A branch-and-price algorithm for the
two-dimensional level strip packing problem

Andrea Bettinelli, Alberto Ceselli, Giovanni Righini
Dipartimento di Tecnologie dell’Informazione,
Universita degli Studi di Milano
Via Bramante 65, 26013 Crema, Italy *

December 2005

Abstract

The two-dimensional level strip packing problem (2LSPP) consists in
packing rectangular items of given size into a strip of given width divided
into levels. Items packed into the same level cannot be put on top of one
another and their overall width cannot exceed the width of the strip. The
objective is to accommodate all the items while minimizing the overall
height of the strip. The problem is NP-hard and arises from applications
in logistics and transportation. We present a set covering formulation of
the 2LSPP suitable for a column generation approach, where each column
corresponds to a feasible combination of items inserted into the same level.
For the exact optimization of the 2LSPP we present a branch-and-price
algorithm, in which the pricing problem is a penalized knapsack problem.
Computational results are reported for benchmark instances with some
hundreds items.

1 Introduction

In several industrial applications it is required to place a set of rectangular items
in standard stock units. In wood and glass manufacturing, for instance, rectan-
gular components must be cut from large pieces of material; in warehouses, the
goods must be placed on shelves; in the design of newspapers layout it is needed
to arrange articles and advertisements in pages of given size. These difficult
combinatorial problems are often modeled as two-dimensional packing or cut-
ting problems. A review on packing and cutting problems and methods can be
found in [3], while in [4], [5] and [6] the authors propose general graph-theoretical
frameworks for devising bounds on multi-dimensional packing problems.

In production contexts such as clothes or paper manufacturing, a single strip
of material is available and a set of items must be obtained from the strip. The

* Correspondence to: righini@dti.unimi.it

aim is to cut the desired items, while minimizing the height of the strip to be
used. This problem is called two-dimensional strip packing (2SPP). Recently a
fully polynomial time approximation scheme for the 2SPP has been proposed
[10]. Martello et al. [13] presented a branch-and-bound algorithm, which is
able to solve 2SPP instances with up to 200 items at optimality in one hour of
computing time.

In this paper we study a variation of the 2SPP in which a further restriction
is imposed: the items must be organized into horizontal strips, indicated as
levels; inside each level, the items cannot be put on top of one another. This
problem, surveyed by Lodi et al. [11] and referred to as two-dimensional level
strip packing problem (2LSPP), is NP-hard in the strong sense, because it
contains the bin-packing problem as a special case [7].

The 2LSPP can be approximated with fast heuristics, which provide also an
a priori guarantee on the quality of the solution [1] [11]. More recently, Lodi
et al. [11] proposed a formulation for the 2LSPP with a polynomial number of
variables and constraints; the effectiveness of state-of-the-art general purpose
ILP solvers makes this approach particularly appealing. In the survey papers
[11] and [12] the authors present models and lower bounds for several packing
problems, including the 2LSPP, without computational results.

In this paper we introduce a new formulation for the 2LSPP as a set cov-
ering problem. The linear relaxation of this model is optimized with column
generation, and the lower bound found in this way is used in a branch-and-price
algorithm. A similar approach was followed by Gilmore and Gomory [8] [9] for
the cutting stock problem. In Section 2 we present a set covering reformulation
of the 2LSPP and we discuss its relationship with the compact formulation of
Lodi et al. [11]. In Section 3 we outline the main issues in the design of our
branch-and-price algorithm. Finally, in Section 4 we report the outcome of an
experimental analysis, in which we show that the branch-and-price algorithm
outperforms a state-of-the-art general purpose solver.

2 Problem formulation

In the 2LSPP we are given a strip, whose width is a positive integer W, and a
set A/, where each item j € N has positive integer width and height, denoted
by w; and h; respectively. The items must be packed into levels: the sum of the
widths of the items in the same level cannot exceed the width of the strip. Items
in the same level cannot be piled up; hence the height of each level corresponds
to the maximum height of an item in that level. We call this particular item the
leading item and we say that the leading item initializes the level. Throughout
the paper we assume that the items are sorted by non-decreasing height values:
hi < h;j for each i < j. Hence, without loss of generality, we can state that no
item ¢ can be assigned to a level initialized by item j if i > j.

Lodi et al. [11] proposed an integer linear programming (ILP) compact
formulation for the 2LSPP, which is reported here below. Each binary variable
x;; indicates whether item i is assigned to a level in which j is the leading item;

therefore each binary variable z;; indicates whether item j is a leading item.
Because of the ordering of the items, we can fix each x;; variable with ¢ > j to
0 and remove it from the model.

min Z hjxjj (1)

JEN
j=i
Zwixij < (W - wj)xjj Vj e N (3)
i<j
ZTij € {0, 1} Vi<je€ N (4)

Constraints (2) impose that each item is assigned to a level. Constraints (3)
impose that the sum of the widths of the items assigned to the same level does
not exceed the width of the strip. The objective is to minimize the overall height
of the strip, that is the sum of the heights of the leading items.

A set covering reformulation

A lower bound for the 2LSPP can be obtained from the model above by
replacing the integrality conditions (4) with the inequalities 0 < z;; < 1. We
sharpen this bound exploiting Dantzig-Wolfe decomposition [14]: let €; be the
set of levels complying with the capacity constraints (3), for each j € N:

Qj = {l‘ij € §R:L_|szxm < (W—’LUj)l’jj,O <xzy <1 Vi e N,i S]}
i<j

Let K; be the set of the integer points in €; and let mgf be the generic integer
point of ;. Each point z;; in the convex hull of §2; can be expressed as a
convex combination of the integer points in Kj:

conv(€);) = {x;; € R} |zy; = Z x;‘?zk, Z 2z, =10<z, <1Vk e K;}. (5)
keK; keK;

Hence, by substitution from the linear relaxation of model (1)-(4) the following
relaxation of the 2LSPP is obtained:

. k
min Z h; Z x5z

JEN kEK;
s.t.z Z iz =1 Vie N
j>i keK;
Z k= 1 VJ € N (6)
keK;
0<z, <1 Vj e N,Vk € K;.

Here, all polyhedra €2; have been replaced by their convex hulls. Since the
Q; polyhedra are knapsack problem polyhedra and they do not possess the

integrality property, the convexification of the capacity constraints yields a lower
bound that dominates that of the linear relaxation of the 2LSPP.

We further elaborate on this model. First of all we remark that each Kj;
contains a point representing an empty level: these points can be considered
implicitly by rewriting constraints (6) as inequalities:

minz h; Z 2k

JEN kEK;

s.t. Z Z =1 Vie N (7)

> keK;
k?EKj
0<z, <1 Vj€N7Vk€KJ‘.

Furthermore no item is chosen more than once as a leading item in optimal
solutions and hence constraints (8) are redundant and can be deleted. Finally
the set partitioning constraints (7) can be replaced by set covering constraints,
because it is never convenient to pack an item in more than one level.

After these manipulations the resulting model is the following:

MP) min Z h; Z Zk 9)
JEN k€EK;

s.t.z Z ahz >1 Vie N (10)

i>i keK;
0<z, <1 VjieN, Vke K (11)

In this linear master problem (MP) the column corresponding to each variable
z with k € K represents a feasible set of items packed into a same level ini-
tialized by item j. An ILP formulation of the 2LSPP, alternative to (1)-(4), is
obtained by restoring the integrality conditions zj € {0,1} in the model above.

The pricing problem

Model (9) — (11) may have a huge number of columns. Therefore a restricted
master problem (RMP) involving a subset of the variables is considered and
columns not included in the RMP are iteratively generated when needed.

Let A be the vector of the non-negative dual variables associated with cov-
ering constraints (10) in a RMP optimal solution. The pricing problem we need
to solve to identify new columns is the following: m(A) = minjea{m;(A)}, where
for each j € N/

Wj(A) =min hjxj - Z)\ixi

1<j
s.t. Zwm < (W —wj)z;
i<j
z; €{0,1} Vi < j.

Thus a negative reduced cost column can be generated by solving at most |N|
binary knapsack problems, obtained by setting to 1 one x; variable at a time.

However solving a large number of knapsack problems to optimality to gen-
erate negative reduced cost columns can be unnecessary, since we just need one
negative reduced cost column, provided it exists. Therefore we solve a pricing
problem in which the leading item is not fixed, but rather it must be chosen in
an optimal way, that is we search for the column of minimum reduced cost for
all possible choices of the leading item. The pricing problem can be rewritten
in an equivalent way as follows:

m(A) =minn — Z i (12)

ieN
s.t. Z wix; < W (13)
ieN
hiz; <n Vie N (14)
r; € {0,1} VieN.

Each binary variable z; is equal to 1 if and only if item i is assigned to the level
represented by the new column. The free variable 7 is a penalty term. The value
of n is determined by the height of the leading item of the level. The capacity
constraint (13) imposes that the overall width of the level does not exceed the
width of the strip.

The objective function (12) can be rewritten in maximization form:

7'(A) = max Z Ay — 1.
ieN

This pricing problem can be solved with special purpose algorithms for the
penalized knapsack problem (PKP) illustrated in Ceselli and Righini [2].

3 Branch-and-price

Branching strategy

We base our branching rule on the x variables of the compact ILP for-
mulation (1)-(4): once an optimal MP solution z* is obtained, a corresponding
(fractional) solution x* in terms of the original variables can be found exploiting
the relation z7; = ZkeKj xfj z; for each 4,7 € N, where xfj is the i*” component
of the integer vector xf € Kj.

We have adopted a two-stage branching strategy: in the first stage search-
tree the branching decisions are taken on the x;; variables, i.e. the leading items
are chosen; in the second stage search-tree feasibility problems are solved: the
non-leading items must be packed into the levels initialized by the leading items
selected in the first stage, without violating width and height constraints. In
both stages branching is done on the x variable whose value is closest to 0.5 and
the branching variable is fixed to 0 in one branch and to 1 in the other branch;

x;; variables are considered in the first stage and z;; variables with ¢ # j are
considered in the second stage.

These variable fixing operations slightly change the structure of the pricing
problem. In the first stage, each time a x;; variable is fixed to 1, j is discarded
from the set of items in the PKP optimization, and an additional KP is solved,
to compute the best solution in which j is the leading item; when a x;; variable
is fixed to 0, it is simply discarded from the set of candidate leading items in the
PKP. In the second stage the pricing problem is a KP for each level. Therefore
fixing x;; variables only reduces the dimension of these KP instances.

The search trees are explored in a best-bound-first order.

Initialization

In order to obtain an initial set of columns to populate the RMP, we used
the well known Best-Fit Decreasing-Height (BFDH) heuristic [11]. The items
are iteratively considered from item |[A| down to item 1 and in each iteration
the current item is packed into the level with the minimum residual capacity
among those that can accommodate it. If an item cannot be accommodated in
this way, a new level is initialized. We implemented a simple randomized version
of this heuristic (r-BFDH): a preprocessing step is added, in which r items are
randomly drawn from a uniform probability distribution and the corresponding
levels are initialized.

Besides running the original version of BFDH once, three ~-BFDH solutions
are computed for each value of r from 1 to [) ;. w;/W1], that is the number
of levels in a fractional solution rounded up (this is a trivial lower bound on the
number of levels of an optimal solution). The best solution value found in this
way is also kept as an initial upper bound.

Upper bounds

We experimentally observed that the r-BFDH heuristic often provides tight
bounds. Nevertheless, we incorporate a fast heuristic rounding algorithm for
the set covering problem, in order to search for good integer solutions during
the exploration of the search-tree. The heuristic rounding algorithm works as
follows: initially, all the items are uncovered, and the columns of the RMP are
sorted by non-increasing value of the corresponding zj variables; following this
order, each column k is considered: if column k represents a level containing
uncovered items, the corresponding z; variable is rounded up to 1 and each item
in k is marked as covered, otherwise the z; variable is fixed to 0.

We run this heuristic once for each node of the search tree, when the column
generation process is over.

Problem reduction

Consider a generic node P of the first stage search-tree; let N'(P) be the set
of already selected leading items, v(P) be the sum of their heights, and UB be
the value of the best incumbent integer solution. For each item j € N\ N(P),
if v(P) + h; > UB, then j can be discarded from the set of candidate leading
items in node P.

Columns deletion and re-insertion

Each time a node of the search-tree is considered, the columns in the RMP
with a reduced cost higher than a given threshold are moved into a separate pool.
The reduced cost of each column is computed with respect to the optimal dual
solution of the ancestor node. In our implementation, the removal threshold is
computed as the difference between the best known upper and lower bounds,
divided by [, wi/W1].

The columns pool is scanned at each column generation iteration: whenever
a column is found to have a negative reduced cost with respect to the current
dual solution, it is re-inserted into the RMP. Each column is kept into the pool
for up to 6 consecutive unsuccessful checks; then it is erased.

Lagrangean bounds
The bound obtained by optimizing the master problem can also be obtained
by solving a Lagrangean dual problem when the set of constraints (2) is relaxed:

max w(A) = min Z hjxz;; — Z)\i(z xi; — 1

JEN ieN i

s.t. szm” < (W —wj)zxj; VieN
i<j
:L'ijE{O,l}. VZS]GN

For each set of multipliers A this problem is analogous to the pricing prob-
lem for the set covering formulation of the 2LSPP. In fact, it decomposes into
independent subproblems, one for each j € N:

minw;(A) =hjz;; — Z/\ Tij

i<j
s.t. wawf W — wj)xjj VjieN
1<j
IijE{O,l} Vi<jeN.

Therefore, each subproblem j can be optimized by considering two cases: if the
variable x;; is fixed to 1, then the remaining problem is a binary knapsack; this
is solved to optimality obtaining a value 7;(A). If the variable z;; is fixed to 0,
then each variable z;; with ¢ < j must be set to 0; this yields a solution of null
value. Hence, for any choice of the A multipliers, a valid lower bound w(\) for
the 2LSPP is given by

A) = Z Ai + Z min{7;(X),0}.
ieN JEN

However a key property of our pricing routine is actually to implicitly consider
these 7; values to avoid the optimization of a large number of knapsack prob-
lems. In fact, the one with minimum value is computed by solving a PKP.

Therefore, a lower bound w(\) on w(A) can be obtained by replacing each 7;(\)
value with a corresponding lower bound ().

wA) =D A+ > min{m;(}),0}.
ieN JEN

We initially approximate each m;()\) with the value of the linear relaxation of
the corresponding subproblem. These values are readily available, since they are
computed in a preprocessing step by the algorithm for the PKP. Furthermore,
whenever a tighter bound is computed during the optimization of the PKP, the
corresponding value m;()) is updated and the bound w() is tightened.

Whenever, during the column generation iterations, the difference between
the highest w()\) encountered and the RMP optimal value is less than 10~°, the
column generation process is terminated, and the Lagrangean bound is kept as
the final lower bound.

Variable fixing
We use the m;(A) values to fix variables. Once these values have been com-
puted, the following reduction tests can be checked in linear time: let UB be

the value of the incumbent integer solution:

e for each j such that m;(\) < 0, if [w(\) —x;(A\)] > UB then j can be
fixed as a leading item (i.e. z;; is fixed to 1);

e for each j such that m;(A) > 0, if [w(\) +;(A\)] > UB then j can be
discarded from the set of candidate leading items (z;; is fixed to 0).

Combinatorial bound

Finally, we incorporated in our bounding procedure a combinatorial lower
bound (called CUT in the remainder) proposed by Lodi et al. [12]. It consists
in splitting each item in vertical strips of unit width and in filling the levels by
considering these strips in order of non-increasing height. This bound domi-
nates that given by the LP relaxation of the compact formulation (1)-(4), but
no dominance relation exists with the set covering LP bound. Since we are
assuming that items have been sorted in a preprocessing step, this bound can
be computed in linear time.

The CUT bound is computed for each node of the search-tree before the
column generation process is started. Whenever the value of an RMP optimal
solution is found to be less than the value of the CUT bound, the column
generation process is halted, and the CUT bound is kept as the lower bound.

4 Computational results

Our branch-and-price algorithm was implemented in C++ and compiled with
a GNU C/C++ compiler version 3.2.2. We solved the restricted linear master
problem with the CPLEX 8.1 implementation of the primal simplex algorithm.
All our experiments were run on a Linux workstation equipped with a Pentium

IV 1.6 GHz processor and 512 MB of RAM. A time limit of 1 hour was imposed
to each test. Furthermore, the program was halted whenever the computation
exceeded the amount of physical memory.

In order to assess the effectiveness of our method, we considered two data-
sets for two-dimensional packing problems widely used in the literature; they are
both described in [12]. The first one consists of 5 classes of instances: BENG (10
instances), CGCUT (3 instances), GCUT (4 instances), HT (9 instances) and
NGCUT (12 instances). The second data-set consists of 500 instances, divided
into 10 classes of 50 instances, named MV and BW. They contain instances
involving up to 200 items with different types of correlation between height and
width of the items.

Lower bounds

First we compared three different lower bounds, namely the lower bound
given by the linear relaxation of the set covering formulation (9)-(11), indicated
hereafter with SC bound, the lower bound given by the linear relaxation of
the compact formulation (1)-(4), indicated with LP bound, and the CUT lower
bound. As a measure of the duality gap we considered, for each instance, the
ratio (UB — LB)/UB, where UB is the value of the BFDH heuristic solution
and LB is the value of the lower bound considered. In Tables 0(a) and 0(b) we
report the average values of the gap for the instances in each class of the first
and the second data-set respectively. Each row of these tables corresponds to a
class of instances.

The LP bound is weaker than the CUT bound also from an experimental
point of view. For the instances of the first data-set, CUT is on the average
the tightest bound, while for the instances of the second data-set the SC bound
is clearly superior (see, for instance, classes BW03 and BW05). On the other
hand, the computation of the SC bound is two orders of magnitude slower than
that of the CUT bound.

Finally it is worth noting that the CUT and SC bounds seem to be comple-
mentary, since they are tighter for different classes of instances. This observation
was one of the motivations for including the computation of both bounds in a
unique lower bounding routine to solve the 2LSPP to optimality.

Solving the 2LSPP to proven optimality

We compared the performance of our branch-and-price algorithm with that
of CPLEX 8.1, used as a general purpose ILP solver to optimize the compact
model (1)—(4). Tables 1(a) and 1(b) contain the results for the first and the
second data-set respectively. Each entry of the table represents an average
value of the instances in a class, and the class identifiers are indicated in the
first column. Each table is made by two blocks; each of them corresponds
to the solution method indicated in the first row. In each block we report
the number of instances in each class that were solved to proven optimality
(column “solved inst.”), the average gap between the value of the incumbent
primal solution (UB) and the lower bound (LB), defined as (UB — LB)/UB,
for the instances in which optimality was not proven (column “avg. gap”) and

the average computing time for the instances that were closed (column “time”).
In the last row of each table we report the total number of instances solved to
proven optimality.

Branch-and-price solves all the instances in the first data-set, while CPLEX
leaves a large gap on 7 of the 10 BENG instances. Moreover, branch-and-price
is on the average much faster on the remaining classes. Branch-and-price per-
forms much better than CPLEX also on the instances of the second data-set,
solving more problems and consistently requiring less computing time or yield-
ing tighter approximations.

Acknowledgements
This paper is based on the first author’s degree thesis, which was awarded the
“Camerini-Carraresi” award from the Italian O.R. Society (AIRO) in 2005. The
authors acknowledge the kind support of ACSU - Associazione Cremasca Studi
Universitari to the “OptLab”, where this research has been done.

References

[1] J.O. Berkey and P. Y. Wang. Two-dimensional finite bin-packing algo-
rithms. Journal of the Operational Research Society, 38:423-429, 1987.

[2] A. Ceselli and G. Righini. An optimization algorithm for a penalized knap-
sack problem. Operations Research Letters, in press, available online, 2005.

[3] H. Dickhoff, G. Scheithauer, and J. Terno. Cutting and packing, pages
393-413. Wiley, New York, 1997.

[4] S. P. Fekete and J. Schepers. On higher-dimensional packing iii: Exact
algorithms. Technical Report 97-290, 1997.

[5] S. P. Fekete and J. Schepers. A combinatorial characterization of higher-
dimensional orthogonal packing. Mathematics of Operations Research,
29:353-368, 2004.

[6] S. P. Fekete and J. Schepers. A general framework for bounds for higher-
dimensional orthogonal packing problems. Mathematical Methods of Oper-
ations Research, 60(2):311-329, 2004.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to
the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

[8] P.C. Gilmore and R.E. Gomory. A linear programming approach to the
cutting stock problem. Operations Research, 9:849-859, 1961.

[9] P.C. Gilmore and R.E. Gomory. A linear programming approach to the
cutting stock problem - part ii. Operations Research, 11:863-888, 1963.

10

[10]

[11]

[12]

C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional
cutting stock problem. Mathematics of Operations Research, 25:645-656,
2000.

A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems:
a survey. Furopean Journal of Operational Research, 141:241-252, 2002.

A. Lodi, S. Martello, and D. Vigo. Models and bounds for two dimensional
packing problems. Journal of Combinatorial Optimization, 8:363 — 379,
2004.

S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-
packing problem. INFORMS Journal on Computing, 15:310-319, 2003.

R.K. Martin. Large scale linear and integer optimization. Kluwer academic,
1998.

11

(a)

Class \ LP bound CUT bound SC bound
BENG 6.75% 0.47% 4.69%
GCUT 14.91% 10.57% 0.14%

NGCUT 12.57% 4.21% 5.10%
CGCUT 4.66% 4.66% 6.95%
HT 7.80% 0.40% 4.09%

(b)

Class LP bound CUT bound SC bound
MV 01 8.73% 6.37% 2.29%
MV 02 7.80% 1.00% 5.46%
MV 03 11.95% 8.97% 2.96%
MV 04 7.99% 1.55% 3.80%
BW 01 11.90% 9.40% 2.19%
BW 02 8.68% 1.79% 3.78%
BW 03 14.57% 12.17% 0.69%
BW 04 8.61% 5.42% 4.53%
BW 05 19.18% 17.77% 0.04%
BW 06 9.24% 4.80% 2.56%

Table 1: Comparison of lower bounds

(a)
B&P CPLEX 8.1
Class | solved inst. avg. gap time(s) solved inst. avg. gap time(s)
BENG 10 0 0.02 3 4.96% 24.47
GCUT 4 0 3.18 4 0 1.06
NGCUT 12 0 0.02 12 0 0.09
CcGCUT 3 0 0.43 3 0 67.01
HT 9 0 0.02 9 0 10.14
Total 38 31
(b)
B&P CPLEX 8.1
Class | solved inst. avg. gap time(s) solved inst. avg. gap time(s)
MV 01 48 0.68% 12.35 48 0.54% 14.09
MV 02 48 0.99% 6.51 25 4.26% 150.01
MV 03 49 0.26% 8.30 47 0.47% 22.49
MV 04 41 1.03% 55.03 21 3.98% 173.26
BW 01 49 0.28% 2.91 48 0.60% 19.29
BW 02 36 1.00% 202.71 21 4.35% 114.12
BW 03 50 0.00% 0.23 50 0.00% 0.16
BW 04 23 1.31% 123.81 17 2.08% 94.71
BW 05 50 0.00% 0.08 50 0.00% 0.04
BW 06 43 1.20% 99.33 34 1.20% 224.74
Total 437 361

Table 2: Solving the 2LSPP to proven optimality

12

