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Abstract
The present study applies classic spectral analysis techniques to investigate cyclic patterns in four tree-ring
chronologies of Pinus montana Miller from the Central Italian Alps (Valle del Gallo). Three of the chronologies
were derived from mountain pine populations located in relatively undisturbed areas of the valley bottom and
valley slopes, and one from a population located in an area of the valley bottom occasionally affected by sheetfloods.
Each chronology consists of raw, standard, and residual data. We estimated power spectra by applying the
Blackman–Tukey Method, the Maximum Entropy Method, the Multitaper Method, and the Lomb–Scargle
Fourier transform, and tested the results against appropriate red noise models. The power spectra of the
standard chronologies from undisturbed areas yielded statistically significant and reproducible interdecadal-scale
cyclicities with main peaks closely spaced around a mean value of �0.05 cycle/year, in association with statistically
non-significant albeit reproducible peaks at higher frequencies. The chronology of trees affected by sheetfloods yielded
no statistically significant cyclicities, probably because sheetfloods altered tree growth. Raw chronologies, instead,
yielded power spectra dominated by the growth trend, while residual chronologies yielded flat power spectra. Our
analysis suggests that tree growth, if not disturbed by external geomorphological factors, was controlled by
environmental and/or climatic conditions that oscillated in the last �150 years on interdecadal (�20 years) to decadal
scales.
r 2006 Elsevier GmbH. All rights reserved.
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Introduction

Tree-ring width time series are natural archives of
past regional climatic conditions, which commonly
oscillate with interdecadal to decadal periodicities.
Although, the existence of a relationship between
climate and tree rings is well established, the origin of
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the observed periodicities remains controversial (Fritts,
1976). Several hypotheses have been put forward in the
literature that relate these periodicities to, for example,
solar activity (Douglass, 1928; Vercelli, 1949; Bitvinskas,
1990; Cecchini et al., 1996), ocean–atmosphere dy-
namics (Linderholm, 2001; D’Arrigo et al., 2003; Gray
et al., 2004), or an interplay of both mechanisms
(Rigozo et al., 2005).

In many areas of the physical and natural sciences,
spectral analysis is commonly used to detect periodic or
quasi-periodic components of time series, as well as to
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compare different time series and investigate how they
differ or relate (Percival and Walden, 1993).

Both periodic and quasi-periodic natural processes
can be characterized by estimating the power spectrum
of a time series – a measure of the relative amplitudes
and periods of the different frequencies that form the
signal. For example, a random process like white noise
(a random noise signal that has an equal amount of
energy at all frequencies) has a power spectrum
homogeneously distributed across all frequencies,
whereas a periodic process like radioactive decay
allocates all power to single spectral line(s). Power
peaks that rise from a continuum of background red
noise (a noise signal with energy monotonically decreas-
ing as the frequency increases) realistically characterize
deterministic natural processes.

In the field of climate studies, spectral analysis is one
of the methods used to reconstruct past climate
variability (Schulz et al., 2000; Ghil, 2002; Ghil et al.,
2002; Wunsch, 2003).

In this paper, we investigate to which extent classic
spectral analysis methods are efficient in revealing the
cyclic signature of tree-ring data with the aim,
on a longer-term scientific commitment, to contribute
to the development of climatic models capable to
explain any such potentially present variability. Our
study is focused on tree-ring chronologies of mountain
pine from the Central Italian Alps and on climatic time
series.
The study area

The study area is located in Valle del Gallo
(Lombardy, northern Italy) at altitudes between 1900
and 2200ma.s.l (Fig. 1). A mountain pine forest (Pinus

montana Miller) dominates the vegetation of the valley.
In this high mountain environment, instability processes
are very common, and consist especially of debris flows
that constructed several fans now dominating the
landscape of the valley bottom (Santilli et al., 2002).
One of these debris flow fans is also affected by
sheetfloods that, descending from a small tributary
valley, deposited silt material at the stems base, without
however inducing any evident mechanical damage
(Pelfini et al., 2005a; Santilli et al., 2002). In any case,
these processes frequently altered tree growth, and only
in some undisturbed areas of the valley slopes and valley
bottom trees growth is undisturbed.

In the last years, some reference chronologies of
mountain pine were built in Valle del Gallo for
dendrogeomorphological dating of debris flows (Pelfini
and Santilli, 2003; Santilli and Pelfini, 2002, 2005), as
well as to study stream erosion processes (Pelfini et al.,
2005b) and to perform dendroclimatic analysis (Pelfini
et al., accepted).
Materials and methods

Dendrochronological data

The four tree-ring chronologies of mountain pine
considered in this study come from four different
locations (Fig. 1): trees located on undisturbed areas
of the valley bottom (chronology c200), on undisturbed
areas of the two opposite valley slopes (chronology c300
on the western slope, and chronology c400 on the
eastern slope), and trees located in an area of the valley
bottom occasionally affected by sheetfloods (chronology
c500).

For each population, we sampled 30 dominant trees
showing regular growth and crown, taking two or three
cores from each stem. Samples were prepared for
measurement according to standard methods (Schwein-
gruber, 1988). The growth curves of all samples were
constructed by measuring the ring width with accuracy
of 0.01mm using the software TSAP (Rinn, 1996) and
by means of image analysis using the software WIND-
ENDRO. We checked date accuracy and measurement
quality of each series both statistically and visually by
using the software COFECHA (Holmes, 1983; Grissino-
Mayer, 2001) and TSAP-Win (Sander, 2004), respec-
tively. For each population, we selected the growth
series showing a good correlation (r40.5) with their
mean chronology (Hofgaard et al., 1999). In order to
remove long-term growth trends, like the age trend and
non-climatic trends related to stand dynamics (Fritts,
1976; Schweingruber, 1988), all selected series were
standardized by using a cubic smoothing spline function
with a 50% cut-off at 60-year wavelength using the
software ARSTAN (Cook and Holmes, 1986; Holmes,
1994). By applying a biweight robust mean to the time
series, the program output supplied both standard and
residual chronologies, the latter derived by using an
autoregressive (AR) model (Cook and Briffa, 1990) that
removes the autocorrelation, resulting in a series of
independent observations. In this study, we used raw-
data, standard, and residual chronologies. The standard
tree ring chronologies are shown in Fig. 2.
Climatic data

Some meteorological stations exist close to the study
area. Temperature and precipitation data from Canca-
no, Bormio, and Livigno stations were used in a
previous study on the influence of climate on mountain
pine growth (Pelfini et al., accepted). However, the
shortness of these data time series, in particular
temperature, hampered the applicability of spectral
analysis methods. For this reason, we utilized annual
and monthly average temperature and precipitation
values collected in the city of Milan (about 150 km to the
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Fig. 1. Map of the upper Valle del Gallo with position of the sampled mountain pine populations.
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southwest of the studied area) since 1763 (temperature)
and 1764 (precipitation) (Maugeri et al., 2002a, b). In
spite of the distance between the studied area and Milan,
and in spite of the different environmental conditions,
correlations could be found because the climatic
variability influencing tree growth acts at a regional
scale (Fritts, 1976).
Spectral analysis methods

In order to estimate power spectra of time series, a
number of methods exist with different characteristics
that generate spectra with different resolution. There-
fore, in order to obtain reliable results, more than one
method must be used, and the results compared
(Weedon, 2003). Two software tools available in the
public domain were used: the SSA-MTM Toolkit (Ghil
et al., 2002), and the Redfit Tool (Schulz and Mudelsee,
2002). With the SSA-MTM Toolkit, we performed
spectral analysis by using the Blackman–Tukey Method
(BTM), the Maximum Entropy Method (MEM), and
the Multitaper Method (MTM), which we briefly
describe hereafter (for additional information and
references, see Weedon, 2003).
The BTM computes the autocovariance of the data by
comparing the time series with itself once it has been
offset by an amount – called the ‘lag’ – that runs from
zero (no offset) to the number of time series points
minus one; then, a lag window is applied to truncate the
autocovariance sequence to a certain lag value M in
order to eliminate the highest and most noisy auto-
covariance terms, and, finally, the windowed autocovar-
iance sequence is Fourier-transformed. In our analysis,
we applied a Bartlett (triangular) window type with size
values around N/10 (where N is the number of data
points in the time series).

The MEM is equivalent to fitting the data as though
they correspond to a high-order AR process. The order
of MEMmethod is the number of AR components to be
included in the analysis and determines the spectral
resolution; it determines also the level of smoothing
because usually the number of spurious peaks grows
with the MEM order. For the MEM order parameter,
we utilized values oN/10 and 4N/3 (where N is the
number of data points in the time series).

In the MTM method, a series of prolate spheroidal
tapers are applied to the time series; the different tapers
suppress different parts of the time series. The total
power spectrum is then estimated by averaging the
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Fig. 2. Mountain pine tree-ring standard chronologies from the valley bottom (c200), the western slope (c300), the eastern slope

(c400), and from an area affected by sheetfloods (c500).
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individual spectra given by each tapered version of the
data set. The smoothing of the spectrum increases with
the number of tapers used.
The Redfit Tool determines the spectrum of a time
series by means of the Lomb–Scargle Fourier transform;
it was used in this study to confirm the results obtained
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with the methods implemented in the SSA-MTM
Toolkit, and to test if the reproducible power peaks
were significant against a red noise background gener-
ated from an AR1 process. To assess the statistical
significance of a spectral peak, the upper confidence
interval of the AR1 noise was calculated for different
significance levels (90%, 95%, and 99%) based on a w2

(chi-squared) distribution (the degrees of freedom of
which depend on the actual spectral analysis setting).

In spectral analysis, the frequency resolution increases
with increasing data length. The four chronologies used
in this study should be long enough (i.e., 90–170 years)
to resolve regular components in the order of tens of
years, albeit the finite resolution of the resulting spectra
may not allow identifying their exact periodicities.
Results

The power spectra of the raw-data tree ring chron-
ologies, computed with different methods as outlined
above, show a systematic distortion in the low frequency
part of the spectrum, interpreted as due to the fact that
in a raw chronology the growth trend allocates
(unwanted) power at frequencies equal to the data
length.

The power spectra of the standard chronologies
yielded interdecadal and decadal-scale cyclicities as
illustrated hereafter. The spectral estimates of the
standardized chronology c200 generated with the BTM
and MEM showed the presence of a peak centered at
�0.05 cycle/year. In the spectrum generated with the
Redfit Tool, a same peak centered at �0.05 cycle/year
reached the 99% confidence level (Fig. 3). Other peaks,
statistically below the 90% confidence level, were
identified at �0.08 and 0.12–0.13 cycle/year. Two closely
Fig. 3. Spectral analysis of chronology c200 obtained with the Re
spaced peaks at �0.05 cycle/year were observed in the
spectrum generated with MTM.

The spectral estimate of the standardized tree ring
chronology c300 generated with BTM yielded a quite
broad peak at �0.05 cycle/year, whereas in the spectral
estimate generated with MEM, a sharper peak centered
at �0.05 cycle/year was observed, together with a
smaller peak at �0.12 cycle/year. Two closely spaced
peaks at �0.05 cycle/year, and two closely spaced peaks
at 0.11–0.12 cycle/year were observed in the spectrum
generated with MTM. In the spectrum generated with
the Redfit Tool, the peak centered at �0.05 cycle/year
reached the 95% confidence level, whereas a broad peak
centered at �0.12 cycle/year did not reach the 90%
confidence level (Fig. 4).

The spectral estimate of the standardized chronology
c400 generated with BTM yielded a broad peak at
0.05–0.06 cycle/year, whereas in the one generated with
MEM, a sharper peak centered at 0.05–0.06 cycle/year
was observed, together with smaller peaks at �0.09–0.10
and �0.13 cycle/year. Two closely spaced peaks at
0.05–0.06 cycle/year and smaller peaks at �0.10 and
0.13–0.14 cycle/year were observed in the spectrum
generated with MTM. In the spectrum generated with
the Redfit tool, the peak centered at �0.05 cycle/year
reached the 95% confidence level, whereas smaller peaks
at �0.10, �0.13, and �0.23 cycle/year did not reach the
90% confidence level (Fig. 5).

Finally, in the spectral estimate of the standardized
chronology c500 generated with BTM, no evident peaks
were observed; in that generated with MEM, two peaks
were observed at 0.02–0.03 and 0.07–0.08 cycle/year,
respectively, whereas two closely spaced peaks at
0.02–0.04 cycle/year, as well as a smaller peak at
�0.08 cycle/year, were observed in the spectrum gener-
ated with MTM. In one of the spectra generated with
dfit Tool (number of WOSA segments ¼ 3, Welch window).
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Fig. 4. Spectral analysis of chronology c300 obtained with the Redfit Tool (number of WOSA segments ¼ 3, Welch window).

Fig. 5. Spectral analysis of chronology c400 obtained with the Redfit tool (number of WOSA segments ¼ 3, Welch window).
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the Redfit Tool, a peak at 0.01–0.02 cycle/year reached
the 95% confidence level (Fig. 6a), but by changing the
WOSA parameters, no significant peaks were observed
(Fig. 6b).

As an additional experiment, we applied spectral
analysis to the residual chronologies. The power spectra
generated with different methods resembled those
typical of white noise, with no statistically significant
peaks.

In order to investigate the presence of relations
between the periodicity in the tree-ring width time series
and climatic variables, we analyzed temperature and
precipitation data series using the same spectral analysis
methods applied to the tree-ring chronologies.

The spectral estimates for the annual mean tempera-
ture showed the presence of a peak centered at
�0.05 cycle/year. In the spectrum generated with the
Redfit Tool, the peak centered at �0.05 cycle/year
reached the 90% confidence level (Fig. 7a).

Furthermore, we analyzed the temperature variability
of late spring and summer months (i.e., the tree growing
year-period), and found in the spectra for May (Fig. 7b),
June, and September a peak centered at �0.05 cycle/
year. In the spectra generated with the Redfit Tool, this
peak reached the 95% confidence level for the monthly
temperature of May, and the 90% confidence level for
the monthly temperature of June and September.

Finally, the spectral estimates for the mean tempera-
ture for the period May–September showed the presence
of a peak centered at �0.05 cycle/year. In the spectrum
generated with the Redfit Tool, this peak reached the
95% confidence level.

Less clearly interpretable results were obtained for the
precipitation data time series. The spectra of the annual
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Fig. 6. Spectral analyses of chronology c500 obtained with the Redfit Tool (number of WOSA segments ¼ 3 in panel (a), and

number of WOSA segment ¼ 2 in panel (b); Welch window).

A. Zanzi et al. / Dendrochronologia 24 (2007) 145–154 151
mean precipitation and of the monthly precipitation for
all months, did not show any statistically significant
peak around 0.05 cycle/year, but peaks scattered at
frequencies both lower and higher than 0.05 cycle/year.
Discussion and conclusions

We showed that spectral analysis is efficient in
resolving cyclicities in standardized tree-ring chronolo-
gies; raw-data chronologies yielded power spectra
dominated by the growth trend, and residual chron-
ologies yielded flat power spectra.

The power spectra of standardized tree-ring chron-
ologies from undisturbed areas of the valley bottom
(c200) and valley slopes (c300 and c400) showed a
statistically significant peak centered at �0.05 cycle/year
(�20 year cycle), which was reproduced by all methods
used. Additional power peaks were further commonly
observed in the 0.08–0.13 cycle/year range (�12–8 year
cycles), but these were never proven statistically
significant with respect to appropriate red noise models.
Instead, power spectra of chronology c500 obtained
from trees located in an area affected by sheetfloods
yielded neither statistically significant peaks nor repro-
ducible results because slope instability induced (and
presently induces) growth anomalies (Pelfini et al.,
2005a).

Our analysis suggests that tree growth rates – if not
disturbed by external geomorphological factors – were
controlled by environmental and/or climatic conditions
that oscillated in the last �150 years on interdecadal
(�20 years) to decadal scales. Since the spectra of the
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Fig. 7. Spectral analysis of the mean annual temperature (a) and of the May monthly temperature (b) obtained with the Redfit tool

(number of WOSA segment ¼ 3, Welch window).
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analyzed temperature series broadly show the same
periodicity found in tree ring chronologies, we tenta-
tively hypothesize that a common driving factor
influenced both temperature variability (at least in the
spring-summer period) and tree growth. In particular,
we speculate that the statistically significant �20 years
periodicity found in standardized tree ring chronologies
should be mostly controlled by the similar periodicity
observed in average temperature values, and this is
because tree growth at high altitude is largely influenced
by atmosphere thermal conditions.
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