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Abstract

The rostering problem consists in finding an optimal assignment
of shifts to workers in a given time horizon. When the total workload
should be evenly distributed, we have a balanced rostering problem.
We consider a practical application to the junk removal company in
Crema, Italy. In this case, predefined daily shifts must be assigned
to the drivers in a fair way. However, the drivers have limited skills,
that is they are qualified to perform only a small subset of the pos-
sible shifts. Here, we propose three alternative formulations for the
problem, and corresponding algorithms to solve them.

1 Introduction

The Crew Rostering Problem (CRP) consists in finding an optimal assign-
ment of shifts to workers in a given time horizon. This problem is usually a
part of the more general problem of managing the workers of large transit,
collection or distribution systems so as to perform a set of tasks. Since the
whole problem would be too large and complex, it is a common approach to
decompose it, first computing optimal shifts, then assigning them to crews.

Our interest in this problem derives from a practical application: the
rostering of drivers’ shifts for the SCS, a public company taking care of
junk removal in Crema, in Italy. Since the daily shifts have been built and
optimized in a previous step, so as to cover the given requirements, the
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purpose of the problem is to assign the shifts to the drivers in such a way
that the total workload is evenly distributed.

The problem is complicated by the fact that, recently, this company has
merged with other similar ones which operated in the surroundings. As a
result, the drivers have limited skills, i.e. each of them is qualified to per-
form only a small subset of the possible shifts (the ones he performed in
the previous organization, plus the new ones he is gradually learning). Such
a situation would not, perhaps, deserve much attention if it were transient.
However, the workforce structure is also currently undergoing a quick modifi-
cation, with the introduction of temporary workers, characterized by a strong
turnover. This makes the skill limitation a persistent and relevant issue in
the management of shifts for the years to come.

Section 2 surveys the general literature on Crew Rostering, emphasizing
that the fair distribution of the workload among workers is a less common
objective than the minimization of the total cost, that the regular structure
of this practical application calls for a specialized model and that, to the best
of our knowledge, a balanced rostering problem with limited skills has never
been studied previously.

After providing some general notation (Section 3), we propose three al-
ternative formulations, and correspondingly three algorithms. The first one
(Section 4) exploits multicommodity flow variables, combined with variables
which express the cumulated workloads for the drivers. The corresponding
algorithm applies a Lagrangean decomposition of the problem into a multi-
level bottleneck assignment subproblem, a min-cost assignment subproblem
and a number of min-cost flow subproblems. The second approach (Sec-
tion 5) exploits driver-shift assignment variables, and applies a Lagrangean
relaxation to produce a multiple-choice knapsack subproblem. In the end,
the third approach (Section 6) applies the classical Set Partition formulation,
with an exponential number of path variables, managed by a column gen-
eration mechanism. The resulting pricing subproblem is a multiple-choice
knapsack problem closely related to the one obtained in the previous ap-
proach. The last section describes a heuristic algorithm to provide upper
bounds for any of the three approaches.

2 Survey

Crew Rostering has been a lively field of study over the last decades. A huge
survey on this problem can be found in [13]. Most of the approaches in the
literature end up with a Set Partitioning model, whose variables correspond
to the feasible sequences of shifts assigned to each driver [8]. Some approaches
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take into account all variables or a heuristic subset [11], while the others
start with a reduced set of promising variables and apply column generation
to introduce new variables only if necessary [1].

Among the alternative approaches, Beasley and Cao [3] studied the prob-
lem of assigning crews to tasks with fixed start and finish times such that the
total working time for each crew does not exceed a given limit. They pro-
posed a dynamic programming approach to generate a lower bound which is
then improved via subgradient optimization. Incorporating this lower bound
into a tree search procedure (already proposed in [2]) they are able to solve
a number of quite large problems to proven optimality.

Cappanera and Gallo [7] give a multi-commodity flow formulation for an
airline crew rostering problem, which is strengthened by valid inequalities
and solved with a general-purpose MIP solver.

We do not provide a complete analysis of the literature on the CRP be-
cause the application considered has quite special features. First, the most
common objective function in Crew Rostering, that is the total cost of the
assignment, is here unmodifiable, while the objective is to distribute the to-
tal workload among the workers as evenly as possible. Equitability is a key
issue in staff management, but less common in the literature. In the con-
text of airline personnel rostering, the generation of feasible rosters and their
assignment at minimum cost, followed by a re-rostering phase to improve
equitability has been considered in [10]. In the field of public transporta-
tion, the balanced provision of regular weekends, pairs of rest days and long
weekends in order to maximize crew satisfaction is the main objective in [18].

In the present application, all the shifts in a given day are mutually exclu-
sive, since they go from morning to evening, but the only constraint limiting
the shifts which can be assigned to a worker in different days is the worker’s
skill. These specific features call for a specific approach. A graph model for
this problem has been introduced by Carraresi and Gallo to provide a bal-
anced rostering of drivers in the public transport company of Pisa [9]. This
model is named Multilevel Bottleneck Assignment Problem (MBAP). Car-
raresi and Gallo proved it to be NP-complete and provided an approximation
algorithm based on the repeated solution of suitable bottleneck assignment
subproblems. A similar approach has also been proposed in [4]. However,
the algorithm by Carraresi and Gallo refers to the case in which the work-
ers are qualified for all shifts. On one side, this leads to largely unfeasible
solutions, on the other side, partitioning shifts and drivers into disjoint sub-
sets which could be matched separately, as if the original companies were
still independent, would destroy any advantage deriving from their fusion,
and would lead to an unacceptably unfair distribution of the workload. To
the best of our knowledge, this scenario has been quite rarely studied in the
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literature. The authors of [12] have proposed a branch-and-price algorithm
based on a generalized Set Covering model. This extends the works by [5, 6],
where the skill levels have a hierarchical structure, that is the workers of the
upper levels can perform larger subsets of tasks.

3 Notation

Before discussing the three formulations, let us introduce some notation.
Given a time horizon of L days, a weighted complete level graph G = (N,A)
of L levels models the structure of the service. A node u�

i corresponds to
shift i of day � and the set N� corresponds to all shifts of day �. Without loss
of generality, one can assume the number of shifts per day to be equal to the
number of drivers n: dummy shifts can be added to guarantee this result.
Each shift u�

i implies a workload w�
i . Let W be the set of drivers which is

partitioned into a set K of classes: the nk drivers belonging to class k have
the same skills (they can perform the same subset Tk of shifts). Let W �

i be
the subset of drivers qualified to perform shift u�

i ; in general, W �
i includes

more than one class of drivers.
Figure 1 shows a solution (in bolded arcs) for a problem with four drivers

and a time horizon of four days. Graph G has four levels, and each path
represents the sequence of shifts performed by one of the four drivers during
the time horizon. Now, suppose that two drivers are able to perform only
shifts corresponding to nodes of the first three rows (subset T1), while the
other two drivers are able to perform only shifts corresponding to nodes of
the last three rows (subset T2). The solution depicted, whose makespan is 20,
is unfeasible; figure 2 shows the optimal feasible solution, whose makespan
is 24.

4 A Multilevel Bottleneck Assignment for-

mulation

The first model is based on the formulation proposed by Carraresi and Gallo
in [9] for the rostering with a bottleneck objective function. The Bottle-
neck Assignment Problem (bap) is the search for a complete matching on
a weighted bipartite graph, such that the weight of the heaviest edge in
the matching is minimum. The Multi-level Bottleneck Assignment Problem
(mbap) is defined on a weighted graph of L levels and consists in finding L−1
complete matchings between contiguous levels, such that the heaviest path
formed by the arcs in the matchings has a minimum weight. The algorithm
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Figure 1: An unfeasible solution on a time horizon of four days (from left
to right) and two classes of workers (whose skills include, respectively, the
shifts in T1 and T2)
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Figure 2: An optimal solution on a time horizon of four days (from left to
right) and two classes of workers (whose skills include, respectively, the shifts
in T1 and T2)

proposed in [9] determines a starting feasible solution by solving a sequence
of baps on the single levels; then, it further improves the solution through a
“stabilization” process. The final result, though not necessarily optimal, has
a bounded gap with respect to the optimum, and is asymptotically optimal
for a large time horizon.

We extend the original formulation by introducing a commodity for each
class of drivers, thus obtaining a Multi-commodity Multi-level Bottleneck As-
signment Problem (mmbap). Let xk�

ij = 1 if shift i in day � and shift j in day
� + 1 are assigned to the same driver of class k, 0 otherwise (this variable
is undefined when the drivers of class k are unable to perform either shift).
Let y�

ij = 1 if shift i in day � and shift j in day � + 1 are assigned to the
same driver of any class, 0 otherwise. Let s�

i be the total workload from day
1 to day � of the driver performing shift i in day �, and z the maximum total
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workload over all drivers.

P1 : min z s.t. (1a)∑

u�+1
j ∈N�+1

y�
ij = 1 u�

i ∈ N \ NL (1b)

∑
u�

i∈N�

y�
ij = 1 u�+1

j ∈ N \ N1 (1c)

∑
k∈K

xk�
ij = y�

ij

(
u�

i , u
�+1
j

) ∈ A (1d)

∑

u�−1
j ∈N�−1

xk�−1
ji =

∑

u�+1
j ∈N�+1

xk�
ij u�

i ∈ N \ N1, k ∈ K (1e)

∑
u1

i∈N1

∑
u2

j∈N2

xk 1
ij = nk k ∈ K (1f)

s1
i = w1

i u1
i ∈ N1 (1g)

w�
j +

∑
i∈N�−1

s�−1
i y�−1

ij ≤ s�
j u�

j ∈ N \ N1 (1h)

z ≥ sL
i uL

i ∈ NL (1i)

xk�
ij ∈ {0, 1} (

u�
i , u

�+1
j

) ∈ A, k ∈ K (1j)

y�
ij ∈ {0, 1} (

u�
i , u

�+1
j

) ∈ A (1k)

A Lagrangean decomposition

In order to obtain a lower bound, first we add to the formulation two families
of capacity constraints on the vertices of graph G

∑

u�+1
j ∈N�+1

∑
k∈K

xk�
ij = 1 u�

i ∈ N \ NL (2)

∑

u�+1
j ∈N�+1

xk�
ij ≤ 1 u�

i ∈ N \ NL k ∈ K (3)

Constraints (2) are redundant because they combine constraints (1b) and (1d),
while constraints (3) are a relaxed version of the former. If one relaxes in a
Lagrangean fashion constraints (1d) with multipliers λ�

ij and constraints (2)

with multipliers λ̂�
i , the problem decomposes into two classes of subproblems.

The former includes |K| min-cost flow problems (with vertex capacities),
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which only concern the xk�
ij variables

L′
1 : min

∑

(u�
i ,u

�+1
j )∈A

(
λ�

ij + λ̂�
i

)
xk�

ij s.t. (4a)

∑

u�−1
j ∈N�−1

xk�−1
ji =

∑

u�+1
j ∈N�+1

xk�
ij u�

i ∈ N \ N1, k ∈ K (4b)

∑
u1

i∈N1

∑
u2

j∈N2

xk 1
ij = nk k ∈ K (4c)

∑

u�+1
j ∈N�+1

xk�
ij ≤ 1 u�

i ∈ N \ NL, k ∈ K (4d)

xk�
ij ∈ {0, 1} (

u�
i , u

�+1
j

) ∈ A, k ∈ K (4e)

where the integrality constraints (4e) are redundant.
The latter is an unusual assignment problem, concerning the y�

ij, s�
i and

z variables:

L′′
1 : min z −

∑

(u�
i ,u

�+1
j )∈A

λ�
ijy

�
ij s.t. (5a)

∑

u�+1
j ∈N�+1

y�
ij = 1 u�

i ∈ N \ NL (5b)

∑
u�

i∈N�

y�
ij = 1 u�+1

j ∈ N \ N1 (5c)

s1
i = w1

i u1
i ∈ N1 (5d)

w�
j +

∑
i∈N�−1

s�−1
i y�−1

ij ≤ s�
j u�

j ∈ N \ N1 (5e)

z ≥ sL
i uL

i ∈ NL (5f)

y�
ij ∈ {0, 1} (

u�
i , u

�+1
j

) ∈ A (5g)

whose objective function is the difference of two terms. The first one is
the MBAP relaxation corresponding to neglect the skill constraints. The
second one is a classical assignment problem: constraints (1g), (1h) and (1i)
are redundant since z has no influence on the objective.

A lower bound on (5) can be obtained by optimizing separately the bot-
tleneck and the min-cost subproblems, and summing the resulting optimal
values. Notice that the bottleneck subproblem is hard, but it admits an
asymptotically optimal approximation algorithm and it must be solved only
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once, at the beginning of the computation, since it does not depend on the
value of the Lagrangean multipliers.

So, this decomposition actually consists in augmenting the mbap relax-
ation with a lagrangean contribution, iteratively updated by subgradient
ascent. This contribution is the difference between the min-cost flow sub-
problems, which take into account the skill limitations, and the min-cost
assignment subproblem, which takes into account the constraint of matching
shifts and drivers day by day.

A branching rule

In order to nest the bounding procedure into an exact approach, it appears
natural to adopt a branching rule based on the peculiar constraint imposed
by limited skills. In particular, we focus on the complementarity slackness
conditions. The relaxed constraints (1d) and (2) state that exactly one arc
should go out of each node. We determine the node u�

i for which the product
of the lagrangean multiplier λ̂�

i times the violation of the corresponding con-
straint is maximum. Then, we partition the outgoing arcs into two subsets
of equal size, each of which includes part of the outgoing arcs. In the end,
we generate two subproblems by removing from graph G the arcs of one of
the two subsets.

5 A Generalized Assignment formulation

The MMBAP also admits the following formulation, based on the assign-
ment of shifts to drivers. Let ui�d = 1 if driver d performs shift u�

i ; ui�d = 0
otherwise. Of course, ui�d is undefined when d /∈ W �

i .

P2 : min z s.t. (6a)∑
u�

i∈N

wi�ui�d ≤ z d ∈ W (6b)

∑
d∈W �

i

ui�d = 1 u�
i ∈ N (6c)

∑
u�

i∈N�

ui�d = 1 d ∈ W, � = 1, . . . , L (6d)

ui�d ∈ {0, 1} u�
i ∈ N, d ∈ W. (6e)
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This formulation recalls the Bottleneck Generalized Assignment Problem
(bgap) [15], but algorithms for the bgap cannot be adapted to our problem
in a straightforward way, mainly due to the different objective function.

A Lagrangean relaxation

The Lagrangean subproblem obtained by dualizing constraints (6c) is:

L2 : min


z −

∑
u�

i∈N

∑
d∈W �

i

µi�ui�d


 s.t. (7a)

∑
u�

i∈N

wi�ui�d ≤ z d ∈ W (7b)

∑
u�

i∈N�

ui�d = 1 d ∈ W, � = 1, . . . , L (7c)

ui�d ∈ {0, 1} u�
i ∈ N, d ∈ W. (7d)

Problem (7) can be seen as a parametric problem in z, with optimum
Lz (µ). For each value of multipliers µil and makespan z, it decomposes into
|W | independent subproblems, one for each driver. These subproblems are
Multiple Choice Knapsack Problems (mckp): shifts must be assigned to the
driver, respecting a capacity constraint, but the shifts are partitioned into
subsets (days) and exactly one shift has to be chosen from each day. The
mckp is NP-hard, but it can be solved with effective pseudo-polynomial time
algorithms. In particular, Pisinger in [17] proposed a linear time partition-
ing algorithm to solve the continuous relaxation of the mckp and described
how to incorporate it in a dynamic programming algorithm. Notice that
drivers in the same class give rise to identical mckps. Hence, the number of
subproblems to solve in order to compute the bound reduces to |K|.

Let u∗
i�d(µ, z) be the optimum of problem (7) for given values of µ and

z. It can be remarked that z − Lz(µ) =
∑

i�d µi�u
∗
i�d(µ, z) is a monotonically

increasing function of z. For low values of z, either problem (7) is unfeasible,
or z − Lz(µ) is negative. In both cases, problem (6) is unfeasible. In the
latter case, in fact, the optimum of the original problem (6) would be smaller
than the optimum of the relaxed problem (7) (z < Lz(µ)). For large values
of z, z−Lz(µ) is positive, and no conclusion can be drawn about the original
problem. Hence, any value of z for which z − Lz(µ) < 0 is a valid lower
bound for problem (6). We adopt binary search to determine the tightest
bound possible.

A similar approach is discussed in [14] to minimize the makespan on
unrelated machines. In that case, the auxiliary subproblem is a knapsack
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problem, and the binary search mechanism is nested inside the subgradi-
ent ascent. We nest subgradient ascent inside binary search. This provides
the same bound, but also allows to tighten it: instead of simply solving the
relaxed subproblem (7), we can apply a limited branching to better approx-
imate the optimum of problem (6). Possibly, this allows to prove for larger
values of z that they are lower bounds.

Further Lagrangean bounding procedures can be devised relaxing other
families of constraints. However, the problem obtained relaxing constraints (6b)
exhibits the integrality property, i.e. the best bound achievable is equal to
the continuous relaxation of (6). Relaxing both constraints (6c) and (6d),
the bound obtained is trivially dominated by the one described above, as
each subproblem is a traditional Knapsack problem, that is a relaxation of
the corresponding mckp. Finally, relaxing constraints (6d), a Generalized
Assignment Problem (gap) appears as a subproblem. This is much harder
than the mckp from both a theoretical (it is NP-hard in the strong sense)
and a computational viewpoint [16].

A branching rule

In order to exploit the bound above described, we branch on the subset of
drivers W �

i who can perform a given shift u�
i . Once again, this is based on

the complementarity slackness conditions for the constraints which state that
each shift is performed exactly once (here, constraints (6c)). After selecting
the constraint for which the product of the Lagrangean multiplier times the
constraint violation is maximum, we partition subset W �

i into two subsets of
equal size and replace W �

i with either of them in the two subproblems.

6 A Set Partitioning formulation

The classical Set Partitioning approach to Crew Rostering consists in defining
the set of all sequences of shifts that a worker can feasibly perform during
the whole time horizon, and selecting a sequence for each worker, such that
each shift is performed exactly once. A feasible shift sequence corresponds to
a path from the first to the last level of graph G, such that at least one driver
is qualified to perform all shifts in the path. Let us denote as P the collection
of all paths P ⊂ N such that |P ∩ Nl| = 1 for all l, and as wP =

∑
u�

i∈P w�
i

the total workload along path P . Finally, let ai�P = 1 when u�
i ∈ P and

ai�P = 0 otherwise. The problem can be formulated through binary variables
xPk by setting xPk = 1 when a worker of class k performs path P ∈ P, and
xPk = 0 otherwise. Of course, xPk is undefined when P \ Tk �= ∅, that is
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when path P includes shifts for which the worker is not qualified.

P3 : min z (8a)∑
P∈P

xPk = nk k ∈ K

wP xPk ≤ z P ∈ P, k ∈ K (8b)∑
P∈P

∑
k∈K

ai�P xPk = 1 u�
i ∈ Tk (8c)

xPk ∈ {0, 1} P ∈ P, k ∈ K (8d)

A branch-and-price approach

Problem (8) can be solved for any given value of z. To determine the optimal
one, z∗, we apply a binary search between a heuristic value (see Section 7) and
the lower bound provided by the optimum of the MBAP obtained neglecting
the skill constraints.

For each tested value z, search for a feasible solution of the following
problem

L3 :
∑
P∈P

xPk = nk k ∈ K (9a)

∑
P∈P

∑
k∈K

ai�P xPk = 1 u�
i ∈ N (9b)

xPk ∈ {0, 1} P ∈ Pz, k ∈ K (9c)

where Pz is made up only of paths P such that wP ≤ z. Each value of z for
which feasible solutions exist is a lower bound on the optimum of (8).

In order to solve problem (9), promising columns are generated through
the following pricing subproblem. For each class k of drivers, determine
the feasible path P with total workload not larger than z and such that∑

u�
i∈P y�

i is maximum, where y�
i are the dual variables of the partitioning

constraints (9b). These can be interpreted as prizes, and the pricing problem
is, once again, a MCKP. In fact, it consists in selecting a subset of shifts of
maximum value, such that there is one for each level and their total weight
does not exceed z. This MCKP is closely related to the one obtained in the
previous approach: in fact, the capacity is, once again, the currently tested
makespan, while the values of the items are the dual variables instead of the
lagrangean multipliers.
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A branching rule

A branching strategy based on the compatibility between shifts and drivers
allows to keep unmodified the structure of the pricing problem, so that all
subproblems are MCKPs. First of all, remark that in a fractionary basic
solution, some shifts are covered by the contribution of workers from different
classes. Let K�

i ⊆ K be the subset of classes which can perform shift u�
i

(k ∈ K�
i ⇔ u�

i ∈ Tk). Select a “multi-covered” shift u�
i , and partition K�

i in
two disjoint subsets such that

∑
xPk over each of them is as close as possible

to 0.5; then, set K�
i equal to each of the two subsets in each subproblem.

7 A heuristic algorithm

It is easy to determine whether an instance of the MMBAP is feasible or not:
it simply requires to solve a maximum matching problem between drivers and
shifts for each day of the time horizon, avoiding the assignments which are
forbidden by the limited skills of the drivers. If a complete matching is im-
possible for any day, the whole problem is also unfeasible. If it is possible, the
whole assignment is also globally feasible since the only constraint on shifts
of different days is to be assigned to a qualified driver, and this constraint is
satisfied by the daily matchings.

In order to obtain good quality solutions, we adopt the algorithm pro-
posed by Carraresi and Gallo for the MBAP [9], with simple adaptations.
The first phase of the algorithm requires no adaptation: it determines a start-
ing feasible solution by solving a sequence of baps on the levels of graph G,
from the first to the last one. At each level, the cost on arc

(
u�

i , u
�+1
j

)
is given

by s�
i + w�+1

j , where s�
i is the cumulated workload of the driver performing

the first shift in the arc, and w�+1
j is the workload for the second shift. In

other words, the objective function tries to minimize the maximum workload
which is gradually assigned to the drivers. This algorithm is not guaranteed
to be optimal since it exploits no knowledge about the workloads of the shifts
in future days.

Given a starting solution and an arc
(
u�

i , u
�+1
j

)
, let us denote as left half-

sequence the whole sequence of shifts assigned to the same driver and ending
in shift u�

i and as s�
i its cumulated workload. Conversely, the right half-

sequence will be the whole sequence of shifts assigned to the same driver and
starting from shift u�+1

j , and v�+1
j will be its cumulated workload. The second

step of the original algorithm consists in reoptimizing the current solution
by taking into account a single level, freezing all left and right half-sequences
related to the arcs of that level, and matching them again in order to reduce
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the maximum workload. This is, once again, a BAP on the selected level,
if the cost of arc

(
u�

i , u
�+1
j

)
is given by s�

i + v�+1
j . If the optimal assignment

for this BAP is better than the current one, adopting it improves the whole
problem, as well. This process is repeated on all levels, as long as it finds
better solutions. When no more improvements are possible, the solution
is “stable”. The optimal solution is one of the stable solutions, and the
makespan of all stable solutions is bounded with respect to the makespan of
the optimal one.
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Figure 3: A step in the extended Carraresi-Gallo heuristic: the makespan of
the starting solution is s1

3 + v2
3 = 20; arcs (u1

1, u
2
4) and (u1

4, u
2
1), corresponding

to unfeasible matchings, have been removed

N1

u1

u 2

N1

u

u

1

1

1

1

3

4

u1

u 2

N2

u

u

2

2

2

2

3

4

u1

u 2

N3

u

u

3

3

4

u1

u 2

N4

u

u

4

4

3

4

T1

T2

3 3 8 5

1 6 7 2

8 1 2 9

5 3 5 3

3

3

3

4

4

s 1 v2

3

1

8

5

16

15

12

11

Figure 4: A step in the extended Carraresi-Gallo heuristic: the makespan of
the new solution is s1

3 + v2
4 = 19

The solution in Figure 3 has a makespan equal to 20, corresponding to the
driver who performs task ul

1 for l = 1, . . . , 4. One can improve this starting
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solution by solving the BAP on level l = 1, that is matching differently
the left half-sequences, consisting of level 1, with the right half-sequences,
consisting of levels 2, 3 and 4. The optimal solution of this problem is
provided in Figure 4: its makespan is 19.

To extend this algorithm to the case of limited skills, we must limit the
feasible assignments between the half-sequences. Each left half-sequence is
associated to a single driver di. Each right half-sequence is compatible with
the subset of drivers Dj who can feasibly perform all its shifts. The BAP
is solved after removing all arcs for which di /∈ Dj, since they correspond to
incompatible matchings. In Figure 3, the left half-sequence including node
u1

i is associated to driver i, the first three right half-sequences are compatible
with drivers 1 and 2 (class k = 1) and the last three right half-sequences
with drivers 3 and 4 (class k = 2). Therefore, arcs (u1

1, u
2
4) and (u1

4, u
2
1) are

unfeasible. Then, we consider an alternative BAP, where each right half-
sequence is associated to a single driver and each left one to the subset of
drivers who can feasibly perform its shifts. The best solution over the two
attempts is selected and replaces the current one, unless the current solution
is optimal in both cases.

8 Conclusions

This paper discusses the problem of determining a balanced rostering for
drivers with limited skills in a framework characterized by daily shifts. The
problem derives from a practical application to the public company taking
care of junk removal in Crema.

We propose three alternative formulations for the problem, bounding
procedures and solving algorithms for each of them, as well as a heuris-
tic algorithm. In the first formulation, the problem is modeled as a Multi-
commodity Multi-Level Bottleneck Assignment Problem. This model admits
a Lagrangean decomposition into various different network flow subproblems,
which is exploited to obtain the proposed bound.

The second approach is based on a Generalized Assignment formulation,
which could give rise to different Lagrangean relaxations. The one which
appears to be the most promising to obtain a good bound with a reason-
able computational effort, involves a well understood optimization problem,
namely the Multiple Choice Knapsack Problem.

The third one is based on a Set Partitioning formulation, with an expo-
nential number of path variables. A pricing subproblem, which is a Multiple
Choice Knapsack Problem, provides promising columns to add to the formu-
lation.
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Finally, the heuristic algorithm generalizes the “stabilizing” approach in-
troduced in [9].
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