
Tabu Search vs. GRASP for the Maximum

Diversity Problem

Roberto Aringhieri∗ Roberto Cordone

Yari Melzani†

Università degli Studi di Milano (Polo di Crema)
Dipartimento di Tecnologie dell’Informazione
Via Bramante 65, 26013 Crema (CR), Italy

E–mail: {aringhieri,cordone}@dti.unimi.it, ymelzani@crema.unimi.it

20th December 2005

Abstract

The Maximum Diversity Problem (MDP) consists in determining
a subset M of given cardinality from a set of elements N , in such a
way that the sum of the pairwise distances between the elements of M
is maximum. This problem, introduced by Glover [6], has been deeply
studied using GRASP methodologies [5, 1, 13, 2]. GRASP is often
characterized by a strong design effort dedicated to build high qual-
ity randomized starting solutions, while the subsequent improvement
phase is usually performed by a standard local search technique. The
purpose of this paper is to explore a somewhat opposite approach, that
is to refine the local search phase, by adopting Tabu Search method-
ologies, while keeping a very simple initialization procedure. Extensive
computational results show that Tabu Search achieves both better re-
sults and much shorter computational times with respect to those re-
ported for GRASP.

Keywords: Maximum Diversity, GRASP, Tabu Search

1 Introduction

Let be given a set N of n elements for which a diversity measure dij is
defined between each pair of elements (i, j) such that dij > 0 for i 6= j,
dij = 0 otherwise. The Maximum Diversity Problem (MDP) consists in
determining a subset M ⊂ N of given cardinality m, such that the sum of

∗Corresponding author
†This work draws origin from [12]

1

the pairwise distances between the elements of M is maximum. Let xi = 1
if element i ∈ N belongs to the solution M , xi = 0 otherwise. The MDP
can be formulated as follows:

max z =
1
2

∑
i∈N

∑
j∈N

dijxixj (1)

∑
i∈N

xi = m (2)

xi ∈ {0, 1} i ∈ N (3)

There are several different applications for this model. For example,
while forming work teams, or juries, or student groups for project work, it is
often desirable to gather a fixed number of individuals whose characteristics
are as diversified as possible: work teams should include the largest possible
range of skills, juries should represent the widest variety of points of view
existing in a community, student groups should allow to share and exchange
different backgrounds. In this framework, function dij models the distance
between individuals i and j with respect to some relevant characteristics.

Other interesting applications concern the allocation of available re-
sources for preserving biological diversity [7], medical treatment, scheduling
final exams, VLSI design and data mining [10].

The problem is strongly NP-hard [11]. This can be proved by reduction
from the k-Clique problem. Given an instance of the latter, that is an
undirected graph G (V,E), build the following instance of MDP : for each
vertex of V , define an element of N ; for each pair (i, j) ∈ E set dij = 1,
whereas dij = 0 when (i, j) /∈ E; finally, set m = k. Graph G contains a
clique of k vertices if and only if the optimum of MDP is equal to k (k − 1) /2.

The MDP was introduced by Glover [6], who presented an integer linear
formulation, which can be solved only for small instances (less than 40 ele-
ments) because of the quadratic number of binary variables required. Other
authors have applied the quadratic formulation reported above to evaluate
the performance of heuristic algorithms on instances of approximately the
same size [5].

Apart from some early greedy and stingy heuristics [8, 14], nearly all
heuristic approaches to the MDP adopt the Greedy Randomized Adaptive
Search Procedure methodology (GRASP) [4]. The first GRASP procedure
for the MDP was proposed by Ghosh [5] obtaining good results just for
instances up to 40 elements. Andrade et al. [1] developed a new GRASP
able to solve instances up to 250 elements and to find better solutions on
Ghosh’s benchmark. Several different GRASP algorithms obtained by com-
bining different construction and local search heuristics were proposed by
Silva et al. [13]. They were extensively tested over a benchmark set of in-
stances randomly generated up to 500 elements: the results obtained were
compared to the ones obtained by Ghosh and Andrade et al. showing a

2

better performance. In the end, a GRASP with path relinking has been
described in [2].

These GRASP algorithms are characterized by a strong design effort
dedicated to build high quality randomized starting solutions. The subse-
quent improvement phase is usually performed by a standard local search
technique. The purpose of this paper is to explore a somewhat opposite
approach, that is to refine the local search phase, by adopting Tabu Search
methodologies, while keeping a very simple initialization procedure. By us-
ing ad hoc memory mechanisms (both on a short and on a long term), it
was possible to achieve both better results and much shorter computational
times with respect to those reported in the literature.

Section 2 describes the Tabu Search algorithm proposed, while Section 3
discusses its performance in comparison to the best algorithms reported in
the literature. Conclusions and future work close the paper.

2 The Tabu Search algorithm

After introducing some notation, we present very simple greedy and local
search heuristics, which are the basic elements of our Tabu Search algo-
rithm, based on ad hoc memory mechanisms. Then, we briefly describe the
main ingredients for a standard Tabu Search algorithm (which are deeply
discussed in [9]), providing more details only about the components which
have been specifically designed for solving MDP.

Notation

For each element i ∈ N , its contribution to a given solution M ⊂ N is

defined as Di =
∑

j∈M dij . Clearly, z =
1
2

∑
i∈M Di.

Simple Greedy

Let the initial solution M (0) ⊂ N be composed by the pair of elements of
maximum diversity dij , i.e. M (0) = {i, j} and z(0) = dij .

A feasible solution, i.e. a solution containing m elements, can be built
from M (0) by consecutively adding one element k at a time. At the h-th
iteration, the element k(h) to be added is chosen as

k(h) = arg maxi∈N\M(h−1)Di

giving rise to the following solution

M (h) = M (h−1) ∪
{

k(h)
}

and z(h) = z(h−1) + Dk(h) .

After each iteration, we have to update Di for each i ∈ N \M (h). This can
be easily done by adding the value dik(h) to Di. We actually update Di also

3

for i ∈ M (h), with the same formula, since these values are needed by the
subsequent improvement phase. Each iteration requires O (n) time, so that
the overall procedure is O (mn).

Neighborhood definition

The solution obtained by the previous greedy algorithm is the starting point
for a local search improvement phase. This is based on the most natural
neighborhood for MDP, that is the exchange between a single element s in
the solution and a single element t out of it, that is M ′ = M ∪ {t} \ {s}.

It is possible to efficiently evaluate such a move without recomputing the
objective function from scratch. Let z be the value of solution M . The value
z′ of the new solution M ′ is obtained by subtracting the total contribution
of the old element s (that is Ds) and adding the total contribution of the
new element t (that is Dt − dst), that is, more formally,

z′ = z −Ds + Dt − dst.

The move yielding the largest improvement in the objective function is se-
lected and applied. After each move, the values of Di are updated as follows:

Di = Di − dis + dit i ∈ N.

In particular, Ds = Ds + dst and Dt = Dt − dst.
We combine m elements inside the solution with n − m outside of it,

the evaluation of each move is done in constant time, and the update after
a move takes O (n) time. Therefore, the complexity of each local search
iteration is O (mn).

Tabu Search

Tabu Search is a well-known metaheuristic approach based on local search
and on a mechanism to avoid looping over already visited solutions [9]. This
mechanism consists in a finite-length list of forbidden moves, named tabu
list.

As we want to avoid both the inclusion of a recently removed element and
the removal of a recently included element, we define two independent tabu
lists: list Lin forbids an element to enter the solution for `in iterations, whilst
list Lout forbids an element to exit for `out iterations. A move improving
the best known solution is always performed, even if it is tabu (aspiration
criterium).

Short term memory

The short term memory mechanism is a device which allows to intensify or
diversify the search depending on the results of the search in the most recent

4

iterations: the length of the tabu list decreases after a suitable number of
improving iterations, and it increases after a suitable number of worsening
iterations. A detailed description of this mechanism can be found in [3].

So, `in varies in the range
[
`m
in, `M

in

]
, starting from its median point `

(0)
in =(

`m
in + `M

in

)
/2. After Tw consecutive worsening iterations, `in increases by

∆`in, whilst it decreases by ∆`in after Ti consecutive improving iterations.
The same occurs for `out, which ranges from `m

out to `M
out, starting at `

(0)
out =(

`m
out + `M

out

)
/2.

In the literature, the amount ∆` is commonly fixed to 1. Preliminary
experiments showed that, when the length of the tabu list increases up to
the maximum value, thus pushing the search away from the current region
of the solution space, it is often difficult to reduce it in order to intensify
the search in the newly reached region, because the number of improving
iterations is insufficient. A complementary behavior can be observed when
the length of the tabu list decreases down to the minimum value: the number
of worsening iterations is insufficient to increase it enough to diversify the
search. To counterbalance this effect, we adopt a variable self-adapting
variation step ∆`, instead of a fixed one: as the length of the tabu list
approaches the lower or the upper limit of its range, ∆` becomes larger.

Long term memory

Since we have observed that the value of the objective function may be
very similar for many solutions in a given neighborhood, we decided to
introduce a long term memory mechanism, which is known in the literature
as eXploring Tabu Search (XTS) [3]. The basic idea is to maintain a set
of good solutions which were evaluated but not chosen, because they were
worse than the best one in the neighborhood. These solutions could be
a good starting point to diversify the search, leading it toward promising
regions. Therefore, every time suitable conditions verify, the search restarts
from one of these solutions.

To implement this mechanism, we use a list M of fixed length, composed
of second solutions: when exploring the neighborhood of solution M , the
best solution M∗ becomes the incumbent, and the second best solution M ′

is inserted in M, if its value is better than the worst in M. The restart of
the search is subject to two conditions: either the best known solution is not
improved for Ic1 iterations or the length of one of the two tabu lists resides
in the upper half of its range, that is

[(
`m + `M

)
/2; `M

]
, for Ic2 consecutive

iterations. The first condition indicates that the currently explored region
does not seem to be promising. The second condition indicates that the short
term mechanism seems to be insufficient to diversify the search. When any
of these conditions holds, the best solution in M is removed from the list
and becomes the new incumbent.

In order to replicate exactly the moment in which M ′ was found, it is

5

required to save the whole state of the computation, that is the current
solution M , the current tabu lists Lin and Lout, the parameters concerning
the short term mechanism and the move which generates M ′.

3 Computational results

In this section we report the computational results of our Tabu Search algo-
rithm and then we compare them with those obtained by various GRASP [5,
1, 13, 2]. Before discussing the computational results, we describe the com-
putational environment, the benchmark instances used and the tuning of
algorithm parameters.

Setting up the computational experiments

Our algorithm is coded using the C standard 2 and runs on a Linux machine
with g++ 3.3.6 compiler. The PC is an Intel Pentium 4 Mobile 2.8Ghz
with 512MB of main memory.

For our experiments, we have used two sets of benchmark instances avail-
able in the literature: the first benchmark, say B1, has been proposed in [1]
whilst the second one, say B2, in [13]. These sets are also available at
website: http://www.dti.unimi.it/∼aringhieri.

Benchmark B1 is composed of 40 instances such that n = 50, 100, 150,
200, 250 and m equals to 20% or 40% of n. There are 4 different types of
instances:

• type A: the elements are points on a plane; their coordinates are ran-
domly extracted from [1, 9] and dij is equal to the Euclidean distance
between elements i and j;

• type B: all distances dij are random integers with a uniform distribu-
tion in [1, 9999];

• type C: 50% of the distances are random integers uniformly distrib-
uted in [1, 9999], whilst the remaining are random integers uniformly
distributed in [1, 4999];

• type C: 50% of the distances are random integers uniformly distrib-
uted in [1, 9999], whilst the remaining are random integers uniformly
distributed in [5000, 9999];

Benchmark B2 is composed of 20 instances such that n = 100, 200, 300,
400, 500 and m is equal to 10%, 20%, 30%, 40% of n and dij are random
integers uniformly distributed in [0, 9].

Preliminary computational experiments have been done in order to tune
the parameters of our algorithm, i.e. the lengths of the two tabu lists and
the values concerning both the short term and the long term mechanisms.

6

Table 1 reports the parameters’ values. We remind that the initial values

Tabu tenures `
(0)
in = 11 `

(0)
out = 5

`m
in = 8 `M

in = 14
Short Term `m

out = 3 `M
out = 7

Tw = 5 Ti = 3

Long Term |M| = 15 Ic1 = 2000 Ic2 = 300

Table 1: Parameters’ values.

of `in and `out are set to the median point of the corresponding range and,
therefore, they are equal to 11 and 5, respectively. Finally, the values of
∆`in and ∆`out depend on how far the current length of each list is from the
median point of its range. In detail, we have:

∆`in =

{
2 `in = `m

in or ` = `M
in

1 `m
in < `in < `M

out

and ∆`out =

{
2 `out = `m

out or ` = `M
out

1 `m
out < `out < `M

out

.

In the experimental comparison, we will also consider the results ob-
tained by two limited versions of the algorithm. The former is a tabu search
with short term (but not long term) memory, which corresponds to setting
Ic1 = Ic2 = +∞. The latter corresponds to an even more limited standard
tabu search, with fixed tabu tenures equal to `

(0)
in and `

(0)
out, which corre-

sponds to setting ∆`in = ∆`out = 0. All other parameters assume the same
values in the three algorithms. The two limited versions are clearly less
effective than the proposed one, but we take them into account because in
two cases (out of 60 instances) the short term memory performs better than
the long term one and in one case the standard Tabu Search proves the best
of the three. Similar results can be obtained by considering only the long
term memory Tabu Search and tuning ad hoc the value of the parameters
or suitably increasing the maximum number of iterations.

Competing algorithms

The best known results in the literature for the two available benchmarks
have been obtained by several different algorithms under distinct environ-
ment conditions. In detail, the competing algorithms are Ghosh’s GRASP
heuristic as implemented by Andrade et al. [5, 1], Andrade’s GRASP heuris-
tic [1], Silva’s six GRASP heuristics (named from G3 to G8) [13] and An-
drade’s six GRASP heuristics with path-relinking (named from T1E1 to
T3E2) [2], that is 14 different algorithms.

All of these algorithms are based on the GRASP paradigm. They select
one element at a time (on the basis of a greedy criterium, partly random-

7

ized) and add it to the current partial solution until this includes m ele-
ments, as required. Then, they apply some local search procedure to the
resulting solution, in order to improve it. This process goes on for a suitable
number of iterations. Ghosh’s heuristic is a classical GRASP. Andrade’s
heuristic limits the choice of the new element to a suitable Restricted Can-
didate List (RCL). Both of them apply the basic local search technique also
adopted in our algorithm. Silva’s algorithms G3-G8 combine three differ-
ent constructive heuristics with two different local search procedures. They
tune the length of the RCL by a sophisticated mechanism known as reactive
GRASP. Moreover, not all solutions generated by the constructive heuristic,
but only the best out of a given number undergoes the improvement phase.
The two local search techniques are the basic local search also adopted in
our algorithm and an enhanced version, which first reaches a local optimum
with respect to the first neighborhood and then starts exchanging two ele-
ments instead of a single one until a second local optima is reached. The six
GRASP algorithms with path-relinking described in [2] combine three re-
linking strategies (forward, backward or mixed) with two selection strategies
from the elite set (random or greedy).

Results for benchmark B1

It is not easy to establish a comparison on this benchmark, since the best
known values have been obtained from all the 14 competing algorithms, but
detailed values are available only for the six GRASP algorithms with path-
relinking, as also reported in [2]. We therefore compare first our best results
to the best known ones, then the results of our best performing algorithm
(the tabu search with long term memory) to the results obtained by the best
performing GRASP with path relinking, that is T3E2.

For 32 instances out of 40 we have equaled the best result reported
in the literature. Table 2 discusses the remaining 8 instances. The first
column contains the name of the instances. The following two columns
report, respectively, our result and the best known in the literature (the best
between them is bolded). The last column reports the difference between
the two values. In 5 cases out of 8, we improve the best known result; in
3 cases our performance is worse. Most of the time, the difference is quite
small. Only 3 results are markedly different: in two of them, our results is
better. We remind that this comparison opposes 3 slight variants of a single
algorithm to 14 variants of 4 different algorithms.

If one compares our Tabu Search with long term memory to the best
performing GRASP with path-relinking (T3E2), the two algorithms provide
the same result for 29 instances out of 40, T3E2 proves better for instance
B250m50 and our Tabu Search proves better for the remaining 10 instances
(and in 9 cases the difference is large). This suggests that our Tabu Search
is more robust. Table 3 compares the computational times. Unfortunately,

8

Instance Tabu Search Literature ∆

A250m50 12 654 12 653 1
B200m80 17 544 447 17 544 448 -1
B250m50 7 379 797 7 388 997 -9 200
B250m100 27 168 460 27 162 906 5 554
C100m20 1 207 522 1 205 722 1 800
D150m60 13 611 262 13 611 261 1
D200m80 24 133 321 24 133 320 1
D250m100 37 753 118 37 753 120 -2

Table 2: Comparison between the best Tabu Search results and the best
results in the literature (when different) on benchmark B1.

these are available only for instances of type B, C, D and sizes 150, 200 and
250.

Long Term Long Term
Instance Tabu Search T3E2 Instance Tabu Search T3E2

B150m30 1.76 318 C200m80 14.68 2 052
B150m60 6.14 1 323 C250m50 11.12 1 602
B200m40 5.78 858 C250m100 32.96 6 774
B200m80 18.90 3 684 D150m30 1.42 204
B250m50 15.99 2 577 D150m60 4.70 759
B250m100 44.61 9 519 D200m40 4.62 603
C150m30 1.34 195 D200m80 14.24 2 856
C150m60 3.90 693 D250m50 13.10 1 545
C200m40 4.73 630 D250m100 33.81 8 067

Table 3: Comparison between the computational times of the Tabu Search
with long term memory and of the best performing GRASP with path-
relinking T3E2 on (part of) benchmark B1 (time in seconds).

However, these are actually the most relevant instances in the bench-
mark, since they are the hardest ones. The first column reports the name
of the instance and the two following report the computational times in
seconds for the competing algorithms. Since the best results just discussed
were obtained during 3 runs of algorithm T3E2, we have multiplied by 3 the
computational times reported in [2], which refer to the average of the 3 runs.
It can be remarked that the Tabu Search is from 100 to 250 times faster.
Of course, it is difficult to compare the computational times of algorithms
running on different machines (T3E2 runs on a 550 MHz Intel Pentium III
PC with 384 MB of RAM), but such a ratio is certainly not entirely due to

9

the different machines employed.

Results for benchmark B2

The results on benchmark B2 can be compared in a more complete way.
In fact, all the best known results on them have been obtained by the
six GRASP algorithms G3-G8 [13], and both the values of the best solu-
tions found and the corresponding computational times are available. As
for benchmark B1, we first compare our best results with the best in the
literature, then the results of our long term Tabu Search with the best of
the six competitors.

For 14 instances out of 20 we have equaled the best result reported in
the literature. Table 4 discusses the remaining 6 instances. The first column
contains the name of the instances. The following two columns report the
result and computational time referring to our 3 versions of Tabu Search.
Computational time are reported in seconds. The following two columns
report the result and computational time referring to the 6 algorithms G3-
G8. The best result for each instance is bolded. Since the computational
times reported in [13] refer to the average of 3 runs, and we consider here the
best result over 3 runs, we have multiplied those times by 3 before reporting
them in Table 4. The last column reports the difference between our result
and the best known one.

Tabu Search Literature
Instance z cpu z cpu ∆

matrizn300m90 20 743 69,89 20 733 120 554,7 10
matrizn400m120 36 317 208,22 36 315 391 434,0 2
matrizn400m160 62 487 295,32 62 483 608 614,5 4
matrizn500m50 7 141 94,33 7 131 110 013,6 10
matrizn500m100 26 258 272,45 26 254 458 166,3 4
matrizn500m150 56 572 446,43 58 605 1 087 398,6 -2 033

Table 4: Comparison between the best Tabu Search results and the best
results in the literature (when different) on benchmark B2 (time in seconds).

In 5 cases out of 6, we improve the best known result, though by small
amounts; in a single case our performance is worse. The computational
times show a huge difference: the six GRASP algorithms are, all together,
from 1000 to 2500 times slower than our three Tabu Search algorithms, both
for the instances considered in the table and for the other ones. Once again,
it is difficult to compare the computational times of algorithms running on
different machines, but such ratios are beyond doubt meaningful.

Table 5 compares the long term Tabu Search to algorithm G3 and G5.

10

The first column reports the name of the instances. The following two
columns provide the result and computational time in seconds of our long
term memory Tabu Search. The two following couples of columns provide
the same information for algorithms G3 and G5. The choice is motivated by
the fact that G3 is the algorithm achieving the largest number of best results
(12 over 20), while G5 is the fastest. For both algorithms, we consider the
best results obtained in 3 runs and multiply by 3 the average computational
times reported in [13]. The instances in which all three algorithms achieve
the same solution are neglected. Therefore, the table presents only 14 of 20
instances. The best result on each row is bolded.

Long Term
Tabu Search G3 G5

Instance z cpu z cpu z cpu

n200m40 4 450 5.35 4 448 1 901.7 4 448 952.2
n200m80 16 225 17.39 16 225 5 537.4 16 207 2 407.8
n300m30 2 694 13.09 2 694 2 934.9 2 691 1 239.6
n300m60 9 689 39.40 9 681 8 849.7 9 689 5 062.5
n300m90 20 743 69.89 20 728 17 719.8 20 640 9 829.2
n300m120 35 881 93.18 35 881 30 836.4 35 871 13 358.4
n400m40 4 651 45.20 4 648 8 344.5 4 653 3 624.9
n400m80 16 935 128.28 16 956 30 484.8 16 925 15 774.0
n400m120 36 317 208.22 36 315 57 662.7 36 175 30 293.7
n400m160 62 487 295.32 62 470 90 289.2 62 313 47 052.9
n500m50 7 141 94.33 7 131 16 984.8 7 130 8 806.8
n500m100 26 258 272.45 26 224 68 466.3 26 201 35 748.6
n500m150 56 572 446.43 56 563 149 058.0 58 605 82 638.0
n500m200 97 344 627.11 97 327 227 430.0 97 213 116 833.3

Table 5: Comparison between the computational times of the Tabu Search
with long term memory and of the best performing GRASP algorithms on
benchmark B2 (time in seconds).

In 7 cases out of 14, our algorithm performs better than both competi-
tors, in 4 cases it equals the result of one competitor and outperforms the
other, in the remaining 3 cases its performance is worse than one competitor,
but better than the other. The computational time is, once again, extremely
smaller: from 80 to 350 times smaller, and it remains so for the instances
not included in the table. Though these GRASP algorithms run on a slower
machine (a PC AMD Athlon 1.3 GHz with 256 MB of RAM), the difference
in the running times cannot be due to the hardware employed.

11

4 Conclusions

In this paper, we have presented a Tabu Search algorithm for the MDP,
a problem with applications in a wide range of different fields. All pre-
viously proposed algorithms of some effectiveness are GRASP procedures,
with very refined initialization phases and a sophisticated management of
the solutions, but with a rather simple improvement phase. We have, on
the contrary, adopted an extremely simple initialization procedure to focus
our attention on a more effective local search. A certain number of devices,
aiming at a careful balance between intensification and diversification, has
been added to a simple neighborhood search. Namely, a short term memory
mechanism tunes the length of two tabu lists, respectively forbidding the
removal of a newly added element and the inclusion of a newly removed
element, and a long term memory mechanism restarts, under suitable con-
ditions, the search from a set of promising solutions previously taken into
account but not already visited. The computational experiments prove that
almost all the best known results in the literature can be equaled or improved
by our algorithm, which can be therefore considered more robust than the
competing GRASP algorithms. Moreover, the computational time required
to obtain these results is orders of magnitude lower than that required by
those GRASP. Ongoing work is dedicated to develop and test further local
search metaheuristics for the MDP, such as Scatter Search, Variable Neigh-
borhood Search and Iterated Local Search. We are particularly interested in
observing the behavior of those specific tools able to enrich the improvement
phase in order to better explore the solution space.

References

[1] P. M. D. Andrade, A. Plastino, L. S. Ochi, and S. L. Martins. GRASP
for the Maximum Diversity Problem. In Proceedings of the Fifth Meta-
heuristics International Conference (MIC 2003), 2003.

[2] P. M. D. Andrade, L. S. Plastino, and S. L. Martins. GRASP with
path-relinking for the maximum diversity problem. In S. Nikoletseas,
editor, Proceedings of the 4th International Workshop on Efficient and
Experimental Algorithms (WEA 2005), volume 3539 of Lecture Notes
in Computer Science (LNCS), pages 558–569. Springer–Verlag, 2005.

[3] M. Dell’Amico and M. Trubian. Solution of large weighted equicut
problems. European Jurnal of Operational Research, 106:500–521, 1998.

[4] P. Festa and M. G. C. Resende. GRASP: An annotated bibliography.
In C. C. Ribeiro and P. Hansen, editors, Essays and Surveys in Meta-
heuristics, pages 325–367. Kluwer Academic Publishers, 2002.

12

[5] J. B. Ghosh. Computational aspects of maximum diversity problem.
Operation Research Letters, 19:175–181, 1996.

[6] F. Glover, G. Hersh, and C. McMillian. Selecting subset of maximum
diversity. MS/IS 77-9, University of Colorado at Boulder, 1977.

[7] F. Glover, C. C. Kuo, and K. S. Dhir. A discrete optimization model for
preserving biological diversity. Appl. Math. Modelling, 19(11):696–701,
November 1995.

[8] F. Glover, C. C. Kuo, and K. S. Dhir. Integer programming and heuris-
tic approaches to the minimum diversity problem. Journal of Business
and Management, 4(1):93–111, 1996.

[9] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
1997.

[10] G. Kochenberger and F. Glover. Diversity data mining. Working Paper
Series HCES-03-99, The University of Mississipi, 1999.

[11] C. C. Kuo, F. Glover, and K.S. Dhir. Analyzing and modeling the max-
imum diversity problem by zero-one programming. Decision Science,
24:1171–1185, 1993.

[12] Y. Melzani. Un algoritmo di tabu search per il maximum diversity
problem. Master’s thesis, DTI - Università di Milano, Luglio 2005.

[13] G. C. Silva, L. S. Ochi, and S. L. Martins. Experimental comparison
of greedy randomized adaptive search procedures for the maximum di-
versity problem. In Proceedings of the 3rd International Workshop on
Efficient and Experimental Algorithms (WEA 2004), volume 3059 of
Lectures Notes on Computer Science (LNCS), pages 498–512. Springer–
Verlag, 2004.

[14] R. Weitz and S. Lakshminarayanan. An empirical comparison of heuris-
tic methods for creating maximally diverse group. Journal of the Op-
erational Research Society, 49:635–646, 1998.

13

