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ABSTRACT
To predict flood and debris flow dynamics a numerical model, based on 1D De Saint Venant (SV) equations, was developed. The McCormack – Jameson shock capturing scheme was employed for the solution of the equations, written in a conservative law form. This technique was applied to determine both the propagation and the profile of a two – phase debris flow resulting from the instantaneous and complete collapse of a storage dam.

The full two – phase model features mass and momentum conservation equations for each phase, along with an interaction force between the two phases. The latter eases, on one hand, the propagation of the solid phase, while, on the other hand, plays a friction role with regard to the clear water.
On the whole, the model proposed can easily be extended to channels with arbitrary cross sections for debris flow routing, as well as for solving different problems of unsteady flow in open channels by incorporating the appropriate initial and boundary conditions.

The great advantages of the technique developed are based on the strong shock capturing ability of the McCormack – Jameson numerical scheme as well as on the simplicity of application of the resulting algorithm when considering 1D debris flow phenomena.
KEY WORDS: Debris flow ,dam-break, rheological behaviour of the mixtures ,two-phase modelling
 INTRODUCTION
A thorough understanding of the mechanism triggering and mobilising debris flow phenomena plays a role of paramount importance for designing suitable prevention and mitigation measures. Achieving a set of debris flow constitutive equations is a task which has been given particular attention by the scientific community (Julien and O’Brien, 1985; Chen, 1988; Takahashi, 2000). To properly tackle this problem relevant theoretical and experimental studies have been carried out during the second half of the last century.

Research work on theoretical studies has traditionally specialised in different mathematical models. They can be roughly categorized on the basis of three characteristics: the presence of bed evolution equation, the number of phases and the rheological model applied to the flowing mixture (Ghilardi et al., 2000).

Most models are based on the conservation of mass and momentum of the flow, but only a few of them take into account erosion / deposition processes affecting the temporal evolution of the channel bed.
Debris flow are mixtures of water and clastic material with high coarse particle contents, in which collisions between particles and dispersive stresses are the dominant mechanisms in energy dissipation. Therefore, their nature mainly changes according to the sediment concentration and characteristics of the sediment size (Hui – Pang and Fang – Wu, 2003).

The rheological property of a debris flow depends on a variety of factors, such as suspended solid concentration, cohesive property, particle size distribution, particle shape, grain friction and pore pressure. 

Various researchers have developed models of debris flow rheology. These models can be classified as: Newtonian models (Johnson, 1970; Trunk et al., 1986), linear and non linear viscoplastic models (O’Brien et al., 1993), dilatant fluid models (Bagnold, 1954; Takahashi, 1978), dispersive or turbulent stress models (Arai and Takahashi, 1986), biviscous modified Bingham model (Dent and Lang, 1983), and frictional models (Norem et al., 1990; Iverson, 1997). Among these, linear (Bingham) or non – linear (Herschel – Bulkey) viscoplastic models are widely used to describe the rehology of laminar debris / mud flows (Jan, 1997; Coussot, 1997).
Because a debris flow, essentially, constitutes a multiphase system, any attempt at modelling this phenomenon that assumes, as a simplified hypothesis, homogeneous mass and constant density, conceals the interactions between the phases and prevents the possibility of investigating further mechanisms such as the effect of sediment separation (grading).
Modelling the fluid as a two – phase mixture overcomes most of the limitations mentioned above and allows for a wider choice of rheological models such as: Bagnold’s dilatant fluid hypothesis (Takahashi and Nakagawa, 1994; Shieh et al., 1996), Chézy type equation with constant value of the friction coefficient (Hirano et al., 1997; Armanini and Fraccarollo, 1997), models with cohesive yield stress (Honda and Egashira, 1997) and the generalized viscoplastic fluid Chen’s model (Chen and Ling, 1997).

Notwithstanding all these efforts, some phenomenological aspects of debris flow have not been understood yet, and something new has to be added to the description of the process to reach a better assessment of the events. In this contest, the mechanism of dam – break wave should be further investigated. So far, this aspect has been analysed by means of the single – phase propagation theory for clear water, introducing in the De Saint Venant (SV) equations a dissipation term to consider fluid rheology (Coussot, 1994; Fread and Jin, 1997).
Many other models, the so – called quasi – two – phase – models use SV equations, together with erosion / deposition and mass conservation equations for the solid phase, and take into account mixture of varying concentrations. All these models feature monotonic velocity profiles that, generally, do not agree with experimental and field data.
In the present report a 1D two – phase model for debris flow propagation is proposed. SV equations, modified for including erosion / deposition processes along the mixture path, are used for expressing conservation of mass and momentum for the two phases of the mixture. The scheme is validated for dam – break problems comparing numerical results with experimental data. Comparisons are made between both wave depths and front propagation velocities obtained respectively on the basis of laboratory tests and with predictions from the numerical model proposed by McCormack – Jameson (McCormack, 1969; Jameson, 1982). These comparisons allow the assessment of the model performance and suggest feasible development of the research.
 THEORETICAL BACKGROUND
Debris flow resulting from a sudden collapse of a dam (dam – break) are often characterised by the formation of shock waves caused by many factors such as valley contractions, irregular bed slope and non – zero tailwater depth. It is commonly accepted that a mathematical description of these phenomena can be accomplished by means of 1D SV equations (Bellos and Sakkas, 1987; Bechteler et al., 1992; Aureli et al., 2000).
During the last Century, much effort has been devoted to the numerical solution of the SV equations, mainly driven by the need for accurate and efficient solvers for the discontinuities in dam – break problems.

A rather simple form of the dam failure problem in a dry channel was first solved by Ritter (1892) who used the SV equations in the characteristic form, under the hypothesis of instantaneous failure in a horizontal rectangular channel without bed resistance. Later on, Stoker (1949), on the basis of the work of Courant and Friedrichs (1948), extended the Ritter solution to the case of wet downstream channel. Dressler (1952, 1958) used a perturbation procedure to obtain a first – order correction for resistance effects to represent submerging waves in a roughing bed.
Lax and Wendroff (1960) pioneered the use of numerical methods to calculate the hyperbolic conservation laws. McCormack (1969) introduced a simpler version of the Lax – Wendroff scheme, which has been widely used in aerodynamics problems. Van Leer (1977) extended the Godunov scheme to second – order accuracy by following the Monotonic Upstream Schemes for Conservation Laws (MUSCL) approach. Chen (1980) and Chen and Ambruster (1980) applied the method of characteristics, including bed resistance effects, to solve dam – break problems for reservoir of finite length.

Hunt (1982) proposed a kinematic wave approximation for dam failure in a dry sloping channel.

Flux splitting based schemes, like that of the implicit Beam – Warming (1976), where applied to solve open channel flow problems without source terms and, in general, reported good results. However, these schemes are only first order accurate in space and employ the flux splitting in an non conservative way. When applied to some cases of dam – break problems, these tools gave much slower front celerity and higher front height when compared to experimental tests. Later, Jha et al. (1996) proposed a modification for achieving full conservative form of both the continuity and momentum equations, employing the use of the Roe average approximate Jacobian (Roe, 1981). This produced significant improvement in the accuracy of the results.
Total Variation Diminishing (TVD) and Essentially Non Oscillation (ENO) schemes were introduced by Harten (1983) and Harten and Osher (1987) for efficiently solving 1D gas dynamic problems. Their main property is that they are second order accurate and oscillation free across discontinuities.

Recently, several 1D and 2D models using approximate Riemann solvers have been reported in the literature. Such models have been found very successful in solving open channel flow and dam – break problems. Zhao et al. (1994) reported implementation of an approximate Riemann solver with Osher scheme in finite volume and later extended that work by including flux – vector splitting and flux – difference splitting (Zhao et al., 1996).
In the past ten years, further numerical methods to solve flood routing and dam – break problems, have been developed, that include the use of finite elements or discrete / distinct element methods (Asmar et al., 1997; Rodriguez et al., 2006).
Finite Element Methods (FEMs) have certain advantages over finite different methods, mainly in relation to the flexibility of the grid network that can be employed, especially in 2D flow problems.

In this context, Hicks and Steffer (1992) used the Characteristic Dissipative Galerking (CDG) finite element method to solve 1D dam – break problems for variable width channels.
The McCormack predictor – corrector explicit scheme is widely used for solving dam – break problems, due to the fact that it is a shock – capturing technique, with second order accuracy both in time and in space, and that the artificial dissipation terms TVD correction, can be easily introduced (Garcia and Kahawita, 1986; Garcia Navarro and Saviron, 1992).

The main disadvantage of this solver regards the restriction to the time step size in order to satisfy Courant – Friedrichs – Lewy (CFL) stability condition. However, this is not a real problem for dam – break debris flow phenomena that require short time step to describe the evolution of the discharge.To ease the time step restriction, implicit methods could be considered. In this case, the variables are calculated simultaneously at a new time level, through the resolution of a system with as many unknowns as grid points. For non – linear problems, such as the SV equations, the resulting system of equations is also non – linear and either a linearisation or an iterative procedure is required. This extra computation time is, usually, compensated by the possibility of achieving unconditional or near unconditional stability for the scheme or allowing the use of very high CFL numbers. To this end, implicit TVD schemes have been proved to be unconditionally stable, even when a linearisation technique is applied to solve a non – linear hyperbolic equation (Yee, 1987; 1989). Attempts along this line of work were presented by Alcrudo et al. (1994) introducing in the McCormack scheme TVD corrections to reduce spurious oscillations around discontinuities, both for 1D and 2D flow problems and by Delis et al. (2000) developing new implicit TVD methods to solve SV equations.
 Governing Equations
The 1D approach for unsteady debris flow triggered by dam – break is governed by the SV equations. This set of partial differential equations describes a system of hyperbolic conservation laws with source term (S) and can be written in compact vector form as follows:
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: wetted cross – sectional area; 
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: flow rate; s: spatial coordinate; t: temporal coordinate; g: acceleration due to gravity; i: bed slope; Si: bed resistance term or friction slope, that can be modelled using different rheological laws (Rodriguez et al., 2006).
The pressure force integrals I1 and I2 are calculated in accordance with the geometrical properties of the channel. I1 represents a hydrostatic pressure form term and I2 represents the pressure forces due to the longitudinal width variation, expressed as:
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where H: water depth; 
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: integration variable indicating distance from the channel bottom; 
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 from the channel bed, expressed as:
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To take into account erosion / deposition processes along the debris flow propagation path, which are directly related to both the variation of the mixture density and the temporal evolution of the channel bed, a mass conservation equation for the solid phase and a erosion / deposition model have been introduced in the SV approach.
Defining the sediment discharge as:
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with E: erosion / deposition rate; B: wetted bed width, the modified vector form of the SV equations can be expressed as follows:
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where:
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with cs: volumetric solid concentration in the mixture; c*: bed volumetric solid concentration.
 Two Phase Mathematical Model
Debris flow is, essentially, a multiphase system, so modelling the flow as a two – phase mixture is the best way to predict these phenomena. The change in debris flow density can be modelled through mass and momentum balance of both phases (solid and liquid) and interactions between the two could be assessed by means of appropriate additional terms (Wallis, 1962; Wang and Hutter, 1999).

The erosion / deposition rate is, generally, controlled by the excess of the local instantaneous concentration over the equilibrium concentration. Egashira and Ashida (1987) and Honda and Egashira (1997) computed this rate by means of a simple relationship, while Takahashi et al. (1987) proposed semi – empirical expressions. All these models ignore the spatial and temporal variations of debris flow density in the momentum balance equations.

In the present work granular and liquid phases are considered. The model includes two mass and momentum balance equations for both the liquid and solid phases respectively. The interaction between phases is simulated according to Wan and Wang hypothesis (1984). The system is completed with equations to estimate erosion / deposition rate derived from the Egashira and Ashida relationship and by the assumption of the Mohr – Coulomb failure criterion for non cohesive materials.

 Mass and momentum equations for the liquid phase
Mass and momentum equations for water can be expressed in conservative form as:
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with 
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: flow discharge; cl: volumetric concentration of water in the mixture; 
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: momentum correction coefficient that we will assume to take the value 
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 from now on; J: slope of the energy line according to Chézy’s formula; i: bed slope; F: friction force between the two phases.
According to Wan and Wang (1984), the interaction of the phases at single granule level f is given by:
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with cD: drag coefficient; vl: velocity of water; vs: velocity of the solid phase; d50: mean diameter of the coarse particle; 
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r

: liquid density.
Assuming grains of spherical shape and defining the control volume of the mixture as:
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with 
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 channel slope angle, which holds for low channel slopes, the whole friction force F between the two phases for the control volume can be written as:

[image: image27.wmf](

)

ds

B

H

d

c

v

v

v

v

c

F

s

s

l

s

l

l

D

×

×

×

×

-

×

-

×

×

×

=

50

4

3

r


(10)

 Mass and momentum equations for the solid phase
Mass and momentum conservation equations for the solid phase of the mixture can be expressed as:
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with 
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According to Ghilardi et at. (1999) and to Egashira and Ashida (1987), the bed volumetric solid concentration c* was assumed to be constant and the erosion velocity rate E a function of the mixture velocity U:
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with kE: coefficient equal to 0.1 according to experimental data (Egashira and Ashida, 1987; Gregoretti, 1998; Ghilardi et al., 1999; Gregoretti, 2000).
Positive or negative values of E correspond to granular material erosion or deposition, respectively.
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 represent the energy line and the bed equilibrium angles, respectively, expressed as (Brufau et al., 2001):
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where the debris flow density is defined as:
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and 
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 is the static internal friction angle.
The equilibrium angle is a relevant parameter that depends, mainly, on the concentration of the mixture and on the ratio between solid and water density. When the slope of the channel bed has reached the equilibrium angle, no erosion or deposition occurs and a steady bottom state is reached.

Ghilardi’s hypotheses refer to a set of equations that include two mass conservation equations (one for the mixture and another for the solid phase) and a single momentum balance equation for the 1D flow. This leads to the assumption that the finer solid fraction in the interstitial fluid is negligible. So, the same velocity for the coarser solid fraction is assumed too. In our two – phase model U is defined as follows:
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For J several resistance formulas have been implemented, from the dispersive stress model proposed for stony debris flow by Takahashi (1991) to the traditional Manning formula (Chow, 1959). In the present work the Takahashi equation has been chosen, according to the dilatant fluid hypothesis developed by Bagnold (1954):
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with R: hydraulic radius given by:
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where P is the wetted perimeter.

The quantity 
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 (linear concentration) depends on the granulometry of the solids in the form:
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where cm: maximum packing volume fraction (for perfect spheres cm = 0.74); ab: empirical constant.

Takahashi fitted his experimental data in flumes with fixed walls using for ab the value given by Bagnold ab = 0.042. In presence of an erodible granular bed, he found higher resistance, so the value of ab was incremented to 0.35 – 0.50. The dynamic internal angle of friction 
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 was assessed by reducing the static one 
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 of 3° – 4° (Takahashi, 1991).
For high values of sediment concentration, the resistance is mainly caused by the dispersive stress and the roughness of the bed does not influence the resistance (Scotton and Armanini, 1992). For low values of the same characteristic the energy dissipation is mainly due to turbulence in the interstitial fluid and the influence of the wall roughness become important. In such case, Takahashi (1991) suggests to use the Manning’s equation or similar resistance law.

With regard to the momentum conservation equation (12) all its terms have been evaluated considering only the fraction of volume actually occupied by grains and ignoring the erosion / deposition velocity.

The weight of the solid phase in the control volume can be expressed as:


[image: image46.wmf](

)

(

)

ds

H

B

c

g

ds

H

B

c

g

S

W

W

s

l

s

s

l

s

A

s

×

×

×

×

-

×

»

×

×

×

×

-

×

=

-

=

r

r

J

r

r

cos

'


(21)
where SA represents the buoyancy force.

Considering the control volume to be in critical equilibrium conditions and assuming an hydrostatic distribution of solid phase pressure, the Mohr – Coulomb failure criterion for non cohesive materials allows to assess the bottom shear stress of the volume:
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where (lim is the shear stress in limit equilibrium conditions and (’n the normal stress for the solid phase along the failure surface, which can be expressed as:
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When the stress condition along the failure surface is known, it is possible to evaluate the lateral stress, and so the lateral forces 
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 of the control volume.
For mild bed slopes, the dynamic internal angle 
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 and the static one 
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 are equal in critical equilibrium conditions, so the shear stress (lim can be written as:
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Finally, the difference between lateral forces 
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 and the bottom shear stress (lim of the control volume become:
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It is worth mentioning that the momentum equation (12) holds when both phases of the mixture coexist. When a single momentum balance equation of the debris flow is considered, both the friction between the two phases and the buoyancy forces vanish.
 Numerical Model
The SV equations for 1D two – phase unsteady debris flow can be expressed in compact vector form as follows:
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where, for a rectangular section channel and for a completely mixed fluid,
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 Mc Cormack  - Jameson Solver
Numerical solution of equation (27) is based on the well known McCormack – Jameson predictor – corrector finite difference scheme (McCormack, 1969; Jameson, 1982).
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where i and n are the spatial and temporal grid levels, 
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 the spatial and temporal steps, with 
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 and the superscripts “p” and “c” indicate the variable at predictor and corrector steps, respectively. 
The order of backward and forward differentiation in the scheme is ruled by 
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 which can be also cyclically changed during the computations (Chaudry, 1993). In our scheme 
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 is set equal to 1, to obtain a best stability condition.

Predictor:
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Corrector:
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The variables at time n+1 are evaluated as a mean between the values at predictor step and those at corrector one:
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Artificial additional terms must be added to the original form of the McCormack scheme, in order to avoid spurious oscillations and discontinuities without any physical significance. Different approaches have been proposed to eliminate these effects (Roe, 1981; Jameson, 1982; Harten, 1983; Chaudry, 1993). All these approaches allow to avoid no – physical shock in numerical solutions and to achieve suitable results.
Verification of shock capturing numerical schemes is often performed comparing computed results with experimental data in which shocks are not present at all. In the present work, the artificial dissipation terms introduced by Jameson (1982), according to the classical theory developed in the field of aerodynamics, are assumed. They can be written as:
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where:
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In order to solve the problem of propagation of a debris flow wave resulting from the break of a storage dam, appropriate initial, boundary and stability conditions have to be introduced.
 Initial and boundary conditions
Initial conditions are discontinuous across the dam location. As a matter of fact, it is assumed that at time t = 0, there exists no flow at all, i.e. the mixture behind the dam is still and the downstream bed is dry. This lead to an unrealistic stationary shock, if the McCormack original scheme, without artificial dissipation terms, is adopted (Alcrudo and Garcia Navarro, 1994). The addition of the dissipation terms allows to remove this unrealistic shock and to avoid any approximate procedure (Bellos and Sakkas, 1987).
The depth of water, the velocities and concentrations of the two phases are given by:
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where H0: initial depth behind the dam; L = sD-sE: length of the reservoir; sD, sE: abscissas of the dam site and the reservoir end; cs init, cl init: initial solid and liquid concentration upstream of the dam, while the relation between the concentration of the two phases is:
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In the case of a partial dam – break, internal boundary conditions at the dam – site cross section are needed. The kind and form of the conditions needed depend on the assumptions made regarding the development of the breach and flow conditions existing at the breach (Shamber and Katopodes, 1984).
Regarding the boundary conditions, to evaluate predictor step at the node 
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 must be known. This implies that to properly apply the McCormack solver at the boundary node of the upstream solid wall, when the depth of the mixture is not zero at the upstream end of the reservoir, the following symmetric conditions for depth and volumetric concentrations, and anti – symmetric conditions for velocities should be defined.
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No problem arises for the assessment of the correct step, due to the fact that every computation code refers to grid points inside the domain. It is worth underlying that the McCormack scheme has a strong shock – capturing capability. Thus, it can be used for the solution of the unsteady flow equations, in conservative law form, either when the flow is wholly gradually varied or the latter is affected with surges or shocks. This is the case of a dam – break flow advancing down a river with an initial flow, and it constitutes the so – called wet – bed dam – break problem (Bellos and Sakkas, 1987).
 Stability conditions
In order to satisfy the numerical stability requirements, the time step has to abide by the Courant – Friedrichs – Lewy (CFL) criterion (Courant et al., 1967; Sweby, 1984), which is a necessary but not sufficient condition:
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where c: celerity of a small flow disturbance, defined by:
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and CR: Courant number.
For a fixed spatial grid, the minimum value of 
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 satisfying Eq. 37 is determined at the end of the computation for a given time step. This value is then used as the time increment for the computation during the next step. In this way the largest possible time increment can be utilized at each time step. This process required the calibration of three coefficients: the drag coefficient cD and the two Jameson parameters of artificial viscosity 
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In the developed code a fixed and very small value of 
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D

 has been set at the beginning of the simulations, verifying during the run that the CFL condition was assured, being always the Courant number CR < 0.8.
 CONCLUSIONS
Studies of dam – break flow consider, mainly, conditions of clear – water surges. However, under natural conditions a dam – break flow can generate extensive debris in the valley downstream of the dam. The presence of such debris may significantly influence surge height and speed. As a matter of fact debris flow differs from other unconfined flows in two main respects: the nature of both the flow material and the flow itself. So, achieving a set of debris flow constitutive equations is a task which has been given particular attention during the second half of last Century. Most models are based on a rheological approach, which has the drawback of providing equations that require a large number of parameters that depend on the vast range of flow regimes that can occur. One alternative is that of developing and using simple models to focus attention on one salient feature of debris flow modelling, mainly the dynamic aspect. From this point of view the constitutive equations must be compatibly incorporated into the conservation equations in order to obtain a realistic representation of the phenomenon. This problem immediately leads to experimental studies on debris flow: there is, as yet, relatively scarcity of experimental data, the only ones that allow effective verifications of the constitutive models proposed, in different flow situations and the estimation of the rheological parameters they contain. Lastly, field studies are probably the most difficult and costly study approach of debris flows: the difficulties encountered are connected to their considerable complexity and the difficulty of direct observation.
In this context, the present paper describes the main features and characteristics of a numerical model suitable to solve the SV equations, modified for including two – phase debris flow phenomena, and able to assess the depth of the wave and the velocities of both the liquid and solid phases of no – stratified (mature) flow, following dam – break events.
The model is based on mass and momentum conservation equations for both liquid and solid phases. The McCormack – Jameson two – step explicit scheme with second order accuracy was employed for the solution of the equations, written in a conservative – law form. The technique was applied for determining both the propagation and the profile of a debris flow wave resulting from the instantaneous and complete collapse of a storage dam. The actual initial and boundary conditions for the problem considered, i.e. a zero flow depth at the leading front of the wave, were used in the application of the numerical technique. 
In order to describe stratified (immature) flow, it is necessary to widen the reach of the model and to take into account mass and momentum conservation equations for each phase and layer. Momentum conservation equations describe energy exchanges between the two phases in the same layer and between layers, while mass conservation equations describe mass exchange between layers. Within this ground, in order to analyse reverse grading (sorting) it is necessary to analyse the wave propagation process, when the solid phase is composed of no – homogeneous material. In this case the model should be improved in order to feature the distribution of the material of different size of the solid phase: larger size material positioned in the front and in the top of the wave, and finer one in the bottom and in the tail.

LIST OF SYMBOLS
ab  Bagnold experimental constant [ ]

c  celerity [m/s]

c*  bed volumetric solid concentration [ ]

cD  drag coefficient [ ]

cl volumetric concentration of water [ ]

cs  volumetric concentration of solid phase [ ]

cm  maximum concentration of the solid material when packed [ ]

d50  mean diameter of granular material [m]

ds  spatial step [m]

dt  temporal step [s]
f  force transmitted by water to a solid particle [N]

g  gravity acceleration [m/s2]

i  channel slope [ ]

kE  empiric coefficient of Ghilardi model [ ]

q  specific flow rate of the subtracted solid material [m2/s]

s  spatial coordinate

t  temporal coordinate

vl  water mean velocity [m/s]

vs  solid mean velocity [m/s]

A  wetted cross – section area [m2]

B  wetted bed width [m]

CR  Courant number [ ]

E  erosion/deposition velocity of granular material [m/s]

F  interaction force between solid and liquid phases [N]

H  depth [m]

J   water head loss given by Chézy formula [ ]

Ql  water discharge [m3/s]

Qs  solid phase discharge [m3/s]

R  hydraulic radius [m]

SA  Archimedes buoyancy [N]

Si  bed resistance term [ ]

T  bottom stress force for solid phase [N]

U  characteristic velocity of the mixture [m/s]

Vc  control volume [m3]
W’  solid phase weight reduced of Archimedes buoyancy [N]

Ws  solid phase weight [N]

((2)  Jameson artificial viscosity coefficient [m/s]

((4) Jameson artificial viscosity coefficient [m/s]

(  momentum coefficient [ ]

(  dynamic friction angle of granular material [°]

(  static friction angle of granular material [°]

(  distance from the channel bottom [m]

( linear concentration [ ]

(  bed inclination [º]

(e  equilibrium angle [º]

(f  energy line angle [º]

(1,(2  forces on control volume lateral surfaces [N] 

(  mixture volumetric density [kg/m3]
(l  water density [kg/m3]
(s  solid phase density [kg/m3]

(  generic section width [m]

(’n  normal stress along failure surface for solid phase [Pa]

(lim shear stress in limit equilibrium conditions [Pa]
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