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1 Introduction

Vilfredo Pareto, trained as a mechanical engineer during his university studies, then

a managing director of business �rms for a few years, turned relatively late in his

life to both the academic profession and the systematic study of economics. How-

ever, after embracing his new career in the early 1890s, he devoted twenty years of

unremitting e�orts (essentially between1892 and 1911) to the development of the eco-

nomic science, quickly becoming one of the leading �gures in that area of economic

research, referred to by Pareto as "mathematical economics", that was then practiced

by a small, though rapidly growing, minority of scholars. As is well-known, as far as

mathematical economics is concerned, Pareto's main purpose and achievement was

to perfect and expand General Equilibrium Theory, that is, the theory that Pareto

had inherited from Walras and that he was inclined to regard as the core of "pure

economics". In this respect, while in his early works, particularly in his �rst long

theoretical essay, published in Italian in �ve instalments in 1892-93, as well as in his

Cours d'�economie politique, �rst published in two volumes in 1896-97, Pareto con-

�ned himself to a brilliant restatement of Walras' original theory, with only a few

ingenious embellishments, in his later writings he strove to turn General Equilibrium

Theory into a more and more abstract and general theory of rational choice and so-

cial interaction: indeed, this ambitious objective is made explicit in the mathematical

appendix to the French edition of Pareto's Manuel d'�economie politique, published

in 1909, as well as in his French encyclopaedia article, "L'�economie math�ematique",

published in 1911, which may be regarded as his last signi�cant contribution to eco-

nomic theory strictly speaking. (As is well-known, in fact, after 1911 Pareto almost

exclusively addressed his research interests towards sociology and related topics.)

Now, while Pareto's perspective and purposes broadened and partly changed over

the two decades he consecrated to economics, he always kept faithful to one method-

ological principle which in fact constantly recurs, albeit with varying emphasis, in

all of his economic writings of that period: namely, the principle that the science of

economics has much to learn from the science of mechanics or, more precisely, that
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rational mechanics ought to be taken as the model after which to shape theoretical

economics. In a sense, this idea of Pareto's was nothing original in the economics com-

munity of that period; rather, it was almost a commonplace among the economists

who chie
y contributed to the foundation and early consolidation of the approach

which would later be called "marginalist"or "neoclassical economics". As a matter of

fact, and just to give a few examples, two founding fathers of the approach out of the

conventional three, namely, Jevons (1871) and Walras (1874-77), made systematic use

of the mechanical analogy in developing and justifying their new theories (towards

the end of his life, Walras (1909) will come back to the idea of a fundamental method-

ological similarity between mechanics and economics, by publishing an essay with the

revealing title "�Economique et m�ecanique"); a few years after the fatal 1871, Edge-

worth (1881) frequently resorted to his knowledge of classical mechanics to strengthen

his economic arguments, whereas Marshall (1890), his notorious predilection for bi-

ological analogies notwithstanding, did not refrain from �lling up his magnum opus

with mechanical illustrations and digressions; �nally, in the very year in which Pareto

entered the scienti�c arena with his �rst important contribution to economics, Fisher

(1892) published his famous dissertation, where a general equilibrium model is dis-

cussed which is explicitly constructed as a model of hydromechanical equilibrium.

Yet, even if most of his contemporaries apparently shared in common the idea that

the newly born approach of mathematical economics should draw its inspiration from

the extraordinary results reached over the centuries by the queen of the natural sci-

ences, that is, classical mechanics, it was Pareto who more than any other economist

of that period tried to turn that somewhat vague methodological prescription into a

precise analytical program.

The lines of such program are reiterated over and over again in practically all of

Pareto's writings concerning theoretical economics (see, in particular, Pareto (1892-

93), (1896-97), (1900), (1901a), (1901b), (1902), (1906), (1909), (1911)). Yet the work

where Pareto's stance is most explicitly stated is undoutedly the Cours, especially Vol.

II. Here, in a famous passage, Pareto (1896-97, Vol. II, pp. 12-13) summarizes his

point of view on the relationship between mechanics and economics in the following
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way:

592.Il serait inutile d'insister sur ce sujet si l'Economie politique n'�etait

�etudi�e que par des personnes ayant des connaissances de m�ecanique ra-

tionelle. L'�equilibre d'un syst�eme �economique pr�esente des analogies frap-

pantes avec l'�equilibre d'un syst�eme m�ecanique1[Pareto's argument con-

tinues in following footnote]

(592)1Il n'est peut-être pas inutile de pr�esenter un tableau des analo-

gies qui existent entre le ph�enom�ene m�ecanique et le ph�enom�ene sociale.

[...]

Ph�enom�ene m�ecanique Ph�enom�ene sociale
Un certain nombre de corps Une soci�et�e �etant donn�e,

mat�eriels �etant donn�es, on �etudie on �etudie les rapports que la
les rapports d'�equilibre et de production et l'�echange de la
mouvement qu'ils peuvent avoir richesse suscitent entre les
entre eux, en faisant abstraction hommes, en faisant abstraction
des autres propri�et�es. On a ainsi des autres circonstances. On a
une �etude de m�ecanique. ainsi une �etude d'�economie

politique.

Cette science de la m�ecanique Cette science de l'�economie
se divise elle-même entre deux politique se divise elle-même
autres. On consid�ere des points entre deux autres. On consid�ere
mat�eriels et des lignes l'homo oeconomicus,
inextensibles. On a ainsi une n'agissant qu'en vertu des

science pure: la m�ecanique forces �economiques. On a ainsi
rationelle, qui �etudie d'une l'�economie politique pure, qui
mani�ere abstraite l'�equilibre des �etudie, d'une mani�ere abstraite,
forces et le mouvement. La les manifestations de l'ophelimit�e.
partie la plus facile est la La seule partie que nous

science de l'�equilibre. Le principe commen�cons �a bien connâ�tre est
de d'Alembert, en consid�erant les la partie qui traite de l'�equilibre.
forces d'inertie, permet de r�eduire Nous avons pour les syst�emes
la dynamique �a un probl�eme de �economiques un principe
statique. semblable �a celui de d'Alembert

(5861); mais nos connaissances
sur ce sujet sont encore des plus
imparfaites. La th�eorie des crises
�economiques fournit pourtant un
exemple d'�etude de dynamique
�economique.
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A la m�ecanique rationelle fait A l'�economie politique pure
suite la m�ecanique appliqu�ee, fait suite l'�economie politique
qui se rapproche un peu plus appliqu�ee, qui ne consid�ere
de la r�ealit�e, en consid�erant plus seulement l'homo
les corps �elastiques, les liens oeconomicus, mais d'autres
extensibles, les frottements, êtres se rapprochant plus de
etc. [...] l'homme r�eel. [...]

From this passage it appears that, according to Pareto, for each of the relevant

concepts, theories, principles, and subdivisions of the science of economics one can

�nd a corresponding counterpart within the science of mechanics. Thus, the con-

cept of a rational agent in economics (Pareto's "homo oeconomicus") corresponds to

the concept of a "material point" or "body" in mechanics; similarly, the concept of

an economy consisting of a �nite number of interacting agents (Pareto's "syst�eme

�economique" or "soci�et�e") corresponds to the concept of a discrete "mechanical sys-

tem" comprising a �nite number of interrelated material points or bodies. In the same

vein, the distinction between "pure" and "applied" economics parallels the distinction

between "rational" and "applied" mechanics. But then, more technically and, from

our point of view, more interestingly, within the �eld of pure economics the study of

the manifestations of "ophelimity" (since 1896, Pareto's word for what was then, and

still is nowadays, currently called "utility") re
ects the analogous study of the actions

of "forces" in rational mechanics; the subdivision of pure economics into two parts,

"statics" and "dynamics", reproduces the analogous subdivision in rational mechan-

ics; the concept of an "equilibrium" in economic statics corresponds to the analogous

concept in mechanical statics. Finally, according to Pareto, even d'Alembert's Prin-

ciple, which is one of the most famous principles of classical mechanics, would possess

its own counterpart in the �eld of pure economics; but, as Pareto hastens to warn us,

"our knowledge about this subject is still highly imperfect", so that "at present we

are only able to catch a glimpse of a similar principle in economics" (Pareto (1896-97,

Vol. II, pp. 9-10)).

The above list of correspondences between the two sciences is much more than

a rhetorical device used to buttress the relatively recent discipline of mathematical

economics by resorting to the long-established, undisputable prestige of classical me-
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chanics. Indeed, what Pareto is explicitly suggesting is that the asserted analogy

between mechanics and economics can be analytically exploited in order to pursue a

well-de�ned end, which can be summarized as follows.

According to Pareto, as we have seen, pure economics, like rational mechanics,

can be subdivided into two parts: statics and dynamics. But while in mechanics both

parts have reached a satisfactory degree of theoretical development, in economics,

instead, there exists a fundamental asymmetry between the two subdisciplines: eco-

nomic statics, which Pareto essentially identi�es with Walrasian General Equilib-

rium Theory and its possible extensions, already rests on a relatively �rm theoretical

ground; economic dynamics, on the contrary, still is in its infancy: it is a wild land

whose systematic exploration has yet to be started. Given such situation, the social

scientist who is willing to draw from the mechanical analogy all its analytical impli-

cations for the development of theoretical economics is forced to adopt a diversi�ed

strategy.

As far as statics is concerned, in Pareto's opinion, the starting point is to hon-

estly acknowledge that the fundamental equations of general equilibrium (in a pure

exchange economy), which ought to be labelled "Walras' equations" in honor of their

discoverer, are formally identical to the equations which can be obtained by applying

the well-known Principle of Virtual Works (also known as the Principle of Virtual

Displacements, or Powers, or Velocities) to a suitably constructed problem in me-

chanical statics (see, e.g., Pareto (1892-93, Part I, p. 415; Part II, p. 497), (1896-7,

Vol. I, pp. 24-25), (1902, p. 151)). But then the course to be followed in the further

development of economic statics is readily traced: as in mechanics, after the publi-

cation of Lagrange's M�ecanique analitique (1788), the Principle of Virtual Works has

become the foundation of the whole of mechanical statics; so in economics, after the

publication of Walras' El�ements d'�economie politique pure (1874-77), "Walras' equa-

tions", which can be regarded as the economic analogue of Lagrange's equations in

mechanics, are to become the foundation of the whole of economic statics. Moreover,

due to the structural similarities between the two subdisciplines at the foundational

level, in the process of elaboration of economic statics it will be possible to bodily
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import from mechanical statics some theorems which have already been proved to

hold in the latter context.

As far as dynamics is concerned, however, the stance taken by Pareto is necessarily

much subtler than the one taken in the case of statics: for he is aware that the two

contexts are so di�erent that it would be unwarranted to try to apply the same

strategy in either case. In Pareto's opinion, the main di�culty in this respect arises

from the following fact: while economic dynamics is admittedly underdeveloped and

almost inexistent, mechanical dynamics is instead a powerful theoretical system, based

on solid foundations (speci�cally, on a set of well-established postulates and laws, such

as the so-called Fundamental Law of Dynamics, often identi�ed with Newton's Second

Law). But then, owing to the poor state of economic dynamics, there is evidently

no basic postulate or fundamental law already available in this �eld to which the

social scientist can think to ascribe a role similar to the one that the natural scientist

can legitimately attribute to, say, the Fundamental Law of Dynamics in the �eld of

mechanics; this means, however, that in the dynamical case, unlike in the statical

one, the analogy between mechanics and economics does not seem to hold, at least

at �rst sight, at the foundational level.

Yet Pareto is apparently able to dodge this di�culty by resorting to an inge-

nious device, based on the well-known principle of classical mechanics known as

d'Alembert's Principle. According to a popular interpretation, wholeheartedly em-

braced by Pareto, d'Alembert's Principle would play a relevant role, both heuristic

and unifying, in rational mechanics, for - to use Pareto's words - it would "allow one

to reduce all dynamical question to a question of statics". Suppose now that, in the

�eld of economics, one could discover a principle analogous to d'Alembert's Princi-

ple in mechanics. Then, account being taken of the satisfactory stage of elaboration

already reached by economic statics, one might reasonably hope to develop the still

weak or inexistent theory of economic dynamics by simply applying the newly discov-

ered economic analogue of d'Alembert's Principle to the already available theory of

economic statics. This is precisely the roundabout route suggested by Pareto in order

to avoid the obstacles hampering the more direct use of the mechanical analogy in the
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context of economic dynamics; and this is the reason why he will spend so much time

over the two decades he will devote to the development of theoretical economics in

order to �nd the missing economic principle that might take the place of d'Alembert's

Principle in mechanics.

At �rst sight, the methodological position taken by Pareto on mechanics and eco-

nomics may seem to lend some support to a controversial thesis about neoclassical

economics put forward by a number of historians and methodologists of economics,

from among whom Mirowski stands out at least for the vehemence of his argumenta-

tion. According to Mirowski (1989, p. 9),

[t]he Marginalists appropriated the mathematical formalisms of mid-nineteenth-

century energy physics, [...] made them their own by changing the labels

on the variables, and then trumpeted the triumph of a truly 'scienti�c

economics'. Utility became the analogue of potential energy; the bud-

get constraint became the slightly altered analogue of kinetic energy; and

the Marginalist Revolutionaries marched o� to do battle with classical,

Historicist, and Marxian economists.

But the idea that neoclassical economics is the outcome of a slavish imitation

of "mid-nineteenth-century energy physics", which is almost coextensive with mid-

nineteenth-century mechanics, is completely wrong, even if, somewhat paradoxically,

such idea is super�cially justi�ed by many rash statements made by the very same

founders of, and early contributors to, neoclassical economics. The fact is that, in

the anxiety to make their position stronger towards their fellow economists, as well as

more acceptable to the scienti�c community at large, early neoclassical economists,

especially those leaning towards the newly born discipline of mathematical economics,

were ready both to emphasize all the existing formal similarities and, what is worse,

to forge inexisting substantive similarities between economics, on the one hand, and

the much sounder and more reputable physical sciences, on the other.
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2 Statics, dynamics, and equilibrium in classical

rational mechanics

In this Section only those de�nitions, assumptions, and propositions pertaining to

classical rational mechanics will be considered which are strictly necessary to the

understanding of Pareto's arguments and the related discussion in the sequel.

A material point P is characterized by its position in space and its mass. Given

an observer located in a �xed origin O in ordinary 3-space, let P �O (or, shortly, P )

denote the position of point P with respect to the given spatial frame of reference,

which in classical mechanics is taken to be absolute. Henceforth the symbol P will

be indi�erently used to denote a point as well as its position in space. P is a vector

quantity in 3-space. Let m denote the mass of point P . In classical mechanics m is

a scalar quantity whose measure is taken to be an invariable characteristic of P . If

P
0
and P

00
are two distinct positions taken by point P , their vector di�erence P

00 �P 0

is called the displacement of point P from the initial position P
0
to the �nal position

P
00
. An in�nitesimal displacement of point P is denoted dP .

Let t 2 R be a time parameter. In classical mechanics the time frame of reference

is taken to be absolute as well. The position of a material point P can be viewed as

a function of time; such a vector-valued function is said to describe the motion of P

. The image-set of this function is called the trajectory of P . The function P (�) is

assumed to be twice continuously di�erentiable with respect to time.

The vector quantity v � _P � dP
dt
is called the velocity of P at a given instant. The

scalar quantity v � (v � v)
1
2 � kvk is called the speed of P . (The symbol � denotes the

scalar product of vectors; the symbol kk denotes the modulus of the vector included

between the double vertical bars.) The vector quantity a � �P � d2P
dt2

is called the

acceleration of P at a given instant.

A discrete material system is a �nite collection of material points Pi (i = 1, 2,

..., N). Only discrete systems will be considered in the following, for these are the

only mechanical systems that are explicitly taken into consideration by Pareto for

the purposes of comparison with economic systems (similarly assumed to consist of a
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�nite number of agents).

The displacements and motions of the points belonging to a certain material sys-

tem may be free or constrained. A constraint may internal (if it only depends on the

mutual relationships among the points of the system) or external (otherwise); smooth

(if it only depends on the geometrical properties of the relations expressing the con-

straint) or rough (otherwise); one-sided (e.g., when a point is constrained to stay in

the region lying on one side of a surface, in which case the relations expressing the

constraint take the form of inequalities) or two-sided (e.g., when a point is constrained

to stay on a surface, in which case the relations expressing the constraint take the

form of equations); �xed (if it does not depend on time) or mobile (otherwise).

A virtual displacement of point Pi, denoted �Pi, is an in�nitesimal displacement

of Pi, conforming to the constraints to which Pi is subject at a given instant (the

constraints being taken as �xed, even if they are mobile, for the purposes of di�er-

entiation). A virtual displacement �Pi is said to be reversible if ��Pi is a virtual

displacement as well, irreversible otherwise. A virtual displacement of point Pi is

necessarily reversible if Pi is subject to two-sided constraints. The vector quantity

v
0
i � �Pi

�t
is the virtual velocity of point Pi at a given instant; such virtual velocity

is said to be reversible or irreversible according to whether the corresponding virtual

displacement is reversible or irreversible.

Let Fi denote the force or, more generally, the resultant (i.e., the vector sum) of

the forces acting on the point Pi. Fi is a vector quantity in R
3. Fi may be thought

of as the sum of an active force, F
(a)
i , and a reactive force due to the constraints to

which Pi is subject, F
(c)
i , that is: Fi � F

(a)
i + F

(c)
i . Of course F

(c)
i = 0 if the point Pi

is free.

In general, a force Fi acting on the point Pi may be thought of as depending on

the position of the point, Pi, its velocity, vi, and possibly other factors related to

the physical characteristics of both the point itself and the other points or bodies

interacting with it; such factors may in turn depend on time. Hence, by collectively

grouping all the factors di�erent from position and velocity under the time parameter,

we can functionally represent a force as: Fi = Fi(Pi;vi; t). Yet, in some important
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cases, a force acting on a point may only depend on its position, being una�ected by

the velocity of the point and by time. In such a case, the force is called positional. A

positional force may be regarded as a vector �eld from a suitable domain in 3-space

to 3-space; with a slight abuse of notation, such a vector �eld will be functionally

represented as: Fi = Fi(Pi). A positional force is called conservative if there exists a

scalar �eld, de�ned on a non-empty set in 3-space, such that, for each position in that

set, the vector �eld representing the force coincides with the gradient of the scalar

�eld, which is then called the potential of the force; in symbols: Fi(Pi) = rUi(Pi),

where Ui is the potential.

The di�erential expression d�Wi � Fi �dPi represents the elementary work done by

the force Fi acting on the point Pi in bringing about the in�nitesimal displacement dPi

(the asterisk after the symbol of di�erentiation is meant to signal that d�Wi need not

be an exact di�erential). If, in the above expression, the in�nitesimal displacement

dPi is replaced by the virtual displacement �Pi, one obtains the di�erential expression

��Wi � Fi ��Pi, representing the virtual work done by the force Fi acting on the point

Pi. The expression �i � d�Wi

dt
� Fi � dPidt � Fi � vi represents the instantaneous

power of the force Fi acting on the point Pi at a given instant. If, in this expression,

the velocity dPi
dt
� vi is replaced by the virtual velocity

�Pi
�t
� v

0
i , one obtains the

expression �
0
i � ��Wi

�t
� Fi � �Pi�t � Fi � v

0
i, representing the virtual power of the force

Fi acting on the point Pi at a given instant.

We are now in a position to introduce the Principle of Virtual Works

(or Virtual Displacements), which is perhaps the most fundamental result in

mechanical statics: Given any discrete material system consisting of a �nite number

N of points Pi, subject to smooth, but otherwise arbitrary, constraints, let F
(a)
i be

the active force acting on Pi and �
�W

(a)
i � F

(a)
i � �Pi the virtual work done by the

active force F
(a)
i (i = 1, 2, ..., N). Then the following di�erential relation holds:

��W (a) � PN
i=1 �

�W
(a)
i � PN

i=1F
(a)
i � �Pi � 0. Moreover, if all the displacements

are reversible (what is implied by the constraints being two-sided), then the above

relation holds as an equation.

It is convenient to give separate expression to the two cases jointly considered
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under the Principle of Virtual Works. In fact, according to whether only reversible or

also irreversible virtual displacements are allowed to occur, one can derive from the

above Principle two separate results: on the one hand, the Symbolic Equation of

Statics

��W (a) �
NX
i=1

��W
(a)
i �

NX
i=1

F
(a)
i � �Pi = 0 ; (1)

holding for all discrete systems of material points subject to two-sided smooth con-

straints (hence for which only reversible virtual displacements are admissible); on the

other, the Symbolic Relation of Statics

��W (a) �
NX
i=1

��W
(a)
i �

NX
i=1

F
(a)
i � �Pi � 0 ; (2)

holding for all discrete systems of material points subject to arbitrary (possibly one-

sided) smooth constraints (hence for which irreversible virtual displacements are pos-

sible as well).

By replacing the virtual displacements �Pi with the corresponding virtual veloci-

ties �Pi
�t
� v0i, hence the virtual works of the active forces ��W

(a)
i � F(a)i � �Pi with the

corresponding virtual powers �
(a)0

i � ��W
(a)
i

�t
� F

(a)
i � �Pi

�t
� F

(a)
i � v0i, in the symbolic

equation and relation of statics, one obtains the following pair of relations

�(a)
0 �

NX
i=1

�
(a)0

i �
NX
i=1

F
(a)
i � v0i = 0 (for reversible virtual velocities) (3)

and

�(a)
0 �

NX
i=1

�
(a)0

i �
NX
i=1

F
(a)
i � v0i � 0 (for arbitrary virtual velocities), (4)

which jointly provide an alternative formulation of the Principle of Virtual Works,

often referred to as the Principle of Virtual Powers (or Velocities). The two versions

of the Principle are fully equivalent. Yet, as long as the Principle is regarded as a

fundamental result of mechanical statics and is used for the purposes of equilibrium
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analysis, it seems preferable to hold to the �rst version, based on virtual displacements

and works, rather than to the second, based on virtual velocities and powers. In fact,

for methodological reasons, statics and equilibrium analysis ought to be kept as free as

possible from concepts depending on time; but while virtual displacements and works

do meet this condition, virtual velocities and powers don't. As we shall see, however,

the second formulation of the Principle proves useful in discussing the relationships

between statics and dynamics.

The Principle of Virtual Works or, what is the same, the Symbolic Equation and

Relation of Statics express the equilibrium conditions of a discrete material system.

For the equilibrium of a system it is necessary that the resultant of the forces acting

on every point Pi of the system be nil, that is

Fi � F(a)i + F
(c)
i = 0 or F

(a)
i = �F(c)i . (5)

In view of this, the relations (1) and (2) can be rewritten as:

��W (c) �
NX
i=1

��W
(c)
i �

NX
i=1

F
(c)
i � �Pi = 0 (for reversible virtual displacements) (6)

and

��W (c) �
NX
i=1

��W
(c)
i �

NX
i=1

F
(c)
i � �Pi � 0 (for arbitrary virtual displacements), (7)

where ��W
(c)
i is the virtual work done by the reactive force F

(c)
i due to the constraints

to which Pi is subject.

Similarly, the relations (3) and (4) can be rewritten as:

�(c)
0 �

NX
i=1

�
(c)0

i �
NX
i=1

F
(c)
i � v0i = 0 (for reversible virtual velocities) (8)

and

�(c)
0 �

NX
i=1

�
(c)0

i �
NX
i=1

F
(c)
i � v0i � 0 (for arbitrary virtual velocities), (9)
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where �(c)
0
is the virtual power of the reactive force F

(c)
i due to the constraints to

which Pi is subject.

Suppose now, in particular, that the material system consists of points subject

to two-sided, smooth constraints, so that the Principle of Virtual Works is rendered

by the Symbolic Equation of Statics and the constraints are expressed by equations

rather than inequalities. Then, once a set of coordinates suitable for de�ning the

position of the system has been chosen, granting that at least an equilibrium exists,

equation (1) and the equations expressing the constraints can be jointly used to

determine the equilibrium position(s) of the system in terms of the chosen coordinates.

At the end of this Section we shall illustrate how the equilibrium position(s) of a

system can be determined by means of a very simple example, that is, by deriving

the equilibrium conditions for a constrained system consisting of one single point. In

spite of its simplicity, this example is instructive for, as will be seen, it is precisely this

oversimpli�ed situation that Pareto had in mind when trying to justify the alleged

similarities, or even identities, between mechanics and economics concerning both

static (equilibrium) and dynamic analysis.

Let us now turn to mechanical dynamics. In this context the central theoretical

issue is to explain the motion of a material point or system; for this reason we shall

now speak of mobile material points and systems.

For any mobile material point Pi, free or constrained, the Fundamental Law

of Dynamics is expressed by the following vector equation:

Fi � F(a)i + F
(c)
i = miai ; (10)

asserting that the acceleration ai of the mobile point Pi at any given instant is directed

as, and proportional to, the resultant Fi of the forces (both active, F
(a)
i , and reactive,

F
(c)
i ) acting on Pi at that instant, the factor of proportionality being represented by

the reciprocal of the mass mi of Pi. In this context the force Fi acting on Pi may be

quali�ed as the driving force of the mobile point Pi. As can be seen, the Fundamental

Law of Dynamics implies Newton's Second Law, with which it is frequently identi�ed.
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By simple manipulation, equation (10) can be rewritten as:

F
(a)
i �miai = �F(c)i ; (11)

where, in the wake of d'Alembert, �miai and (F
(a)
i �miai) are said to represent the

force of inertia and the lost force acting on Pi, respectively. (The second expression

can be explained as follows. From the identity F
(a)
i � miai+(F

(a)
i �miai) it follows

that any active force F
(a)
i can be viewed as the sum of two parts: while the �rst

one, miai, is the driving force which would cause the acceleration ai if the material

point Pi on which it acts were free, the second one, F
(a)
i �miai, is instead "lost" for

the purposes of motion.) By employing this terminology, the above equation can be

interpreted as asserting that, for each material point Pi, the lost force acting on Pi is

the opposite of the reactive force due to the constraints to which Pi is subject.

Now, in order to develop mechanical dynamics, the Fundamental Law needs only

to be supplemented by the following weak postulate, which is almost self-evident: in

any discrete mobile system consisting of material points subject to smooth constraints,

the forces of reaction due to the constraints keep satisfying the equilibrium conditions,

as expressed by either the equation (8) or the relation (9), as the case may be, even

when the motion of the system is explicitly allowed for and taken into account. Then,

by substituting equation (11) into relations (8) and (9), one obtains the following pair

of relations:

NX
i=1

(F
(a)
i �miai) � v

0

i = 0 (for reversible virtual velocities) (12)

and

NX
i=1

(F
(a)
i �miai) � v

0

i � 0 (for arbitrary virtual velocities), (13)

which hold for all discrete mobile systems consisting of material points subject to

smooth constraints, under the speci�ed conditions, and which are commonly known

as the Symbolic Equation and the Symbolic Relation of Dynamics, respec-

tively.
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Suppose now, in particular, that the material system consists of points subject

to two-sided, smooth constraints, so that the Symbolic Equation of Dynamics holds

and the constraints are expressed by equations rather than inequalities. Then, once

a set of coordinates suitable for de�ning the position of the system has been chosen,

assuming the functions entering equation (12) to be su�ciently regular, equation

(12) and the equations expressing the constraints can be jointly used to determine

the motion of the system in terms of the chosen coordinates: speci�cally, this means

to determine the values of the coordinates as functions of time and of constants which,

in view of the fact that equation (12) is a di�erential equation of the second order,

must be determined by assigning a suitable set of initial conditions. At the end of this

Section we shall illustrate the dynamic problem of the calculation of the motion of a

mobile system by resorting to the same example (namely, a simple one-point system)

as the one that will be used to discuss the static equilibrium problem. But before

turning to this speci�c example, it is necessary to examine a few remaining issues

of a general character, concerning the relationships between statics and dynamics in

mechanics.

If we set ai = 0 (i = 1, 2, ..., N) in the Symbolic Equation and Relation of

Dynamics, that is, in relations (12) and (13), we immediately get the relations (3)

and (4) which, as will be recalled, jointly provide that alternative formulation of the

statical Principle of Virtual Works that is generally known as the Principle of Virtual

Powers (or Velocities); moreover, if we replace v
0
i by �Pi (i = 1, 2, ..., N) in the latter

relations, we get relations (1) and (2), that is, the Symbolic Equation and Relation of

Statics, respectively. This means that the fundamental relations governing the static

equilibrium of a material system can be viewed as a special case of the fundamental

relations governing its dynamic motion, namely, as that special case that corresponds

to a nil acceleration, hence a constant velocity, for each point belonging to the system;

but a constant velocity, as is well-known (as well as implied by Newton's First Law),

is precisely the characteristic property of the only sort of motion that is consistent

with static equilibrium.

It has just been shown that the Symbolic Equation and Relation of Statics can

15



be derived from the Symbolic Equation and Relation of Dynamics; but it can also

be shown that, in a special sense, the reverse derivation is possible as well. Since

d'Alembert's Principle is instrumental in the latter derivation, we shall start by ex-

plaining the meaning of this Principle. To this end, let us go back once again to the

Fundamental Law of Dynamics, speci�cally to the version of that Law contained in

equation (11), which we reproduce here for convenience:

F
(a)
i �miai = �F(c)i .

Recalling now equation (5), according to which a necessary condition for an equi-

librium of a discrete constrained material system is that the active force acting on

each point Pi belonging to the system be the opposite of the reactive force due to the

constraints to which that point is subject, we can suggest the following interpretation

of equation (11): during the motion of a mobile system, for each material point Pi

belonging to the system, the lost force, F
(a)
i �miai, exactly o�sets the reactive force

due to the constraints to which that point is subject, F
(c)
i , thereby satisfying, instant

by instant, the equilibrium conditions. From this interpretation it follows that the

necessary condition for an equilibrium of a material system can still be regarded as

being satis�ed, instant by instant, during the motion of the system, provided that the

active forces appearing in the original statical formulation of the equilibrium condition

be replaced by the lost forces in the new dynamical version.

The above discussion naturally leads to the following operational principle, which

is generally referred to as d'Alembert's Principle: One can pass from the static

equations (relations) determining the equilibrium position(s) of a material system to

the dynamic equations (relations) governing its motion simply by substituting the

lost forces, F
(a)
i �miai, for the active forces, F

(a)
i , appearing in the former equations

(relations).

From a heuristic point of view, d'Alembert's Principle is very useful for, by pro-

viding a very simple, automatic rule for obtaining the equations of motion of a system

from its equilibrium equations, it allows one to reduce any dynamical problem to the

corresponding statical problem. To illustrate this aspect, it is probably enough to
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mention that, by applying d'Alembert's Principle, relations (12) and (13) can be de-

rived from relations (3) and (4), so that, in the last analysis, the Symbolic Equation

and Relation of Dynamics can be traced back to the Symbolic Equation and Relation

of Statics.Yet, if the pragmatic signi�cance of d'Alembert's Principle should not be

underestimated, at the same time its theoretical relevance should not be overrated:

in fact, from a logical and epistemological point of view, this Principle adds noth-

ing to the Symbolic Equation (or Relation) of Dynamics, since both depend on the

very same premises (namely, the Fundamental Law of Dynamics and the postulate

mentioned above); it is on these premises, therefore, that the whole burden of the

explanation rests. This remark will prove relevant later on, when discussing Pareto's

position on d'Alembert's Principle.

Before concluding this Section, let us illustrate the statical problem of the deter-

mination of the equilibrium position(s) of a material system as well as the dynamical

problem of the calculation of its motion by means of a very simple example. Precisely,

let us consider a material system consisting of one single point P with mass m, which

is constrained to move on a smooth surface in 3-space and is a�ected by an active

force F(a), assumed to be positional; hence, there are no internal constraints, the only

external constraint is two-sided, and the active force only depends on the position,

i.e., F(a) = F(a)(P ).

Given a Cartesian frame of reference (Oijk), where O is the origin, while i, j, and

k are unit vectors directed along the three orthogonal axes, let the position of point P

be given by the three Cartesian coordinates x, y, z, that is, P (x; y; z) = xi+ yj+ zk .

Further, while in general the surface on which P is constrained to move may itself be

mobile, in discussing the statical problem we are compelled to take it as �xed (at a

certain instant, which need not be speci�ed). Hence, in this context, we shall assume

the constraint to be given by the scalar equation

f(x; y; z) = 0 , (14)

where f is a continuosly di�erentiable scalar �eld having the three coordinates as its
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only arguments. In this case the Symbolic Equation of Statics, which renders the

Principle of Virtual Works, is simply given by

F(a) � �P = 0 .

But any virtual displacement �P is necessarily tangent to the surface at P , hence

orthogonal to the vector normal to the surface at P , which, in its turn, is nothing

other than the gradient of f , rf , evaluated at P . Hence, at any equilibrium position

of the one-point system, F(a) must be parallel to rf , which means that the vector

equation

F(a) = �rf (15)

or, equivalently, the three scalar equations

F (a)x = �
@f

@x

F (a)y = �
@f

@y

F (a)z = �
@f

@z

must hold, where � is a scalar multiplier and F (a)x , F (a)y , and F (a)z are the Cartesian

components of the active force along the three axes.

Granting su�cient regularity conditions, equations (14) and (15) jointly allow

one to determine the equilibrium position(s) of the system, in terms of the equi-

librium values of the coordinates, as well as the associated equilibrium value(s) of

the multiplier. Let (P �; ��) be any such equilibrium pair, where P � = P (x�; y�; z�).

Then the equilibrium value of the active force is F(a)� = ��rf(P �) , the equilib-

rium value of the reaction of the constraint being of course just the opposite, that is,

F(c)� = �F(a)� = ���rf(P �).

With reference to the same one-point material system, the dynamical problem

can be dealt with as follows. The motion of the system, which is here regarded as

a mobile system, is given by specifying the three coordinates as functions of time,
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namely, x = x(t), y = y(t), and z = z(t), so that P (t) = P (x(t); y(t); z(t)). The

active force, being positional, is still given by the equation F(a) = F(a)(P ). In this

context, however, we must explicitly allow for the mobility of the constraint; hence,

we shall assume the constraint to be given by the scalar equation

g(x; y; z; t) = 0 , (16)

where g is a continuously di�erentiable scalar �eld depending not only on the three

positional coordinates, but also on time. Let r(xyz j t)g denote the gradient of g with

respect to the three positional coordinates, taking time as �xed at t. Of course, with

this convention, if g(x; y; z; t) = f(x; y; z), then also r(xyz j t)g = rf .

By virtue of d'Alembert's Principle, the laws of motion of the system can be

immediately derived from the static equilibrium equations. To this end, it is su�cient

to replace F(a), rf , and � by (F(a)�ma), r(xyz j t)g, and �, respectively, in equation

(15), where a = �P = d2P
dt2

is the acceleration of P , and � is a scalar multiplier, to get

the vector equation

F(a) �ma = �r(xyz j t)g (17)

or, equivalently, the three scalar equations

F (a)x �max = �
@g

@x

F (a)y �may = �
@g

@y

F (a)z �maz = �
@g

@z

where ax, ay, and az are the Cartesian components of a, and all the partial derivatives

of g are evaluated at t.

By jointly considering equations (16) and (17), after eliminating �, one can de-

termine the three coordinates as functions of time and of six constants, which can

in turn be determined by taking the initial conditions into account.Of course, if the

constraint is not a constant function of time, r(xyz j t)g is not independent of t, so
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that the law of motion of the system cannot be determined unless the dynamical law

is known which governs the evolution of the constraint over time. The latter remark

will prove relevant later on, when discussing Pareto's position on economic dynamics.

3 Statics and equilibrium in mechanics and eco-

nomics

In this Section we shall discuss Pareto's contention that "rational mechanics" and

"pure economics" exhibit "amazing analogies" in the �eld of statics, especially of

equilibrium analysis. To make his point Pareto resorts to a number of pairwise com-

parisons, where a concept, assumption, or proposition pertaining to mechanical statics

is compared with a concept, assumption, or proposition pertaining to economic sta-

tics. As far as the economic side of the comparisons is concerned, the situations

discussed by Pareto almost invariably refer to that part of General Equilibrium The-

ory that deals with competitive pure-exchange economies. This fact deserves some

comment.

In his early works, where Walras' in
uence is stronger, and particularly in the

introductory part of the Cours (1896-97), a sort of summary of Walrasian General

Equilibrium Theory called "Principes d'�economie politique pure", Pareto, in the wake

of Walras (1874-77), regards the pure-exchange model merely as the �rst and sim-

plest of a sequence of nested models of increasing complexity, progressively extending

their scope to encompass the phenomena of production, capital formation, credit,

and money; "free competition", though occupying a central place in the analysis,

is regarded as one of a number of alternative institutional settings, including a "so-

cialistic" organization of the economy which is already explicitly discussed in the

Cours. In his later works Pareto will further strengthen this attitude: over the years

the pure-exchange competitive model will increasingly be viewed as an instance of

a much more general and abstract model of rational choice and social interaction,

which will eventually become the explicit subject of Pareto's investigations (see, e.g.,

Pareto (1902, pp. 139-140), (1909, p. 207, and App., p. 543, fn. 1)).
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Yet, all this being said, Pareto's almost exclusive concentration on the pure-

exchange competitive equilibrium model in discussing the relastionships between me-

chanical and economic statics can be explained as follows. The �rst reason is simple.

In spite of his ever increasing ambitions to abstractness and generality, for the whole of

his scienti�c life Pareto will continue to regard the pure-exchange competitive model

as the fundamental prototype on which to build the whole of scienti�c economics:

in fact, it is precisely to this model that Pareto invariably refers when it comes to

specifying the economic equivalent of the mechanical equilibrium model ascribed to

Lagrange (1). The second reason is subtler. As we shall see, Pareto's "proof" of

the asserted equivalence between mechanical and economic equilibrium is far from

convincing. But, by sticking to the pure-exchange competitive case, he is at least

able to identify a few seeming similarities between some of the equations de�ning

the equilibrium conditions in the two sciences. On the contrary, had he used a more

general model as his frame of reference on the economic side of the comparison, he

probably could not have reached even this limited result2.

The place where Pareto's stance on this issue is most clearly stated is probably

represented by the following passage of the Cours:

Consid�erons trois biens �economiques: A, B, C. Tirons trois axes

rectangulaires: x, y, z. Nous porterons sur x, les quantit�es de A, sur y,

les quantit�es de B, et sur z, les quantit�es de C. Soit a la quantit�e de A

que poss�ede un individu quand il n'a ni B ni C, b la quantit�e de B que

1See, in particular, Pareto (1896-97, Vol. I, pp. 24-25, (59)1). See also Pareto (1892-93, Part I,
p. 415) and (1902, p. 151).

2In e�ect, from his early works to his latest economic writings, Pareto will unceasingly strive
to generalize the pure-exchange competitive equilibrium model, where prices are taken as �xed
parameters by the individual traders in deciding the global amounts of the commodities to trade, by
developing an allegedly more general non-competitive model, where prices are allowed to vary with
the "successive portions" of the commodities that are being traded (for this reason the extended
model is often ambiguously referred to by Pareto as the model with "non-constant" or "variable
prices"; see, e.g., Pareto (1892-93, Part I, p. 414) and (1909, App., p.566 �.)). Over the years the
model with "variable prices" will reach a more than rudimentary degree of formal elaboration; yet,
in spite of this, it will never be used by Pareto as the economic standard of reference in discussing
the relationships between mechanics and economics, probably for the reasons suggested in the text.
In any case, following Pareto, we shall completely disregard this model in the following discussion,
focussing attention almost exclusively on the pure-exchange competitive model.
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poss�ede l'individu quand il n'a ni A ni C, en�n, c la quantit�e de C que

poss�ede l'individu quand il n'a ni A ni B. On aura

a

b
=
pb
pa
,

a

c
=
pc
pa
;

c'est-�a-dire qu'on pourra poser

a =
h

pa
, b =

h

pb
, c =

h

pc
.

Le ph�enom�ene de l'�echange pourra se repr�esenter par le mouvement

d'un point mat�eriel, sollicit�e parall�element aux axes coordonn�es par les

forces 'a, 'b, 'c, et qui doit se mouvoir sur un plan d�etermin�e par la

condition qu'il coupe les axes coordonn�es aux distances a, b, c.

L'equation de ce plan est

(1)
x

a
+
y

b
+
z

c
= 1 ;

c'est-�a-dire

pax+ pby + pcz = h , [P1]

�equation qui correspond �a l'�equation (1) (591).

Soit T la force qui repr�esente la r�esistance du plan, nous savons que la

normale au plan fait avec les axes coordonn�es des angles dont les cosinus

sont

paq
p2a + p

2
b + p

2
c

,
pbq

p2a + p
2
b + p

2
c

,
pcq

p2a + p
2
b + p

2
c

;

les �equations de l'�equilibre seront donc
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'a �
paq

p2a + p
2
b + p

2
c

T = 0 ,
h
P2

0i
'b �

pbq
p2a + p

2
b + p

2
c

T = 0 ,
h
P2

00i
'c �

pcq
p2a + p

2
b + p

2
c

T = 0 .
h
P2

000i

En �eliminant T , on trove

1

pa
'a =

1

pb
'b =

1

pc
'c ; [P3]

c'est-�a-dire les �equations (4) (591)3.

As can be seen, Pareto's strategy simply consists in introducing a common formal

apparatus, for which he then provides a twofold interpretation, alternatively in terms

of economic and mechanical concepts. As far as statics is concerned, the "proof"

of the substantive similarity, and formal identity, between economics and mechanics

would then be provided by the fact that the equilibrium conditions in either science

can be expressed by means of the same set of equations, when suitably interpreted.

3This passage is contained in an "addition" which, while ideally appended to Sec. 144, fn. 1,
of Vol. I of the Cours, is actually printed at the end of Vol. II (Pareto (1896-97, Vol. II, p. 411-
412)). The notation used by Pareto in this passage is not entirely consistent with that employed
in other passages of both the Cours and other writings that will be quoted in the sequel. Such
inconsistency is partly due to Pareto's attempt (particularly evident in the present passage) to
employ a notation reminiscent of that characteristic of mechanics, which however is not always the
most appropriate to deal with economic issues. (In this respect, it is enough to recall the problems
related to the intrinsically di�erent dimensionalities of the basic reference spaces in the two sciences:
in fact, while in mechanics ordinary space is naturally restricted to at most three dimensions, no
such restriction obviously applies to the commodity space, which is the standard reference space in
General Equilibrium Theory.) In any case, except for one single instance, which will be pointed out
in due course, we shall not try to make Pareto's notation more consistent by changing his symbols.
However, we shall strive to bring his presentation closer to current usage by introducing a few new
symbols to supplement his original notation and, especially, by freely using vector notation, which
Pareto never employed (though he probably had some idea of its potentialities, as can be inferred,
e.g., from his reference to the "theory of quaternions" a few lines before the beginning of the passage
quoted in the text). When necessary, the equations and relations used by Pareto will be identi�ed
by means of the label P followed by a progressive integer between square brackets. Finally, in the
passage quoted in the text there is a cross-reference to two equations contained in footnote (59)1;
this is the place where the equilibrium conditions for a pure-exchange competitive economy are �rst
introduced and extensively discussed in the Cours:
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The mathematical objects underlying both interpretations can be further speci�ed

as follows. Let the common universe of discourse be represented by the non-negative

orthant of Euclidean 3-space, R3
+. Letting x � xi+ yj+ zk and p � pai+ pbj+ pck,

we shall assume x 2 R3
+ and p 2 R3

++
4. Given the scalar h > 0, let B(p; h) =n

x 2 R3
+ j p � x = h

o
be the relevant region of the plane identi�ed by the scalar h

and the normal vector p � Tn, where n is the unit normal to the plane and T � kpk.

Finally, let ' � 'ai+ 'bj+ 'ck be a vector �eld from R3
+ to R

3
+.

Now, the mechanical interpretation of the above formal model is wholly standard.

In fact, in this context x represents the position of a material point, a�ected by

a positional active force ' and constrained to move on the planar region B(p; h);

further, letting =(x) � p � x�h , one has r=(x) = p = constant. Hence, Pareto's

equilibrium equations [P1] and [P2] can be seen to represent a special case of the

static equilibrium conditions for a one-point material system constrained to move

on a given surface, conditions that have been discussed at the end of Section 2 (see

equations (14) and (15)). Now, let x� denote any value of x satisfying [P1] and

[P2]; then x� can be interpreted as a static equilibrium position of the one-point

constrained material system under discussion.

Except for a particular aspect, to which we shall come back presently, also the

economic interpretation of the formal model would be standard nowadays (even if

it was certainly not so in Pareto's times). In fact, in this context R3
+ should be

taken to represent the consumption set of a certain competitive consumer; further, x

should be interpreted as a consumption bundle, p as the given price system, h as the

given income (or wealth) of the consumer, so that B(p; h) becomes the consumer's

budget set. The preferences of the consumer are represented by the vector �eld ',

whose generic component function, 'k, is interpreted as the elementary ophelimity

4Later on in the paper, following Pareto in his changeable use of notation, we shall occasionally
rede�ne x as x � xai + xbj + xck. Sometimes, instead of using a, b, c as the indices of the three
coordinate axes, we shall employ the more common notation 1, 2, 3. The numeric notation will be
invariably used when the reasoning is extended to Rn, n being an arbitrary integer greater than 3.
In this case we shall write x �

Pn
k=1 xkek, xk and ek being the k-th Cartesian component of x and

the k-th Cartesian unit vector, respectively, and similarly for the other variables.
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(marginal utility5) function of commodity k for the consumer concerned (k = a; b; c).

This, indeed, is the only feature in Pareto's treatment that is unusual with respect

to current habits, insomuch as Pareto takes as primitives the elementary ophelimity

functions of the various commodities, without necessarily assuming the existence

of a total ophelimity function. But, if we provisionally set aside the question of

preference representation, we can conclude that the economic problem outlined in the

above-quoted passage is nothing but the wholly conventional, and nowadays trivial,

problem of the choice of an optimal consumption bundle by a competitive consumer

subject to a given budget constraint. And, in e�ect, assuming su�cient regularity and

concavity conditions, the so-called "equilibrium equations" [P1] and [P3] do identify

the standard conditions for an internal optimum in the consumer's choice problem6.

Let x� denote any such optimal consumption choice. Then, letting x(p;h) denote the

consumer's demand correspondence, we have x� 2 x(p;h), or simply x� = x(p;h),

if the demand correspondence actually turns out to be a function. Finally, for later

reference, let q 2 R3
++ represent the consumer's initial endowment of commodities,

assumed to be given; then r(p;h) � x(p;h) � q is the consumer's excess demand

correspondence (or function)7. Since, for given prices p, we have h = p � q, with a

slight abuse of notation we shall also write x(p;q) and r(p;q) for the consumer's

5From 1896 onwards, Pareto will employ the newly-coined expression "ophelimity" to denote a
concept similar to what is currently called "utility". Before 1896 the latter expression had been
used by Pareto himself in the usual sense; but after that date the term "utility", being replaced by
"ophelimity" for the usual purposes, will take on a di�erent meaning. Since in the following we shall
refer to works written by Pareto both before and after 1896, we shall be compelled to employ both
the word "utility" and the word "ophelimity", as the case may be; it should be clear, however, that
"utility" is here employed in its usual sense (that is, in Pareto's original sense).

6It should be noted that, while the standard conditions for the equilibrium of a one-point ma-
terial system are represented by equations [P1] and [P2], the standard conditions for an optimal
consumption choice are instead represented by equations [P1] and [P3]. From the last sentence
of the above-quoted passage it would appear that, in Pareto's view, equations [P2] and [P3] are
interchangeable for the purposes of the present discussion, so that equations [P1] and [P2] can be
taken to identify the so-called "equilibrium conditions" not only in the mechanical, but also in the
economic context. As a matter of fact, this idea is not really well-founded, as we shall explain at the
end of this Section. Up to that point, however, in order to simplify the exposition, we shall proceed
as if equations [P1] and [P2], rather than [P1] and [P3], could be legitimately taken to represent
the so-called "equilibrium conditions" in the economic case as well.

7While vector notation is ours, the symbols xk, rk, and qk are those usually employed by Pareto
to denote the consumer's demand for, excess demand for, and endowment of the k-th commodity,
respectively.
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demand and excess demand correspondence (or function), respectively.

Coming back now to the preference representation issue, it should be noted that,

from 1892 onwards, Pareto consistently goes on suggesting that the economic theo-

rist ought to take as his starting point the marginal utility functions for the various

commodities, rather than the consumer's total utility function, since, in general, the

latter function cannot even be assumed to exist. A sort of psychological justi�cation

for this position is o�ered by Pareto as early as in 1892: in fact, according to Pareto

(1892-93, Part I , pp. 414-415), rational consumers, while capable of evaluating the

marginal changes in utility induced by marginal changes in the quantity consumed of

each individual commodity, are instead generally unable to attach any de�nite mean-

ing to the total utility associated to the total consumption of a certain commodity or

bundle of commodities. In our opinion, however, the real reason why Pareto comes

to advocate such position is entirely di�erent from that suggested ex post facto by

the author himself. In this respect, the �rst point to stress is that Pareto's idea

that a total utility function need not exist, while the marginal utility functions for

the various commodities can safely be assumed to exist, has nothing to do with the

alternative between "cardinalism" and "ordinalism" in utility theory, even if Pareto

himself will do his part to confuse the issues in some of his writings of the �rst decade

of the twentieth century (particularly Pareto (1906) and (1909, App., pp. 539-557)).

But to dispel any doubt on this point it would be enough to consider the timing of

the events: while the idea of the possible inexistence of a total utility function can be

traced back to 1892, Pareto's "ordinalist" stance, as is well known8, will only mature

a few years later, in 1898, to eventually �nd its �rst expression in a journal article

(actually the draft of a never completed treatise) only in Pareto (1900).

But then, once the �eld is cleared of all pseudo-motivations, the true explanation

of Pareto's position about marginal and total utility can be easily seen to lie in the

mechanical dream haunting this author: indeed, Pareto is led to take the peculiar

position illustrated above by his desire to show that, in making his choices, a rational

consumer is driven by a sort of "psychical force" that is exactly like the active force

8See, in particular, Chipman (1976, p. 75).
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driving a material point in its motion. Yet, to take this analogy seriously means to

suppose that the variables involved in the twofold interpretation of the same formal

model be logically comparable. But in mechanics forces are vector quantities; further,

if a force acting on a material point in R3 is positional, as indeed it happens to be in

most well-known physical phenomena, it can be viewed as a vector �eld F from R3

to R3, while its component function Fk can be taken to represent the action exerted

on the point in the direction of the k-th coordinate axis (k = 1; 2; 3). Hence, if the

analogy is to be preserved, the "psychical force" acting on a rational consumer must

be regarded as a vector quantity; further, as in mechanics a number of important

phenomena are governed by positional forces, so in economics it may seem natural to

suppose the "psychical forces" involved in the problem of optimal consumer choice to

be "positional" as well, the only di�erences being the following three: �rst, that in the

economic case "position" means a point in commodity space, namely, in the speci�c

situation under discussion, a consumption bundle; second, that a consumption bundle

is necessarily non-negative; third, that the commodity space, unlike ordinary space,

is not necessarily restricted to three dimensions; as a consequence, the "psychical

force" driving a consumer in his rational choices can be viewed as a vector �eld '

from Rn
+ to R

n
+, n being the number of commodities traded in the economy, and

its component function 'k can be taken to represent the "psychical action" exerted

on the consumer in the direction of the k-th coordinate axis, i.e., in the direction

along which the quantity of the k-th commodity is measured (k = 1; 2; :::; n). But

then each component function 'k can be naturally interpreted as the marginal utility

function of the k-th commodity9; and, consequently, the marginal utility functions of

the various commodities become the natural primitives on which to build the theory

of optimal consumer choice.

As to total utility, the mechanical analogy is still relevant to understand Pareto's

peculiar position. In fact, as we have seen in Section 2, a positional force need not

be the gradient of a scalar �eld; indeed, this is the case only for a special, albeit

9From his early writings, Pareto follows Edgeworth (1881) in supposing the marginal utility
function of each commodity to generally depend on the quantities consumed of all commodities.
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important, class of positional forces, the so-called conservative forces, for which one

has F = rU , the scalar �eld U being called the potential of the conservative force

F. Now, given these premises in mechanics, for Pareto it is natural to suppose that,

in economics as well, a vector �eld ', representing the "psychical force" driving a

consumer in his rational choices, cannot in general be regarded as the gradient of

a suitably speci�ed scalar �eld, so that the marginal utility function 'k cannot in

general be obtained by partially di�erentiating a total utility function with respect to

commodity k (k = 1; 2; :::; n). From this perspective, the existence of a total utility

function, � : Rn
+ ! R, appears to be an exception, rather than the rule; but, of

course, when such a function � exists, also the "psychical force" ' can be regarded

as "conservative", so that ' =r�, i.e., 'k = @�
@xk

, xk being the quantity consumed

of commodity k (k = 1; 2; :::; n)10.

Pareto's e�orts to justify his own claim that the vector �eld ' can be viewed as

an exact psychical analogue of a physical force F will prove entirely vain. But, what

is worse, such attempts will have negative e�ects on Pareto's own research activity:

for, as we shall presently see, not only will they hinder the development of Pareto's

most original contribution in the �eld of utility theory, namely, his critique of the old

"cardinalist" tradition and his related advocay of the new "ordinalist" approach, but

they will also mislead him into making serious mistakes. Yet, before discussing these

speci�c issues concerning utility, it is convenient to go back to the general question

of the relationship between mechanical and economic equilibrium, as it emerges from

the above-quoted passage of the Cours.

The basic proposition advanced in that passage entails a contradiction which it is

worth stressing. The sort of economy discussed therein is an exchange economy. But

since exchange involves at least two agents, it is by de�nition a social activity; hence

an exchange economy cannot but be a social formation, that is, it cannot but consist

of a number of agents greater than one. Therefore, if the equilibrium conditions

for an exchange economy are to be compared with the equilibrium conditions for a

material system, one would naturally expect the material system selected for this

10See, in particular, Pareto (1896-97, Vol. I, pp.10-11, fn. (25)1).
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purpose to consist of a number of points greater than one. Yet, if one considers what

Pareto calls the "equilibrium equations" of the formal model (namely, equations [P1]

and [P2]), one immediately realizes that such equations involve only one consumer

(respectively, material point) at a time when the economic (respectively, mechanical)

interpretation is adopted. However, in a material system consisting of a number

of points greater than one, it is hopeless to try to identify a set of "equilibrium

conditions" holding for one single point independently of the equilibrium conditions

holding for all the other points belonging to the system: indeed, as we have seen in

Section 2, the equilibrium conditions for a discrete material system, as expressed by

the Symbolic Equation of Statics (equation (1)), involve all the points belonging to

the system in the same overall equation. But then we are forced to conclude that,

under the mechanical interpretation, equations [P1] and [P2] can only be regarded

as "equilibrium equations" if one is willing to accept that the material system under

question is a one-point material system; and indeed, for such a system, equations [P1]

and [P2] do express the static equilibrium conditions, as shown at the end of Section

2. This, however, contradicts the requirement that the material system should consist

of a number of points greater than one, for only in this case the comparison with an

exchange economy might prove to be sensible.

As might be expected, the fallacy emerging under the mechanical interpretation of

the formal model is paralleled by a sort of symmetric fallacy, revealing itself under the

economic interpretation. As we have just seen, under suitable regularity assumptions,

equations [P1] and [P2] do provide a set of conditions that are necessary and su�cient

for a mechanical equilibrium, provided that the material system under question is a

one-point system; on the other hand, the same equations [P1] and [P2], when given

an economic interpretation, do provide a set of conditions concerning a consumer

participating in a pure-exchange competitive economy, which necessarily is a social

economy, but unfortunately, and contrary to what Pareto's wording seems to suggest,

they do not represent a set of equilibrium conditions for that consumer, let alone

for the economy as a whole. As a matter of fact, under suitable regularity and

concavity assumptions, equations [P1] and [P2] do provide a set of conditions that
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are necessary and su�cient for determining the consumption bundle optimally chosen

by the consumer concerned. But an optimal choice need not be an equilibrium for the

obvious reason that, unless the given price system happens to be an equilibrium price

system (what cannot certainly be inferred from the speci�ed equations, where prices

are taken as arbitrarily �xed parameters), the chosen bundle need not be feasible

for the consumer. But feasibility, on which observability depends, appears to be a

characteristic feature of any conceivable equilibrium behavior of an economic agent,

hence of any possible de�nition of equilibrium appropriate to the economic science

(including, of course, the de�nition of equilibrium concretely employed in competitive

General Equilibrium Theory).

Of course Pareto is perfectly aware that, in order to get a complete set of equi-

librium conditions for a pure-exchange competitive economy, the speci�ed equations,

providing the conditions for an optimal individual choice (one for each consumer),

need to be supplemented by equations of a wholly di�erent nature, whose task is to

insure the compatibility of the optimally chosen individual plans at the economy-wide

level. In fact, Pareto even coins a revealing expression, "individual economy", to refer

to the optimal choice problem of the individual consumer, whose solution is given by

equations like [P1] and [P2]11. Further, when analyzing in detail the general equilib-

rium problem in a pure-exchange competitive economy, he never forgets integrating

the conditions characteristic of the "individual economy" (one set of conditions for

each consumer) with the required supplementary conditions, which of course are noth-

ing other than the market-clearing conditions12. Yet, all this is apperently forgotten

when it comes to comparing the economic equilibrium concept with the mechanical

one. But the reason for this forgetfulness is simple: since the epistemological foun-

dations of the two equilibrium concepts are basically di�erent, Pareto, when trying

to prove the existence of inexistent similarities between the two concepts, is almost

forced to neglect a number of important things concerning economic equilibrium he

11See, e.g., Pareto (1892-93, Part I, p. 417) and (1909, App., p. 560).
12See, e.g., Pareto (1896-97, Vol. I, pp. 24-26, fn. (59)1), where equations (1) and (4) corre-

spond to equations [P1] and [P3] above, while equations (5) express the market-clearing conditions
appropriate to a pure-exchange economy.
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proves to be perfectly aware of when analyzing the latter concept in isolation.

It is convenient to make explicit the basic epistemological di�erences between

the two equilibrium concepts that emerge from the previous discussion. In competi-

tive General Equilibrium Theory, in constructing the equilibrium concept one has to

carefully distinguish two levels of the analysis: the "individual" level, at which the in-

dividual agents make their rational choices, and the "social" level, at which the issue

of the compatibility of the individual choices is taken care of. But no such distinc-

tion can possibly apply to the mechanical equilibrium concept: as no rational choice

process can obviously be ascribed to a material point, no plausible meaning can be

attached to an "individual" level in this context; but, for the same reason, no separate

"social" level needs to, or indeed can, be identi�ed here, for no compatibility prob-

lem can ever arise in mechanics that is independent of the constraints to which the

material points are subject. In this last respect, Pareto is misled into believing that,

say, the budget constraints restraining the individual competitive consumers in their

optimal consumption choices are exactly like the constraints restraining the motions

of material points in a mechanical setting, so that the prices, which are to be taken as

�xed parameters in each individual competitive choice problem, can be regarded as

the exact economic analogue of the parameters on which the geometrical properties

of the constraints appearing in a mechanical equilibrium problem can be supposed to

depend13. But this analogy is not simply misleading: it is false. As a matter of fact,

in mechanics there is no di�culty in supposing that the points belonging to a material

13As a matter of fact, as far as the economic side of the comparison is concerned, Pareto does
not restrict the analogy to the competitive case, that is, to the case in which prices are taken as
�xed parameters at the "individual" level; in his opinion, in fact, the analogy extends also to a more
general situation, often referred to as the case of "non-constant" or "variable prices", in which prices
are no longer taken as �xed parameters by the individual traders in deciding the global amounts of
commodities to trade, but are allowed to vary with the "successive portions"of the commodities that
are being traded (see, e.g., Pareto (1892-93, Part I, p. 414) and (1909, App., p. 566 �.)). This alleged
extension of Pareto's argument beyond the strictly competitive case, though a complete failure from
a theoretical point of view, is very interesting from a di�erent perspective, for it provides a further
demonstration of how dangerously misleading the mechanical analogy can prove in a�ecting Pareto's
thought: in fact, Pareto's e�orts in this direction are obviously motivated by his hope to arrive at a
formal representation of the constraints to which the economic agents are subject that is closer to
the mechanical representation than the one that is allowed for by the purely competitive case. In
spite of its interest, however, we shall not discuss this extension here, for this would raise a number
of di�cult questions that there is no space to deal with properly in this paper.
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system be subject to constraints whose geometrical properties depend on the values

taken by suitably speci�ed parameters. But it would be wholly meaningless in this

context to require that such parameters take on some special "equilibrium values" to

be determined as a part of the solution of the very problem under question: for, if the

problem is statical, then the constraints, hence the parameters, must necessarily be

taken as �xed; if instead the problem is dynamical, then the parameters can indeed

be a function of time, but in such a case they must be supposed to depend on time

according to some exogenously speci�ed law. In either case, then, it would make no

sense to suppose the parameters to take some endogenously determined values. But

what would be meaningless to assume in mechanics is precisely what has to be as-

sumed in economics: here, in fact, the competitive equilibrium problem can only be

solved if the prices (i.e., the parameters of the economic problem at the "individual"

level) are allowed to take some endogenously determined "equilibrium values".

For the reasons explained above, Pareto is led to ignore, or even to conceal, the

fundamental di�erences between the equilibrium concepts respectively employed in

mechanics and economics. This dangerous attitude, however, causes him to make a

number of theoretical mistakes, of which we want now to discuss just two instances.

To simplify the discussion of the �rst question, let us assume that there exists a

scalar �eld � : R3 ! R such that ' = r�. As we have seen, under the mechanical

interpretation, this means that the active force ', being the gradient of the poten-

tial �, is conservative; under the economic interpretation, that there exists a total

ophelimity function �, of which the marginal ophelimity functions 'k are the partial

derivatives (k = a; b; c). Let x� be a value of x satisfying [P1] and [P2]. Under the

present assumption, this implies ��(x�) = 0, so that a constrained stationarity of �

occurs at x�. Now, when the mechanical interpretation is adopted, x� is a mechanical

equilibrium independently of �(x�) being a local constrained maximum, a local con-

strained minimum, or neither of them; in fact, the exact characteristics of the critical

point only matter for the stability of the equilibrium, an equilibrium being stable (in

a speci�ed sense) only if the potential � is a maximum, so that ��, the potential

energy, is a minimum. But when the economic interpretation is adopted, this is no
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longer the case: in fact, x� is an optimal consumption choice (not an "equilibrium",

properly speaking) only if �(x�) is a constrained maximum of the total ophelimity

function in B(p; h), and a global one, for that matter; hence, in this case, the exact

characteristics of the critical point do matter for the very de�nition of the optimal

choice, rather than its stability (whatever this might mean). All this is quite trivial

for everybody who is aware of the basic di�erences existing between the mechanical

and the economic equilibrium concept. But Pareto, blinded with the desire to pursue

the mechanical analogy to its extreme consequences, makes the unbelievable mistake

of qualifying as an "unstable equilibrium" a consumption bundle for which the total

ophelimity is a minimum14.

Finally, let us turn to the last question we want to discuss in this Section. Up

to now, following Pareto, we have taken for granted that equations [P1] and [P2]

can be indi�erently given a mechanical and an economic interpretation. But, as far

as the vector equation [P2] is concerned, this is not exactly true. As a matter of

fact, no di�culty arises concerning the mechanical interpretation of [P2], which is in

fact entirely standard; in particular, as Pareto suggests, the scalar T can be given a

well-de�ned physical meaning, for it can be interpreted as the modulus of the force

of reaction of the constraint ("la r�esistance du plan"), which of course equals (at an

equilibrium) the modulus of the active force, k'k. But when it comes to the economic

interpretation of equation [P2], what sort of meaning can be ascribed to the scalar

T? In e�ect, there is no obvious answer to this question.

More fundamentally, the problem appears to be related to the dubious analogy,

that Pareto strives to establish, between the components 'k of the active force ',

on the mechanical side, and the marginal ophelimities, equally denoted 'k, on the

economic side. In e�ect, while in rational mechanics there is no possible doubt that

the components 'k of the active force ' are scalar quantities, so that the active force

' is a vector quantity, in economics, instead, it is far from clear that the marginal

14See Pareto (1909, p. 183): "Le point de tangence pourrait aussi être le point le plus bas du
sentier, et en ce point l'equilibre serait instable". To appreciate the strength and persistence of the
mechanical illusion in modern economics, it should be noted that a similar blunder can be found in
a famous article written almost three decades later by Georgescu-Roegen (1936).
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ophelimities 'k can be legitimately taken as scalar quantities, so that it is more

than doubtful that the "psychical force" ' can be meaningfully regarded as a vector

quantity15 (k = a; b; c). As mentioned above, Pareto will not ebryonically develop his

"ordinalist" approach to utility theory before 1898. But in 1896-97, when writing the

passage we are commenting upon, he is already perfectly aware that, for the purposes

of the determination of the statical "equilibrium" conditions in the consumer's choice

problem, it is wholly unnecessary to think of the "psychical force" ' as a vector

quantity: in fact, as equations [P3] unambiguously reveal, all that matters in ' is

its direction, which must coincide, at an equilibrium, with the direction of the price

vector p; but, contrary to what is suggested by equations [P2], nothing needs to be

said or known about the modulus of ', which consequently need not be regarded

as a vector quantity. Yet, while recognizing that all that matters for the statical

"equilibrium" problem is the proportionality of ' and p, so that only equations [P3],

together with the budget constraint [P1], ought to be considered for this purpose,

still Pareto tries to preserve the mechanical analogy by formally deriving equations

[P3] from equations [P2], what is wholly incongrous from a mathematical point of

view.

Text

4 Dynamics and d'Alembert's Principle in mechan-

ics and economics

For the reasons explained in the Introduction, from the very beginning of his research

activity in economics through the whole of his life, Pareto clings to the idea that, in

order to fully exploit the mechanical analogy in the �eld of economic dynamics, one

has to follow a roundabout route, hinging on the use of a suitable economic analogue

15Here the term "quantity" - scalar or vector quantity, as the case may be - is used in the same
sense as in the natural sciences, where it is intended to mean what is usually called by contemporary
economists a "cardinally measurable magnitude". On the contrary, what contemporary economists
often call an "ordinal variable" is called a "quality" by the natural scientists; correspondingly, the
"ordinal measure" of the former is generally referred to as an "index function" by the latter. In this
respect, from 1900 onwards, Pareto will adopt the terminology characteristic of the natural sciences.
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of d'Alembert's Principle in mechanics16. This idea is most clearly stated in the

following passage of the Cours:

586. [....] En mecanique, le principe de d'Alembert nous permet d'�etudier,

d'une mani�ere compl�ete, l'�etat dynamique d'un syst�eme. Nous ne faisons

encore, en Economie politique, qu'entrevoir un principe analogue1. [Pareto's

argument continues in the following footnote]

(586)1 Soit, comme d'habitude, � l'oph�elimit�e totale. Pour simpli�er,

consid�erons trois biens �economiques seulment; ra, rb, rc seront les quan-

tit�es consomm�ees de ces biens, quand il s'agira d'un syst�eme �economique,

et les trois coordonn�ees d'un point mat�eriel de masse m, quand il s'agira

d'un syst�eme mat�eriel. Au reste, ce que nous disons s'�etendra facilement

�a plus de trois biens �economiques et �a l'espace �a plus de trois dimen-

sions. Si la consommation de A augmente de dra, l'individu fait un gain

d'oph�elimit�e exprim�e par

'adra .

L'individu aura donc une tendence �a continuer dans la voie qui lui a

procur�e cette augmentation de bien-être. Supposons qu'on puisse mesurer

cette tendance, et indiquons-la par

@�a
@ra

dra ,

nous aurons

'adra �
@�a
@ra

dra = 0 .

C'est-�a-dire que le gain d'oph�elimit�e sera d�epens�e pour produire cette

tendance.

16References to d'Alembert's Principle.
Sensini
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Maintenant, consid�erons le cas g�en�eral o�u les quantit�es varient de �ra,

�rb, ..., nous aurons

(1)

 
'a �

@�a
@ra

!
�ra+

 
'b �

@�b
@rb

!
�rb+ � � � = 0 ; [P4]

�ra, �rb, ... sont les mouvements virtuels compatibles avec les liaisons du

syst�eme. C'est en particularisant ces liaisons que nous avons l'�equation

(1) (591), les �equations (3) (3852), etc.

Quand il s'agit d'un syst�eme materiel, l'�equation (1)[P4] n'est autre

que celle que donne le principe des mouvements virtuels combin�e avec le

principe de d'Alembert. Mais quand il s'agit d'un syst�eme �economique,

nous nous trouvons arrêt�es, parce que nous ignorons, non seulment la

valeur, mais même la nature des fonctions

(2)
@�a
@ra

dra ,
@�a
@ra

dra , ... [P5]

Au contraire, pour un point mat�eriel, nous pouvons consid�erer 'a,

'b, 'c comme les forces qui le sollicitent et, alors, les fonctions (2)[P5],

prises avec le signe moins, sont les forces d'inertie, et l'on a

(3)
@�a
@ra

= m
d2ra
dt2

,
@�b
@rb

= m
d2rb
dt2

, ... [P6]

dt �etant le temps pendant lequel le point mat�eriel parcourt la ligne dont

les composantes sont dra, drb, drc. Ce sont de semblables �equations qu'il

nous faudrait pouvoir d�ecouvrir pour un syst�eme �economique.

L'oph�elimit�e totale, quand elle existe (251), correspond �a la fonction

des forces en m�ecanique. C'est-�a-dire, c'est la fonction dont les d�eriv�es

partielles 'a, 'b, ... repr�esentent les forces qui sollicitent le point mat�eriel.

Indiquons par
P
une somme qui s'�etend �a tout le syst�eme de points

mat�eriels, ou d'individus, et posons
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(4) J = �
X
�

La fonction des forces est�J , et J est ce que, dans la th�eorie m�ecanique

de la chaleur, l'on appelle l'�energie potentielle ou l'ergal.17

As can be seen, the formal structure of Pareto's argument in the new dynamic

context is quite similar to the one he had already experimented with in the static

context: after introducing a common formalism, Pareto provides a twofold interpre-

tation of the symbols and the equations, alternatively in terms of mechanical and

economic concepts; this, in turn, should convince the reader of the substantive simi-

larity between mechanics and economics in the dynamical �eld as well.

As already noted in the statical case, also here it should be pointed out that the

pairwise comparison suggested by Pareto is far from satisfactory: in fact, while on the

economic side of the pair we �nd a consumer, who is a member of a social economy

consisting of many agents, on the mechanical side we �nd instead a one-point material

system (given equation [P6], there is only one interpretation of equation [P4] that is

consistent with the �ndings of rational mechanics, and such interpretation leaves no

doubt as to the nature of the system under discussion). However, as we have already

discussed this issue at length in the previous Section, we shall not dwell upon it here.

17Pareto (1896-97, Vol. II, pp. 9-11, fn. (586)1) . To avoid confusions, everywhere in this
quotation we have substituted � for x: the latter symbol is in fact generally reserved by Pareto to
denote consumption (or consumer demand), so that its use in this passage to denote an altogether
di�erent function (whose nature will be discussed presently) is really misleading. A �rst possible
negative e�ect of Pareto's sloppiness in the use of notation is that, having already employed x for
a di�erent purpose, he can no longer use it for denoting consumption (or demand); and this may
explain why the symbol rk, generally employed to denote the excess demand for the k-th commodity,
is here incongrously interpreted as denoting the amount consumed (or demanded) of that commodity
(k = a; b; c). However, since the confusion between consumption and excess demand occasionally
revealed in this passage may also be the symptom of a more basic conceptual di�culty, on which
we shall return later, we have preferred not to correct Pareto's notation in this case.(Anyhow, since
rk � xk � qk, as long as qk is taken to represent the �xed endowment of the k-th commodity, we
have drk = dxk (or �rk = �xk), so that any confusion between consumption and excess demand
is irrelevant in the present context.) In the passage quoted in the text one can �nd a few cross-
references to other Sections of the Cours: speci�cally, equation (1) (59)1 and equations (3) (385)2

are di�erent forms of budget equations, whereas footnote (25)1 is the place where the problem of
the existence of a total ophelimity function is extensively discussed.
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Now, if the idea is accepted that the material system considered in the above-

quoted passage is a simple one-point system, then the mechanical interpretation of

the formalism appears to be entirely standard. In fact, by substituting equation [P6]

into equation [P4], and then replacing the k-th virtual displacement �rk by the k-th

virtual velocity v
0
k =

�rk
�t
in [P4] (k = a; b; c), we get the particular version of the

Symbolic Equation of Dynamics that is relevant for such a system. But we know

from Section 2 that, by virtue of d'Alembert's Principle, the Symbolic Equation of

Dynamics (equation (12)) can be obtained from the Symbolic Equation of Statics

(equation (1) or, equivalently, equation (3)), so that Pareto's statements are fully

justi�ed as far as the mechanical interpretation of the formal model is concerned.

As far as the economic interpretation is concerned, however, the situation imme-

diately appears to be much more problematic. Pareto himself proves to be aware, at

least in some degree, of the di�culties to be encountered in this �eld. In his opinion,

the main problem can be stated in the following terms: while in mechanics the mean-

ing of d'Alembert's Principle is perfectly clear and the functions @�k
@rk

can be given a

well-de�ned physical interpretation, in economics we only have a vague idea of what

might be the analogue of d'Alembert's Principle and, in particular, we know very

little about the nature of the functions @�k
@rk

18. But, in reality, the problem stressed

by Pareto is certainly not the most relevant to be faced in this connection: in fact,

when trying to develop the theory of economic dynamics along the lines suggested

above, well before reaching the relatively minor issue of the economic interpretation

of the functions @�k
@rk
, one would encounter, at a much more fundamental level, the

preliminary issue of the treatment of time in economic analysis.

The question can be put as follows. Under the mechanical interpretation of the

formal model contained in equations [P6], equations [P4] describe the motion of a

material point, that is, they give its position as a function of time. The following

question then naturally arises: When we try to provide an economic interpretation of

18Pareto literally says that "we ignore not only the value, but also the nature of [such] functions".
But, as we shall see presently, what he really thinks in the period when he is writing the Cours is
that, after all, we do know something (albeit very little) about the nature of such functions.
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the same formal model, can we �nd anything related to the behavior of an economic

agent that, exactly like the position in space of a material point, can be plausibly

viewed as a function of time and, as a consequence, can be supposed to describe

the "motion" of that agent in a suitable "economic space"? Only if this question is

answered in the a�rmative can Pareto's research programme on economic dynamics

have any chance of success. So it is crucial to examine Pareto's attempts to �nd a

suitable economic counterpart of the mechanical concepts of position and motion of

a material point.

To this end, let us �rst recall the essential features of the statical choice problem

of an optimal consumption bundle by a competitive consumer; in fact, this simple

statical problem, already discussed in the previous Section, represents the e�ective

starting point for Pareto's re
exions in the present dynamical context as well. Then,

given the price system, p 2 Rn
++, and the consumer's endowment, q 2 Rn

+, let

x � x(p;q) 2 Rn
+ and r � r(p;q) � x(p;q) � q 2 Rn be the consumer's demand

(consumption) and excess demand function, respectively. In the statical context, it

is natural to interpret q and x(p;q) as the consumer's "initial" and "�nal position"

in the "commodity space", respectively; r can then be interpreted as the consumer's

"displacement". Now, starting from these premises, Pareto tries to dynamize the

picture, by �rst introducing a time parameter and then reinterpreting the consumer's

behavioral variables as functions of such parameter.

The most obvious way to pursue this aim, the way that Pareto actually tries

to follow, is to suppose that, starting from the "initial position", the consumer will

travel through the "commodity space", "moving" towards the "�nal position" along

a "path" that lies in the budget set19. By means of this supposition, the theorist

can reinterpret the consumer's "position" in the "commodity space", presumably

represented by his consumption bundle, as a continuous function of time, so that, as

desired, the dynamic behavior of a consumer can be assimilated to the motion of a

material point. Yet, this approach, far from solving Pareto's problem, raises a host

of formidable conceptual di�culties that it is worth discussing.

19"Motion" ("mouvement r�eel"), "path" ("sentier"), "�nal position" ("point terminal"), etc.
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The �rst point to stress is that, contrary to Pareto's presumable intentions, the

suggested dynamic reinterpretation of the consumer's choice problem cannot be sim-

ply grafted onto the static model: in fact, the dynamic reinterpretation, were it taken

seriously, would give rise to a theory of consumer's behavior that is di�erent from, and

inconsistent with, the standard theory based on statical premises. But this is peculiar

result; in particular, it is something which is absolutely unknown in mechanics, where

it would be inconceivable to have a dynamical theory of a certain phenomenon con-

tradicting the results of the statical theory of the same phenomenon. To show that

the proposed dynamical theory of consumer choice would be inconsistent with the

standard statical theory is trivial. Suppose that, given p, the "initial position" q is

not an optimal choice for the consumer's preferences; then r(p;q) � x(p;q)�q 6= 0,

so that in the present case the statical theory predicts a non-vanishing, �nite "dis-

placement" r(p;q); moreover, given the mentalistic character of the choice process

that is being discussed here, such "displacement" should be thought of as taking

place instantaneously, and similarly the "�nal position" x(p;q) should be supposed

to be "instantaneously reached" by the consumer (this is indeed possible, since such

position is only "reached" in his mind). But suppose now that, as required by the

suggested dynamical theory, the consumer starts to move from the "initial position"

q, his motion in the commodity space being a continuous function of time. Due to

the continuity assumption, after a vanishing interval of time he can only be in�nitely

close to the "initial position"; this means, however, that he will not be where his

preferences would dictate, and the statical theory of choice would predict, him to be.

As we have just seen, owing to the mentalistic character of the choice process, cer-

tain phenomena (in particular, those �nite changes in "position" that might be called

"�nite instantaneous displacements") can occur in the "commodity space" that would

be meaningless in ordinary space. This is enough to conclude that the "commodity

space" is not exactly like ordinary space, that the "position" of an economic agent in

the �rst kind of space is not exactly comparable to the position of a material point in

the second one, and, more generally, that the relationship between time and space in

economics is not exactly the same as in mechanics. We have reached this conclusion
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by using an individual choice problem, with its peculiar mentalistic properties, as

our frame of reference. But this is certainly not the only economic context where

the relationship between time and space appears to be inconsistent with that char-

acteristic of rational mechanics. Take for instance the "classical barter problem", so

prominent in the early contributions of Jevons, Walras, Edgeworth, etc., where two

traders, each endowed with a given amount of one consumption good, are supposed

to trade with one another. Then, if the two traders behave competitively, and if

a competitive equilibrium price ratio is announced, we can imagine the two traders

to "instantaneously" exchange the equilibrium amounts of the two goods, thereby

"jumping" from the "initial position" to the "�nal equilibrium position". Once again

we �nd here an instance of a "�nite instantaneous displacement". But this phenom-

enon cannot be reconciled with the central idea of mechanical dynamics, namely, the

idea of motion as a continuous function of time; and this is particularly disturbing for

the founders of neoclassiacl economics. In e�ect, the desire to eliminate such disturb-

ing di�erences with mechanical dynamics is probably the main reason why Jevons,

the �rst to formally discuss and solve the "classical barter problem", after reviewing

the alleged limitations of his own solution, suggests to replace the "�nite displace-

ments" and the ordinary equations appearing in it with "in�nitesimal displacements"

and "di�erential equations", respectively20.

Returning now to Pareto, it should be pointed out that he occasionally seems to

realize some of the di�culties surrounding the introduction of the time element in

both individual choice theory and general equilibrium theory, and consequently to

perceive some of the obstacles hampering the construction of a theory of economic

dynamics. The most explicit discussion of these issues can be found in a passage

appearing towards the end of Vol. II of the Cours, within a chapter devoted to the

discussion of "economic crises", where Pareto goes back to the problems raised in the

passage quoted at the beginning of this Section and strives to provide a few concrete

20According to Jevons (1871, p. 138), the suggested replacement would allow one "to have a
complete solution of the problem in all its natural complexity", a solution comparable to those
o�ered by mechanical dynamics to its characteristic problems. It goes without saying that Jevons'
suggestion will produce no e�ect.
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suggestions (the only ones to be found in all of his writings) concerning a possible

economic interpretation of d'Alembert's Principle and, in particular, of the functions

@�k
@rk

21. First of all, Pareto tries to clarify the di�cult issue of the time dimension

to be associated to the variables involved in the consumer choice problem, the same

problem on which we have already dwelt at length before. In this connection he

writes:

928. La consid�eration des crises nous porte en plein dans l'�etude de la

dynamique des syst�emes �economiques, et il sera bon que [...] nous tâchions

de nous rendre compte des conditions de cet �equilibre.

Il nous faut, pour cela, abandonner la consid�eration des consomma-

tions isol�ees et consid�erer des consommations journali�eres, mensuelles, an-

nuelles, etc. [...] Nous consid�erons donc les consommations qui ont lieu,

en moyenne, dans l'unit�e de temps1. [Pareto's argument continues in the

following footnote]

(928)1Cela change l�eg�erement la signi�cation des quantit�ees consomm�ees

qa + ra, qa + ra, ...

Il faut supposer que ce sont l�a les quantit�ees consomm�ees dans l'unit�e de

temps. �, 'a, 'b, ... se rapportent alors aussi �a l'unit�e de temps. Il en est

de même de toutes les autres quantit�es ra, rb, ...[...] Toutes ces quantit�es

deviennent alors des quantit�es du genre des vitesses.

This passage unwillingly reveals a basic di�culty concerning the speci�cation of

the time dimension of the economic variables appearing in rational choice and gen-

eral equilibrium problems. Such di�culty is certainly not peculiar to Pareto, for it

manifests itself, under di�erent guises, in practically all neoclassical economists22; but

21See Pareto (1896-97, Vol. II, pp. 280-284, fn. (928)1 and (928)2).
22To keep to the �rst generation, both Jevons and Fisher devote a lot of e�ort to the issue of the

time dimension of the analysis, without succeeding, however, in providing a satisfactory solution
to it; as a matter of fact, they both fall into serious mistakes concerning this point (see Jevons
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Pareto's treatment has the advantage of making the issue more explicit. The question

under discussion is still that of dynamizing the consumer's statical choice problem.

But here Pareto suddenly seems to realize that, since any dynamic theory presupposes

the existence of a time dimension, but the variables appearing in the static problem

have prima facie no time dimension, no dynamization of the static problem is possi-

ble unless the relevant variables are suitably reinterpreted. As a consequence, Pareto

suggests that the variables xk (qk, rk), which had been originally interpreted, in the

static problem, as either stocks (referred to a speci�ed instant) or 
ows (referred to a

single speci�ed period of time), be reinterpreted as rates of 
ow per unit of time in the

dynamic (or, better, dynamizable) version of the problem23.A similar reinterpretation

indirectly extends to all the other variables of the model, in particular to the total

and the marginal ophelimity functions, � and 'k. According to Pareto, by means of

(1871, pp. 117-121) and Fisher (1892, pp. 19-21, 103). A better (though by no means conclusive)
treatment is o�ered by Walras (1954, particularly Lesson 35), who at least manages to keep clear of
logical mistakes.
23The expressions used by Pareto in order to distinguish the static from the dynamic interpretation

of the relevant variables are not wholly rigorous. In particular, when he quali�es the variable
xk � qk + rk in the static problem as an "isolated consumption", he certainly wants to rule out the
possibility of interpreting it as a "uniformly repeated consumption", that is, as a "rate of 
ow of
consumption per unit of time", but he does not rule out the possibility of interpreting it as either a
"stock" or a "
ow" (provided that the act of consumption is "isolated", i.e., not repeated). In e�ect,
contrary to what is often held, the real contraposition, as far as the time dimension is concerned,
is between a "rate of 
ow", on one side, and either a "stock" or a "
ow", on the other: for while a
"rate of 
ow" has a time dimension (its dimensions being FT�1, where F represents the dimension
intrinsic to the "
ow" and T the time dimension), neither a "stock" nor a "
ow", per se, has a time
dimension. Now, for the discussion's sake, let us take for granted what Pareto appears to suggest, but
is otherwise questionable, namely, let us suppose that the distinctive feature of a variable involved
in a static problem is that it lacks any time dimension; then both a "stock" and a "
ow", but not
a "rate of 
ow", would satisfy the stated condition. From this point of view, therefore, the fact
that Pareto leaves unspeci�ed whether the variable xk, appearing in the consumer's statical choice
problem, is to be interpreted as a "stock" or as a "
ow", is after all a minor ambiguity. Moreover,
it is an ambiguity that is, so to speak, intrinsic to the problem under discussion. For, as we know,
xk can be viewed as either the consumer's demand for or the consumer's consumption of the k-th
commodity. But when xk is viewed in the �rst way, it may seem natural to interpret it as a "stock":
for then xk can be seen as the sum of the consumer's endowment, qk, and of his excess demand, rk;
and while qk, being the amount of the commodity held by the consumer at a certain instant of time,
is naturally interpreted as a stock, rk, being the amount that the consumer actually plans to trade,
can be easily referred to the instant at which the trade is supposed to take place, and this instant
can in turn be identi�ed with the one to which qk is referred). On the contrary, when xk is viewed
in the second way, it may seem natural to interpret it as a "
ow" (for the consumption xk can be
plausibly supposed to be planned by the consumer with a �nite time period in mind). In conclusion,
even in so simple a problem as the present one, the relationship between the economic variables and
time appears to be exceedingly complex. The reasons for this will be discussed presently in the text.
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this reinterpretation the relevant economic variables would acquire a nature similar to

the nature of velocities in mechanics, the obvious implication being that, as velocities

are instrumental in the development of mechanical dynamics, so the reinterpreted

economic variables will be instrumental in the development of economic dynamics.

But this hope is groundless.

Leaving temporarily aside the absurd idea, on which we shall come back presently,

that a rate of 
ow of consumption can share any of the analytical properties of a

velocity, let us focus attention on Pareto's central proposition that in economics there

exist some variables that are susceptible of a twofold interpretation, either statical or

dynamical, so that one can switch from statics to dynamics simply by changing the

interpretation of such variables. Now, contrary to what Pareto appears to believe,

nothing similar can be found in mechanics. Here, it is true, there are equations or

relations that are susceptible of a twofold interpretation and that, according to the

interpretation chosen, can be employed to derive either statical or dynamical results

(as we have seen, d'Alembert's Principle exploits precisely this fact). But it would be

meaningless to assert that a position or a displacement, a velocity or an acceleration,

a force or a work or a power change their respective natures according to whether we

take a static or a dynamic point of view; a position remains a position from whatever

point of view we look at it, and the same holds for the other quantities. Of course,

statics can be developed without mentioning time or quantities depending on time,

such as velocity or acceleration. But this does not mean that such quantities cease to

exist or change their nature in a statical context; and in e�ect, if one so desires, one

can legitimately say that velocity is constant or acceleration nil at a static equilibrium.

Il faut tenir compte de toutes ces circonstances pour avoir les conditions

de l'�equilibre dynamique du syst�eme �economique2.

(928)2 Si, en maintenant les notations de la note pr�ec�edente, nous prenons

une unit�e de temps assez petite, par exemple le jour, ra, rb, ... qui se rap-

portent �a cette unit�e repr�esenteront les vitesses des d�ebits. Nous pourrons

confondre les di��erences �nies avec les di��erences in�nit�esimales et, en in-
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diquant par t le temps, consid�erer comme �egales les expressions

�ra =
dqa
dt

,

qa �etant la consommation qui a lieu depuis une certaine origine du temps

jusqu'au temps t.

Le changement dans la vitesse de la consommation de A sera mesur�e

par dra
dt
.

Nous pourrons repr�esenter par fa
�
dra
dt

�
la peine qu'il faut que l'individu

se donne pour e�ectuer ce changement;

fa �etant une certaine fonction, sur laquelle, comme nous l'avons d�ej�a dit

(5861), l'exp�erience ne nous a malheureusement pas encore donn�e de ren-

seignements.

Le gain d'oph�elimit�e que fait l'individu, par la consommation �ra,

sera donc

('a � fa) �ra

et pour l'�equilibre on devra avoir

(1) ('a � fa) �ra + ('b � fb) �rb + � � � = 0 . [P6]

On a, en autre,

(2) rapa + rbpb + � � �+ re = rsps + rtpt + � � � [P7]

S, T ... �etant les capitaux que poss�ede l'individu, et re la quantit�e de

num�eraire qu'il ajoute �a son �epargne, ou qu'il pr�el�eve sur celle-ci.

[...]

Les �equations (3), (5), (6), (7) de (1001) subsistent toujours, et,

avec les �equations (1)[P6], (2)[P7], [...] que nous venons de trouver,
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elles nous donnent les �equations g�en�erales de la dynamique des syst�emes

�economiques.

L'�equation (2)[P7] donne

pa�ra + pb�rb = 0 , pa�ra + pc�rc = 0 , ...

ce qui transforme l'�equation (1)[P5] dans les �equations suivantes

(1bis)
1

pa
('a � fa) =

1

pa
('a � fa) =

1

pa
('a � fa) = ��� [P8]

Text
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