
Randomized maps for assessing the reliability

of patients clusters in DNA microarray data

analyses

Alberto Bertoni a Giorgio Valentini a

aDSI, Dipartimento di Scienze dell’ Informazione,
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Abstract

Objective:
Clustering algorithms may be applied to the analysis of DNA microarray data

to identify novel subgroups that may lead to new taxonomies of diseases defined
at bio-molecular level. A major problem related to the identification of biologically
meaningful clusters is the assessment of their reliability, since clustering algorithms
may find clusters even if no structure is present.

Methodology:
Recently, methods based on random ”perturbations” of the data, such as boot-

strapping, noise injections techniques and random subspace methods have been
applied to the problem of cluster validity estimation. In this framework, we pro-
pose stability measures that exploits the high dimensionality of DNA microarray
data and the redundancy of information stored in microarray chips. To this end
we randomly project the original gene expression data into lower dimensional sub-
spaces, approximately preserving the distance between the examples according to
the Johnson-Lindenstrauss (JL) theory. The stability of the clusters discovered in
the original high dimensional space is estimated by comparing them with the clus-
ters discovered in randomly projected lower dimensional subspaces. The proposed
cluster-stability measures may be applied to validate and to quantitatively assess
the reliability of the clusters obtained by a large class of clustering algorithms.

Results and conclusion:
We tested the effectiveness of our approach with high dimensional synthetic data,

whose distribution is a priori known, showing that the stability measures based on
randomized maps correctly predict the number of clusters and the reliability of
each individual cluster. Then we showed how to apply the proposed measures to
the analysis of DNA microarray data, whose underlying distribution is unknown. We
evaluated the validity of clusters discovered by hierarchical clustering algorithms in
diffuse large B-cell lymphoma (DLBCL) and malignant melanoma patients, showing
that the proposed reliability measures can support bio-medical researchers in the
identification of stable clusters of patients and in the discovery of new subtypes of
diseases characterized at bio-molecular level.

Key words: Gene expression data clustering, assessment of cluster stability,
cluster reliability, random subspace, random projections, DNA microarrays.

1 Introduction

Profiling of tissue samples using DNA microarray data is widely applied to
discover molecular fingerprints that characterize human diseases [1–3]. In par-
ticular clustering algorithms have been widely applied to discover and define
subtypes of diseases on molecular basis [4–8]. Indeed unsupervised learning
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methods, exploiting the overall gene expression profile of a patient, may re-
search and discover subclasses of pathologies that cannot be detected with
traditional biochemical, histopathological and clinical criteria [9, 10]. The dis-
covery of diseases subtypes defined by gene expression data may lead to more
refined predictions than classical clinical correlates in terms of correct diag-
nosis, survival, disease-free survival and disease recurrence [11–13]. Moreover
the definition of subtypes of diseases on molecular basis may help to develop
therapies targeted to the bio-molecular characteristics of patients [14], and
to design automatic classification methods for supporting diagnostic proce-
dures [15–18].

Cluster analysis has been used for investigating structure in microarray data,
such as the search of new tumor taxonomies [19]. It provides a way for validat-
ing groups of patients according to prior biological knowledge or to discover
new ”natural groups” inside the data. Unfortunately, clustering algorithms
always find structure in the data, even when no structure is present instead.
Hence we need methods for assessing the validity of the discovered clusters to
test the existence of biologically meaningful clusters. The discovered clusters
depend on the clustering algorithm, the initial condition, the parameters of
the algorithm, the distance or correlation measure applied to the data and
other clustering and data-dependent factors [20].

In particular, for a given data set different clustering algorithms may provide
very different partitions or clusterings of the data. For instance, in hierarchical
clustering [9] it is not obvious by simply looking at the dendrogram which are
the significant clusters; the choice of the clusters depends on the particular
”cut” of the dendrogram. With dendrograms resulting from the analysis of
tumor specimens, bio-medical knowledge is fundamental to select a proper
”cut”, but also in this case an ”objective” and data-driven assessment of the
reliability of the clusters may be useful to support bio-medical decisions. Even
when clusters and cluster boundaries are univocally defined by the clustering
algorithms, such as in K-means [21], or in Self-Organizing-Maps [22], the num-
ber of clusters must be chosen a priori and the results depend on the initial
conditions. Other methods based on a Bayesian paradigm that combines a pri-
ori knowledge with observational data, can automatically select the ”optimal”
number of clusters, but their accuracy is decremented when small samples are
used, due to their asymptotic assumptions [23, 24]. Several other clustering
approaches, such as bi-clustering methods [25, 26] have been proposed for the
analysis of gene expression data (see e.g. [10] and [27] for an overview), but in
all cases the problem of the reliability and validity of the discovered clusters
remains open.

Two of the main concerns with gene expression clustering analysis are the
estimate of the number of clusters in a dataset, and the stability of the in-
dividual clusters [28]. Indeed in many cases we have no sufficient biological
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knowledge to ”a priori” evaluate both the number of clusters (e.g. the number
of biologically distinct tumor classes), as well as the validity of the discovered
clusters (e.g. the reliability of new discovered tumor classes). Note that this
is an intrinsically ”ill-posed” problem, since in unsupervised learning we lack
an external objective criterion, that is we have not an equivalent of a priori
known class label as in supervised learning, and hence the evaluation of the
validity/reliability of the discovered classes becomes elusive and difficult.

Most of the works focused on the estimate of the number of clusters in gene
expression data [27, 29–32], while the problem of stability of each individual
cluster has been less investigated. Nevertheless, the stability and reliability of
the obtained clusters is crucial to assess the confidence and the significance of
a bio-medical discovery [33, 34].

Some recent approaches to estimate the reliability of the discovered clusters
are based on the concept of the stability with respect to perturbations [33–
35]. In the context of gene expression data, that are usually characterized by
relatively high level of noise [36], stability can be considered an important
property: how much the characteristics and composition of the discovered
clusters hold when perturbation such as added noise, resampling or random
projections are introduced? Can we design stability measures to assess the
reliability of the discovered clusters?

Our approach proposes to estimate the reliability of individual clusters exploit-
ing the redundancy inherent to microarray gene chips. Indeed the number of
genes in a chip is usually much larger than the number of samples, and we
may reasonably expect that using subsets of genes to perform clustering of
tissues, we may obtain meaningful clusters of data. To this end we apply mul-
tiple random projections to the DNA microarray samples, reducing the high
dimensionality of the original data. The main idea behind our approach con-
sists in evaluating the stability of the clusters discovered in the original high
dimensional space comparing them with the clusters discovered in randomly
projected lower dimensional subspaces. Our concept of reliability is tied to
the concept of stability: we consider reliable a cluster if it is stable, that is if
that cluster is maintained in the projected space without too large changes. To
properly evaluate the reliability of the clusters, the random projections should
not induce too large modifications of the distances between the examples in
the projected space. To this end, we use the concept of random projections
with bounded metric distortions, according to the Johnson-Lindenstrauss (JL)
theory [37].

The proposed method is related to the Smolkin and Gosh [34] approach based
on an unsupervised version of the random subspace method [38]. We extend
the unsupervised random subspace approach to more general random projec-
tions, in the framework of random embeddings between euclidean spaces, and
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we propose cluster stability measures based on similarity between randomly
projected data.

In the next section we present a brief introduction to randomized embeddings
in euclidean spaces, focusing on random projections obeying the JL lemma.
In Sect. 3 we compare the theoretical and empirical distortion induced by
randomized embeddings in gene expression data, in order to get insights into
the better strategy to reduce the dimensionality in high dimensional DNA
microarray data while approximately preserving the distances between the
examples. In Sect. 4 we present our approach to the estimate of cluster stability
based on random projections, and in Sect. 5 we compare our method with
other related approaches presented in the literature. In Sect. 6 we show how
to apply the proposed stability measures to several gene expression data sets
in order to evaluate the reliability of the discovered clusters of patients. The
discussion (Sect. 7) and the conclusions (Sect. 8) end the paper.

2 Randomized embeddings and dimensionality reduction in eu-
clidean spaces.

Our goal consists in using multiple instances of the data obtained by projec-
tions from the original to lower dimensional subspaces to assess the reliability
of patients clusters. In order to maintain the characteristic of the examples
(patients) in the original space we would like to preserve the similarities (in
terms of euclidean distances) as well as possible in the projected low dimen-
sional space. Unfortunately there are no deterministic maps that can in gen-
eral satisfy this property. However, using a stochastic approach, we may deal
with this problem, and we can obtain dimensionality reduction by mapping
points from a high to a low-dimensional space, approximately preserving some
characteristics, i.e. the distances between points. In this context randomized
embeddings with low distortion represent a key concept.

2.1 Randomized embeddings with low distortion.

A randomized embedding between L2 normed metric spaces with distortion
1 + ε, with ε > 0 and failure probability P is a distribution probability over
mappings µ : Rd → Rd′ , with d′ > d, such that for every pair p, q ∈ Rd, the
following property holds with probability 1− P :

1

1 + ε
≤ ||µ(p)− µ(q)||2

||p− q||2 ≤ 1 + ε (1)
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The ratio of the distances between points in the embedded and original met-
ric space in eq. 1 is defined as distortion. Randomized embeddings have been
successfully applied both to combinatorial optimization and data compres-
sion [39]. The main result on randomized embedding is due to Johnson and
Lindenstrauss [37], who proved the existence of a randomized embedding
µ : Rd → Rd′ with distortion 1 + ε and failure probability eΩ(−d′ε2), for ev-
ery 0 < ε < 1/2. As a consequence, for a fixed data set S ⊂ Rd, with |S| = n,
by union bound, it holds:

Prob

(
∀p, q ∈ S,

1

1 + ε
≤ ||µ(p)− µ(q)||2

||p− q||2 ≤ 1 + ε

)
≥ 1− n2eΩ(−d′ε2) (2)

Hence, by choosing d′ such that n2eΩ(−d′ε2) < 1/2, it is proved the following
property:
Johnson-Lindenstrauss (JL) lemma: Given a set S with |S| = n there exists a
1 + ε-distortion embedding into Rd′ with d′ = c log n/ε2, where c is a suitable
constant.

Note that surprisingly the dimensionality d′ of the projected subspace by which
we can obtain a limited distortion does not depend on the dimension of the
original space d, but only on the cardinality of the available data and on the
magnitude ε of the desired distortion. In this way we may obtain projections
with limited distortion even for very high dimensional data, such as DNA
microarray data usually are.

2.2 Randomized maps.

The embedding exhibited in [37] consists in random projections from Rd into
Rd′ , represented by matrices d′× d with random orthonormal vectors. Similar
results may be obtained by using simpler maps, represented through random
d′ × d matrices P = 1/

√
d′(rij), where rij are random variables such that:

E[rij] = 0, V ar[rij] = 1

This kind of embeddings may be obtained through randomized linear combi-
nations of the variables in the original space (see below). Strictly speaking,
these are not projections, but for sake of simplicity, we call random projections
even this kind of embeddings. For sake of simplicity, we call random projec-
tions even this kind of embeddings. The randomized maps may be represented
through d′ × d matrices R such that the columns of the ”compressed” data
set represented by a d′ × n matrix DR = RD have approximately the same
distance as the examples in the original space stored in the d × n matrix D.
Examples of random projections are the following:
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(1) Plus-Minus-One (PMO) random projections: represented by d′ × d ma-
trices R = 1/

√
d′(rij), where rij are uniformly chosen in {−1, 1}, such

that Prob(rij = 1) = Prob(rij = −1) = 1/2. In this case the JL lemma
holds with c ' 4.

(2) Achlioptas random projections [40]: represented by d′ × d matrices P =
1/
√

d′(rij), where rij are chosen in {−√3, 0,
√

3}, such that Prob(rij =
0) = 2/3, Prob(rij =

√
3) = Prob(rij = −√3) = 1/6. In this case also we

have E[rij] = 0 and V ar[rij] = 1 and the JL lemma holds.
(3) Normal random projections [41]: this JL lemma compliant randomized

map is represented by a d′ × d matrix R = 1/
√

d′(rij), where rij are
distributed according to a gaussian with 0 mean and unit variance.

(4) Random Subspace (RS) [38]: represented by d′×d matrices R =
√

d/d′(rij),

where rij are uniformly chosen with entries in {0, 1}, and with exactly
one 1 per row and at most one 1 per column. It is worth noting that, in
this case, the ”compressed” data set DR = RD can be quickly computed
in time O(nd′), independently from d. Unfortunately, RS does not satisfy
the JL lemma.

Using the above randomized maps (with the exception of RS projections),
the JL lemma guarantees that the ”compressed” examples of the data set
represented by the matrix DR = RD have approximately the same distance
(up to a distortion 1 + ε) of the corresponding examples in the original space,
represented by the columns of the matrix D, as long as d′ ≤ c log n/ε2.

3 Distortion induced by random projections of gene expression
data.

Clustering algorithms are in general sensitive to distortions, since they are
usually based on distance/dissimilarity measures between objects. Projections
from high to lower dimensional spaces may induce relevant distortions, that
depend both on the characteristics of the projection and on the distribution
of the data. In this section we present experiments with randomized maps to
understand in which conditions and to which extent random projections may
induce distortions in DNA microarray data. In particular, we compared the
theoretical distortions bounds predicted by the JL lemma with the empirical
bounds estimated on multiple randomly projected gene expression data, using
different types of randomized maps.

Given a data set D ⊂ Rd and a map µ : Rd → Rd′ , for x, y ∈ D the distortion
distµ(x, y) is defined:

distµ(x, y) =
||µ(x)− µ(y)||2
||x− y||2 (3)
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Of course, distµ(x, y) = 1 means that no distortion is introduced. In our
experiments we evaluated the maximum, minimum and average distortion of
µ on D:

max.distµ(D) = max
x,y∈D

distµ(x, y) (4)

min.distµ(D) = min
x,y∈D

distµ(x, y)

ave.distµ(D) =
1

|D|(|D| − 1)

∑

x,y∈D,x6=y

distµ(x, y)

We estimated, given a DNA microarray data set D and a randomized map
µ, the expectation of the random variables max.distµ(D),min.distµ(D) and
ave.distµ(D) (eq. 4).

We considered 4 DNA microarray data sets referred to different tumor speci-
mens: Lung tumor [42], Melanoma [43], DLBCL [11], Primary-metastasis [2].
For each data set we performed Achlioptas, Normal, PMO and RS random
projections (Sect. 2.2). We experimentally evaluated the expectation of the
random variables max.distµ(D), min.distµ(D) and ave.distµ(D) (eq. 4) aver-
aging their values over 50 repeated random projections and we compared the
results with the estimated theoretical distortion predicted by the JL lemma.
For each data set we performed random projections into subspace whose di-
mensions correspond to predicted distortions 1 + ε, with ε ∈ [0.1, 0.5]. We
estimated also the empirical distribution of the pairwise distances between
example in the original and projected data, to provide a visual clue of the
distortions induced by the random projections. All the code to implement
the experiments have been written in R language and it is available from the
authors.

[Fig. 1 about here.]

[Fig. 2 about here.]

In Fig. 1 and 2 are reported the results relative to Lung tumor and Melanoma
data sets. In abscissa are represented the dimensions of the projected subspace
and in ordinate the corresponding distortion. Continuous lines represent the
bounds of the maximum and minimum distortion according to the JL lemma;
dashed lines represent the empirical average maximum and minimum distor-
tion computed and averaged over 50 random projections. The pairs of dotted
lines just above and below the dashed lines represent the confidence interval
at 99 % confidence level. The dash-dotted line represents the average distor-
tion. The circles on the continuous lines represent the distortions theoretically
estimated for ε ranging from 0.5 to 0.1 at 0.05 step intervals. The dashed and
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dot-dashed lines represent the corresponding estimated empirical values (the
lines are simply computed by linear interpolation between points). We recall
that distortion equal to 1 means no distortion (eq.1).

For the Achlioptas, Normal and PMO random projections, the empirical bounds
of the maximum and minimum distortions are largely inside the theoretical
bounds predicted by the JL lemma (Fig. 1 and 2, (a), (b) and (c)). On the
contrary, with RS random projections in both cases the maximum and mini-
mum distortions are largely outside the theoretical bounds (Fig. 1 and 2, (d)).
Note also that these results are significant at 99 % confidence level, as the
dashed lines of the confidence intervals do not intersect the continuous lines
of the theoretical bounds. In any case the average empirical distortion is very
close to 1 (that is we have no distortion on the average), even if with RS pro-
jections for large values of epsilon (that corresponds to very low dimensional
subspaces) the average empirical distortions moves slightly from 1. Similar
results are obtained also with the DLBCL and Primary-metastasis data sets
(data not shown).

[Fig. 3 about here.]

[Fig. 4 about here.]

The density distribution of the pairwise distances between samples in the
original and randomly projected space can get some additional insights into the
characteristics of the distortions induced by the different randomized maps.
More precisely, for each data set we computed the euclidean distance of a
sample from each other sample, repeating this procedure for all the samples of
the data set, for both the original and the projected data. It is worth noting
that equal density empirical distributions does not necessarily mean that no
distortion is induced in the projected space. Fig.3 and 4 substantially confirm
previous results. Indeed at ε = 0.1 distortion with Achlioptas, Normal and
PMO random projections the empirical distribution of the pairwise distances
of the Lung tumor and Melanoma DNA microarray data are quite similar
in both the original and projected data (first three graphs of the first row of
Fig. 3 and 4), while for the RS projection a certain discrepancy can be observed
(fourth graph of the first row of Fig. 3 and 4), especially in the Melanoma data
set (Fig. 4). For larger distortions (e.g. ε = 0.5, second row of Fig. 3 and 4) we
can observe, as expected, larger discrepancies between distributions. In this
case also the differences between pairwise distances distributions in the original
and projected space are significantly more relevant for RS projections with
respect to the other types of randomized maps. Similar results are obtained
also with the DLBCL and Primary-metastasis data sets (data not shown).
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4 Cluster stability measures based on randomized embeddings

The main goal of the proposed stability measures is to assess the stability
of the clusters discovered by a suitable clustering algorithm. To this end we
exploit the redundancy of features (genes) that characterize DNA microarray
data: for each patient we dispose of thousands of gene expression measures,
and we know that the expression levels of many genes are correlated. Indeed
several works showed that subsets of coordinately expressed genes (expression
signatures) characterize the functional status of a patient. A gene expression
signature is characterized by either the cell type in which its component genes
were expressed, or the biological process in which its component genes are
known to function [4]. For instance, expression signatures has been discovered
and analyzed in gene expression profiles of malignancies [1–4, 6, 11, 44].

Exploiting this redundancy we quantitatively evaluated the stability of the
discovered clusters by using multiple random projections from the original
high dimensional data to lower dimensional subspaces. Comparing the clus-
ters obtained by using multiple instances of the randomly projected data with
the clusters obtained in the original high dimensional gene space, we measure
if and at which extent the individual clusters are maintained in the projected
subspaces. In other words we can expect that some distance-based properties,
such as similarity between examples and membership to the same cluster are
maintained in stable and reliable clusters across multiple random projections
of the data, as long as these projections do not induce too much distortion in
the data. Our experimental results in the previous section just showed that
several random projections (e.g. Achlioptas, Normal and PMO) do not intro-
duce relevant distortions in gene expression data, according to the Johnson
and Lindenstrauss theory. Moreover the empirical distortions appear to be
significantly lower than that predicted by the theoretical bounds (Sect. 3).

For these reasons it seems to be reasonable to evaluate cluster stability through
multiple random projections in the context of gene expression data analysis.
Note that if we consider projected data as ”perturbed” data, we may set
random projections in the framework of data perturbations methods (such as
bootstrapping or data noise-injections) for assessing cluster stability [35] (see
Sect. 5 for more details).

The proposed procedures to measure cluster reliability are divided into several
steps. At first, multiple random random projections of the data are generated,
choosing a subspace dimension in concordance with the JL lemma. Then each
instance of projected data is given as input to a clustering algorithm, and
the resulting clusters are compared with that obtained in the original high
dimensional space. The stability measure of an individual cluster is computed
by counting how many pairs of elements of the cluster in the original space are
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preserved in the cluster of the projected space; singleton clusters are considered
apart. An overall measure of stability of the entire clustering is derived by the
stability measures of the individual cluster by simply averaging between them,
and a measure of ”cluster membership” for each example, based on pairwise
membership to the same cluster in the projected space is also proposed.

In the following subsections we describe more in detail the proposed stability
measures.

4.1 Similarity matrix

In this section we introduce the pairwise similarity matrices between exam-
ples [28, 45], since they are used to compute the stability measures proposed
in this paper. The similarity matrix is a sort of distributed memory of the
clusters, by which memberships of pairs of examples to the same cluster are
stored.

Consider a data set X = {x1, x2, . . . , xn}, where xi ∈ Rd, (1 ≤ i ≤ n); a subset
A ⊆ {1, 2, . . . , n} univocally individuates a subset of examples {xj|j ∈ A} ⊆
X. The data set X may be represented as a d × n matrix D, where columns
correspond to the examples, and rows correspond to the ”components” of the
examples x ∈ X. A k-clustering C of X is a list C =< A1, A2, . . . , Ak >, with
Ai ⊆ {1, 2, . . . , n} and such that

⋃
Ai = {1, . . . , n}. A clustering algorithm

C(X, k) is a procedure that, having as input a data set X and an integer k,
outputs a k-clustering on the basis of the distances ||xi − xj||, (1 ≤ i, j ≤ n).

We can associate a n× n similarity matrix M to a k-clustering; the elements
Mij of M are defined as:

Mij =
k∑

s=1

χAs [i] · χAs [j] (5)

where i, j ∈ {1, 2, . . . , n}, and χAs ∈ {0, 1}n is the characteristic vector of As ⊆
{1, 2, . . . , n}, i.e. χAs [i] = 1 if i ∈ As, otherwise χAs [i] = 0. If the k-clustering
identifies a partition, then Mij ∈ {0, 1}: in other words, Mij denotes if elements
i and j belong to the same cluster. Consider also a random projection µ : Rd →
Rd′ that verifies the JL lemma (i.e. PMO, see Sect. 2.2).

Then we can compute a cumulative similarity matrix MC , using the following
algorithm:

(1) Generate t independent projections µr : Rd → Rd′ , 1 ≤ r ≤ t, such that

d′ = 4 log |X|+log t
ε2
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(2) Apply C to the new projected data µr(X), obtaining a set of clusterings,
for 1 ≤ r ≤ t:

C(µr(X)) =< Br
1, . . . , B

r
k >, Br

s ⊂ µr(X), 1 ≤ s ≤ k (6)

where Br
s is the sth cluster of the rth clustering.

(3) Set the elements MC
ij of the cumulative similarity matrix:

MC
ij =

1

t

k∑

s=1

t∑

r=1

χBr
s
[i] · χBr

s
[j] (7)

where χBr
s

is the characteristic vector for the cluster Br
s .

Since the elements MC
ij measure the occurrences of the examples µr(x), µr(y) ∈

µr(X) in the same clusters Br
s for 1 ≤ r ≤ t, then MC represents how much

pairs of projected examples belong to the same cluster across all the t repeated
projections. If the clustering defines a partition, it is easy to see that 0 ≤ Mij ≤
1, for each xi, xj ∈ X.

With respect to the algorithm above we may observe:
Remark 1. Since the failure probability is eΩ(−d′ε2), similarly to eq.2 in Sect. 2,
by union bound we have:

P

(
∀x, y ∈ X,

1

1 + ε
≤ ||µr(y)− µr(x)||2

||x− y||2 ≤ 1 + ε

)
≥ 1− t|X|2eΩ(−d′ε2)

Therefore for d′ ' O
(

log |X|+log t
ε2

)
, we obtain with high probability that all the

projections preserve the distances between the elements in X up to a distortion
1 + ε.
Remark 2. Singleton clusters, that is clusters composed by a single element
are considered apart: if Br

s is composed by a single element i the element Mii

of the similarity matrix is incremented by one. As a consequence the diagonal
elements of the cumulative similarity matrix MC

ii represent the frequency by
which the singleton cluster {i} occurs across the t clusterings.
Remark 3. A fuzzy similarity matrix may be obtained simply substituting in
eq. 7 the characteristic function with a membership function and the algebraic
product with a suitable t-norm. In this way fuzzy or possibilistic clustering
approaches may also be applied [46, 47]. In this case if we would maintain the
property by which 0 ≤ Mij ≤ 1, for each xi, xj ∈ X, we need to normalize
eq. 7 by 1/k.

4.2 Stability indices

Using the similarity matrix computed as described in Sect. 4.1, we may easily
compute a set of stability indices that may be useful to evaluate the validity
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and the reliability of the obtained clusters, as well as the confidence of the
assignments of each example to each cluster.

Indeed, using the previously computed MC similarity matrix, we may intro-
duce the following stability index s for a cluster A:

s(A) =
1

|A|(|A| − 1)

∑

(i,j)∈A×A,i 6=j

MC
ij (8)

The index s(A) estimates the stability of a cluster A by measuring how much
the projections of the pairs (i, j) ∈ A× A occur together in the same cluster
in the projected subspaces.

Let be < Br
1, . . . , B

r
k >, Br

p ⊂ µr(X), 1 ≤ p ≤ k, 1 ≤ r ≤ t the clusters
obtained in the embedded spaces µr(X), using t random projections. To get
some insights into the way the proposed stability index s works, consider the
limit cases s(A) = 1 and s(A) = 0:

(1) Suppose s(A) = 1.
This is true if and only if for all r there is a p such that A ⊆ Br

p: the
cluster A is present inside some cluster across all clusterings performed
in the projected spaces. This fact highlights the stability of A.

(2) Suppose s(A) = 0.
This is true if and only if for all r and all p it holds A ∩ Br

p = ∅: the
cluster A is disjoint from all clusters across all clusterings performed
in the projected spaces. In this case the stability index points to the
instability of cluster A.

In all the remaining cases, the stability index has values between 0 and 1:
low values indicate no reliable clusters, high values denote stable clusters. The
proposed stability index for individual clusters shows the desirable property
by which more similar is a cluster to the clusters obtained in the multiple
randomly projected subspaces, larger will be its value and viceversa.

An overall measure of the stability of the clustering in the original space may
be obtained averaging between the stability indices:

S(k) =
1

k

k∑

r=1

s(Ar) (9)

By this measure we may select the ”optimal” number of clusters k, using the
stability indices s of the individual clusters. In this case also we have that
0 ≤ S(k) ≤ 1, where k is the number of clusters.

The Assignment-Confidence (AC) index estimates the confidence of the as-
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signment of an example i to a cluster A:

AC(i, A) =
1

|A| − 1

∑

j∈A,j 6=i

MC
ij (10)

Using a set of realizations of a given randomized projection, the AC-index
represents the frequency by which the example i appears with the other ele-
ments of the cluster A across multiple clusterings on the randomly projected
subspaces.

5 Related work

The idea of using stability to assess the reliability of clusters and to define
meaningful partitions is not new. For instance the stability of hierarchical
clustering [48] as well as of more general clustering methods [49] have been
addressed, but with respect to the overall partition, while less work has been
dedicated to the evaluation of the stability of the individual clusters. Several
methods proposed to evaluate the ”natural” number of clusters, ranging from
strategies that attempt to maximize measures of cluster compactness [50] to
jackknife and resampling-based approaches [27, 30, 31].

Focusing on the problem primary addressed by our work, that is the esti-
mate of the reliability of individual gene expression data clusters, Smolkin
and Gosh [34] introduced unsupervised random subspace methods to evalu-
ate the stability of clusters. They generated multiple instances of the original
data by projecting the original high dimensional gene expression space into
lower dimensional subspaces, choosing for each instance a randomly selected
set of features (genes). We extended their approach to more general random-
ized maps, where RS is only a particular case (Sect. 2). We showed also that
in some cases projecting gene expression data using random subspace, we may
introduce relevant distortions into the data, while using PMO, Achlioptas and
Normal projections no relevant distortions are induced (Sect. 3). Of course, if
the random subspace projection induces large distortions, the stability mea-
sures based on it become unreliable; for this reason we strongly suggest using
randomized projections that approximately preserve distances between exam-
ples. Moreover in [34] no principled approaches to define the subspace dimen-
sion of the projected data is proposed. We introduced the concept of controlled
distortion in the framework of JL theory in order to properly choose the di-
mension of the projected data. The stability indices proposed by Smolkin and
Gosh used the clusters found in the projected space as a whole to evaluate the
reliability of the clusters in the original space. In particular if < A1, . . . , AK >
are the K clusters found in the original space and < Am

1 , . . . , Am
K > the K

clusters found in the projected space, they proposed a sensitivity index pi for
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the cluster Ai:

pi =
1

s

s∑

m=1

K∑

j=1

I(Ai ⊂ Am
j ) (11)

where s is the number of repeated random subspace projections and I(x) = 1
if x is true, otherwise I(x) = 0. Even this measure if useful to evaluate the
reliability of the clusters, note that a cluster Ai is considered ”stable” only
if it is completely included inside a cluster Am

j obtained in the projected
space. Our stability measure consider also as ”partially” reliable a cluster
Ai if Ai ∩ Am

j 6= ∅, and Ai is more reliable as long as Ai ∩ Am
j is larger. In

other words we consider all the conditions from Ai ∩ Am
j = ∅ (no inclusion),

through Ai∩Am
j 6= ∅ (intersection) to Ai ⊂ Am

j (inclusion): in these conditions
our stability index increases monotonically from 0 to 1, whereas Smolkin and
Gosh considered only the extreme case when Ai ⊂ Am

j , that corresponds to
s(Ai) = 1. In this way we may capture more subtle relationships between data,
obtaining more refined stability indices.

Bittner et al. [43] estimated cluster stability in melanoma patients introduc-
ing random perturbations to the data sets by adding gaussian noise to the
data. A similar approach has been proposed by McShane et al. [33]. They
added random noise independently across the genes to generate multiple ran-
domly perturbed data, estimating the error variance from the experimental
data. These approaches, even if related to ours, require to add independent
noise to the data and the relatively ad hoc choice of using the overall exper-
imental variance for data perturbation. On the contrary our method requires
only to randomly project genes, without assumptions about independently
distributed noise across the data. Moreover, as observed in [34], the assump-
tion of independently distributed noise across genes, even if practical, is not
fully biologically plausible. Anyway, in [33] an index similar to our stability
index is proposed, even if no similarity matrix is explicitly introduced. The
main difference between our and McShane et al. approach consists in the way
multiple clusterings are generated. Note that our stability index does not take
into account differences between Ai and Am

j when Ai ⊂ Am
j : in these cases

the Ai cluster is ”fully supported” by our stability index, even if there are
examples in Am

j that are not included in Ai. This is in most cases reasonable,
as we would confirm the stability of the clusters in the original space (that
is cluster of patients sharing similar expression profile), even if these may be
part of larger clusters. To explicitly consider these cases we may apply the D
index proposed in [33]:

D(Ai) = Omissions(Ai) + Additions(Ai)

By this we can explicitly consider examples included in Am
j but not included

in Ai (additions). In particular if Bb is the cluster with the best matching with
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the cluster Ai in the original space, that is:

Bb(Ai) = arg max
j

ni∑

k=1

nj∑

h=1

I(ak
i = bh

j ) (12)

where ak
i is the kth element of the cluster Ai in the original space, with |Ai| =

ni, and bh
j is the hth element of the cluster Bj in the transformed space, with

|Bj| = nj we may explicitly consider examples that are included in Ai but
not in Bb (omissions), and, viceversa, examples included in Bb but not in Ai

(additions).

Other approaches to estimate the cluster stability are based on resampling
techniques, e.g. by bootstrapping or subsampling examples from the data.
Bhattacharjee et al. proposed bootstrap-based methods to estimate the sta-
bility of subclasses of adenocarcinomas discovered in cancer lung patients. [42].
Kerr and Churchill applied analysis of variance (ANOVA) models and boot-
strap techniques to evaluate the reliability of discovered clusters, taking into
account different sources of variation of the data [32]; this approach is well-
suited for time series experiments and it is applied with the Chu et al. clus-
tering algorithm [51], but it is not explained how it can be applied to other
clustering algorithms. Using a resampling-based scheme Monti et al. [35] pro-
posed stability measures similar to that proposed in this work. They compute
a connectivity matrix (corresponding to our similarity matrix) using multi-
ple bootstrap replicates of the original data, while we used multiple random
projections obeying the JL lemma. They need to consider only the examples
extracted by bootstrapping techniques (as they are a subset of the overall
data), while our proposed index does not suffer this limitation, since we pro-
jected gene expression values using the overall data set. This can be a critical
problem with gene expression data as they are usually characterized by small
cardinality and very high dimensionality.

6 Experimental analysis of cluster reliability

In this section we show how to apply the proposed stability measures to the
analysis of the reliability of patients clusters using high dimensional DNA
microarray data.

Anyway, an experimental evaluation of the accuracy and reliability of the pro-
posed stability measures would require to a priori know the ”correct” subdivi-
sion of patients in clusters. Unfortunately, in many cases the cluster partition
of patients is not known in advance: on the contrary, the clustering algorithms
are just applied to discover the clusters structure of the analyzed data. For
these reasons, to show the effectiveness of the proposed stability measures, we
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used high-dimensional synthetic data, whose distribution, composition and
clusters subdivision is a priori completely known. Then we applied the stabil-
ity measures to the analysis of reliability of clusters patients, considering two
cases of gene expression analysis of malignancies from the literature: diffuse
large B-cell (DLBCL) lymphoma [11], and Melanoma [43] patients.

Our stability measures can be applied to the analysis of general distance-based
clustering algorithms, such as k-means [52] or Self-Organizing-Maps [22], but
we used hierarchical agglomerative clustering algorithms [53, 54].

In our experiments we used hierarchical agglomerative clustering algorithms,
using as dissimilarity function the euclidean distance. This choice is due to
the fact that hierarchical agglomerative clustering has been widely applied
in functional genomics for exploratory DNA microarray data analysis [4, 9].
Indeed, even if these algorithms are not in general ”better” than others, they
provide multi-resolution views of the data, and an appealing visual clue of the
obtained clusters. Moreover they do not automatically determine the number
of clusters, but provide a hierarchical structure of nested clusters: in this way
the bio-medical scientists may choose a proper ”cut” in the dendrogram to
obtain biologically meaningful clusters. From another standpoint it can be
very difficult and somehow arbitrary to choose a proper cut or a cluster as
”meaningful” with respect to others, especially when no sufficient bio-medical
knowledge on the data is available. This is usually true with DNA microarray
data, and for these reasons the stability measures proposed in this paper may
help researchers to better evaluate the reliability of the discovered clusters.

In all the experiments described in this section we computed the stability
indices s (eq. 8) for all the clusters found by the clustering algorithm, consid-
ering several 1+ε distortions induced by different types of random projections.
Here we reported the results obtained with PMO projections, while the results
obtained with Achlioptas and Normal random projections are reported only
for the melanoma patients, since they are quite similar to that obtained with
PMO. We computed also the average stability index S(k) (eq. 9) for different
number k of clusters, to evaluate also the reliability of the overall clustering.

We developed the clusterv package [55] written in R language to implement
the generator of high-dimensional synthetic data, the random projections de-
scribed in Sect.3 and the stability measures described in Sect. 4. This pack-
age is downloadable for research and teaching purposes from its web-site:
http://homes.dsi.unimi.it/∼valenti/SW/clusterv (Accessed: 19 March
2006).
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6.1 Experimental evaluation of the stability indices with synthetic data

In this section we used high-dimensional synthetic data, whose samples are
distributed according to known distributions, to evaluate the effectiveness and
the reliability of the proposed stability measures. We analyzed the results
of the Ward’s hierarchical agglomerative clustering algorithm [54], using as
dissimilarity function the euclidean distance.

6.1.1 Data sets

We experimented with 2 different sample generators, whose samples are dis-
tributed according to different mixtures of high dimensional gaussian distri-
butions.

Sample1 is a generator for 5000-dimensional data sets composed by 3 clusters.
The elements of each cluster are distributed according to a spherical gaussian
with standard deviation equal to 3. The first cluster is centered in the null
vector 0. The other two clusters are centered in 0.5e and −0.5e, where e is a
vector with all components equal to 1.

Sample2 is a a generator for 6000-dimensional data sets composed by 5 clusters
of data normally distributed. The diagonal of the covariance matrix for all the
classes has its element equal to 1 (first 1000 elements) and equal to 2 (last
5000 elements). The first 1000 variables of the five clusters are respectively
centered in 0, e, −e, 5e, −5e. The remaining 5000 variables are centered in 0
for all clusters.

For each generator, we considered 30 different random samples each respec-
tively composed by 30 and 50 examples (that is, 10 examples per class).

6.1.2 Results

Tab.1 summarizes the results with sample1. Note that the numbers at the
leaves of the dendrogram of Fig. 5 are the labels that identify the different
examples and they correspond to the members of clusters of the second column
of Tab 1.

[Table 1 about here.]

[Fig. 5 about here.]

The maximum of the average stability index S(k) is reached when the dendro-
gram (Fig. 5) is cut at 3 clusters level, and the corresponding stability indices
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s are equal to 1 for each of the 3 clusters. We achieve the same values for the
stability indices independently of the selected ε value that in turn defines the
subspace dimension. Two clusters are judged quite reliable too, especially the
first cluster that corresponds to one of the ”true” cluster, while the second
cluster that derives from the merging of the other two ”true” cluster, shows
a lower stability index (Tab.1). Both the average and the individual stability
indices are lower when different number of clusters are selected, showing that
the proposed stability measures correctly detect 3 clusters, identifying them as
highly reliable, according to the fact that sample1 generates three well-defined
and separated clusters. For instance with 5 clusters the overall stability index
S is lower, as well as the stability indices s of the individual clusters: only
for the third cluster s is sightly larger, since this cluster corresponds to one
(the second) of the three original ”true” clusters (Tab 1). With 10 clusters we
generate an unnatural fragmentation of the clusters, and the corresponding
stability indices are significantly much lower (Fig. 5 and Tab.1).

[Table 2 about here.]

[Fig. 6 about here.]

Sample2 is composed by 5 clusters, two well-separated, while for the other
three the corresponding underlying gaussian distributions largely overlap. The
stability indices correctly predict largely separated as well as less reliable clus-
ters. Indeed the stability indices are high for the 2 well separated clusters,
while for the other clusters that come from partially overlapped gaussian dis-
tributions, the stability indices are significantly lower (Tab. 2, see the case
with N = 5 clusters). Note that the maximum of the overall stability index
is for N = 3 clusters, as well as the reliability of the corresponding individual
clusters. This is nor surprising, as the three ”overlapped clusters” are iden-
tified by the hierarchical clustering algorithm as a single cluster (Cl.3, Cl.4
and Cl.5 in Fig. 6), since the underlying gaussian distributions from which
the data are drawn largely overlap. Anyway, note the first two clusters for 3,
4 and 5 clusters are predicted as very reliable (s = 1), according to the fact
that their underlying distributions are largely separated and without relevant
overlaps (Tab. 2 and Fig. 6).

[Fig. 7 about here.]

In order to evaluate the effectiveness and the reliability of the Assignment-
Confidence (AC) index (eq. 10), we applied them to the analysis of the syn-
thetic data sets (Sect. 6.1.1), since, in this case we know in advance the dis-
tribution and composition of the clusters. In this way we may establish if the
clustering algorithm correctly classifies the examples, and, separately analyz-
ing the distributions of the AC values for right and wrong predictions, we can
evaluate their reliability.
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Fig. 7 shows the distributions of the AC index values over the 30 realizations of
each synthetic data set, with separate boxplots for right and wrong predictions.
The results show that AC indices are significantly higher for right predictions,
supporting their reliability.

6.2 Experimental analysis of the reliability of patients clusters

In this section we apply the stability measures based on random projections
to the analysis of the reliability of patients clusters, using DNA microarray
data sets previously published by several authors. In particular we analyze
the reliability of gene expression clustering of malignancies, considering diffuse
large B-cell (DLBCL) lymphoma [11] and Melanoma [43] specimens.

For the pre-processing of DNA microarray data we wrote R scripts using
the Biobase and genefilter packages of the Bioconductor library [56], and we
implemented the same pre-processing and normalization steps described by
the authors that published the original DNA microarray data [11, 43].

6.2.1 DLBCL patients

We applied the proposed stability indices to a set of gene expression tumor
specimens from 58 diffuse large B-cell lymphoma (DLBCL) and 19 follicu-
lar lymphoma (FL) patients [11]. For each patient, expression levels of 7129
genes or EST sequences are provided from Affymetrix HU6800 oligonucleotide
arrays. Raw data have been pre-processed and re-scaled according to the pro-
cedures described in [11]. In particular we processed the raw expression val-
ues in Affymetrix’s scaled average difference units generated by Affymetrix’s
GeneChip software using a ”windowsizing” procedure for ceiling all the values
above the 16000 units and to set a lower threshold at 20 units to minimize
fluorescence saturation of the scanner and noise effects. Then the expression
values underwent a double filter to exclude all genes with a fold-change less
than 3-fold variation or with absolute variation less than 100 units. The 6286
genes that passed the double filter have been normalized with respect to their
mean and standard deviation.

In this analysis we applied PMO projections to estimate the stability indices of
the clusters computed using the hierarchical clustering Ward’s method (Tab. 3
and Fig. 8). The tables in Tab. 3 as well as the following tables are structured
in two parts: above, the overall stability indices S (eq. 9) are reported for
different values ε of the distortion (Sect. 2.1), considering different numbers
N. of clusters; below, the individual stability indices s (eq. 8) for different
values of ε and different numbers N. of clusters are reported. Note that in
the first column of Tab. 3 the clusters are labeled with numbers, and these
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number assignments correspond to left-to-right clusters in the dendrogram of
Fig. 8.

In Fig. 8 is represented the dendrogram of the hierarchical clustering, with the
dotted lines that highlight the clusters obtained at different cut levels. Note
that leaves labeled with D refer to DLBCL patients, while F -labeled leaves
refer to FL patients. Looking at the results obtained with PMO projections
(Tab. 3), the average S index is slightly larger when the hierarchical clus-
tering dendrogram is cut at 2 clusters level (Fig. 8), but comparable values
(even if lower) are also registered with 3, 4 and 5 clusters. In this case indeed
the clusters are not clearly delineated. For instance, considering a cut at 4
clusters level, the first cluster (with a high s stability index equal to 0.9882)
is composed by homogeneous FL patients (Fig. 8), the second (less reliable
s = 0.7637) is composed by both DLBCL and FL patients, while the third
(more reliable s = 0.9800) is composed only by DLBCL patients, as well as
the slightly less reliable (s = 0.9016) fourth cluster. If we split the data in
10 or more clusters we note a significant decrement of both the s indices and
the average S index: this fact suggests that no significant structure can be
observed in small-sized clusters (data not shown).

These results are congruent with the bio-medical characteristics of the data.
Indeed even if nodal tumor specimens are subdivided into 2 groups (DLBCL
and FL), Alizadeh et al. [4] discovered subclasses among DLBCL patients,
confirmed also by the supervised analysis of the data [12]; our results show
that the DLBCL subclusters 3 and 4 with 4 clusters and 3, 4 and 5 with 5
clusters are judged reliable by the proposed stability indices (Tab. 3). Moreover
Shipp et al. [11] highlighted that FL patients frequently evolve over time and
acquire the morphologic and clinical features of DLBCLs: this is confirmed
by the high reliability of cluster 1 both with N = 2 and N = 3 clusters that
groups together some DLBCL and FL patients.

[Table 3 about here.]

[Fig. 8 about here.]

6.2.2 Melanoma patients

In this subsection we study the reliability of the clusters obtained in melanoma
patients, using a cDNA microarray data set of 38 examples, including 31
melanomas and 7 controls [43]. The 8150 cDNAs represent 6971 unique genes
in the melanoma array used in the experiments. For this dataset we directly
downloaded the ratio expression levels of the just filtered 3613 genes from the
web site associated with the Bittner et al. paper. According to [43], to avoid
distortions of the data resulting from ratios where the signal in one channel
(Cy5 or Cy3) is large, and the signal in the other channel is undetectable,
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we truncated ratios higher than 50 or lower than 0.02. We restricted our
experiments to only the 31 melanoma examples to better verify the reliability
of the ”tightly clustered” set of 19 specimens found in [43]. We present here the
stability indices computed using not only PMO projections, but also Achlioptas
and Normal projections, to compare the results obtained with the different
randomized maps described in Sect. 2.2.

The overall stability index estimates as N = 4 the optimal number of clusters,
if we disregard the case with N = 2 and N = 3 clusters, characterized by the
presence of singleton clusters (Tab. 4 and Fig. 9). Indeed also the stability
indices for all the individual clusters strongly support their reliability (Tab. 4
and 5). With N = 4 clusters the first two clusters are singletons, while the
third is a big cluster with 23 examples, including the 19-members melanoma
subclass found out in [43]; the fourth very stable cluster groups together the
remaining 6 examples. To find the same 19-members Bittner’s cluster we need
to choose N = 9 clusters: the fifth cluster exactly corresponds to it. However
the stability index of this cluster is quite low (s ' 0.4 with PMO, Achlioptas
and Normal projections), as well as the overall stability index for N = 9.
Bittner et al. provided an overall stability measure for the clustering (WADPk)
that is based on perturbation of the original data by adding random noise (see
Sect. 5): their results support clusterings with N ≤ 9 clusters, but they do not
provide an individual cluster stability measure. Note that the application of
the Ben-Hur et al. method [30], based on bootstrapping techniques to estimate
the ”natural” number of clusters, found N = 4 clusters as the most reliable
number of estimated clusters in the data.

Summarizing, our results support the existence of a highly reliable cluster of
melanoma patients, composed by the 19 examples found by Bittner et al. plus
other 3-4 examples 1 (Tab. 4, 5 and Fig. 9). Comparing the results obtained
with different random projections, we can observe that PMO, Achlioptas and
Normal projections provide very similar results. In all cases 2, 3 and 4 clusters
are identified as very stable, while a number of subclasses larger than 5 are
considered unreliable, showing that subclasses of melanoma patients cannot
be found inside the big cluster composed by 23 patients.

[Table 4 about here.]

[Table 5 about here.]

[Fig. 9 about here.]

1 in particular the Bittner’s case no. UACC-1529, TC-FO27, HA-A and UACC-
1097.
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6.2.3 Experimental comparison with other stability-based methods

In this subsection we experimentally compare our approach with other related
stability based methods. In particular, we compare stability measures obtained
by PMO projections with stability-based methods based respectively on noise-
injections into the original data [33] and on random subspace [34] (see Sect. 5
for more details about these methods). For the comparison, we chose the
melanoma data set [43] because it was studied by many researchers [43, 57, 58],
and on this basis we can formulate well-founded hypotheses about its charac-
teristics. In particular we assume that no more than 4 clusters can be found
in the data; a big stable cluster collecting about 20 patients is present in the
data and no more than 4 subclasses of melanoma patients may be considered
reliable. In all cases the hierarchical clustering algorithm with average linkage
has been applied and the results are summarized in Tab. 6.

[Table 6 about here.]

We can observe that the noise-injection based method fails to detect the cor-
rect number of clusters. Indeed the overall R-index identifies as highly reliable
7 clusters. The Smolkin and Gosh method based on random subspace does
not provide a technique to estimate the number of clusters. As suggested by
the authors, the model explorer algorithm [30] has been applied to estimate
the correct number of cluster. The model explorer algorithm is specifically de-
signed to estimate only the number of cluster (no estimation of the reliability
of each individual cluster is provided) and it exploits the overall distribution
of the similarity measures to asses the stability of the clustering. Both model
explorer and our method based on PMO random projections (see Sect. 2.2)
predict the number of 4 clusters as highly reliable. Moreover, reflecting the fact
that clusters of melanoma patients show a hierarchical structure, both model
explorer and our overall stability index (eq. 9) identify as highly reliable 2 and
3 clusters too.

Considering the reliability of each individual cluster, the noise-injection method
recognizes as highly reliable 6 of the 7 clusters (Tab. 6), whereas we know that
no more than 4 clusters of melanoma patients can be considered reliable. On
the other hand the random subspace method considers reliable only 2 of the
four clusters, while our method correctly identified as highly reliable all the 4
clusters of melanoma patients. Moreover, the Smolkin and Gosh method does
not provide any quantitative suggestion about the dimension of the projected
subspace. As a consequence, if we use e.g. 85% of genes the third cluster (that
is the big cluster with about 20 patients) is judged reliable (stability score
∼ 0.8), otherwise if we use 25% of genes the same cluster is considered unre-
liable (stability score ∼ 0.5). With our approach using ε ≤ 0.2 the stability
index for the third cluster is above 0.9 (that is highly reliable). These results
confirm that random subspace projections may produce unreliable results, as
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they may introduce too large distortions in the data, as we showed in Sect. 3.

Anyway even if the results show that our proposed method works better than
others on the considered data set, we warn the readers that this direct com-
parison needs to be considered with caution, because we necessarily made
assumptions about the ”real” number of clusters and the ”real” reliability of
the discovered clusters, mainly on the basis of the a-priori biological knowl-
edge about the problem. This is necessary, because the comparison of the
performance of different methods for assessing the reliability of the discov-
ered clusters requires that we know in advance which is the ”real” number
of clusters and what is the ”real” reliability of the clusters obtained with a
given clustering algorithm. Unfortunately in real DNA microarray data all
these items are unknown and, as a consequence we need to make assump-
tions about the structure of the data. In other words, from a computational
standpoint, this a particularly ill-posed problem, and in real DNA microarray
data analyses we need to strictly integrate bio-medical knowledge and artifi-
cial intelligence methods to get insights into the real structure of the data. In
particular, methods to assess the reliability of the discovered clusters may be
used to suggest hypotheses about the real structure of the data, but these hy-
potheses need to be biologically validated. On the other hand these methods
may be used to assess the reliability of bio-medical hypotheses about e.g. the
structure of diagnostic or prognostic classes of malignancies or other diseases
on the basis of the bio-molecular characteristics of the patients.

7 Discussion

The experiments with high dimensional synthetic data tested the theoretical
applicability of the the proposed measures for assessing the reliability of dis-
covered clusters, when the underlying distribution of the data is a priori known
(Sect. 6.1). In particular, with sample1 the overall stability index S achieves
its maximum when the ”true” number of clusters is considered, and the three
”true” corresponding clusters obtain the maximum of the individual stability
index s; with sample2 the largest stability is achieved for the two well-defined
and separated clusters, while for the other less reliable clusters the stability
index is lower. Hence, the results with high dimensional synthetic data show
the feasibility of the proposed stability measures to estimate the reliability of
the discovered clusters.

The results with real gene expression data (Sect.6.2), showed also how to apply
the proposed reliability measures to the exploratory analysis and discovery of
gene expression patterns in DNA microarray data. In particular, the analysis of
the stability of individual clusters through their reproducibility across multiple
random projections greatly improves understanding of data structure. Indeed,
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the capability of identifying within the discovered clusters those that can be
considered reliable or not, may get insights into the underlying characteristics
of patients clusters (Sect.6.2).

For instance, the proposed individual stability indices support the hypothe-
sis of DLBCL subclasses within DLBCL patients (Sect. 6.2.1). On the con-
trary they do not directly support the Bittner’s thesis about the reliability of
the 19-member subclass inside melanoma patients [43], but suggest a larger
more reliable and reproducible melanoma subclass composed by 23 specimens
(Sect. 6.2.2).

Moreover, the proposed stability measures may help to discover multi-level
structures in the data, e.g. a main cluster and subclusters discovered inside
the main cluster itself, if both are supported by large values of the stability
indices.

The need for individual cluster reliability comes also from other very common
situations that arise from the analysis of clusters patients. For instance, even if
an overall cluster stability measure can assess the ”natural” number of clusters
in the data, some clusters inside the obtained clustering can be more reliable
than other, and some clusters may be not reliable at all: in the experimental
part of this paper several situation of this kind have been depicted (Sect. 6).
Moreover, less common situations in which only one cluster is present in the
data and the other clusters are only noisy samples around the ”true” cluster
are very difficult to detect with a method searching for an optimal number of
clusters only: we cannot distinguish the situations when only one cluster or
no clusters are present. In all these cases we need a stability measure for each
individual cluster found by the clustering algorithm.

Considering the effectiveness of the proposed cluster stability measures, we
observe that PMO, Achlioptas and Normal random projections should be in
general preferred to RS projections(Sect. 2.2), for both theoretical and exper-
imental reasons.

Indeed the stability measures based on random projections are effective if a
not too large distortion is induced into the projected data. In Sect. 2 we out-
lined that the Johnson-Lindenstrauss lemma provides bounds to the distor-
tions induced by randomized maps, if suitable conditions are satisfied. PMO,
Achlioptas and Normal random projections satisfy the JL lemma, and hence
we can expect that a bounded distortion will be introduced into the projected
space if a sufficiently high subspace dimension is chosen. On the contrary,
this does not in general hold for random subspace projections, since RS does
not obey the JL lemma. Our experiments for the evaluation of the distortions
induced by randomized maps into lower dimensional subspaces confirm the
theoretical results, showing that with DNA microarray data RS projections
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may introduce relevant distortions into the data (Sect. 3). The same experi-
ments show that PMO, Achlioptas and Normal are ”well-behaved” projections,
in the sense that the distortions of the projected data are largely inside the
JL theoretical bounds, and in all cases significantly lower than that obtained
with RS projections (Sect. 3). The stability measures evaluated with the JL
compliant random projections are comparable in all data sets we analyzed in
our experiments, while stability measures estimated with RS projections in
some cases significantly differ from the others, especially when large ε val-
ues (corresponding to low dimensional subspaces) are chosen . Moreover the
variance of the stability indices with respect to the multiple instances of the
projected data is significantly larger when RS with respect to PMO, Achlioptas
and Normal projections are used (data not shown).

Considering randomized maps that obey the JL lemma, we have no suggestions
about the preferential choice of a particular one, since no significant differences
have been observed in stability indices computed with PMO, Achlioptas and
Normal projections.

We proposed a principled way to choose the subspace dimension of the em-
bedded space. Indeed we proposed to use a dimension related to the distortion
predicted according to the JL lemma (Sect. 4). Note that with PMO, Achliop-
tas and Normal projections we could in practice use also lower subspace di-
mensions than that predicted through the JL lemma, since our experimental
results show that the empirical distortion bounds measured in gene expression
data are significantly lower than the predicted theoretical bounds (Sect. 3),
with corresponding savings in time and space computational resources. In
practice our experimental results show that subspace dimensions correspond-
ing to distortions 1 + ε ≤ 1.2 are largely sufficient to reasonably compute the
proposed stability indices.

Our work focused on stability indices to evaluate the reliability of individual
clusters, but an overall stability measure of the clustering has been simply de-
rived by averaging the reliability of the single clusters (Sect. 4.2). In spite of its
straightforwardness, the proposed measure has revealed useful for analyzing
the structure of patients clusters, as shown by our experiments. Nevertheless,
if the main goal is to estimate the ”natural” or ”optimal” number of clusters
we suggest to use also other more principled global measures based on distri-
bution of some property of the data, such as measures based on distribution
of pairwise similarity between clusterings of subsamples of a dataset [30].

As observed in Sect.4, our work may be set in the framework of cluster stability
evaluation through multiple random ”perturbation” of the data, where for
perturbation we mean bootstrap samples drawn from the data [32, 35], or
random noise injection into the data [33] or random projections into lower
dimensional subspaces [34].
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The basic idea behind this general approach consists in randomly perturbing
in a suitable way the original data and then in using multiple instances of the
perturbed data to assess the reliability of the clusters discovered with a suit-
able clustering algorithm. It is worth noting that all the methods that evaluate
the reliability of the discovered clusters through the estimate of their stability
need to properly modify and somehow distort the available data. Indeed using
bootstrapping techniques only a subset of the data is available for each clus-
tering, and adding noise we necessarily modify the original characteristics of
the data. Random projections introduce distortion into the the original data
too, but our approach permits on one hand to control the distortion, on the
other hand to automatically find an ”optimal” dimension for the projected
subspaces.

A natural question that may arise from these considerations is: which of these
general approaches appear to be best suited for the analysis of patients clusters
in DNA microarray data? Experimental results provided in Sect. 6.2.3, with
the warnings and cautions due to the characteristics of the problem, show that
our approach is competitive with other proposed stability-based methods.

Our methods based on randomized maps are well-suited to the characteristics
of DNA microarray data: indeed the low cardinality of the examples, the very
large number of features (genes) involved in microarray chips, the redundancy
of information stored in the spots of microarrays (as just discussed in Sect. 4)
are all characteristics in favour of our approach. On the contrary using boot-
strapping techniques to obtain smaller samples from just small samples of
patients should induce more randomness in the estimate of cluster stability.
This approach appears to be more well-suited to evaluate the cluster stability
of genes, since significantly larger samples are available in this case [32]. In-
jecting noise into the data to obtain multiple instance of perturbed data poses
difficult statistical problems for evaluating what kind and which magnitude of
noise should be added to the data [34].

All the perturbation-based methods need to properly select a parameter to
control the amount of perturbation of the data: resampled-based methods
need to select the ”optimal” fraction of the data to be subsampled; noise-
injection-based methods needs to choice the amount of noise to be introduced;
random subspace and random projections-based methods needs to select the
proper dimension of the projected data. Anyway only our approach provides a
theoretically motivated method to automatically find an ”optimal” value for
the perturbation parameter (see Sect. 4).

Another problem common to all perturbation-based methods is the depen-
dence of the reliability measures on a specific cluster algorithm. Indeed also
in our case, even if we may use any clustering algorithm that applies eu-
clidean distances to analyze the data, the stability results will depend on the
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particular choice of the clustering algorithm. It is well-known that different
clustering algorithms may provide also very different clusters, and in this way
not only we may have different estimates of cluster stability, but also different
clusters found by the clustering algorithms. These are ineliminable problems
arising from the fact that different clustering algorithms can discover different
views and characteristics of the data. A possible seminal research line could
be to integrate several different clustering algorithms in the evaluation of sta-
bility measures computed with multiple instances of projected data obtained
through randomized maps, in order to explicitly consider the different results
provided by different clustering algorithms.

Another related open issue is represented by data normalization. Even if in our
experiments we did not observe many differences in the results when hierarchi-
cal clustering algorithms have been applied to normalized and non-normalized
data, in [35] is reported that with self-organizing-map algorithms in some cases
the results do not agree.

8 Conclusions

The problem of assessing the reliability of clusters patients obtained by clus-
tering algorithms is crucial to estimate the significance of subclasses of diseases
detectable at bio-molecular level, and more in general to support bio-medical
discovery of patterns in gene expression data.

We proposed stability indices based on random projections with low metric
distortion to measure the reliability of the clusters discovered by a suitable
clustering algorithm. The proposed approach can be applied with any distance-
based clustering algorithm and it does not require assumptions about the dis-
tribution of the data. Experiments with diffuse large B-cell Lymphoma and
melanoma DNA microarray data showed how to apply the stability measures
to the analysis of the reliability of patients clusters identified by hierarchical
clustering algorithms. Moreover our experiments show that the average sta-
bility index may also be useful to estimate the most likely number of clusters
in gene expression data.

Both theory on randomized maps between euclidean spaces and our experi-
mental results show that random subspace projections, even if useful to ana-
lyze the stability of patients clusters, are less effective than Plus-Minus-One,
Achlioptas and Normal random projections in assessing the reliability of the
discovered clusters. For these reasons we strongly suggest to apply JL lemma
compliant randomized maps to study the structure and the reliability of clus-
ters patients.
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We suggest also to choose the dimension of the projected subspace according
to the JL lemma, to avoid too large distortions that could introduce noise in
the estimate of the stability indices.
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Fig. 3. Lung tumor DNA microarray data. Empirical distribution of the pairwise
distances between examples in original and projected data. The continuous line rep-
resents the distribution in the original 3312-dimensional space, the dashed line the
distribution in the projected space. First row of figures: projection to a 2126-dimen-
sional space (ε = 0.1); second row: projection to an 86-dimensional space (ε = 0.5).
From left to right in both rows are respectively represented Achlioptas, Normal,
PMO and RS projections.
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Fig. 4. Melanoma DNA microarray data. Empirical distribution of the pairwise dis-
tances between examples in original and projected data. The continuous line rep-
resents the distribution in the original 3613-dimensional space, the dashed line the
distribution in the projected space. First row of figures: projection to a 1374-dimen-
sional space (ε = 0.1); second row: projection to a 55-dimensional space (ε = 0.5).
From left to right in both rows are respectively represented Achlioptas, Normal,
PMO and RS projections.
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The two clusters on the left are identified as stable, while the remaining three are
evaluated as less table (see Table 2).

41



0.
2

0.
4

0.
6

0.
8

1.
0

A
C

 v
al

ue
s

right rightwrong wrong

Sample2Sample1

Fig. 7. Boxplots of the AC indices distributions with the synthetic data Sample1 and
Sample2. White boxes refer to correct predictions, gray boxes to wrong predictions.
The tick line inside the boxes represents the median value, the bottom and the top
of the boxes represent respectively the first and third quartile.

42



F
7

F
16 F

10
F

1
F

14
F

5
F

18 F
13

F
15 F

12
F

17 F
8

F
11 D

26
F

9
D

56 F
2

D
15

D
29

F
19 F

3
F

4
F

6
D

21
D

27 D
35

D
39

D
2

D
10

D
7

D
4

D
12

D
6

D
44

D
9

D
33

D
5

D
11

D
37 D
8

D
38 D

52
D

46
D

13
D

31
D

51
D

25
D

49 D
55

D
41

D
42

D
14

D
22

D
34

D
3

D
36

D
58

D
19

D
54

D
47

D
48 D

53
D

23
D

16
D

18
D

1
D

43
D

50
D

57 D
28

D
45

D
30

D
32 D
17

D
24 D
20

D
40

0
50

10
0

15
0

20
0

25
0

H
ei

gh
t

k=2

k=3

k=4

k=5

Fig. 8. Hierarchical clustering of DLBCL-FL examples (Ward method). Leaves la-
beled with ”D” refer to DLBCL patients, while ”F” to FL patients. Gray dotted
lines cut the dendrogram such that exactly k clusters are produced, for k = 2, 3, 4, 5.

43



U
A

C
C

−
93

0

M
93

−
47

U
A

C
C

−
10

97

U
A

C
C

−
15

29

T
C

−
F

02
7

H
A

−
A

U
A

C
C

−
25

34

U
A

C
C

−
10

22

T
D

−
13

84

T
D

−
13

76
−

3

T
D

−
17

30

T
D

−
17

20

T
D

−
16

38

M
91

−
05

4

U
A

C
C

−
12

73

U
A

C
C

−
09

1

A
−

37
5

M
92

−
00

1

M
93

−
00

7 U
A

C
C

−
12

56

U
A

C
C

−
50

2

U
A

C
C

−
38

3

T
C

−
13

76
−

3

U
A

C
C

−
30

93

U
A

C
C

−
45

7

U
A

C
C

−
90

3

U
A

C
C

−
28

73

W
M

17
91

−
C

U
A

C
C

−
82

7

U
A

C
C

−
10

12

U
A

C
C

−
64

7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

H
ei

gh
t

k=4

k=9

k=2

k=6

"stable" big clustersecundary cluster

Fig. 9. Hierarchical clustering of Melanoma samples (Average linkage method with
1- Pearson dissimilarity measure). Gray dotted lines cut the dendrogram such that
exactly k clusters are produced, for k = 2, 4, 6, 9. We pointed out the big ”stable”
cluster discovered by Bittner. See Table 4 and 5 for the the corresponding stability
indices.

44



List of Tables

1 Sample1: Estimate of cluster stability. 46

2 Sample2: Estimate of cluster stability. 47

3 DLBCL-FL: Estimate of cluster stability with PMO
projections. 48

4 Melanoma: Estimate of cluster stability using PMO projections 49

5 Melanoma: Estimate of cluster stability. Left: Achlioptas
projections; Right: ”Normal” projections. 50

6 Comparison of different stability-based methods with the
melanoma data set 51

45



Table 1
Sample1: Estimate of cluster stability.

Clusters Members of Clusters Stability index s

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 clusters S = 0.8631 S = 0.8684 S = 0.8684 S = 0.9157 S = 0.9421

1 11-20 1.0000 1.0000 1.0000 1.0000 1.0000

2 1-10,21-30 0.7263 0.7368 0.7368 0.8314 0.8842

3 clusters S = 1.0000 S = 1.0000 S = 1.0000 S = 1.0000 S = 1.0000

1 11-20 1.0000 1.0000 1.0000 1.0000 1.0000

2 21-30 1.0000 1.0000 1.0000 1.0000 1.0000

3 1-10 1.0000 1.0000 1.0000 1.0000 1.0000

5 clusters S = 0.7059 S = 0.6843 S = 0.7044 S = 0.7004 S = 0.7472

1 11,13,16,17,19,20 0.6973 0.7346 0.7293 0.6506 0.7560

2 12,14,15,18 0.6666 0.7066 0.6866 0.6466 0.7133

3 21-30 0.7155 0.7582 0.7448 0.7591 0.8364

4 5,7 0.7600 0.5600 0.6800 0.7400 0.7800

5 1-4,6,8-10 0.6900 0.6621 0.6814 0.7057 0.6507

10 clusters S = 0.3093 S = 0.3043 S = 0.2651 S = 0.3286 S = 0.3936

1 19 0.0600 0.1200 0.0600 0.2000 0.2400

2 11,13,16,17,20 0.4260 0.3520 0.2900 0.3360 0.4560

3 12 0.1400 0.1600 0.1600 0.2000 0.1400

4 14,15,18 0.4066 0.3533 0.3200 0.3800 0.4200

5 23,28,29 0.3733 0.3000 0.2866 0.3600 0.4200

6 21,22,24-27,30 0.3276 0.3419 0.3285 0.3866 0.3933

7 5,7 0.3600 0.2800 0.3000 0.3600 0.3800

8 2,3,8,10 0.3000 0.3366 0.3066 0.3433 0.3866

9 4,9 0.3400 0.4000 0.2600 0.4200 0.5000

10 1,6 0.3600 0.4000 0.3400 0.3000 0.6000
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Table 2
Sample2: Estimate of cluster stability.

N. Overall stability index S

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 0.8846 0.8959 0.8846 0.9115 0.9153

3 0.9872 0.9964 1.0000 1.0000 1.0000

4 0.7991 0.8103 0.8393 0.8886 0.9159

5 0.6445 0.6739 0.7083 0.7620 0.8412

6 0.5443 0.5819 0.5956 0.6707 0.7652

8 0.4382 0.4709 0.4860 0.5316 0.6270

10 0.3073 0.3423 0.3366 0.3812 0.4843

20 0.1694 0.1895 0.1911 0.2183 0.3339

N. Cl. Stability index s

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.7693 0.7918 0.7692 0.8230 0.8307

3 1 0.9960 0.9920 1.0000 1.0000 1.0000

2 0.9893 1.0000 1.0000 1.0000 1.0000

3 0.9765 0.9973 1.0000 1.0000 1.0000

4 1 0.9960 0.9920 1.0000 1.0000 1.0000

2 0.9711 0.9893 1.0000 1.0000 1.0000

3 0.6315 0.6782 0.6991 0.9088 0.9760

4 0.5981 0.5818 0.6582 0.6456 0.6877

5 1 0.9662 0.9533 0.9928 0.9906 1.0000

2 0.9511 0.9800 0.9782 0.9817 1.0000

3 0.4555 0.4973 0.5560 0.7351 0.8422

4 0.4378 0.5505 0.5501 0.6672 0.7596

5 0.4122 0.3883 0.4644 0.4355 0.6044

10 1 0.5662 0.5284 0.5364 0.6342 0.6457

2 0.5033 0.6133 0.5866 0.6033 0.6500

3 0.0200 0.0200 0.0000 0.0400 0.0800

4 0.5480 0.6560 0.5920 0.5660 0.6240

5 0.2600 0.2866 0.2973 0.3573 0.5013

6 0.2833 0.3700 0.3300 0.3766 0.5800

7 0.2853 0.3066 0.3253 0.4133 0.6240

8 0.2100 0.2500 0.2660 0.3240 0.3620

9 0.2140 0.1960 0.2060 0.2340 0.3960

10 0.1833 0.1966 0.2266 0.2633 0.3800
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Table 3
DLBCL-FL: Estimate of cluster stability with PMO projections.

N. Overall stability index S

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 0.7744 0.8097 0.8290 0.8736 0.9523

3 0.7363 0.7698 0.8086 0.8454 0.9433

4 0.6896 0.7465 0.8169 0.8266 0.9084

5 0.6556 0.7031 0.7816 0.7991 0.8724

N. Cl. Stability index s

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 1 0.8353 0.8853 0.9340 0.9446 0.9797

2 0.7136 0.7340 0.7241 0.8026 0.9249

3 1 0.6394 0.6578 0.7651 0.8445 0.9478

2 0.8602 0.9158 0.9389 0.9435 0.9800

3 0.7092 0.7358 0.7218 0.7483 0.9022

4 1 0.8010 0.8133 0.8943 0.9676 0.9882

2 0.5907 0.6778 0.7624 0.6720 0.7637

3 0.7720 0.8501 0.9178 0.9208 0.9800

4 0.5945 0.6450 0.6932 0.7458 0.9016

5 1 0.7858 0.7779 0.8887 0.9646 0.9882

2 0.5103 0.6241 0.7017 0.6516 0.7367

3 0.7164 0.7461 0.8079 0.8136 0.9272

4 0.5986 0.5970 0.6830 0.6953 0.8550

5 0.6668 0.7705 0.8268 0.8703 0.8548
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Table 4
Melanoma: Estimate of cluster stability using PMO projections

N. Overall stability index S

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 0.8186 0.8613 0.9040 0.9253 1.0000

3 0.8946 0.8752 0.9129 0.9786 1.0000

4 0.8907 0.9266 0.9618 0.9728 0.9782

5 0.7010 0.7306 0.7384 0.7430 0.7316

6 0.5800 0.5950 0.5942 0.5929 0.5930

7 0.4789 0.4947 0.4950 0.4930 0.4969

8 0.4998 0.5272 0.5357 0.5407 0.5481

9 0.4977 0.5098 0.5149 0.5138 0.5187

10 0.5049 0.5245 0.5370 0.5389 0.5378

12 0.3993 0.3795 0.3998 0.3812 0.3910

N. Cl. Stability index s

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 1 0.6600 0.7400 0.8200 0.8600 1.0000

2 0.9773 0.9826 0.9880 0.9906 1.0000

3 1 0.9600 0.9600 0.9200 1.0000 1.0000

2 0.7600 0.7000 0.8400 0.9400 1.0000

3 0.9639 0.9658 0.9789 0.9958 1.0000

4 1 0.9600 1.0000 0.9800 1.0000 1.0000

2 0.8000 0.8800 0.9800 0.9800 1.0000

3 0.8098 0.8265 0.8875 0.9113 0.9130

4 0.9933 1.0000 1.0000 1.0000 1.0000

5 1 0.9600 1.0000 1.0000 1.0000 1.0000

2 0.9200 0.9800 0.9800 1.0000 1.0000

3 0.6534 0.6733 0.7124 0.7152 0.6580

4 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.9720 1.0000 1.0000 1.0000 1.0000

6 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.9800 1.0000 1.0000 1.0000 1.0000

3 0.5635 0.5802 0.5657 0.5577 0.5584

4 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9366 0.9900 1.0000 1.0000 1.0000

9 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6066 0.5200 0.4933 0.4733 0.3466

5 0.3732 0.3888 0.3810 0.3914 0.4023

6 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.6600 0.7400 0.8000 0.7800 0.9400

9 0.8400 0.9400 0.9600 0.9800 0.9800
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Table 5
Melanoma: Estimate of cluster stability. Left: Achlioptas projections; Right: ”Nor-
mal” projections.

N. Overall stability index S

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 0.8186 0.8613 0.9040 0.9253 1.0000

3 0.8946 0.8752 0.9129 0.9786 1.0000

4 0.8907 0.9266 0.9618 0.9728 0.9782

5 0.7010 0.7306 0.7384 0.7430 0.7316

6 0.5800 0.5950 0.5942 0.5929 0.5930

7 0.4789 0.4947 0.4950 0.4930 0.4969

8 0.4998 0.5272 0.5357 0.5407 0.5481

9 0.4977 0.5098 0.5149 0.5138 0.5187

10 0.5049 0.5245 0.5370 0.5389 0.5378

12 0.3993 0.3795 0.3998 0.3812 0.3910

N. Cl. Stability index s

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 1 0.6600 0.7400 0.8200 0.8600 1.0000

2 0.9773 0.9826 0.9880 0.9906 1.0000

3 1 0.9600 0.9600 0.9200 1.0000 1.0000

2 0.7600 0.7000 0.8400 0.9400 1.0000

3 0.9639 0.9658 0.9789 0.9958 1.0000

4 1 0.9600 1.0000 0.9800 1.0000 1.0000

2 0.8000 0.8800 0.9800 0.9800 1.0000

3 0.8098 0.8265 0.8875 0.9113 0.9130

4 0.9933 1.0000 1.0000 1.0000 1.0000

5 1 0.9600 1.0000 1.0000 1.0000 1.0000

2 0.9200 0.9800 0.9800 1.0000 1.0000

3 0.6534 0.6733 0.7124 0.7152 0.6580

4 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.9720 1.0000 1.0000 1.0000 1.0000

6 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.9800 1.0000 1.0000 1.0000 1.0000

3 0.5635 0.5802 0.5657 0.5577 0.5584

4 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9366 0.9900 1.0000 1.0000 1.0000

9 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6066 0.5200 0.4933 0.4733 0.3466

5 0.3732 0.3888 0.3810 0.3914 0.4023

6 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.6600 0.7400 0.8000 0.7800 0.9400

9 0.8400 0.9400 0.9600 0.9800 0.9800

N. Overall stability index S

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 0.7866 0.8720 0.9360 0.9573 1.0000

3 0.8114 0.8896 0.9496 0.9786 1.0000

4 0.8988 0.9347 0.9628 0.9769 0.9782

5 0.7122 0.7264 0.7341 0.7369 0.7314

6 0.5867 0.5892 0.5950 0.5919 0.5938

7 0.4814 0.4879 0.4965 0.4961 0.4958

8 0.5202 0.5248 0.5358 0.5410 0.5452

9 0.4985 0.5004 0.5070 0.5161 0.5208

10 0.5133 0.5212 0.5312 0.5513 0.5427

12 0.3839 0.3798 0.3874 0.4004 0.3997

N. Cl. Stability index s

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 1 0.6000 0.7600 0.8800 0.9200 1.0000

2 0.9733 0.9840 0.9920 0.9946 1.0000

3 1 0.8600 0.9600 0.9800 1.0000 1.0000

2 0.6200 0.7400 0.8800 0.9400 1.0000

3 0.9543 0.9690 0.9890 0.9958 1.0000

4 1 0.9400 0.9800 1.0000 1.0000 1.0000

2 0.8200 0.9000 0.9800 1.0000 1.0000

3 0.8488 0.8582 0.8713 0.9070 0.9130

4 0.9867 1.0000 1.0000 1.0000 1.0000

5 1 0.9800 1.0000 1.0000 1.0000 1.0000

2 0.9200 0.9600 1.0000 1.0000 1.0000

3 0.6773 0.6842 0.6705 0.6849 0.6571

4 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.9840 0.9880 1.0000 1.0000 1.0000

6 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.9600 1.0000 1.0000 1.0000 1.0000

3 0.6007 0.5754 0.5703 0.5519 0.5633

4 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9600 0.9600 1.0000 1.0000 1.0000

9 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.9800 1.0000 1.0000 1.0000 1.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.5200 0.5333 0.6400 0.4533 0.3733

5 0.3871 0.3902 0.3831 0.3922 0.3939

6 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.6400 0.6400 0.6200 0.8400 0.9200

9 0.9600 0.9400 0.9200 0.9600 1.0000

50



Table 6
Comparison of different stability-based methods with the melanoma data set

Perturbation by noise-injection (Mc Shane et al.)

7 clusters Overall R-index = 0.993

Cluster: 1 2 3 4 5 6 7

R-index: 0.92 0.12 1.00 1.00 0.99 0.98 0.91

Perturbation by random subspace (Smolkin and Gosh)

4 clusters

Cluster: 1 2 3 4

stability: 1.00 0.28 0.83 0.34

Perturbation by random projections (PMO)

4 clusters Overall S-index = 0.978

Cluster: 1 2 3 4

s-index: 1.00 1.00 0.91 1.00
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