of models. Software and System Modeling,
4(2):171–188, 2005.

6. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

LEMP: a Language Engineering Model-driven Process 19

7. A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra. A scenario-based
validation language for ASMs. In Abstract State Machines, B and Z, First Inter.
Conference, ABZ 2008, volume 5238 of LNCS, pages 71–84. Springer, 2008.

8. K. Chen, J. Sztipanovits, and S. Neema. Toward a semantic anchoring infrastruc-
ture for domain-specific modeling languages. In EMSOFT, pages 35–43, 2005.

9. K. Chen, J. Sztipanovits, and S. Neema. Compositional specification of behavioral
semantics. In DATE, pages 906–911, 2007.

10. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2008.
11. J. Favre, D. Gasevic, R. Lämmel, and A. Winter. 4th international workshop

on language engineering (ATEM 2007). In MoDELS Workshops, volume 5002 of
LNCS, pages 28–33. Springer, 2007.

12. J. Fischer, M. Piefel, and M. Scheidgen. A metamodel for SDL-2000 in the context
of metamodelling ULF. In Fourth SDL And MSC Workshop (SAM’04), pages
208–223, 2004.

13. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using spin to generate tests from
ASM specifications. In Abstract State Machines, Advances in Theory and Practice,
number 2589 in LNCS, pages 263–277. Springer, 2003.

14. A. Gargantini, E. Riccobene, and P. Scandurra. Deriving a textual notation
from a metamodel: an experience on bridging modelware and grammarware. In
3M4MDA’06 workshop at the European Conference on MDA, 2006.

15. A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based language and
a simulation engine for abstract state machines. J. of Universal Computer Science,
14(12):1949–1983, 2008.

16. A. Gargantini, E. Riccobene, and P. Scandurra. Model-driven language engineer-
ing: The ASMETA case study. In Software Engineering Advances, 2008. ICSEA
’08. The Third International Conference on Software Engineering Advances, pages
373–378, 2008.

17. A. Gargantini, E. Riccobene, and P. Scandurra. A semantic framework for
metamodel-based languages. Journal of Automated Software Engineering, Online
First, 2009.

18. D. Gasevic, R. Lämmel, and E. V. Wyk, editors. Software Language Engineering,
First International Conference, SLE 2008. Revised Selected Papers, volume 5452
of Lecture Notes in Computer Science. Springer, 2009.

19. T. Gjøsæter, I. F. Isfeldt, and A. Prinz. Sudoku - a language description case
study. In Proc. SLE’08, pages 305–321, 2008.

20. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of ”seman-
tics”? IEEE Computer, 37(10):64–72, 2004.

21. F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende. Derivation and
renement of textual syntax for models. In ECMDA-FA, 2009.

22. R. Holt, A. Schürr, S. E. Sim, and A. Winter. Graph exchange language. http:

//www.gupro.de/GXL/index.html.
23. E. Jackson and J. Sztipanovits. Formalizing the structural semantics of domain-

specific modeling languages. Journal of Software and Systems Modeling, 2008.
24. F. Jouault, J. Bzivin, and I. Kurtev. TCS: a DSL for the specification of textual

concrete syntaxes in model engineering. In Proceedings of the fifth international
conference on Generative programming and Component Engineering (GPCE’06),
2006.

25. S. Kent. Model driven engineering. In Integrated Formal Methods: Third Interna-
tional Conference (IFM), LNCS 2335, pages 286–298. Springer-Verlag, 2002.

26. I. Kurtev, J. Bézivin, and M. Aksit. Technical spaces: An initial appraisal. In
CoopIS, DOA’2002, Federated Conferences, Industrial track, Irvine, 2002.

20 Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

27. I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based dsl frameworks.
In OOPSLA Companion, pages 602–616, 2006.

28. T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazay-
eri. Challenges in software evolution. In International Workshop on Principles of
Software Evolution (IWPSE’05), 2005.

29. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

30. P.-A. Muller, F. Fleurey, and J.-M. Jezequel. Weaving executability into object-
oriented meta-languages. In Proc. of ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems, 2005.

31. P.-A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schneckenburger,
S. Gérard, and J.-M. Jézéquel. Model-driven analysis and synthesis of textual
concrete syntax. Software and System Modeling, 7(4):423–441, 2008.

32. M. Pfeiffer and J. Pichler. A comparison of tool support for textual domain-
specific languages. In Proceedings of the 8th OOPSLA Workshop on Domain-
Specific Modeling (DSM’ 08), pages 1–7, 2008.

33. Petri net markup laguage (pnml). http://www.informatik.hu-berlin.de/top/

pnml.
34. J. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. Analyzing rule-based behav-

ioral semantics of visual modeling languages with maude. In Software Language
Engineering: First International Conference, Sle 2008 Toulouse, France, September
29-30, 2008. Revised Selected Papers, page 54. Springer, 2009.

35. M. Scheidgen and J. Fischer. Human comprehensible and machine processable
specifications of operational semantics. In ECMDA-FA. Springer, 2007. LNCS.

36. D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter, 39(2):25–31, 2006.

37. Y. Sun, Z. Demirezen, F. Jouault, R. Tairas, and J. Gray. A model engineering
approach to tool interoperability. In SLE, pages 178–187, 2008.

38. G. Taentzer. Towards common exchange formats for graphs and graph trans-
formation systems. In J. Padberg (Ed.), UNIGRA 2001: Uniform Approaches to
Graphical Process Specification Techniques, satellite workshop of ETAPS, 2001.

39. The Xactium XMF Mosaic. www.modelbased.net/www.xactium.com/, 2007.

