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Abstract- We find very tight bounds on the accuracy of a Sup-
port Vector Machine classification error within the Algorithmic
Inference framework. The framework is specially suitable for this
kind of classifier since (i) we know the number of support vectors
really employed, as an ancillary output of the learning procedure,
and (ii) we can appreciate confidence intervals of misclassifying
probability exactly in function of the cardinality of these vectors.
As a result we obtain confidence intervals that are up to an order
narrower than those supplied in the literature, having a slight
different meaning due to the different approach they come from,
but the same operational function. We numerically check the
covering of these intervals.

I. INTRODUCTION
Support Vector Machines (SVM for short) [1] represent

an operational tool widely used by the Machine Learning
community. Per se a SVM is an n dimensional hyperplane
committed to separate positive from negative points of a lin-
early separable Cartesian space. The success of these machines
in comparison with analogous models such as a real-inputs
perceptron is due to the algorithm employed to learn them
from examples that performs very efficiently and relies on
a well defined small subset of examples that it manages in a
symbolic way. Thus the algorithm plays the role of a specimen
of the computational learning theory [2] allowing theoretical
forecasting of the future misclassifying error. This prevision
however may result very bad and consequently deprived of
any operational consequence. This is because we are generally
obliged to broad approximations coming from more or less
sophisticated variants of the law of large numbers. In the
paper we overcome this drawback working in the Algorithmic
Inference framework [3], computing bounds that are linked to
the properties of the actual classification instance and typically
prove tighter by one order of magnitude in comparison to
analogous bounds computed by Vapnik [4]. We numerically
check that these bounds delimit slightly oversized confidence
intervals [5] for the actual error probability.
The paper is organized as follows: Section II introduces

SVMs, while Section III describes and solves the correspond-
ing accuracy estimation problem in the Algorithmic Inference
framework. Section IV numerically checks the theoretical
results.

II. LEARNING SVMS

In their basic version, SVMs are used to compute hypothe-
ses in the class H of hyperplanes in RI, for fixed n E N.
Given a sample {xi,. .. xx} E RImn with associated labels
{Y1y* - Ym} e{-1E , }m, the related classification problem

lies in finding a separating hyperplane, i.e. an h E H such
that all the points with a given label belong to one of the two
half-spaces determined by h.

In order to obtain such a h, an SVM computes first the
solution {°ia, . . . , a* } of a dual constrained optimization
problem

m 1 m

max °Zai-2 Z aiicmjyiYjxi-x
t=1 i,i-=i
m

aiyi = 0
i-l

ajt > O i = 1 . .. ,m,

(1)

(2)

(3)
where - denotes the standard dot product in RI, and then
returns a hyperplane (called separating hyperplane) whose
equation is w - x + b = 0, where

m

w = :a*yixii-6 = f
b = yi-w - xi for i such that a*z > O.

(4)

(5)

In the case of a separable sample (i.e. a sample for which the
existence of a separating hyperplane is guaranteed), this algo-
rithm produces a separating hyperplane with optimal margin,
i.e. a hyperplane maximizing its minimal distance with the
sample points. Moreover, typically only a few components of
{a,*... v I4m} are different from zero, so that the hypothesis
depends on a small subset of the available examples (those
corresponding to non null 's, that are denoted support vectors
or SV).
A variant of this algorithm, known as soft-margin clas-

sifier [6], produces hypotheses for which the separability
requirement is relaxed, introducing a parameter It whose
value represents an upper bound to the fraction of sample
classification errors and a lower bound to fraction of points that
are allowed to have a distance less or equal to the margin. The
corresponding optimization problem is essentially unchanged,
with the sole exception of (3), which now becomes

° < ai <-m
(3')m

Eai > M.
itI

Analogously, the separating hyperplane equation is still ob-
tained through (4-5), though the latter equation needs to be
computed on indices i such that 0 < ae <-.m
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Fig. 1. Comparison between two-sided 0.9 confi dence intervals for SVM classifi cation error. t: number of misclassifi ed sample points; d: detailNC dimension;
u: confi dence interval extremes; m: sample size. Gray surfaces: VC bounds. Black surfaces: proposed bounds.

III. THE ASSOCIATED ALGORITHMIC INFERENCE
PROBLEM

The theory for computing the bounds lies in a new statistical
framework called Algorithmic Inference [3]. The leading idea
is to start from specific sample, e.g. a record of observed
data constituting the true basis of the available knowledge,
and then to infer about the possible continuation of this
record - call it population - when the observed phenomenon
remains the same. Since we may have many sample suffixes
as continuation, we compute their probability distribution on
the sole condition of them being compatible with the already
observed data. This constraint constitutes the inference tool
to be molded with the formal knowledge already available on
the phenomenon. In particular, in the problem of learning a
Boolean function over a space I, our knowledge base is a
labeled sample Zm = {(xi,bi), i = 1,..., m} where m is
an integer, xi e X and bi are Boolean variables. The formal
knowledge stands in a concept class C related to the observed
phenomenon, and we assume that for every M and every
population ZM a c exists in C such that Zm+M = {(x, c(xi)),
i = 1, .... m + M}. We are interested in another function
W: {Zm} 1- H which, having in input the sample, computes
a hypotesis h in a (possibly) different class H such that
the random variable Uc h 1, denoting the measure of the
symmetric difference c . h in the possible continuations of Zm,
is low enough with high probability. The bounds we propose
in this paper delimit confidence intervals for the mentioned
measure, within a dual notion of these intervals where the
extremes are fixed and the bounded parameter is a random
variable. The core of the theory is the theorem below.

Theorem 3.1: [7] For a space X and any probability measure
P on it, assume we are given

* concept classes C and H on £;
* a labeled sample Zm drawn from I x {0, 1};
* a fairly strongly surjective function d: {Zm} !4 H

In the case where for any Zm and any infinite suffix ZM
of it a c E C exists computing the example labels of the
whole sequence, consider the family of random sets {c E C:
Zm+M = {(xi,c(xi)),i = 1, . . . ,m + M} for any specifica-
tion ZM of ZM}. Denote h =- (zm) and UC÷.h the random

tBy default capital letters (such as U, X) will denote random variables
and small letters (u, x) their corresponding specifi cations; the sets the
specifications belong to will be denoted by capital gothic letters (U,I ).

variable given by the probability measure of c *. h and FuC..h
its cumulative distribution function. For a given Zm, if

* h has detail D(C,H)h and misclassifies th points of Zm,
then for each e E (0,1),

m ,

i=th+1
m

FU. h(6 > m )i(l-£)m-i. (6)
i=D(c,H)h +th

Fairly strong surjectivity is a usual regularity condition [3],
while D(C,H)h is a key parameter of the Algorithmic Inference
approach to learning called detail [8]. The general idea is
that it counts the number of meaningful examples within a
sample which prevent v/ from computing a hypothesis h' with
a wider mistake region c + h'. These points are supposed
to be algorithmically computed for each c and h through
a sentry fiunction S. The maximum DC,H of D(C,H)h over
the entire class C + H of symmetric differences between
possible concepts and hypotheses relates to the well known
Vapnik-Chervonenkis dimension dVC [4] through the relation:
DC,H < dVC(C-H) + 1 [8].

A. The detail of a SVM
The distinctive feature of the hypotheses learnt through

SVM is that the detail D(C,H)h ranges from 1 to the number
I'h of support vectors minus 1, and its value increases with
the broadness of the approximation of the solving algorithm
[9].
Lemma 3.2: Let us denote by C the concept class of hy-

perlanes on a given space X and by Cr = {xi,...,x8} a
minimal set of support vectors of a hyperplane h (i.e. a is
a support vector set but, whatever i is, no a\{xj} does the
same). Then, for whatever goal hyperplane c separating the
above set accordingly with h, there exists a sentry function
S on C . H and a subset of ar of cardinality at most s - 1
sentinelling c . h according to S.
Proof: To identify a hyperplane in an n-dimensional Eu-
clidean space we need to put n non aligned points into a
linear equations' system, n + 1 if these points are at a fixed
(either negative or positive) distance. This is also the maximum
number of support vectors required by a SVM. We may
substitute one or more points with direct linear constraints on
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Fig. 2. Same comparison as in Fig. 1 with d = 4.

the hyperplane coefficients when the topology of the support
vectors allows it. Sentinelling the expansion of the symmetric
difference c . h results in forbidding any rotation of h into a
h' pivoted along the intersection of c with h. The membership
of this intersection to h' adds from 1 to n - 1 linear relations
on its coefficients, so that at most #c - 1 points from a-
are necessary (where # denotes the set cardinality operator),
possibly in conjunction with the direct linear constraints on
the coefficients to fix h' to h. U

In synthesis, our approach focuses on a probabilistic de-
scription of the uncertainty region [10], rather than on its
geometric approximation [11].
We must remark that in principle the constraint for h'

to contain the intersection of h with c gives rise to n - 1
linear relations on h' coefficients. These relations may result
effective in a shorter number if linear relations occur between
them deriving from a linear relation, in own turn, between h
and c coefficients. Now, as the former are functions of the
sampled points, no way exists for computing coefficients that
result exactly in linear relation with those of the unknown
(future) c if the sample space is continuous (and its probability
distribution does the same). We actually realize these linear
relations if either the sample space is discrete or the algorithm
computing the hyperplane is so approximate to work on an
actually discretised search space. Thus we have the following
fact.

Fact 3.1: The numbtr of sentry points of separating hyper-
planes computed through support vector machines ranges from
1 to the minimal number of involved support vectors minus
one, depending on the approximation with which either sample
coordinates are stored or hyperplanes are computed.

B. Confidence intervals for the probability of classifying
wrongly

Confidence interval extremes Uup, Udw for UC÷.-h with confi-
dence 1-a arise for each pair (D(C,H)h, th) from the solution
of the following equations

m~~~~~~~~~
m ( . )U tp(l UUp)7n-i -2 (7)

i=D(C,H)h +th

E (~+1 zdw(l Udw) =2 (8)

Figure 1 plots the interval extremes versus detail/VC dimen-
sion and number of misclassified points for different sizes of
the sample. Companion curves in the figure are the Vapnik
bounds [4]:

V(Zm)-20|d (log 2 + 1) -log9 <V(Zm) <
m

<~~~~(Z)+2/(log dm + 1) _-log_< i(Zm)+2 d9 (9)
m

where V(Zm) is the random variable measuring c . a((Zm)
according to the same probability (any one) P through which
the sample has been drawn, v(Zm) the corresponding fre-
quency of errors computed from the sample according to /
(empirical error), and d = dvc(C . H). We artificially fill the
gap between the two complexity indices by: 1) referring to
both complexity indices and empirical error vi constant with
concepts and hypotheses, hence th = mv, and 2) assuming
DC,H = dvc(C) = P'h = d. Analogously, we unify in Perr
the notations for the error probabilities considered in the two
approaches.
The sections of graphs in Fig. 1 with d = 4, reported in

Fig. 2, show that the two families of bounds asymptotically
coincide when m increases, and highlight consistency as a
further benefit of our approach, since our intervals are always
contained in [0,1].

IV. CHECKING THE RESULTS

The coverage of the above intervals is checked through a
huge set of Uc_hs sampled from SVM leaming instances. The
instances are made up of points distributed in the unitary
hypercube and labeled according to a series of hyperplanes
spanning with a fine discretizing grain all possible hyperecube
partitions. In Fig. 3(a) we considered different sample sizes for
Ph fixed to 3. In Fig. 3(b) we conversely maintained the sample
size fixed to 100 and considered different I'h's. Moreover we
induced sample classification errors by labeling the sample
according to non linear discriminating surfaces (paraboloids).
The curves in the figure gi-e the course of the Uc h bounds
with Ph + th. The lower bounds are underrated with a straight
line corresponding to th = 0 in (8). The scattering of experi-
mental points (Perr710gm) 2 denotes some overestimation of

2-Pe, is computed as the frequency of misclassifi ed points from a huge set
drawn with the same distribution of the examples.
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Fig. 5. Course of misclassifi cation probability and related bounds normalized
in respect to the dimensionality n of the sample space. Gray line: our bounds;
dark line: Rademacher bounds.

Fig. 3. Course of misclassification probability with the parameters of
the learning problem: (a) error probability (Perr) vs. sample size, (b) error
probability vs. number of support vectors ph plus number of misclassifi cations
th. Points: sampled values; lines: 0.9 confi dence bounds.

the upper bounds. This is due to an analogous overvaluation of
D(C,H)h through ,th. As explained before, the gap between the
two parameters diminishes with the approximation broadness
of the support vector algorithm. This is accounted for in the
graph in Fig. 4 which reports the percentage of experiments
trespassing the bounds. This quantity comes close to the
planned 6 = 0.1 with the increase of the free parameter in
the v-support vector algorithm [12] employed to learn the
hyperplanes. This nicely reflects an expectable rule of thumb
according to which true sample complexity of the leaning
algorithm decreases with the increase of its accuracy.

Bounds based on Rademacher complexity comes from
Bartlett inequality [13]

P(Yf(X) < 0) Emkb(Yf(X))+
4B m + + 1) lo4'

ZyEk(Xi,7Xi) +
(-+1) g2

ji;=
(10)

with notation as in the quoted reference, where the first term
on the left side corresponds to the empirical margin cost,
a quantity that we may assume very close to the empirical
error. The computation of this bound requires a sagacious
choice of -y and B, which at the best of our preliminary
study brought us to the graph in Fig 5. Here we have in
abscissas the dimensionality of the instance space. For the
sake of comparison, we contrast the above with our upper
bounds computed for the same 6 (hence coming from a one

side confidence interval) and mediated in correspondence with

each hypercube dimension, since for each dimension sampled
instances may have a different number of support vectors
(while th we constrained to be 0).
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