
Semidefinite Bounds for the Maximum Diversity

Problem

Roberto Aringhieri Maurizio Bruglieri Roberto Cordone

July 27, 2006

Abstract

The Maximum Diversity Problem consists in extracting a subset
of given cardinality from a larger set in such a way that the sum of
their pairwise distances is maximum. In this paper we propose a set
of bounds for this problem based on semidefinite programming tech-
niques. An extensive computational campaign shows the tightness of
the bounds computed with respect to the best known results in lit-
erature and to bounds obtained by a linearized integer programming
formulation.

1 Introduction

Given a set N of n objects, an integer number m and a matrix {dij} provid-
ing the diversity between each pair of objects i and j belonging to N , the
Maximum Diversity Problem (MDP) consists in finding a collection M ⊂ N
of m objects such that the sum of their pairwise distances is maximum. In
the sequel we assume, w.l.o.g., that the diversity matrix is symmetric (i. e.
dij = dji for all i, j ∈ N) and that dii = 0 for all i ∈ N .

This problem has several practical applications. A common requirement
in the identification of work teams, student groups and juries is, for in-
stance, to gather individuals with strongly diversified characteristics: work
teams take advantage from including the largest possible range of skills, stu-
dent groups should encourage the exchange between people with different
backgrounds, juries should represent the widest variety of points of view
existing in a community. The distance between individuals i and j with
respect to the relevant characteristics can be modeled by a suitable function
dij , and most of the time the number of individuals in the team is fixed.
Other interesting applications concern the allocation of available resources
for preserving biological diversity [10], VLSI design, scheduling final exams,
medical treatment, and data mining [12].

In this paper we survey the quadratic and linear integer formulations
previously proposed in the literature for the MDP. Then, we introduce some

1



semidefinite formulations and relaxations, in order to compare the strength
of the resulting bounds. We extend the comparison to the bounds provided
by the continuous relaxation of a linearized integer programming formula-
tion (both in its original form and strengthened by general-purpose cuts).
To estimate the tightness of all these bounds, we compare them to the
best known results on the two benchmark sets commonly adopted in the
literature. These results mainly derive from a couple of Tabu Search ap-
proaches [7, 4], from a Scatter Search and a Variable Neighborhood Search
algorithm [3] and from several Greedy Randomized Adaptive Search Proce-
dures (GRASP) [8, 1, 16, 2, 15]. The semidefinite bounds outperform both
in quality and in computational time the linear programming bounds, and
the gaps with respect to the best known solution values are quite small.

The paper is organized as follows. Mathematical formulations and bounds
deriving from the literature are presented in Section 2, new semidefinite for-
mulations and bounds in Section 3 whilst the computational results are
reported and discussed in Section 4. Concluding remarks are presented in
Section 5.

2 Formulations from the literature

The MDP is strongly NP-hard [13] and it was introduced by Glover [9].
In [13] Kuo et al. developed the following integer quadratic programming
formulation:

max
{

∑

i,j∈N

dijxixj :
∑

i∈N

xi = m , xi ∈ {0, 1}
}

(1)

where xi = 1 if object i ∈ M , xi = 0 otherwise. In the same article
they also provided two equivalent linear integer models, based on the same
variables xi. In the former

z = max
∑

i,j∈N

dijyij (2a)

∑

i∈N

xi = m (2b)

yij ≤ xi i, j ∈ N (2c)

yij ≤ xj i, j ∈ N (2d)

yij ≥ xi + xj − 1 i, j ∈ N (2e)

xi ∈ {0, 1} i ∈ N (2f)

yij ∈ {0, 1} i, j ∈ N (2g)

where constraints (2c), (2d), (2e) and (2g) guarantee that the auxiliary vari-
able yij equals 1 if both objects i and j ∈ M , 0 otherwise.

2



In the latter linearization, if i ∈ M variable wi expresses the total diver-
sity

∑

j∈M dij of object i with respect to the other objects in the solution;
otherwise, wi = 0.

z = max
∑

i∈N

wi (3a)

∑

i∈N

xi = m (3b)

wi ≤ Uixi i ∈ N (3c)

wi ≤
∑

j∈N

dijxj − (1 − xi)Li i ∈ N (3d)

xi ∈ {0, 1} i ∈ N (3e)

where Li and Ui are, respectively, a lower and an upper bound on the value
of

∑

j∈N dijxj . The quality of these bounds strongly affects the quality of
the continuous relaxation of (3).

In [8] Ghosh turned the quadratic formulation (1) into an unconstrained
one by penalizing the violation of the cardinality constraint. All these ap-
proaches are able to solve exactly instances up to 40 elements, much less than
the typical dimension of real world problems, at least in some application
fields.

3 Semidefinite formulations and bounds

The MDP is related to problems, such as Max Cut and Max Clique, which,
though easy to linearize, are intrinsically quadratic. Semidefinite relaxations
have proved to be very effective on these problems [11, 6]. It is therefore
promising to test this approach on the MDP.

Analogously to the max-clique formulation presented by [6], the MDP
can be formulated in terms of an unknown square matrix X of size n as
follows

z = maxD • X (4a)

rank (X) = 1 (4b)

I • X = m (4c)

X � 0 (4d)

Xij ∈ {0, 1} (4e)

Here • denotes Frobenius product between matrices, rank (X) is the rank of
matrix X, X � 0 indicates that matrix X should be positive semidefinite
and I is the identity matrix of size n. Constraints (4b) and (4d) guarantee
that X = xxT for a suitable vector x, whilst constraints (4e) guarantee inte-
grality and constraint (4c) is the diagonal representation of the cardinality
requirement.

3



Other formulations can be obtained (see [14]) by replacing the diagonal
representation respectively with

(4c′) J • X = m2 (square representation)

(4c′′) (J − mI) • X = 0 (extended square representation)

(4c′′′)
∑

j∈N Xij = mXii and
∑

j∈N (Xjj − Xij) = m (1 − Xii) for all i ∈ N

where J is the all-one matrix of size n. The semidefinite bounds are ob-
tained by relaxing the non-convex rank constraint (4b) and the integrality
constraint (4e).

Notice that in our formulations the integrality constraint is explicitly
imposed by (4e). On the contrary, the standard way to turn a linear formu-
lation into a semidefinite one [14] refers to a different unknown matrix X of
size n + 1, suitably constrained to guarantee that

X =

[

1 xT

x xxT

]

In this framework, the integrality constraint is expressed as

X0i = Xii i = 1, . . . , n + 1

and the four representations of the cardinality constraint listed above must
be trivially modified to take into account the larger size of X. The resulting
four semidefinite bounds, obtained relaxing only the rank constraint (4b),
are ordered by non decreasing tightness [14]. We have experimented with
the standard technique, but we have rejected it after finding out that the
four resulting bounds are very close to the corresponding bounds obtained
with our approach, while requiring a longer computational time. This is due
to the larger number of variables involved.

4 Computational Results

We computed all the semidefinite bounds described above with CSDP 5.0,
a software package for solving semidefinite programming problems (see [5]).
Some of the relaxations exhibited numerical convergence problems. How-
ever, these problems were overcome by keeping in all tested formulations the
diagonal representation of the cardinality constraint (4c). In other words, in-
stead of replacing constraint (4c) with one of its alternative forms (4c′), (4c′′)
and (4c′′′), we simply add one of them to the basic formulation.

In our experimental campaign, we consider the following two bounds.
The first one, denoted as CSDP1, is given by formulation (4) plus the ex-
tended square representation (4c′′). The second, denoted as CSDP2, is given

4



by formulation (4) plus constraints (4c′′′). We neglect the two possible re-
maining bounds: the only formulation (4) yields an extremely weak bound;
the formulation (4) plus the square representation (4c′) is trivially equivalent
to the CSDP1 and it takes a slightly longer computational time.

Then we also compute the bounds provided by the continuous relax-
ation of the linearized integer programming formulation (2). To achieve a
remarkable improvement in the bound, we add the constraints

∑

j∈N

yij = mxi i ∈ N (5)

which are a linearized version of (4c′′′). We solve the resulting formula-
tion with the state-of-the-art commercial MIP solver CPLEX 8.1 and also
try to further strengthen it by applying all general-purpose cuts available.
We neglect formulation (3), because it proved weaker than formulation (2)
strengthened by constraints (5).

To estimate the tightness of all these bounds, we compare them to the
best known results on the two benchmark sets commonly adopted in the
literature. Benchmark B1, proposed in [1], consists of 40 instances with n
ranging from 50 to 250 and m from 0.2n to 0.4n; benchmark B2, proposed
in [16], consists of 20 instances with n ranging from 100 to 500 and m
from 0.1n to 0.4n. These instances are also available at http://www.dti.

unimi.it/~aringhieri. The best known results on these instances mainly
derive from a couple of Tabu Search approaches [7, 4], from a Scatter Search
and a Variable Neighborhood Search algorithm [3] and from several Greedy
Randomized Adaptive Search Procedures (GRASP) [8, 1, 16, 2, 15].

The experimental campaign has been performed on a Pentium D 3.2Ghz
machine with 2GB of main memory running under Linux operating system.
The codes have been compiled with gcc 4.0.2 compiler.

Tables 1 and 2 respectively report the results on benchmarks B1 and
B2. The first three columns of Table 1 and the first two of Table 2 describe
the instances, providing the total number of elements n and the number
of elements m to be included in the solution. Table 1 also reports in the
first column the class of instances (A, B, C or D) with respect to the ran-
dom generation of the diversity matrix. The following column reports the
best known result in the literature. The following two columns provide the
results for the semidefinite bounds CSDP1 and CSDP2. Considering the
formulation (2) plus constraint (5), the column labeled as CPLEX indicates
the solution value obtained by solving its continuous relaxation whilst the
column labeled as CPLEX+all indicates the solution values obtained by
imposing all available general-purpose cuts to the solver and limiting the
computation to the root of the branching tree. For each bound, column %
gap provides the percent gap with respect to the best known result and col-
umn CPU the computational time in seconds required to compute it. Note

5



that the computing time for CPLEX has been limited to 1 day. The gaps for
the semidefinite bounds are bolded when they are both better and faster to
compute than the corresponding bounds obtained from the formulation (2).

As for Table 1, the average gap obtained by CPLEX exceeds 20%.
Adding all available general-purpose cuts seems to have almost no effect on
the quality of the bound, apart from few instances in class C. The semidef-
inite average gaps are 12.89% and 2.45%. The average computational time
required by CPLEX is from 3 to 7 times higher than the time required by
the stronger semidefinite bound, which is 40 times higher than the time re-
quired by the weaker semidefinite bound. The quality of both semidefinite
bounds improves clearly when m ≈ n/2, and this is particularly true for the
tighter bound. The computational time, however, does not depend on m. A
similar, but weaker, dependence of the gap on m holds for CPLEX, whose
computational time increases when the final gap improves.

Table 2 confirms most of the previous remarks. They seem to be harder,
as the average gap achieved by CPLEX rises to over 47%, and the average
gap achieved by the two semidefinite bounds rises, respectively, to 11.10%
and 7.67%. The computational time required by CPLEX with no additional
cuts is 10 times larger than the one required by the stronger semidefinite
bound. The generation of all general-purpose cuts makes the computation
longer than one day for the instances with n ≥ 400. On the smaller in-
stances, the computation is on average 50 times slower. The computational
time for the stronger semidefinite bound is, on its turn, 80 times longer than
the one required by the weaker semidefinite bound. Once again, the quality
of the semidefinite gap improves sharply when m ≈ n/2, in particular for
the tighter bound, with similar computational times. However, the influence
of m on the linearized bound seems opposite to the one reported by Table 1.
Here, the computational times seem to get larger when m increases, even
though the gap is larger. Both semidefinite bounds outperform CPLEX: in
particular, CPLEX could not find a feasible solution in one day of computa-
tion for the instance with n = 500 and m = 200. The only exception is the
instance with n = 100 and m = 10 where CSDP1 and CSDP2 obtain worse
gaps than CPLEX (35% and 27% versus 21%).

For the instance with n = 500 and m = 150, we reported a different best
known result with respect to the one published in [16]: this value, equal to
58605, is in fact larger than the bound computed by CSDP2. This remark
confirms that the best known value is 56572, as published in the most recent
papers [4, 15, 7].

5 Conclusions

In this paper we have introduced a sequence of semidefinite bounds based
on quite standard formulation techniques [14] for the Maximum Diversity

6



Instance Best CSDP 1 CSDP 2 CPLEX CPLEX + all

Type n m known % gap CPU % gap CPU % gap CPU % gap CPU

50 10 491.9 8.33% 0.06 0.30% 0.54 9.01% 0.13 8.96% 0.23

50 20 1931.5 3.14% 0.07 0.03% 0.51 6.11% 0.33 4.66% 0.68

100 20 2007.1 6.93% 0.38 0.07% 5.77 11.50% 3.46 11.50% 8.11

100 40 7730.0 3.15% 0.37 0.01% 5.82 7.88% 8.00 7.05% 19.34

A 150 30 4552.1 6.96% 1.05 0.03% 23.28 11.76% 22.03 11.76% 61.37

150 60 17482.4 2.92% 1.09 0.00% 24.44 7.50% 45.93 6.59% 137.31

200 40 8132.1 6.77% 2.19 0.01% 96.46 11.14% 79.27 11.13% 261.01

200 80 31048.6 2.93% 2.23 0.00% 94.18 7.21% 181.69 6.30% 655.06

250 50 12654.0 6.85% 4.47 0.01% 208.52 11.79% 249.49 11.79% 880.03

250 100 48384.3 2.89% 4.15 0.00% 196.77 7.44% 553.10 6.59% 1785.10

50 10 334976 17.35% 0.06 8.16% 0.50 20.03% 0.20 20.03% 0.33

50 20 1171416 5.75% 0.06 1.77% 0.47 27.87% 0.33 27.87% 0.60

100 20 1267277 13.33% 0.33 7.76% 4.50 34.34% 5.06 34.34% 12.11

100 40 4544642 4.16% 0.37 1.99% 5.00 36.67% 9.09 36.67% 21.50

B 150 30 2758381 10.85% 1.01 6.59% 18.17 41.17% 32.00 41.17% 73.06

150 60 9960461 3.62% 1.05 1.83% 20.76 41.22% 61.51 41.22% 144.62

200 40 4788086 9.37% 2.23 6.16% 73.15 45.81% 121.18 45.81% 332.12

200 80 17544448 2.75% 2.32 1.48% 78.51 43.04% 324.12 43.04% 795.99

250 50 7389784 8.57% 4.31 5.94% 165.85 48.64% 518.44 48.64% 1145.64

250 100 27168460 2.74% 4.18 1.55% 175.25 44.95% 1212.75 44.95% 2378.38

50 10 316409 33.47% 0.06 2.35% 0.44 15.91% 0.11 15.87% 0.18

50 20 1094343 6.07% 0.06 0.34% 0.47 7.84% 0.24 0.00% 0.32

100 20 1207522 33.48% 0.33 4.19% 4.86 28.23% 3.92 28.23% 7.12

100 40 4219476 11.24% 0.35 0.81% 5.29 17.62% 9.00 12.94% 22.52

C 150 30 2613286 33.19% 0.99 4.28% 20.99 33.15% 25.35 33.15% 55.38

150 60 9374611 10.54% 1.03 0.39% 21.13 19.67% 53.79 16.74% 142.00

200 40 4630545 34.03% 2.10 3.65% 78.86 36.19% 113.21 36.19% 206.59

200 80 16759895 10.56% 2.11 0.35% 83.74 21.23% 218.91 18.37% 626.02

250 50 7178043 34.51% 3.76 3.73% 177.04 38.06% 334.49 38.06% 710.53

250 100 26047022 11.21% 3.80 0.36% 178.10 23.09% 613.12 20.32% 1708.04

50 10 381379 18.83% 0.06 6.67% 0.44 11.04% 0.20 11.04% 0.35

50 20 1502908 4.33% 0.06 0.85% 0.48 10.64% 0.49 10.64% 0.86

100 20 1570800 26.30% 0.34 5.69% 4.85 12.98% 6.89 12.98% 12.01

100 40 6067776 8.95% 0.36 0.77% 5.58 11.71% 13.13 11.71% 24.50

150 30 3502567 27.26% 1.01 6.22% 24.02 15.81% 45.49 15.81% 93.82

D 150 60 13611262 8.98% 0.97 0.82% 22.06 12.43% 103.83 12.43% 184.14

200 40 6207580 27.43% 2.41 5.69% 93.87 16.82% 212.94 16.82% 352.72

200 80 24133321 9.02% 2.24 0.73% 87.15 12.70% 456.80 12.70% 770.91

250 50 9685430 27.74% 3.83 5.79% 210.35 17.54% 636.22 17.54% 1249.81

250 100 37753120 9.02% 3.97 0.65% 195.33 12.77% 1291.24 12.77% 3237.35

Table 1: Results on benchmark B1

7



Instance Best CSDP 1 CSDP 2 CPLEX CPLEX + all

n m known % gap CPU % gap CPU % gap CPU % gap CPU

100 10 333 35.47% 0.32 27.08% 4.91 20.94% 2.06 20.65% 75.76
100 20 1195 15.19% 0.33 6.83% 4.22 34.23% 6.58 34.19% 131.18
100 30 2457 6.52% 0.37 2.53% 4.54 39.55% 9.60 39.45% 123.56
100 40 4142 4.99% 0.35 2.02% 4.94 39.67% 11.71 39.62% 164.66
200 20 1247 30.07% 2.18 23.71% 72.50 36.42% 210.11 36.26% 2817.06
200 40 4450 10.89% 2.35 7.01% 74.56 48.14% 230.34 48.12% 6849.75
200 60 9437 5.64% 2.20 2.62% 77.48 48.74% 278.23 48.64% 4364.91
200 80 16225 3.16% 2.17 1.71% 77.61 45.95% 248.65 45.94% 5233.09
300 30 2694 25.10% 6.58 19.58% 308.67 44.47% 1742.33 44.39% 21511.81
300 60 9689 8.66% 7.11 5.76% 303.70 54.64% 3285.25 54.63% 52261.59
300 90 20743 4.53% 6.49 2.68% 328.11 53.83% 2583.27 53.81% 39832.66
300 120 35881 3.03% 6.80 1.31% 341.63 49.18% 2611.45 49.16% 50104.42
400 40 4658 21.92% 14.54 17.81% 992.75 50.09% 6389.14 50.02% 1 day
400 80 16956 7.84% 15.43 5.38% 977.11 57.92% 10046.77 57.91% 1 day
400 120 36317 3.81% 16.48 2.44% 1051.53 56.91% 12444.66 56.90% 1 day
400 160 62487 2.35% 16.15 1.46% 1099.05 52.26% 11763.89 52.26% 1 day
500 50 7141 19.90% 27.43 15.99% 2585.36 53.69% 16009.04 53.66% 1 day
500 100 26258 7.02% 30.43 4.35% 2559.37 59.76% 41375.73 n.a. 1 day
500 150 56572 3.68% 30.56 1.93% 2580.45 52.14% 24925.28 57.60% 1 day
500 200 97344 2.26% 30.56 1.14% 2718.72 52.92% 36628.22 52.91% 1 day

Table 2: Results on benchmark B2

8



Problem. The computational results show the tightness of these bounds with
respect to the best known results from literature. The average gap ranges
between 2.45% and 12.89% for the easiest instances in B1 and between 7.67%
and 11.10% for the hardest ones in B2. The average computational time in
seconds ranges from 1.45 to 60.34 and from 10.75 to 808.36 for B1 and B2,
respectively. We have also compared these results with those obtained by
solving with CPLEX a linearized integer programming formulation. These
gaps, on average, are much larger than the semidefinite bounds. Moreover,
CPLEX requires a longer average computational time than CSDP.

Acknowledgment

The authors wish to thank Brian Borchers for his help and useful suggestions
in using his code for semidefinite programming CSDP [5].

References

[1] P. M. D. Andrade, A. Plastino, L. S. Ochi, and S. L. Martins. GRASP
for the Maximum Diversity Problem. In Proceedings of the Fifth Meta-
heuristics International Conference (MIC 2003), 2003.

[2] P. M. D. Andrade, L. S. Plastino, and S. L. Martins. GRASP with
path-relinking for the maximum diversity problem. In S. Nikoletseas,
editor, Proceedings of the 4th International Workshop on Efficient and
Experimental Algorithms (WEA 2005), volume 3539 of Lecture Notes in
Computer Science, pages 558–569. Springer Berlin / Heidelberg, 2005.

[3] R. Aringhieri and R. Cordone. Better and faster solutions for the max-
imum diversity problem. Note del Polo 93, Università degli Studi di
Milano, Crema, April 2006.

[4] R. Aringhieri, R. Cordone, and Y. Melzani. Tabu search vs. GRASP
for the Maximum Diversity Problem. Note del Polo 89, Università degli
Studi di Milano, Crema, December 2005. [submitted for publication to
4OR].

[5] B. Borchers. CSDP, a C library for semidefinite programming. Opti-
mization Methods & Software, 11(2(1-4)):613–623, 1999.

[6] I. Djukanovic and F. Rendl. Semidefinite programming relax-
ations for graph coloring and maximal clique problems. Tech-
nical report, University of Klagenfurt, 2005. www.math.uni-
klu.ac.at/or/Forschung/index.php.

[7] A. Duarte and R. Mart́ı. Tabu search for the maximum diversity prob-
lem. European Journal of Operational Research. [to appear].

9



[8] J. B. Ghosh. Computational aspects of maximum diversity problem.
Operation Research Letters, 19:175–181, 1996.

[9] F. Glover, G. Hersh, and C. McMillian. Selecting subset of maximum
diversity. MS/IS 77-9, University of Colorado at Boulder, 1977.

[10] F. Glover, C. C. Kuo, and K. S. Dhir. A discrete optimization model for
preserving biological diversity. Appl. Math. Modelling, 19(11):696–701,
November 1995.

[11] M.X. Goemans and D.P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM, 42:1115–1145, 1995.

[12] G. Kochenberger and F. Glover. Diversity data mining. Working Paper
Series HCES-03-99, The University of Mississipi, 1999.

[13] C. C. Kuo, F. Glover, and K.S. Dhir. Analyzing and modeling the max-
imum diversity problem by zero-one programming. Decision Science,
24:1171–1185, 1993.

[14] M. Laurent and F. Rendl. Semidefinite Programming and Integer Pro-
gramming, pages 393–514. Elsevier B.V., 2005.

[15] L.F. Santos, M.H. Ribeiro, A. Plastino, and S.L. Martins. A Hybrid
GRASP with Data Mining for the Maximum Diversity Problem. In
Andrea Roli Michael Sampels Mara J. Blesa, Christian Blum, editor,
Hybrid Metaheuristics, Second International Workshop, volume 3636 of
Lecture Notes in Computer Science, pages 116–127. Springer Berlin /
Heidelberg, 2005.

[16] G. C. Silva, L. S. Ochi, and S. L. Martins. Experimental comparison
of greedy randomized adaptive search procedures for the maximum di-
versity problem. In Proceedings of the 3rd International Workshop on
Efficient and Experimental Algorithms (WEA 2004), volume 3059 of
Lectures Notes on Computer Science, pages 498–512. Springer Berlin /
Heidelberg, 2004.

10


