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ABSTRACT
It is shown how to perform some steps of perturbation theory if one

assumes a measure–theoretic point of view, i.e. if one renounces to control
the evolution of the single trajectories, and the attention is restricted to
controlling the evolution of the measure of some meaningful subsets of phase–
space. For a system of coupled rotators, estimates uniform in N for finite
specific energy can be obtained in quite a direct way. This is achieved by
making reference not to the sup norm, but rather, following Koopman and
von Neumann, to the much weaker L2 norm.
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∗Università di Milano, Dipartimento di Matematica Via Saldini 50, 20133 Milano (Italy)
E-mail: carati@mat.unimi.it

1



1 Introduction

A very much discussed problem is the question whether Nekhoroshev–type
theorems can have some relevance for the foundations of Statistical Mechan-
ics. In its heuristic formulation (”actions remain frozen to their initial values
up to exponentially long times”) this theorem seems to grasp the essential
feature of the Fermi–Pasta–Ulam phenomenon: the energy remains confined
to the low frequency modes, while the energies (i.e., up to a factor, the ac-
tions) of the high frequency modes remain frozen up to very large times. On
the other hand, in Nekhoroshev theorem the estimate for the time of freezing
is of the type T ' T0 exp(ε∗/ε)1/N , where ε is the pertubative parameter (for
example the specific energy) and N is the number of degrees of freedom of the
system. Thus, for systems of interest to Statistical Mechanics, in which N
is very large, the exponential estimate in the above formula disappears (see
[1], [7]). These considerations seem to indicate that Classical Perturbation
Theory may be useless for the aims of statistical mechanics.

The following remark is however in order. The aim of Perturbation The-
ory, as it was developed until now, is to give the most accurate description
of every trajectory of a dynamical system, and this enforces, at a technical
level, the use of the sup norm in the phase space for the estimate of the
relevant quantities. On the other hand, for the aims of Statistical Mechanics
a control over any single trajectory is completely irrelevant (the knowledge
of the values of 1023 actions instant by instant is enormously redundant for
estimating, for example, the specific heat). So one can limit oneself to con-
trol only the evolution of some significant quantities, for example the energy
of some subsystem of the complete system. In this case the dependence on
the total number N of degrees of freedom changes drastically, and in fact
estimates uniform in N were obtained (see [2], [3]); however, such estimates
turn out to be valid only for finite total energy E, namely for vanishing spe-
cific energy E/N in the thermodynamic limit N → +∞. Very recently, in
the same spirit, estimates uniform in N for non–vanishing specific energy
E/N where given (see [4]) in the Fermi–Pasta–Ulam problem, but only for a
special class of initial data.

However the author feels that, for the purposes of Statistical Mechanics,
also such a weakened approach is unnecessarily strong, because one pretends
to control some dynamical variable “initial data by initial data”, without tak-
ing into account any statistical feature of the problem. Instead, a measure–
theoretic point of view ought to be taken, namely one should renounce to
control the evolution of the single trajectories, and the attention should be
restricted to controlling the evolution of the measure of some meaningful
subset of phase–space. Indeed, it will be shown here that, in such a way, es-
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timates uniform in N for finite specific energy can be obtained, and in quite
direct a way. This is achieved by making reference not to the sup norm, but
rather to some much weaker integral norm, typically, following Koopman and
von Neumann (see [5], [6]), the L2 norm, which will be the one used in the
present paper.

To this end, we first show how, for a generic system, an estimate of the
rate of mixing for any invariant measure µ can be given. This is shown in
Section 2. Then, by considering a concrete example (a system of N rotators
with nearest neighbours interactions), we show that at least three steps of
the perturbative construction can be performed. This will be obtained by
making use of the method of the direct construction of integrals of motion.
The corresponding estimates show that the mixing rate is much smaller than
the one estimated directly from the equations of motion. To this second
task Sections 3 and 4 will be devoted. In particular, in Section 3 a normal
form theorem is given, from which the estimate of the mixing rate follows
as a Corollary. Section 4 is devoted to an accurate discussion of the first
step of perturbation theory, while two further steps are performed in Ap-
pendix 1, leading to the proof of the theorem. A technical Lemma is proven
in Appendix 2.

2 The estimate of the mixing rate

Consider a Hamiltonian system with Hamiltonian function H on a phase
space M, endowed with a finite invariant measure µ (so that we can suppose
µ(M) = 1). It is well known that the existence of a smooth integral of motion
f(x) independent of the energy implies that the system is not ergodic (on a
single surface of constant energy). Indeed, obviously, the two sets A = {x :

|f(x)− f̄ | < k} and B = {x : |f(x)− f̄ | > 2k}, where f̄
def
=
∫

f(x) d µ is the
expectation of f and k a positive constant, are invariant disjoint nontrivial
sets (considering for example the Gibbs measure, and a not too large value
of k ).

Suppose now f is only a quasi–constant of motion, in the sense that (we
denote by [·, ·] the Poisson bracket of two functions) [H, f ] is small in L2

norm; the problem of finding such a function will be one of the main themes
discussed later. In such a case the sets A and B are no more invariant:
denoting by At the set evolved from A according to the dynamics, one expects
that At ∩B 6= ∅.

But if the evolution is slow (in the mean), one expects that it will take
some time in order that, at a given point of A, the value of the function ft,
i.e. the evolution of f (to be defined in a moment), grows from the value
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(smaller than k) it has at time t = 0 to the values (larger than 2k) that f
takes in B, i.e., in terms of sets, the measure of At∩B is expected to remain
small up to a certain time.

In order to give a rigorous form to such a rather vague reasoning, we
begin with introducing the notion of mixing time. We recall that one defines
a system to be (strongly) mixing if µ(At∩B) → µ(A)µ(B) as t → +∞. But,
as especially pointed out by von Neumann, it is also of interest to have an
estimate of the actual relaxation time, i.e. the time at which the limit value
is actually reached. This is particularly relevant if µ(At ∩ B) grows slowly.
This justifies the following definition

Definition 1 (mixing time) We define the mixing time tmix, for the two
sets A and B defined as above, by tmix = sup t∗, where t∗ is such that

µ(At ∩B) <
1

2
µ(A)µ(B) (1)

for all 0 < t < t∗.

The choice of the factor 1/2 to define the degree of mixing is a matter of
convention, and it will appear later that any other choice α with 0 < α < 1
would work as well.

So, the previous considerations can be restated in terms of the mixing
time, by saying that the presence of a quasi–constant of motion f is expected
to lead to a large value of tmix. In order to prove this fact we have first of
all to recall in which way the function f evolves with time. Denoting by Φt

the flow generated by the equations of motion, we define the evolution of the

function f(x) by ft
def
= f ◦Φ−t (the definition ft = f ◦Φt is often adopted, but

the difference is irrelevant). So ft is a time–dependent constant of motion,
i.e., satisfies the Liouville equation

∂tft + [H, ft] = 0 .

Thus, even if at time t = 0 the derivative of ft is small, it may happen that
‖ ft − f ‖2 (the L2–norm of ft − f) becomes large as time increases, so that
the intersection At∩B too may become large. One actually has the following
first, simple, perturbative result

Theorem 1 Let µ be an invariant measure, and f ∈ L2(d µ) be such that

‖ [H, f ] ‖2 ≤ η‖ f ‖2 , (2)

with a positive constant η, where ‖ · ‖2 denotes the L2(d µ) norm. If ft is
the evolution of the function f , then one has

‖ ft − f ‖2 ≤ ηt ‖ f ‖2 . (3)
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Proof. Introduce the difference δ
def
= ft − f . As ft satisfies the Liouville

equation and f is time–independent, one has ∂tδ = ∂tft = −[H, ft], which in
terms of δ takes the form

∂tδ = −[H, δ] + g , (4)

with g
def
= −[H, f ]. It is well known that, µ being invariant, the solutions

of the Liouville equation are generated by a one–parameter group Û(t) of
unitary operators (see [5]) in the sense that ft = Û(t)f . As δ(0) = 0, the
solution of equation (4) is given by

δ =

t∫
0

Û(t− s)g d s , (5)

so that, Û being unitary (i.e., ‖ Û(t− s)g ‖2 = ‖ g ‖2), one gets the estimate

‖ δ ‖2 ≤
t∫

0

‖ Û(t− s)g ‖2 d s = t‖ g ‖2 ≤ ηt‖ f ‖2

i.e., the thesis. Q.E.D

We are now in a position to give a simple estimate of the measure of
the intersection At ∩ B. Notice that, if x ∈ At ∩ B, then one has both
|f(x) − f̄ | > 2k (since x ∈ B), and |ft(x) − f̄ | < k (since ft(x) = f(Φ−tx)
and Φ−tx ∈ A). So one has

kµ(At ∩B) ≤
∫

At∩B

∣∣∣ |f(x)− f̄ | − |ft(x)− f̄ |
∣∣∣ d µ ≤

≤
∫

At∩B

|f(x)− ft(x)| d µ ≤
( ∫

At∩B

d µ
)1/2 ( ∫

At∩B

|f(x)− ft(x)|2 d µ
)1/2

≤
(
µ(At ∩B)

)1/2

‖ ft − f ‖2 .

Thus, by (3) one gets

µ(At ∩B) ≤ η2t2
‖ f ‖2

2

k2
. (6)

So, we have proved the following theorem (analogous to that of Chebyshev)
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Theorem 2 Let µ be an invariant finite measure, and f ∈ L2(d µ) have the
property ‖ [H, f ] ‖2 ≤ η‖ f ‖2. Define the sets A and B by

A = {x : |f(x)− f̄ | ≤ k} , B = {x : |f(x)− f̄ | ≥ 2k} ,

with f̄ =
∫

f d µ and k a positive constant. Then the estimate (6) holds.

Relation (6) allows one to give a lower bound to the mixing time. In fact
using (6) one has µ(At ∩B) < 1

2
µ(A)µ(B) for all t such that

t <
k
√

2

η‖ f ‖2

(
µ(A)µ(B)

)1/2

, (7)

so that one gets the estimate

tmix ≥
k
√

2

η‖ f ‖2

(
µ(A)µ(B)

)1/2

, (8)

One sees that tmix → +∞ as η → 0, so that a sort of continuity is
recovered. If f is a constant of motion, the two sets A and B remain separated
for all times; if the time derivative of f is small, then A and B remain “quasi”
separated (at least in measure) for very long times, which tend to infinity
with the vanishing of the derivative ḟ , namely of η.

A comment on relation (8): up to now we have considered the constant
k as a free parameter. But, as k is a measure of the deviation of f from its
expectation f̄ , it is meaningful to take it of the same order of magnitude as
the standard deviation of f ,

δf
def
=

[ ∫
(f(x)− f̄)2 d µ

]1/2

.

Otherwise it could happen that the measure of A or that of B be essentially
zero and the estimate (8) trivial. So, in the rest of the paper we fix k = δf ,
and our estimate (8) becomes

tmix ≥
√

2 δf

η‖ f ‖2

(
µ(A)µ(B)

)1/2

. (9)

3 The periodic chain of rotators

In the rest of the paper we tackle the problem of constructing, for a concrete
system, a function f which has a slow evolution, i.e., satisfies (2) with a small
η. The system we consider is a classical one, a chain of 2N rotators with
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nearest neighbour trigonometric coupling and periodic boundary conditions,
i.e., the system with Hamiltonian

H =
N∑

j=−N

p2
j

2
−

N∑
j=−N

V0 cos(qj+1 − qj) , qN = q−N , (10)

where qj ∈ T1, pj ∈ R and V0 is a positive constant. As an invariant measure
we take the Gibbs one at inverse temperature β, defined by

d µ =
1

Z
exp(−βH) dx , Z =

∫
exp(−βH) dx (11)

with x = (q−N+1, . . . , pN), and dx = d q−N+1 . . . d pN .
For notational simplicity we will perform the (non canonical) change of

coordinates q̃j = qj, p̃j = β1/2pj, and a change of time τ = β−1/2t. This being
understood, we drop tildes, and denote q̃j by qj and p̃j by pj. The resulting
equations of motion can be deduced from the Hamiltonian function

H =
N∑

j=−N

p2
j

2
− ε

N∑
j=−N

cos(qj+1 − qj) , qN = q−N , (12)

where we have denoted ε = βV0. Correspondingly, the Gibbs measure be-
comes

d µ =
1

Z
exp(−H) dx , Z =

∫
exp(−H) dx .

From the form of the Hamiltonian it is apparent that ε is our small parameter,
because for ε = 0 our system is formally integrable, having, as constants of
motions, all the functions pj. For small ε, one has instead

[H, pj] = ε
(

sin(qj+1 − qj)− sin(qj − qj−1)
)

.

From this it follows that the momenta pj themselves have a slow evolution,
or are quasi–integrals, because they satisfy the relation (2) with η = 2ε, i.e.,

‖ [H, pj] ‖2 ≤ 2ε = 2ε‖ pj ‖2 .

This follows making use of the facts that | sin x| ≤ 1 and that the pj, being
normally distributed with unit variance and zero mean, have the property
‖ pj ‖2 = 1. So, applying the estimate (9) one finds that the mixing time
is τmix ∼ ε−1, which in terms of the original, non–rescaled time, gives the
estimate

tmix ∼ ε−1/2 . (13)

But actually the mixing time is much larger, because perturbation theory
up to third order leads to the following
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Theorem 3 (normal form construction) For any j, there exists a func-
tion fj of the form fj = pj + ε3/5Xj(p,q) having the properties

‖ [H, fj] ‖2 ≤ C1ε
1+ 3

5 (14)

‖Xj ‖2 ≤ C2 , (15)

with two positive constants C1 and C2 independent of ε and N .

The construction of the function fj is performed in the next two Sections
using the method of the direct construction of a first integral (see for example
[8]), and implementing three steps of the perturbative construction. The
first step is performed in Section 4, and the further ones are performed in
Appendix 1.

It is clear that the estimate (14) leads to an estimate of the mixing time
of order

tmix ' ε−1/2−3/5 , (16)

which is much larger than (13). There remains open the question of how
many steps of the perturbative construction can be performed. If one could
prove that the construction can be performed to all orders, one would obtain
a mixing time exponentially large, thus recovering the analog of Nekhoroshev
theorem, with however a complete elimination of N .

For a proof of (16) one has to estimate the other quantities entering
formula (9). This is provided by the following Lemma

Lemma 1 For any j, consider the function fj = pj + ε3/5Xj(p,q), with
Xj ∈ L2(d µ). Then one has (δ denoting standard deviation)

i) f̄j = O(ε3/5)

ii) δ2
fj

= δ2
pj

+ O(ε3/5) = 1 + O(ε3/5)

iii) for the sets Aε = {x : |fj − f̄j| < δfj
} and Bε = {x : |fj − f̄j| > 2δfj

}
one has

µ(Aε) = µ(A0) + O(ε2/5) , µ(Bε) = µ(B0) + O(ε2/5) .

Proof. The proof goes as follows.
i) This is immediate. One has f̄j = p̄j + ε3/5X̄j. On the other hand

p̄j = 0, and |X̄j| ≤
∫
|Xj| d µ ≤ ‖Xj ‖2.
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ii) This is obtained by a simple computation. Indeed one has

δ2
fj

=

∫
(fj − f̄j)

2 d µ

=

∫
p2

j d µ + 2ε3/5

∫
pjXj d µ + ε6/5

∫
X2

j d µ− (f̄j)
2 .

Now,
∫

p2
j d µ = δ2

pj
since p̄j = 0, while, by the Schwartz inequality, |

∫
pjXj d µ| ≤

‖ pj ‖2 ‖Xj ‖2. The result is then obtained by estimating f̄j through i).
iii) We show only the first inequality, because the second one is proved in

the same way. We start noticing the trivial relation δXj
=
∫

(Xj− X̄j)
2 d µ ≤

‖Xj ‖2
2, so that, introducing the set C = {x : |Xj − X̄j| ≥ ε−1/5}, by Cheby-

shev theorem one gets

µ(C) ≤ ε2/5‖Xj ‖2
2 = O(ε2/5) .

Now, the complementary set Aε/C is contained in the set A′ = {x : |pj| ≤
δfj

+ ε2/5}, because in Aε/C one has |Xj − X̄j| ≤ ε−1/5. The measure of
the set A′ can be readily evaluated, recalling that pj is normally distributed,
and that in addition, by ii), one has δfj

= 1 + ε3/5. One thus finds µ(A′) =

µ(A0)+O(ε2/5), and so one gets the thesis using µ(Aε) = µ(C)+µ(Aε/C) ≤
µ(C) + µ(A′). Q.E.D.

4 The first Perturbative Step

We have now to show how the quasi–constants of motion fj entering Theo-
rem 3 are constructed. The first perturbative step is performed in the present
section, while the second and the third one are given in Appendix 1. From
the Hamiltonian (12) we obtain the following equations of motion ṗj = ε

(
sin(qj+1 − qj)− sin(qj − qj−1)

)
q̇j = pj .

(17)

It is well known (see [9]) how a normal form (which is however formal for
N � 1/ε) can be constructed for this equation. However, in this simple case
it is possible to find a first–order integral directly, avoiding the use of the
normal form techniques. This is obtained by recalling that in virtue of the
equations of motion one has the relation

ε sin(qj+1 − qj) = −d

d t

(
ε
cos(qj+1 − qj)

pj+1 − pj

)
+

+ ε2 cos(qj+1 − qj)

(pj+1 − pj)2

(
sin(qj+2 − qj+1)− 2 sin(qj+1 − qj) + sin(qj − qj−1)

)
.
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and the analogous one for ε sin(qj − qj−1). So, in the region pj 6= pj±1, if we
define

X̃
(1)
j

def
=

cos(qj+1 − qj)

pj+1 − pj

− cos(qj − qj−1)

pj − pj−1

,

we find that the function f̃
(1)
j = pj +εX̃

(1)
j evolves with speed of order ε2, i.e.,

is slower than pj. It is obvious that, due to the presence of the denominators

(the small divisors), the function X̃
(1)
j is not in L2, and so is useless for the

estimates.
This example also shows in a very clear way the difficulty of applying the

standard perturbation techniques for large N . Indeed, in order to have a
slow evolution (of order ε2), it is not enough to restrict the initial data to the
region |pj − pj±1| > σ (with σ a positive parameter), but one has to secure
that such an inequality also holds for times or order ε−2. On the other hand,
this cannot be secured, because pj±1 evolve in general on a time scale of order
ε−1. One way to secure that pj±1 do not evolve too much is to consider the

functions X̃
(1)
j±1, and choose initial data such that |pj±1 − pj±2| > σ. But

then we have the problem of the evolution of the variables pj±2. Thus, one is
forced to iterate this procedure, so that our hypothesis can be secured only
in a set of the form C = {x : |pj − pj+1| > σ,∀j}. On the other hand a
simple computation shows that one has µ(C) ' (1 − σ)N , i.e., that the set
C has essentially a vanishing measure for N large.

Instead, if we want to control the evolution of the measure of the sets,
and not the single trajectories, this kind of problems is not met. In fact, one
can limit oneself to perform the normalization only in the non–resonant zone
|pj − pj±1| > σ, and keep the action pj unaltered in the resonant one. The
idea is thus to define

f
(1)
j

def
=

{
pj for |pj − pj±1| < σ

pj + εX̃
(1)
j for |pj − pj±1| > σ ,

in such a way that the region where the derivative of f
(1)
j is large, has a

small measure (of order σ). Now, choosing in an appropriate way σ as a

function of ε (we will take σ = ε2/5), one can obtain that the L2–norm of ḟ
(1)
j

becomes less than the L2–norm of ṗj, notwithstanding the fact that these
two functions have the same sup–norm.

In order to give this idea a clear mathematical content, we need to in-
troduce some objects. First of all we need a truncation function ζ(x) of C∞
class, i.e. a function having the properties stated in

Lemma 2 For every sufficiently small (positive) constant σ, there exists
C∞(R) functions ζ(x), Z(x) and Z(2)(x) such that:
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i) one has ζ(x) = 1 for |x| < σ, and ζ(x) = 0 for |x| > 3σ;

ii) for all n ∈ N, one has |∂n
xζ(x)| < cnσ

−n, where cn are numerical con-
stants independent of x and σ; moreover ∂n

xζ(x) = 0 for |x| < σ and
|x| > 3σ;

iii) one has
dZ
d x

= ζ(x) ,
dZ(2)

d x
= Z(x) .

Moreover one has Z(x) = 0 and Z(2)(x) = 0 for |x| > 3σ, and the
estimates |Z(x)| < 4|x| and |Z(2)(x)| < |x|2/2 hold.

These are standard properties of truncation functions, the only unusual one
being iii), the meaning of which will become clear in the Appendix 1, when
we will go beyond the first order. The proof of this Lemma is deferred to
the Appendix 2, in which the explicit form of the functions ζ(x), Z(x) and
Z(2)(x) is exhibited.

Furthermore, we define the integer vectors ej ∈ Z2N as the standard basis
vectors, i.e., those having all components vanishing but the j–th one, which

is equal to one. Analogously we define the vectors δj
def
= ej+1− ej. We finally

define the set M1
j made up of the four vectors ±δj, ±δj−1.

In order to have formulae with the minimal number of indexes, from now
on we concentrate on the case j = 0, but it will be obvious that all formulæare
valid for a generic value of j. The equation of motion for p0 can be rewritten
as

ṗ0 =
∑

k∈M1
0

ε

2i
ck exp(ik · q) ,

where the constants ck = ±1 come from the expression of the sine in terms
of complex exponentials. Now, using the function ζ(x) one can separate the
resonant part from the non resonant one as follows

ṗ0 = ε
∑

k∈M1
0

ckζ(k · p)
exp(ik · q)

2i
+ ε

∑
k∈M1

0

ck
(
1− ζ(k · p)

)exp(ik · q)

2i
.

Thus, by integrating by parts the second term at the r.h.s., one gets the
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identity

d

d t

p0 + ε
∑

k∈M1
0

ck
1− ζ(k · p)

k · p
exp(ik · q)

2

 = ε
∑

k∈M1
0

ckζ(k · p)
exp(ik · q)

2i

+ ε
∑

k∈M1
0

ck
2

∂x
1− ζ(x)

x

∣∣∣∣
k·p

exp(ik · q)k · ṗ .

(18)

Now the term k · ṗ is of order ε, because

k · ṗ = ε
∑

j

∑
k′∈M1

j

k′ · ej
ck′

2i
exp(ik′ · q) ,

and moreover, since k ∈ M1
0 , only the terms with j = −2, . . . , 1 do not vanish

(for the other values of j one has k′ · ej = 0). So, one gets

exp(ik · q)k · ṗ = ε
∑

k′∈{M1
j }

k′ · ej
ck′

2i
exp

(
i(k + k′) · q

)
where the summation is performed over all sets M1

j with j = −2, . . . , 1. Now,
introducing the function

X
(1)
0

def
= σ

∑
k∈M1

0

ck
1− ζ(k · p)

k · p
exp(ik · q)

2
, (19)

we can rewrite (18) in the form

d

d t

(
p0 + εσ−1X

(1)
0

)
= ε

∑
k∈M1

0

ckζ(k · p)
exp(ik · q)

2i
+R1 , (20)

where the remainder R1 has the form

R1
def
= ε2

∑
k1∈M1

0

∑
k2∈{M1

j }

k2 · ej
ck1ck2

4i
∂x

1− ζ(x)

x

∣∣∣∣
k1·p

exp
(
i(k1 +k2) ·q

)
. (21)

The estimate of the r.h.s of (20) is then very simple. Indeed one has∫ ∣∣∣ζ(k · p) exp(ik · q)
∣∣∣2 d µ =

∫ ∣∣∣ζ(k · p)
∣∣∣2 d µ

≤
∫

|p0−p±1|<3σ

exp

(
−

p2
0 + p2

±1

2

)
d p0 d p±1 = 6σ ,
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so that

‖
∑

k∈M1
0

ckζ(k · p)
exp(ik · q)

2i
‖2 ≤ 4σ1/2 . (22)

Instead, in order to estimate the term R1 given by (21), one has to estimate
a finite sum of integrals of the type∫ ∣∣∣∣∂x

1− ζ(x)

x

∣∣∣
k·p

exp(ik · q)

∣∣∣∣2 d µ =

∫ ∣∣∣∣∂x
1− ζ(x)

x

∣∣∣
k·p

∣∣∣∣2 d µ

≤
∫

|p0−p±1|>3σ

∣∣∣∣∂x
1− ζ(x)

x

∣∣∣
p0−p±1

∣∣∣∣2 exp

(
−

p2
0 + p2

±1

2

)
d p0 d p±1 .

We can estimate the derivative appearing in the last term, using ii) of
Lemma 2 for the derivative of ζ(x), and the fact that the denominator is
bounded away from zero (since |x| > σ). One has thus∣∣∣∣∣∂x

1− ζ(x)

x

∣∣∣∣
p0−p±1

∣∣∣∣∣
2

≤ Cσ−4 ,

with a given constant C, and using this bound in the above formula one finds∫ ∣∣∣∣∣∂x
1− ζ(x)

x

∣∣∣∣
k·p

exp(ik · q)

∣∣∣∣∣
2

d µ ≤ Cσ−4 .

Thus, there exists a numerical constant C1 such that

‖R1 ‖2 ≤ C1σ
−2ε2 . (23)

In exactly the same way one can show, from the expression (19) for the

function X
(1)
0 , that there exists a numerical constant C2, such that

‖X
(1)
0 ‖2 ≤ C2 . (24)

Now, taking σ = ε2/5, from estimates (23) and (22) one gets that the

function f
(1)
0 = p0 + ε3/5X

(1)
0 has a time derivative of order ε1+1/5, i.e., it

evolves more slowly than the action p0. To obtain a time–evolution as slow
as the one implied by (14) of Theorem 3, one needs to perform two more
perturbative steps.

These further steps are not trivial iterations of the first one, because one
meets here with the new problem of dealing with resonant terms. At the
moment we have not yet been able to find a general scheme to deal with
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the different resonant terms which are generated at any new order. We are
only able to deal with any concrete resonance which actually does present
itself. Just to give an example of such a procedure, the second and the third
perturbative steps are implemented in Appendix 1. We hope to have the
possibility to come back to the general problem of resonances in the future.

5 Conclusions

In this paper a perturbative scheme is introduced which may be called “uni-
form” in phase space, in the sense that it can be applied at the same time
both in the non resonant region and in the resonant ones. However, the gen-
eral iterative scheme still remains to be found. The reason is that in every
resonant region there exists a different adiabatic quantity, the “resonant“
action, which has a slow evolution, and I was not able to find a recursive way
to glue all such pieces together. Probably it needs to better understand the
global behaviour of the resonances.

While the present approach does not allow one to control individual tra-
jectories, it is well suited to study the ergodic properties of the dynamics,
through the estimate of an integral norm of suitable functions. A distinc-
tive feature of this approach is the fact that it can be applied to systems
with an arbitrarily large number of degrees of freedom (at least in the case
of rotators), so that it can be of use for systems of interest in statistical
mechanics.

One could ask whether this approach could be applied also to other more
complicated Hamiltonian. The answer is positive for a generalisation in which
the rotators are coupled to a small number of neighbours through a potential
more complicate than simple cosines (for example a generic trigonometrical
polynomial). Things are different however if one considers potentials which
couple all the degrees of freedom: for example, in the Fermi–Pasta–Ulam
system every normal mode couples with essentially every other one, and the
problem of resonances becomes very delicate. But nevertheless, although
(at the moment) I am unable to perform even a single step of perturbation
theory, in any case the use of the L2 norm allows one to conclude that the
mixing time is at least larger than an inverse power of the small parameter.
Notice that the sup norm of the perturbation is not at all small1, so that no
estimate could be obtained using that norm.

1This can be easily checked by putting all the energy in a single crystal site. In such
a case the contribution of the nonlinear terms of the potential (i. e. the perturbation) is
much larger than the linear one, but obviously the set of the points of such a type has a
very small measure.
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The idea of using in perturbation theory an Lp integral norm instead
of the familiar sup norm, which is a fundamental ingredient of the present
paper, was apparently introduced for the first time by A. Neishtadt in the
paper [10], where a non–Hamiltonian system with a small number of degrees
of freedom was considered. I thank A. Neishtadt for kindly pointing this out
to me, after the reading of a preliminary version of the present paper. I also
thank G. Gallavotti for useful comments.

Appendix 1: the second and the third steps of

the perturbation procedure.

By symmetry, letting (k1,k2) → (−k1,−k2), one can easily check that in
the expression (21) for R1 the terms with k1 + k2 = 0 are lacking. So, in
complete analogy with what was done for the first step, we can integrate by
parts all the terms, obtaining, at least in the region where |(k1 +k2) ·p| > σ,
a remainder of order ε3/σ4, while the resonant zone |(k1 + k2) · p| < σ will
give a contribution to the remainder of order ε2/σ3/2. For σ = ε2/5 the
two contributions are of the same order ε1+2/5. The question remains of
understanding how to treat the first–order resonant term of the remainder,
because in this case the phase of the terms exp(ik · q) is slow, and so we
cannot take the average.

But now one has to consider that slow angles appear only in the time
derivatives of the quantities k · p. So one could argue that the terms with
slow angles may be replaced by the time derivatives of k ·p plus some terms
containing fast angles. In this case, the terms with the time derivative of
k · p would give a total derivative, while the terms with fast angles could be
averaged away. Indeed, things go exactly in this way.

In fact, in our case in which k = ±δj, j = 0,−1, one has that k′ =
ej+1 + ej is orthogonal to k, so that the time derivative k′ · p only contains
fast angles. In addition, from the equations of motion one gets directly the
relation

ε sin(δj · q) =
1

2
(ej+1 + ej) · ṗ−

1

2
(ej+1 − ej) · ṗ + ε sin(δj−1 · q)

= k′ · ṗ− 1

2
k · ṗ + ε sin(k′′ · q) .

where we have set k′′ = δj−1 (remember that k = δj). From this it follows
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that the first term at the r.h.s of (20) can be rewritten as

ε
∑

k∈M1
0

ckζ(k · p)

2i
exp(ik · q) =

1

2

∑
k∈M1

0

−ζ(k · p)k · ṗ

+
1

2

∑
k∈M1

0

ζ(k · p)k′ · ṗ + ε
∑

k∈M1
0

ζ(k · p) sin(k′′ · q)

=
d

d t

−1

2

∑
k∈M1

0

Z(k · p)

+
ε

2

∑
k1∈M1

0

∑
k2∈M2

k1

c1
k2

ζ(k1 · p) exp(ik2 · q) ,

where c1
k2

are numerical constants (less than 2 in absolute value), and the sets
M2

k1
are made up of the vectors ±δj−1, ±δj+1 (remember that k1 = ±δj),

as one can check using the relation k′ · ṗ = ε
(

sin(δj+1 · q)− sin(δj−1 · q)
)
.

From the expression of M2
k1

one checks that k2 6= k1, so we have rewritten
the resonant term as a total derivative plus some non–resonant terms. Now
the non resonant terms can be integrated by parts to give

ε
∑

k∈M1
0

ckζ(k · p)

2i
exp(ik · q) =

d

d t

−1

2

∑
k∈M1

0

Z(k · p)+

− ε

2

∑
k1∈M1

0

∑
k2∈M2

k1

c1
k2

ζ(k1 · p)
(
1− ζ(k2 · p)

)
k2 · p

exp(ik2 · q)

+

+
ε

2

∑
k1∈M1

0

∑
k2∈M2

k1

c1
k2

ζ(k1 · p)ζ(k2 · p) exp(ik2 · q) +R2 ,

(25)

with

R2 =
ε

2

∑
k1∈M1

0

∑
k2∈M2

k1

c1
k2

4

 ∂

∂x
ζ(x)|k1·p

(
1− ζ(k2 · p)

)
k2 · p

k1 · ṗ

+ ζ(k1 · p)
∂

∂x

(
1− ζ(x)

)
x

∣∣∣
k2·p

k2 · ṗ

 exp(ik2 · q) .

(26)

The remainder R2 can be simply estimated using the estimate for the deriva-
tives of ζ (the estimate ii) of Lemma 2) in the same way in which R1 was
estimated in Section 4. The only difference is the presence of the terms
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ζ(k1 · p) which restrict the computation of the integrals to a region of mea-
sure σ, giving a smaller value. One has indeed

‖R2 ‖2 ≤ C3ε
2σ−3/2 , (27)

where C3 a positive numerical constant.
Now, we turn to the remainder R1 at the r.h.s of expression (20). As

already said, every term can be integrated by parts (outside of the resonant
region), and so, using the function ζ

(
(k1 + k2) · p

)
to split the phase space

in the resonant region and the non resonant one, we get

R1 = ε2
∑

k1∈M1
0

∑
k2∈{M1

j }

k1 · ej

c1
k1

4i

∂

∂x

1− ζ(x)

x

∣∣∣∣
k1·p

ζ
(
(k1 + k2) · p

)

exp
(
(k1 + k2) · q

)
+

d

d t

−ε2
∑

k1∈M1
0

∑
k2∈{M1

j }

k1 · ej

c1
k1

4

∂

∂x

1− ζ(x)

x

∣∣∣∣
k1·p

1− ζ
(
(k1 + k2) · p

)
(k1 + k2) · p

exp
(
(k1 + k2) · q

)]
+R3 ,

with

R3
def
= ε2

∑
k1∈M1

0

∑
k2∈{M1

j }

k1 · ej

c1
k1

4

[
(k1 + k2) · ṗ

∂

∂x

1− ζ(x)

x

∣∣∣∣
k1·p

∂

∂x

1− ζ(x)

x

∣∣∣∣
(k1+k2)·p

+

k1 · ṗ
∂2

∂x2

1− ζ(x)

x

∣∣∣∣
k1·p

1− ζ(x)

x

∣∣∣∣
(k1+k2)·p

]
exp

(
(k1 + k2) · q

)
.

Now, defining

X
(2)
0 = X

(1)
0 +

σ

2ε

∑
k∈M1

0

Z(k · p)+

+ σ
∑

k1∈M1
0

∑
k2∈M2

k1

c1
k2

ζ(k1 · p)
(
1− ζ(k2 · p)

)
k2 · p

exp(ik2 · q)+

+ εσ
∑

k1∈M1
0

∑
k2∈{M1

j }

k1 · ej

c1
k1

4

∂

∂x

1− ζ(x)

x

∣∣∣∣
k1·p

1− ζ
(
(k1 + k2) · p

)
(k1 + k2) · p

exp
(
(k1 + k2) · q

)
,
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we find

d

d t

(
p0 + X

(2)
0

)
=

ε

2

∑
k1∈M1

0

∑
k2∈M2

k1

c1
k2

ζ(k1 · p)ζ(k2 · p) exp(ik2 · q)+

+ ε2
∑

k1∈M1
0

∑
k2∈{M1

j }

k1 · ej

c1
k1

4i

∂

∂x

1− ζ(x)

x

∣∣∣∣
k1·p

ζ
(
(k1 + k2) · p

)
exp

(
(k1 + k2) · q

)
+R2 +R3 .

(28)

The second step is then accomplished. The estimate can be performed
in a very simple way, by estimating the L2–norm as the sup of the function
times the measure (to the power 1/2) of its support (i.e. of the region in
which the function does not vanish). One finds in this way

‖Z(k · p) ‖2 ≤ const σ3/2

‖ εζ(k1 · p)ζ(k2 · p) exp(ik1 · p) ‖2 ≤ const σε

‖R2 ‖2 ≤ const σ−3/2ε2

‖R3 ‖2 ≤ const σ−4ε3 ,

i.e. that, for σ = ε2/5, all terms are of order ε1+2/5. One has then

‖ p0 +
ε

σ
X

(2)
0 ‖2 ≤ C3ε

1+ 2
5

‖X
(2)
0 ‖2 ≤ C4 ,

with certain numerical constants C3 and C4.
We note that, from the explicit form (31) of Z(x) given in appendix, for

|k · p| < σ one has Z(x) = x, so that in the resonant region one has

p0 +
1

2
Z(k · p) =

1

2
k′ · p ,

i.e. in the resonant region our function coincides with the fast action.
At this point one can ask whether it is possible to perform more steps

of the perturbative construction, or even an infinite number of them. It
is well known that, in the process of the direct construction of an integral
of motion, insurmountable difficulties are found in the resonant case. An
example of these difficulties was met at the second step, when we had to
deal with terms of the type ζ(k · p) sin(k · q). To perform the third step one
analogously has to deal with terms of the type

N1
def
= ζ(k1 · p)ζ(k2 · p) sin(k2 · q) ,
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and

N2
def
= ζ
(
(k1 + k2) · p

) ∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
sin
(
(k1 + k2) · q

)
,

in the remainder at the r.h.s of relation (28). At the successive steps we will
find other resonant terms having a form always different from those of the
previous steps, and at present we were unable to find a recurrent scheme to
perform an arbitrary number of steps. We limit ourselves to show briefly
how the resonant term at the r.h.s of (28) can be dealt with, and so how
the third step of the construction can be performed. In fact the terms R2

and R3 are non resonant and thus can be integrated by parts (giving rise, at
fourth order, to other resonant terms).

We begin considering the terms of the type N1. Using the explicit form
of the vectors k1 and k2, one can check that

sin(k2 · q) = α1k1 · ṗ + α2k2 · ṗ +
∑

k3∈M2
k1,K2

βk3 sin(k3 · q) , k3 6= k1,k2 ,

αi and βk3 being numerical constants, and M2
k1,K2

a given (finite) set of integer
vectors. One thus gets

ζ(k1 · p)ζ(k2 · p) sin(k2 · q) = α1ζ(k2 · p)
d

d t
Z(k1 · p)+

+ α2ζ(k1 · p)
d

d t
Z(k2 · p) +R4 ,

where R4 is non–resonant. Finally we have the relation

ζ(k1 · p)ζ(k2 · p) sin(k2 · q) =
d

d t

(
α1ζ(k2 · p)Z(k1 · p)+

+ α2ζ(k1 · p)Z(k2 · p)

)
− α1ζ

′(k2 · p)Z(k1 · p)k2 · ṗ+

− α2ζ
′(k1 · p)Z(k2 · p)k1 · ṗ +R4 .

At this point one can check that the terms at the r.h.s. outside the time–
derivative are non–resonant, and thus can be integrated by parts. The re-
sulting terms are of order εσ3/2 (the terms which are triply resonating) and
of order ε2σ−1 (the ones which are integrated by parts in a doubly resonating
region of measure σ2).

The other resonant term N2 can be treated in a similar way. One can
check (using the explicit expressions of k1 and k2) that

ε exp
(
i(k1 + k2) · q

)
= i(k1 + k2) · ṗ exp(ik1 · q) + εP1 ,
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where εP1 is a non–resonant trigonometric polynomial. One has then

ζ
(
(k1 + k2) · p

) ∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
exp

(
i(k1 + k2) · q

)
=

∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
exp(ik1 · q)

d

d t
Z
(
(k1 + k2) · p

)
+R5 ,

where R5 is non–resonant and can be integrated by parts. The first term at
the r.h.s gives instead, as usual,

∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
exp(ik1 · q)

d

d t
Z
(
(k1 + k2) · p

)
=

d

d t

(
∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
exp(ik1 · q)Z

(
(k1 + k2) · p

))
+

+ ε

(
x

∂

∂x

1− ζ(x)

x

)∣∣∣∣
k1·p

(
(k1 + k2) · p

)
exp(ik1 · p) +R6 ,

where R6 are non resonant terms. Instead, the second term at the r.h.s is
again a resonant one, but it can be transformed into a total time–derivative
(plus some non–resonant terms) using again a relation of the kind

ε exp(ik1 · p) = (k1 + k2) · ṗ + εP2 ;

where again P2 is a non-resonant trigonometric polynomial. With some
simple algebra one finally gets

ζ
(
(k1 + k2) · p

) ∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
sin
(
(k1 + k2) · q

)
=

d

d t

[
Z
(
(k1 + k2) · p

) ∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
exp

(
i(k1 + k2) · q

)
+ k1 · p

∂

∂k1 · p
1− ζ(k1 · p)

k1 · p
Z(2)

(
(k1 + k2) · p

)]
+R8 ,

where R8 is a non–resonant term. In this way it is clear how is it possible
to perform three steps of the construction, and at the same time how com-
plicated becomes the procedure of performing further steps. In any case,
performing the estimate and putting σ = ε2/5, the estimate of Theorem 3 is
obtained

Appendix 2: proof of Lemma 2

The proof of Lemma 2 is quite standard (apart from property iii)) and
can be found in any text–book in partial differential equations. Consider
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a C∞([−1, 1]) function y(x) having all derivatives vanishing for x → ±1
(take for example y(x) = exp(1/(x2− 1))). Such a function can obviously be
extended smoothly to the whole real line by setting it equal to zero outside
that interval. Introduce now the auxiliary function

ζ̃(x) =
1

C

2∫
−2

y(t− x) d t , C
def
=

1∫
−1

y(t) d t .

In terms of z = t− x one equivalently can write

ζ̃(x) =
1

C

∫
[−2−x, 2−x]

T
[−1,1]

y(z) d z ,

from which it is apparent that for |x| < 1 one has ζ̃(x) = 1 (because in such
a case one has [−2 − x, 2 − x]

⋂
[−1, 1] = [−1, 1] ), while for |x| > 3 one has

ζ̃(x) = 0 (in such a case one has instead [−2− x, 2− x]
⋂

[−1, 1] = ∅ ). If in
addition one has y(x) ≥ 0 one also gets 0 ≤ ζ̃(x) ≤ 1. It is obvious that ζ̃(x)
is a C∞ function, and one can define the constants

C ′
n

def
= sup

|x|≤3

∣∣∣∣ dn

dxn
ζ̃(x)

∣∣∣∣ . (29)

In the case of the exponential function y(x) = exp(1/(x2 − 1)), simple (nu-
merical) estimates for the first three constants are

C ′
0 = 1 , C ′

1 < 2 and C ′
2 < 21 ; (30)

the other ones growing quite rapidly. It also obvious that all the derivatives
vanish for |x| < 1 and |x| > 3.

We take now

Z(2)(x)
def
=

x2

2
ζ̃
(x

σ

)
,

and consequently, Z(x) being the derivative of Z(2)(x) and ζ(x) the derivative
of Z(x), one gets

Z(x) = x ζ̃
(x

σ

)
+

x2

2σ
ζ̃ ′
(x

σ

)
ζ(x) = ζ̃

(x

σ

)
+

2x

σ
ζ̃ ′
(x

σ

)
+

x2

2σ2
ζ̃ ′′
(x

σ

)
.

(31)

The functions ζ(x), Z(x) and Z(2)(x) vanish for |x| > 3σ, while for |x| < σ
they reduce to ζ(x) = 1, Z(x) = x and Z(2)(x) = x2/2 (recall that the
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derivatives of ζ̃ vanish for |x| < 1). So i) of Lemma 2 is proved. To prove ii),
one remarks that

dnζ(x)

dxn
=

dn+2

dxn+2

(
x2

2
ζ̃
(x

σ

))
=

1

σn

(
(n2 + 3n + 2)

dnζ̃

dxn
+

(n + 2)x

σ

dn+1ζ̃

dxn+1
+

x2

2σ2

dn+2ζ̃

dxn+2

)
,

so that, recalling the bound (29), the constant cn can be taken equal to

cn = 5C ′
n+2 + 6(n + 2)C ′

n+1 + (n + 3n + 2)C ′
n .

Part iii) of Lemma 2 follows directly from the definition and from the explicit
bound (30) for the constants C ′

0, C ′
1 and C ′

2.
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