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Abstract 
In the agroecosystem, the surface crop residues are widely recognized as affecting many processes such as 

soil water dynamics, crop growth, nitrogen and carbon cycling. For this reason, developing models that 

simulate the effect of the surface residues and their decomposition is crucial, especially while modelling 

conservation agriculture. To date, even though many cropping systems and C-oriented models differently 

simulate the evolution of the surface residue biomass, an integrated approach is still missing. In this study, 

we developed and new simulation module that explicitly simulates the decomposition of surface residues by 

including all variables and processes relevant to the agroecosystem's simulation. This module has been later 

integrated into the ARMOSA cropping system model. To quantify the contribution of each parameter to the 

simulated outputs (i.e., decomposed biomass), a sensitivity analysis (SA) was conducted, comparing the 

result with the APSIM model used as a benchmark. The SA was conducted on four different crop residues 

(maize, rye, soybean and wheat) over three different years. In addition, for each crop residues, the SA was 

performed for long and short simulation periods to verify whether parameters behaved differently according 

to the examined time period. The most critical parameters of the new module reflected the importance of 

the soil temperature, soil water content and residue biomass in the decomposition process. The potential 

decomposition rate had minor importance, highlighting that, when setting crop-specific values, other 

environment-related parameters are more relevant for the actual decomposition rate. In the case of APSIM 

model, the potential decomposition rate and the parameter related to soil temperature resulted in the first 



two ranks. Finally, concordance coefficients were used to compare SA outputs: compared to APSIM, the new 

model showed higher concordance passing from one crop residue to another even when comparing the short 

and long simulation periods within the same crop. In summary, this work presented a novelty in the surface 

residue representation and provided a deep survey of the module behaviour and characteristics.
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Highlights 
● A new simulation module has been developed to account surface residue decomposition; 

● The new module has been later implemented into the ARMOSA model; 

● A sensitivity analysis allowed to detect parameter/process importance; 

● Soil temperature and water content, and residue mass mostly impact on decomposition; 

● APSIM model has been used as a benchmark to test the new module.

3.1 Introduction 
Surface crop residues represent a fraction of aboveground biomass lost by the crop through senescent organs 

or left on soil surface after harvest (for main crops) or termination (for cover crop). Permanent soil cover 

with surface crop residues is one of the main principles of conservation agriculture (FAO, 2016). Thus,      

leaving dead biomass on soil surface is considered as an important agronomic practice having a relevant 

impact on many processes such as soil water dynamics, soil erosion (Dietrich et al., 2019) and biodiversity, 

thus promoting crop growth and yield (Fiorini et al., 2020). Moreover, residue biomass retention and its 

subsequent decomposition has a significant effect on nitrogen and organic carbon dynamics (Chaves et al., 

2021; Stella et al., 2019; Robertson et al., 2015; Iqbal et al., 2015; Coppens et al., 2007; Guérif et al., 2001).  

For these reasons, the development of models that estimate simultaneously the decomposition of surface 

crop residues and their consequent transformation into soil organic matter along with the water and crop 

dynamics is crucial for a proper assessment of matter and energy flows in agroecosystems (Moreno-Cornejo 

et al., 2014). Another reason to specifically simulate the surface residue degradation is the slower 

decomposition rate of this residue pool compared to the one incorporated into the soil (Douglas et al. 1980).  

To date, different cropping system models have been developed to simulate the decomposition of surface 

residues in response to pedoclimatic conditions and agronomic management. Besides the way they deal with 

the main environmental factors regulating the decomposition, each model differently focuses on specific 



biochemical or physical characteristics of the process. For example, the EPIC model considers the residue 

biochemical structure (through the lignin content), splitting the residues into metabolic and structural 

compartments (Izaurralde et al., 2006; Williams et al., 1984). The WEPP model carefully describes the effect 

of tillage operations on surface residues and considers standing and laying residues as two independent pools 

(Alberts et al., 1987). STICS is mainly based on nitrogen availability as regulating factor of residue 

decomposition rate (Justes et al., 2009; Brisson et al. 1998), while APSIM developed different approaches to 

model the slower decomposition of the upper part of the surface residue layer (Holzworth et al., 2014; 

Thorburn et al. 2001). All the models mentioned above also simulate several other processes that directly 

involve surface residues or are affected by their presence (among which the most relevant are residues’ 

water retention and evaporation, C and N fluxes deriving from residue decomposition and soil covering 

effect).  

On the other hand, a more detailed simulation of residue decomposition is carried out by many C-oriented 

models (Dietrich et al., 2017; Nendel et al., 2011; Bruun et al., 2006). Even though they can simulate the 

decomposition process in detail, the fact that they usually do not simulate crop growth, as well as the effect 

of management operations on soil physico-chemical properties, makes them less suitable for assessing the 

contribution of residues to agroecosystem functioning.  

To date, despite the richness of processes and the diversity of algorithms employed by both cropping system 

and C-oriented models, an integrated approach for the simulation of surface residue decomposition is still 

missing. A more exhaustive simulation of decomposition can improve the outputs of cropping system models 

and allows to better evaluate how this process impacts on the whole agroecosystem. Thus, following an 

integrated approach, we developed a new simulation module that explicitly simulates the decomposition of 

surface residues by including all variables and processes that are relevant for agroecosystems simulation and 

that can be resumed as: (i) main crop residues decomposition after harvest, (ii) cover crop residues 

decomposition after mechanical termination, (iii) senescent leaves accumulation/decomposition during crop 

growth. This last process is essential since senescent leaves represent a possible source of soil C (Rumpel, 



2011) and N that persists on the soil for a significant time. This module has been integrated and tested within 

the ARMOSA cropping system model (Valkama et al. 2020; Perego et al., 2013).  

An assessment of models based on sensitivity analysis (SA) is needed to quantify the contribution of each 

parameter to the simulated outputs (Richter et al., 2010); for this reason, SA is an essential step before model 

calibration. Furthermore, SA is helpful to understand the behavior of the models itself (Confalonieri et al., 

2012) by identifying where (i.e., for which parameters) a reduction of uncertainty leads to the biggest 

reduction of the respective output uncertainty (Diel and Franko, 2020). This indicates where further efforts 

for data quality shall be put to best use (Saltelli et al., 2007). In addition, to our knowledge, there is a lack of 

comparison studies among cropping system models that use different approaches to simulate surface residue 

decomposition. Comparing the results of SA of different models is a common way to highlight models’ 

agreements and dissimilarities for a deeper analysis of the process under evaluation. 

Therefore, the objectives of this work were: (i) to develop an integrated new module and assess it within the 

ARMOSA model to simulate surface residue decomposition and the processes influenced by the residue 

presence; (ii) to assess the new module by analyzing its sensitivity to key parameters, in a case study with 

different crop residues and seasons; (iii) to compare the sensitivity analysis of the new module with that of 

the APSIM model, based on the same case study.

3.2 Materials and Methods 

3.2.1 The APSIM approach 
APSIM was developed to simulate biophysical processes in agricultural systems (Holzworth et al., 2014). 

Decomposition of surface residues in APSIM is implemented through the so-called SurfaceOM module. It 

models the kinetics of decomposition of organic materials left on soil surface until they are incorporated with 

tillage. The module simulates the flow of C to soil pools following the decomposition of dead aboveground 

biomass (Meier and Thorburn, 2016; Thorburn et al. 2001) using first-order kinetics. The actual 

decomposition rate of the flat mass per unit area is obtained decreasing the potential decomposition rate 

(unique for the whole mass) through multiplicative factors (0-1) accounting for the limitations imposed by 

residue moisture, temperature, residue C:N ratio and residue-soil contact. The moisture factor is estimated 



from the potential soil evaporation cumulated along the decomposition period. The effect of temperature 

on residue decomposition is described based on the average air temperature. The limiting C:N ratio is 

calculated using the C:N ratio of each individual residue type, even in case of different residues mixture. 

Lastly the residue-soil contact factor is applied where large amounts of surface residues are present, reducing 

the overall rates of decomposition. 

3.2.2 The new surface residue decomposition module 
 
The new surface residue decomposition module implemented in ARMOSA represents the most important 

processes regarding the dynamics of surface residue decomposition (biomass partitioning between standing 

and laying residues, decomposition rate and residue soil covering), and their influence on surface water 

balance (residue water retention and residue influence on soil evaporation) and soil properties (e.g., carbon 

and nitrogen balance). All the equations of the module are reported in Appendix A. After crop harvest or 

cover crop termination, the module simulates the actual decomposition rate of standing and flat residues 

separately. The decomposition process is based on different species-specific potential decomposition rates 

(PDRs for standing residue biomass, PDRf for flat residue biomass and PDRf(leaves) specifically for leaves 

belonging to the flat biomass) and is affected by environmental and management conditions.  

We adopted some key processes from the WEPP model for the simulation of: 1) the partitioning of crop 

residues at harvest in standing and flat components, based on crop and cutting height; 2) the decomposition 

of the standing biomass (as a function of rain and temperature) and its conversion to the flat biomass (due 

to the action of wind and snow); 3) the soil covering level provided by standing and flat residues, possibly 

affected by soil tillage operations.  

The decomposition of the flat component of surface biomass employs APSIM algorithms: the potential 

decomposition rate of surface residues is limited by temperature, C:N ratio of the residues, soil-residues 

contact degree, and soil moisture. These regulating factors act separately on the actual decomposition rate 

of the three (stand, flat and leaves) pools. Unlike APSIM, however, the new module discriminates between 

leaf and stem biomass to account for their different susceptibility to decomposition. The effect of soil 

moisture was modelled based on the ARMOSA soil moisture simulation to be consistent with the algorithm 



already implemented for the residues incorporated into the soil. Carbon and nitrogen fluxes from surface 

residues decomposition are allocated into stable soil carbon and mineral soil nitrogen. Lastly, the STICS 

approach was adopted for estimating residue water retention (limited by incident rainfall and influenced by 

residue wettability), assessing residue evaporation demand (based on the flat residue soil cover) and 

subsequently adjusting soil evaporation to fulfil the unsatisfied evaporation request. 

3.2.3 Case study for sensitivity analysis 
The scenario used for sensitivity analysis spans between 2013 and 2017 and is based on a long-term field 

experiment (started in 2011) at the CERZOO research station, in Piacenza (45°00’18.0’’ N, 9°42’12.7’’ E; 68m 

above sea level), Po Valley, Northern Italy. The soil at the field site is a fine, mixed, mesic Udertic Haplustalfs 

(Soil Survey Staff, 2014). Main soil (0-30 cm) properties before the beginning of the experiment were: organic 

matter content 21 g kg-1; pH (H2O) 6.8; bulk density 1.36 g cm-3; sand 122 g kg-1; silt 462 g kg-1; clay 416 g kg-

1; soil total N 1.2 g kg-1; available P (Olsen) 32 mg kg-1; exchangeable K (NH4
+ Ac) 294 mg kg-1, and cation 

exchange capacity 30 cmol+ kg-1. The climate is temperate (Cfa Köppen classification), with an average annual 

temperature of 14.2 °C and annual rainfall of 778 mm (last 20-years average). Daily weather inputs required 

by the models were obtained by the Agri4Cast Resources Portal (Biavetti et al., 2014).  

Briefly, the crop sequence was a three-year crop rotation: maize (Zea mays L.), soybean (Glycine max (L.) 

Merr.) and winter wheat (Triticum aestivum subsp. aestivum L.). Rye (Secale cereale L.) was utilized as a cover 

crop after maize and winter wheat, in a no-tillage regime. The experimental design was a randomized block 

with 4 replicates. Approximately two weeks before sowing the cash crop, cover crops was terminated by 

spraying Glyphosate [N-(phosphonomethyl) glycine] at the rate of 3 L ha-1. Cash crop and cover crop residues, 

after harvesting and termination respectively, where left onto the soil surface without chopping. 

In this experiment, a residue biomass decomposition assessment was conducted on surface residue biomass 

of the cash crop and on the whole surface cover crop biomass. The different residues biomasses were used 

to initialize the models under the present study. Thus, the residue biomass from the harvest of the cash crop 

and from the termination of the cover crop represent the dependent variable on which the present study is 

based. We will use the term "surface residue biomass" for the biomass laying on the soil surface regardless 

of its source (i.e. harvest or termination). Once a cash or cover crop was harvested or terminated, the 



residues of the previous crop (if still present on the surface) were removed from the soil, and the new 

residues were put on the soil surface. The removal of the previous residues from the soil (belonging to the 

previous cash crop at cover crop termination or belonging to cover crop at cash crop harvest) allowed to 

study the decomposition of one type of residue alone (cover or cash crop residues) instead of the 

decomposition of a residue mixture.  More details about the whole experiment are available in Boselli et al. 

(2020). 

3.2.4 Sensitivity analysis 
Sensitivity analysis (SA) was carried out on the amount of decomposed residue biomass, which is the 

dependent variable that is affected by all processes included in the new module. Therefore, all the 

parameters involved in biomass decomposition were considered in the sensitivity analysis. A complete 

parameters list is reported in Table 1. 

To better assess the role of the parameters on the decomposition dynamics under different pedo-climatic 

conditions, several SAs were conducted on residues of all crops in the rotation, in the periods of the year 

when they are on the soil surface. In addition, for each tested crop, two timespans of decomposition, 

hereafter reported as "simulation periods", were considered: (1) the "Long Simulation Period" (LSP), from 

crop harvest/termination to the following crop harvest/termination, and (2) the "Short Simulation Period" 

(SSP), that is half of the long simulation period and starts from the same crop harvest/termination date (as 

reported in Figure 1). The introduction of the LSP and SSP periods allowed us to detect possible patterns of 

parameter sensitivity in different stages of residue decomposition. In fact, the analysis of SSP and LSP can 

distinguish the parameters that are important only at the beginning of the decomposition process (when the 

environmental conditions might be different compared to the end of LSP), from the parameters that maintain 

their importance along the whole decomposition period.  

For both the new module and APSIM, the total number of SAs (10) was equal to the combination of the 

number of crops in the rotation (i.e., maize, rye, soybean, wheat, and rye) multiplied by the number of 

simulation periods (LSP and SSP). For each SA, Table 2 shows the specific crop residues under decomposition 

and the period of the year involved. Table 2 also shows the initial residue biomass at the beginning of each 

SA, that was derived from Boselli et al. (2020).



 

Table 1. Crop parameters selected for the sensitivity analysis. Equations related to the new module implementation are reported in appendix A. 

Model Name Unit 
Mean (SD) 

Definition Source 
Maize Wheat Rye Soybean 

New module  

implemented 

in ARMOSA 

PDRf kg m-2 d-1 
0.0065 

(0.00195) 
0.0085 

(0.00255) 
0.0085 

(0.00255) 
0.0038 

(0.0039) 
Decomposition rate of the flat residue biomass 

Calibrated starting from  
Stott et al., 1990 and Probert et al., 1998 

PDRf (leaves) kg m-2 d-1 0.015 (0.0045) 0.015 (0.0045) 0.015 (0.0045) 0.013 (0.0045) 
Decomposition rate of the flat residue biomass 

(leaves) 
Calibrated starting from Stott et al., 1990 

CNopt - 25 (7.5) 25 (7.5) 25 (7.5) 25 (7.5) Optimum C/N ratio of flat biomass for decomposition Thorburn et al., 2001 

CNslope - 0.277 (0.0831) 0.277 (0.0831) 0.277 (0.0831) 0.277 (0.0831) Slope of C/N ratio function curve Thorburn et al., 2001 

Topt °C 20 (6) 20 (6) 20 (6) 20 (6) Optimum temperature for decomposition APSIM default values 

Cfrt m2 kg-1 2.1 (0.63) 6.4 (1.92) 6.4 (1.92) 5.2 (1.56) Area to mass ratio of residue biomass Stott et al, 1990 

Bf_crit kg m-2 0.2 (0.06) 0.2 (0.06) 0.2 (0.06) 0.2 (0.06) 
Critical flat residue biomass above which the 

decomposition is slower 
APSIM default values 

Wettmulch mm Mg-1 ha 2.6 (0.78) 2.6 (0.78) 2.6 (0.78) 2.6 (0.78) Residue biomass water retention Scopel et al., 1998 

SWCmin - 0.2 (0.06) 0.2 (0.06) 0.2 (0.06) 0.2 (0.06) Minimum residue water content for decomposition Calibrated 

SWCoptmin - 0.6 (0.18) 0.6 (0.18) 0.6 (0.18) 0.6 (0.18) 
Minimum optimum residue water content for 

decomposition, expressed as a proportion of field 
capacity 

Calibrated 

SWCoptmax - 1.1 (0.33) 1.1 (0.33) 1.1 (0.33) 1.1 (0.33) 
Maximum optimum residue water content for 

decomposition expressed as a proportion of field 
capacity 

Calibrated 

MAoptb - 1.5 (0.45) 1.5 (0.45) 1.5 (0.45) 1.5 (0.45) First slope of the water limitation function Calibrated 

MAopta - 1 (0.3) 1 (0.3) 1 (0.3) 1 (0.3) Second slope of the water limitation function Calibrated 

Convfct - 0.99 (0.297) 0.99 (0.297) 0.99 (0.297) 0.99 (0.297) 
Adjustment factor to account for the effect of wind 

and snow on the standing residue biomass 
Stott et al., 1990 

APSIM 

Bf_degr kg m-2 d-1 0.1 (0.03) Potential decomposition rate (for all biomass) APSIM default values 

CNopt - 25 (7.5) 
Optimum C/N ratio of residue biomass for 

decomposition 
APSIM default values 

CNslope - 0.277 (0.0831) Slope of C/N ratio function curve APSIM default values 

Topt °C 20 (6) Optimum temperature for decomposition APSIM default values 

Cfrt ha kg-1 0.0005 (0.00015) Area to mass ratio of residue biomass APSIM default values 

Bf_crit kg ha-1 2000 (600) 
Critical mass of residue biomass above which the 

decomposition is slower 
APSIM default values 

cum_eos_m
ax 

mm 20 (6) 
Cumulative potential soil evaporation at which 

decomposition rate becomes zero 
APSIM default values 



Table 2. Simulation starting and ending dates for each crop residue in the rotation. The ending dates are 
divided between short (SSP) and long (LSP) simulation period. For each crop the initial total residues biomass 
is reported. 

Crop residues 
Simulation starting date  

(harvest or termination date) 
Simulation ending date Initial residue  

biomass (kg DM ha-1) SSP LSP 

Maize 17/09/2014 07/01/2015 28/04/2015 11707 
Rye (1) 21/04/2015 25/06/2015 28/08/2015 2850 

Soybean 01/10/2015 29/01/2016 28/05/2016 3280 
Wheat 08/07/2016 16/11/2016 27/03/2017 7577 
Rye (2) 07/04/2017 13/06/2017 19/08/2017 2230 

In addition, a comparison among crop residues decomposing in a similar period of the year was done to 

better evaluate the role of environmental conditions on decomposition: we have distinguished crop residues 

that decompose during the colder season (winter or fall) and residues that decompose during the warm 

season (spring or summer).  

 
Figure 1. Simulation periods, Short Simulation Period (SSP) and Long Simulation Period (LSP), used for 
sensitivity analysis for each crop in the rotation.  

Sensitivity analysis requires setting the average and standard deviation of the parameters. Parameters values 

were derived from the literature (Table 1). When no data were available, default or calibrated values were 

adopted. Standard deviation was set to 30% of the average for all parameters to prevent unrealistic values. 

All parameter distributions were assumed to be normal (Confalonieri et al., 2006).  

Random variates of the same parameters were generated using the sampling technique for sensitivity 

analysis known as the Morris method (Morris, 1991) and further improved by Campolongo et al. (2004). This 

technique deals efficiently with models containing a large number of input parameters without relying upon 

strict assumptions about the model such as additivity or monotonicity of the input-output relationship 

(Confalonieri, 2006). The study of Paleari et al. (2021) highlighted that the Morris method is a suitable 



alternative to more demanding SA methods (e.g., Sobol method) when ranking parameters or discriminating 

between influential and non-influential parameters. 

The Morris method is based on a systematic sampling of the multidimensional space defined by the possible 

values of the parameters to generate a random set of OAT (i.e., once at time) experiments (Pianosi et al., 

2016) and identifying the few crucial parameters based on the distribution (Fi) of the elementary effect 

associated with the ith input factor. To estimate these quantities, Morris suggests sampling r elementary 

effects from each Fi via an efficient design that constructs r trajectories of (k + 1) points in the input space, 

each providing k elementary effects, one per input factor.  

For each model input (X), the elementary effect is defined as: 

                                            𝑑𝑖(𝑋) = (
𝑦(𝑋𝑖,…,𝑋𝑖−1,𝑋𝑖+∆,𝑋𝑖+1,…,𝑋𝑘)−𝑦(𝑋)

∆
)                               [1] 

where (i) X = (x1,..., xk ) as the k-dimensional vector of model studied parameters xi; (ii) all variables are 

rescaled in the 0–1 range; (iii) xi can take only P (the number of levels, using the Morris terminology) discrete 

values in the set {0, 1/(P - 1), 1/(P - 2),. . ..,1} and (iv) ∆ is a multiple of 1/(P - 1). 

The total cost of the experiment is thus r(k + 1) (Campolongo et al 2007). The Morris method requires the 

choice of the number of trajectories (sequences of points starting from a random base vector in which two 

consecutive elements differ only for one component) and levels. For both models, the sensitivity analysis was 

run using 10 trajectories and 4 levels. 

The method samples values of X from the hyperspace Ω (identified by an k-dimensional P-level grid) and 

finally calculates the mean (𝜇, strength) assessing the overall influence of the parameter on y(X) and its 

standard deviation (𝜎, spread) estimating the totality of the higher order effects (Richter et al., 2010). In this 

work, 𝜇 is considered as absolute value (𝜇∗) as proposed by Campolongo et al. (2004). The 𝜇∗ value is 

successful in ranking parameters in order of importance and performs well when the goal is identifying non-

influential parameters (Confalonieri et al., 2006). The second measure (𝜎) is useful to detect parameters 

involved in interaction with other parameters, or whose effect is non-linear (Saltelli et al., 2004). With this 



convention the more “dangerous” (i.e., sensitive) parameters are in the top right quadrant of the 𝜎 versus 

𝜇∗ plot (“danger zone”), where both sensitivity and strength are high (Confalonieri et al., 2006).  

For the new module, the SA was conducted using the ARMOSA integrated feature that allows the model to 

easily interact with the Salib external library (Herman and Usher, 2017). This library implements many 

sensitivity analysis methods, including Morris. In the case of APSIM, the "sensitivity" package (Iooss et al., 

2021) was used to setting the grid for the SA (i.e., a data frame with the combinations of parameters to be 

evaluated). To use this package the complementary "apsimx" package (Miguez, 2022) interface was utilized 

to set and run the SA. The functions belonging to the "apsimx" package also allow the user to open, inspect, 

read and edit the simulation file (".apsim"). In addition, this package allows editing the configuration files 

(".xml"), where the default setting of the parameters is stored. The code used to set the SA is available as 

supplemental material (Supplemental material 1).  

3.2.5 Statistical analysis  
To evaluate the agreement between the different sensitivity rankings within each model, the top-down 

concordance coefficient was applied, which allows to emphasize the agreement among rankings assigned to 

important parameters through the transformation of original data into Savage-scores (Savage, 1954). Savage-

scores are calculated as follows: 

                                                                𝑆𝑖 = ∑  
1

𝑗
𝑛
𝑗=1    [2] 

where i is the rank assigned to the rank ith order statistic in a sample of size n. The ith rank has been assigned 

to the different 𝜇∗ for each parameter in a single SA. 

After the conversion into Savage-scores, the Kendall's coefficient of concordance was applied. This coefficient 

of concordance can be used to measure the agreement among b sets of rankings when b > 2 (Iman and 

Conover, 1987). It is also known as the top-down correlation coefficient because of its sensitivity to 

agreement among the top ranks. It can be computed as: 

                                                       𝐶𝑇 =
1

𝑏2(𝑛−𝑆1)
∑ 𝑆𝑖

2 − 𝑏2𝑛𝑛
𝑖=1  [3] 

where 𝑆𝑖 is the sum of the Savage-scores assigned to the ith object taken over all b sets of rankings. The 

coefficient of concordance is associated with a p-value under the Kendall null hypothesis that the p judges or 



raters (i.e., set of SAs) produce independent rankings of the objects or subjects (i.e., parameters). To preserve 

the correct Type I error, Siegel and Castellan (1988) recommended the use of a permutation-based table of 

critical values for 𝐶𝑇 only when the number of parameters is ≤ 7. When the number of parameters exceeds 

seven, they recommended using the χ2 distribution approximation. Thus, according to the parameters 

number, the p-value of each coefficient of concordance was obtained with the χ2 distribution for the new 

module (14 parameters evaluated) and with the permutation-based method for APSIM (7 parameters 

evaluated) (Legendre et al., 2005). Both the 𝐶𝑇 and the p-values coefficients were automatically retrieved 

from all sets of ranks using the R package "synchrony" (Tarik, 2019) using the ranking ties correction when 

necessary.  

3.3 Results 

3.3.1 Models’ parameters: similarities and differences between the new module and APSIM 

The two modelling approaches (i.e., the new module and APSIM) utilized different parameters to simulate 

surface residue biomass decomposition (Table 1; Appendix A). Only five of them, CNopt and CNslope (accounting 

for the CN ratio of the residue biomass), Topt (accounting for the optimal temperature for decomposition), 

Cfrt (accounting for the area to mass ratio of residue biomass) and Bf_crit (accounting for the critical flat residue 

biomass above which the decomposition is slower) are in common since they have the same biological 

meaning and role within the simulated process.  

Other parameters reflect the different approaches adopted. Starting from the potential decomposition rates, 

the new module uses two different parameters, one for leaves (PDRf(leaves)) and one for the rest of flat 

biomass (PDRf). These potential decomposition rates are further defined specifically for each crop. The third 

potential decomposition rate (PDRs) was not used in this study because of the lack of standing residue. APSIM 

instead uses a single potential decomposition rate (Bf_degr) regardless the residue biomass component. The 

limitation of biomass decomposition due to soil water is represented by four parameters in the new module 

(SWCmin, SWCoptmin, SWCoptmax, MAoptb and MAopta, Eq. 10, Appendix A, Table 1), whereas only by one parameter 

(cum_eos_max) in APSIM. Furthermore, the new module uses the Wettmulch and the Convfct parameters to 



define the residue biomass water retention and to account for the effect of wind and snow on the standing 

residue biomass, respectively.  

Other model parameters belonging to ARMOSA are not included in this analysis because they are not directly 

related to decomposition and were left at their default value. 

3.3.2 Sensitivity analysis 
Sensitivity analysis results are described separately for the new module and for APSIM. Within each of these 

approaches, SA results are presented for each crop in the rotation. 

New decomposition module implemented in ARMOSA  

The results differed based on the crop and the period of the year in which residues decompose. In the case 

of maize, Topt, Bf_crit and SWCmin had the highest effect on decomposition, with no differences between SSP 

and LSP (top right quadrant in Figure 2A/2B). Another important parameter involved in the process was CNopt, 

while all the other parameters had 𝜇∗ equal or close to zero (Fig. 2A/2B). 

For rye, a clear pattern was visible only in 2017 ("Rye (2)", Fig. 2I/2L) when the SWCmin (i.e., minimum residue 

water content for decomposition process expressed as a proportion of field water capacity) showed 

constantly a more relevant effect than all the other parameters. In 2015 (i.e., "Rye (1)"), the same pattern 

appeared only in LSP (Fig. 2D). In SSP (Fig. 2C) instead, Bf_crit and Topt appeared in the top right quadrant 

together with SWCmin. The impact of these three parameters could be discriminated by ranking on the basis 

of 𝜎: Topt maintained an essential role but its interactions with other parameters were low.  

In the case of soybean, Topt still had the same importance as found in maize. No other parameters had a 

significant influence on model outputs as indicated by low 𝜇∗ (Fig. 2E/2F). For wheat, SA showed a clear 

pattern in SSP, with SWCmin covering the largest 𝜇∗ percentage compared to all the other parameters (Fig. 

2G). Values of 𝜇∗ decreased smoothly in LSP from right to left but with discontinuities, allowing to distinguish 

the most influential parameters. SWCmin ranked first, followed by Bf_crit, Topt, SWCoptmin and PDRf (Fig. 2H). 

 

 



 

Figure 2. Sensitivity analysis results for the new decomposition module implemented in ARMOSA. Absolute 
mean (𝜇∗) and standard deviation (𝜎) of elementary effect displayed for each crop and each simulation period 
(short period, SSP, and long period, LSP). 
 



A valuable indication of the SA results can be retrieved by averaging the Savage-scores (Paleari et al., 2021) 

of the sensitivity metrics estimated for the different crops and simulation periods (data not shown). The 

average final ranking allowed us to identify the top parameters associated with surface residue 

decomposition, regardless of the crop and of the period of decomposition. Starting from the most relevant, 

the top five parameters were Topt, SWCmin, Bf_crit, PDRf and PDRf (leaves). 

Kendall's coefficient of concordance, computed on the whole set of ten SAs, showed a high concordance 

value (𝐶𝑇 = 0.86, p-value < 0.001) meaning that the ten different rankings significantly agreed in the definition 

of the most important parameters. Table 3 shows the coefficient of concordance and the associated p-value 

among all the SAs. On average, the concordance values within each crop between the short and long period 

were always high (𝐶𝑇 = 98-99, Table 3) and significant (p-value < 0.05). These values reflected the high 

concordance of the top ranks within every single crop, as shown in Figure 2, even though some differences 

were found for parameters with lower importance (i.e., lower values of 𝜇∗).   

Table 3. Matrix summarizing ten sensitivity analyses (five crops and two simulation periods, the short 
simulation period, SSP, and the long simulation period, LSP) conducted with the new module implemented 
into ARMOSA. The top right quadrant reports the coefficients of concordance (Eq. 3, with 10 ‘raters’ and 14 
subjects), while the bottom left quadrant reports the associated p-values. 

 
Coefficient of concordance (CT) 

Maize 
(SSP) 

Maize 
(LSP) 

Rye (1) 
(SSP) 

Rye (1) 
(LSP) 

Soybean 
(SSP) 

Soybean 
(LSP) 

Wheat 
(SSP) 

Wheat 
(LSP) 

Rye (2) 
(SSP) 

Rye (2) 
(LSP) 

p
-
v
a
l
u
e 

Maize (SSP)  0.99 0.95 0.90 0.96 0.98 0.94 0.93 0.86 0.82 

Maize (LSP) 0.019  0.95 0.92 0.96 0.97 0.96 0.96 0.89 0.85 

Rye (1) (SSP) 0.026 0.025  0.98 0.91 0.94 0.98 0.98 0.93 0.9 

Rye (1) (LSP) 0.037 0.031 0.021  0.86 0.89 0.98 0.99 0.92 0.92 

Soybean (SSP) 0.023 0.024 0.034 0.049  0.99 0.88 0.9 0.8 0.77 

Soybean (LSP) 0.019 0.021 0.027 0.04 0.019  0.91 0.92 0.85 0.82 

Wheat (SSP) 0.027 0.024 0.02 0.02 0.042 0.034  0.98 0.92 0.89 

Wheat (LSP) 0.029 0.023 0.019 0.019 0.038 0.031 0.019  0.95 0.93 

Rye (2) (SSP) 0.049 0.041 0.029 0.031 0.076 0.054 0.032 0.026  0.98 

Rye (2) (LSP) 0.068 0.055 0.036 0.033 0.094 0.069 0.041 0.029 0.019  

 
Based on the season during which the crop residue decomposition occurs (Fig. 1), different crop residues can 

be compared. Maize residues mostly degraded in the same season as soybean: indeed, the two SA conducted 

in the two SSP had high concordance (𝐶𝑇 = 0.96, p-value = 0.023, Table 3), confirming the significant effect 

of Topt and Bf_crit. If we consider the LSP of the same crops, the coefficient of concordance is still significantly 



high (𝐶𝑇 = 0.97, p-value = 0.024, Table 3), emphasizing, again, the importance of the temperature and the 

critical residue biomass amount (i.e., Bf_crit, the critical level of flat residue biomass above which the 

decomposition is slower) for the surface decomposition process. Wheat residues, differently from the other 

crop residues, had the longest time of decomposition (262 days of soil covering overall), spanning from late 

autumn to early summer seasons. For this reason, it did not seem reasonable to compare them with the 

other crops. The two rye cover crops instead, were terminated almost in the same period, and their residues 

remained on the soil surface until the end of August. Thus, the coefficients of concordance confirmed the 

relevance of the soil water content (with SWCmin being the most critical parameter) on the surface 

decomposition process, even if 𝐶𝑇 was lower compared to those above (for the short simulation periods 𝐶𝑇 

= 0.93, p-value = 0.029, while for the long simulation period 𝐶𝑇 = 0.92, p-value = 0.033). This is mainly due to 

the second and third positions (alternately belonging to Topt, Bf_crit or PDRf) in the parameter rankings of the 

two cover crops belonging to different parameters. 

The APSIM model 

Compared to ARMOSA, the APSIM model has a lower number of parameters, which cause a lower parameter 

overlapping in the diagnostic diagrams (Figure 3).  

As for maize SA outputs varied between the SSP and LSP. The Topt parameter clearly had an important role in 

the surface decomposition process in both simulation periods, but the effect was variable for the other 

parameters (Fig. 3A/3B). In fact, Bf_crit played a key role in the SSP, while the potential decomposition rate 

(Bf_degr) assumed a crucial weight for the LSP. All the other parameters (i.e., CNopt, CNslope, Cfrt and 

cum_eos_max), even with lower values of 𝜎, also reported lower values of 𝜇∗. Thus, they were far away from 

the top-right quadrant. 

For the rye cover crop, the results showed a similar parameters response between SSP and LSP within a single 

year, but differences emerged when comparing 2015 (i.e., "Rye (1)") to 2017 (i.e., "Rye (2)"). In 2015, the 

most critical parameter was the cum_eos_max, which scored the highest value in both SSP and LSP (Fig. 

3C/3D). In the second and third positions of the ranking, we found the Bf_degr and Cfrt, varying between LSP 

and SSP. All the other parameters have 𝜇∗ values close to zero, not affecting the SA output. 



 

Figure 3. Sensitivity analysis results for the APSIM model. Absolute mean (𝜇∗) and standard deviation (𝜎) of 
elementary effect displayed for each crop and each simulation period (short period, SSP, and long period, 
LSP). 

 



In 2017, the most sensitive parameters remained the same as in 2015, but their ranks became considerably 

different. The temperature had a significant effect on the decomposition process, increasing the weight of 

the Topt parameter in the SA analysis (Fig. 3I/3L). The potential decomposition rate (Bf_degr) is in the middle of 

the diagram for both SSP and LSP, always followed by cum_eos_max. Similar results have been observed also 

in soybean, when Topt had the most significant impact against all the other parameters (Fig. 3E/3F) in both 

simulation periods. Focusing on SSP, the SA evidenced Bf_crit and Bf_degr as essential parameters affecting the 

decomposition process, since they are located in the top-right quadrant. In the long period, the weight of 

Bf_crit and Bf_degr is less evident and it is comparable with the weight of CNopt. In LSP, the clusters of these three 

last parameters can be easily distinguished for all the other parameters, even though their impact is 

negligible. Wheat is the only crop heavily influenced by the Bf_degr parameter, which is constantly at the top 

right angle of the diagram (Fig. 3G/3H). Nevertheless, the situation becomes different when comparing the 

SSP with LSP. Bf_crit had a higher 𝜇∗ value in LSP, with a high 𝜎 value too. In SSP Bf_crit maintained high 𝜇∗ value 

but decreased the interaction with other parameters (lower 𝜎 value). In the bottom-left quadrant, the other 

parameters are less sensitive. Bf_crit and Topt had predominant roles in the LSP diagram compared to CNopt, 

CNslope, Cfrt and cum_eos_max parameters. 

Averaging the Savage-scores of the sensitivity metrics, estimated for the different crops and periods, led to 

an averaged ranking (data not shown). The optimum temperature for decomposition (Topt) led the rank, 

followed by the potential decomposition rate (Bf_degr), the critical residue mass (Bf_crit) and the cumulative 

potential soil evaporation (cum_eos_max). 

Kendall's coefficient of concordance computed on the whole set of ten SAs was relatively low (𝐶𝑇 = 0.43). 

The ten different parameter rankings displayed several differences, and therefore are not in agreement           

between each other in defining the most critical parameters involved in the residue decomposition process, 

even with a significant test (p-value < 0.001). 

Table 4 shows the coefficient of concordance and the associated p-value between all the combinations of SA. 

In APSIM, within each crop, the concordance values between SSP and LSP were significant (P < 0.05) except 

for maize, and with values almost stable around 90% (Table 4).  



Table 4. Matrix summarizing ten sensitivity analyses (five crops and two simulation periods, the short 
simulation period, SSP, and the long simulation period, LSP) conducted with the APSIM model. The top right 
quadrant reports the coefficients of concordance (eq. 3, with 10 raters and 7 subjects) while the bottom left 
quadrant reports the associate p-values. 

 
Coefficient of concordance (CT) 

Maize 
(SSP) 

Maize 
(LSP) 

Rye (1) 
(SSP) 

Rye (1) 
(LSP) 

Soybean 
(SSP) 

Soybean 
(LSP) 

Wheat 
(SSP) 

Wheat 
(LSP) 

Rye (2) 
(SSP) 

Rye (2) 
(LSP) 

p
-
v
a
l
u
e 

Maize (SSP)  0.79 0.2 0.14 0.95 0.91 0.61 0.79 0.67 0.67 

Maize (LSP) 0.1  0.54 0.45 0.79 0.82 0.64 0.77 0.79 0.79 

Rye (1) (SSP) 0.935 0.456  0.95 0.29 0.34 0.73 0.61 0.73 0.73 

Rye (1) (LSP) 0.969 0.615 0.007  0.25 0.34 0.68 0.54 0.64 0.64 

Soybean (SSP) 0.006 0.092 0.846 0.878  0.98 0.59 0.77 0.75 0.75 

Soybean (LSP) 0.017 0.069 0.773 0.771 0.002  0.61 0.79 0.79 0.79 

Wheat (SSP) 0.332 0.272 0.151 0.22 0.35 0.33  0.93 0.79 0.79 

Wheat (LSP) 0.1 0.117 0.331 0.455 0.116 0.101 0.012  0.9 0.9 

Rye (2) (SSP) 0.234 0.09 0.144 0.264 0.118 0.087 0.085 0.021  0.98 

Rye (2) (LSP) 0.226 0.09 0.144 0.268 0.118 0.088 0.085 0.019 0.001  

 
These values reflected the high concordance of the top ranks within every single crop. Based on the season 

under which the crop residue decomposition occurs (Fig. 1), as already shown with the new module 

implemented in ARMOSA, different crop residues can be compared to each other. Previously, for the new 

ARMOSA module, maize results were compared with those of soybean, since the decomposition seasons of 

these residues were almost the same. The same comparison between maize and soybean was performed 

with APSIM results: in this case too, the two crop residues led to similar SA outputs. Both the comparisons 

between SA conducted on the short period (i.e., "Maize (S)" and "Soybean (S)") and long period (i.e., "Maize 

(L)" and "Soybean (L)") have high coefficients of concordance (𝐶𝑇 = 0.95 and 𝐶𝑇 = 0.82, respectively), even if 

only the first was significant at the 5% threshold. These coefficients revealed that Topt, Bf_crit and Bf_degr are the 

most influent parameters involved in the decomposition process of these crop residue. It is also worth 

comparing the two cover crops (i.e., "Rye (1)" and "Rye (2)") since their residues decompose in the same 

season and belong to the same crop species. Nevertheless, for APSIM the concordance coefficients were 

around 70% but not significant for the short and long period of decomposition (p-value > 0.10). 

3.4 Discussion 

3.4.1 Comparison of modelling approaches based on sensitivity analysis 
Performing a set of ten different analyses, based on different crop residues, simulation periods (Table 2) and 

different seasons during the year (Fig. 1), allowed us to detect the sensitivity of the two models to the main 



parameters involved in surface residue decomposition. Moreover, since the SA results change according to 

the duration of the simulation (i.e., according to the value of the dependent variable at the last time step), 

the definition of different simulation periods (SSP and LSP) for each crop was useful to better define the 

parameters’ role on residue decomposition kinetics. In fact, considering a single crop at the time and going 

thought SSP to LSP (i.e., increasing the simulation period), allowed us to detect if some parameters 

maintained their sensitivity regardless the different conditions. 

The variation of parameter sensitivity between the two simulation periods within a single crop was usually 

lower in the new module (higher coefficients of concordance) than in APSIM, except for the “Rye (1)” crop. 

In this case, the impact of Topt and Bf_crit was higher in SSP than in LSP (Fig. 2C). Probably, before the summer 

period (July and August 2015), when SWCmin was by far the most relevant parameter, the lower temperature 

and the initial amount of residues (2.85 Mg ha-1) have contributed to slow the decomposition in the early 

stages, thus impacting the SA output. The parameters sensitivity under “Rye (2)” was more homogeneous 

comparing SSP and LSP. In fact, the temperature during April and May was on average slightly greater 

compared to 2015 (i.e., not strongly limiting the decomposition) and especially the initial amount of residues 

(2.23 Mg ha-1) was closer to the Bf_crit threshold (2.00 Mg ha-1). 

3.4.2 Temperature, soil water content and residue quantity drive residue decomposition in the new 
ARMOSA module 
Comparing crop residues that decomposed in the same season, the sensitivity analysis of the new module 

almost ended with the same parameter ranking (as in the case of maize vs soybean or rye (1) vs rye (2)). This 

is related to the high dependency of surface decomposition on the environmental factors rather than on 

biomass-specific characteristics (Iqbal et al., 2015; Lee et al., 2014; Marinari et al., 2014; Sanaullah et al., 

2012). Even if these specific patterns were found when comparing crop residues having the same season of 

decomposition, the highly significant coefficients of concordance, for the whole set of ten SAs, highlighted 

the importance of the top-ranking parameters. Specifically, all the SAs conducted with the new module 

indicated that Topt and SWCmin are the most influential parameters, as confirmed by the average ranking. The 

Topt parameter, based on soil temperature (that is retrieved in ARMOSA from the simulated temperature of 

the 5 cm topsoil layer), reflects the optimum temperature for the activity of the microbial community that is 



primarily involved in residue decomposition (Findeling et al., 2007), whose importance is well recognized 

(Findeling et al., 2007; Nicolardot et al., 2001) and gives the temperature a crucial role in the simulations. 

When the temperature is not the limiting factor, the SWCmin became the most influential parameter, 

confirming that moisture limitation is also essential in this process (Coppens et al., 2007), especially if the 

residues are left on the soil surface (Lee et al., 2014). SWCmin is related to soil water retention; it defines the 

minimum residue water content for decomposition, expressed as a proportion of field water capacity. As 

expected, this parameter limited the decomposition mainly for crop residues laying on the soil surface during 

the dry period, such as in spring (in rye) or, even partially, in summer (in wheat). During the autumn/winter 

period, when soil water content is not limiting anymore, the importance of this parameter became lower (in 

maize) or even roughly negligible (in soybean). In the new module approach, SWCmin is used in the moisture 

factor equation (Eq. 10, Appendix A), representing the influence of soil water content on flat residue wetness 

and, consequently, on their decomposition rate. In ARMOSA, this parameter is based on the soil water 

content, while other modelling approaches are based on the biomass water content (Findeling et al., 2007). 

Even if the biomass water content rather than the soil water content is in principle more adequate, the soil 

water content of the top layer appears to be a good “proxy” of surface residue water content. In fact, the 

mass adjacent to the soil tends to adsorb water and to be rewetted by the underneath soil layer (Iqbal et al., 

2015) in a phenomenon defined "sponge effect" (Kravchenko et al., 2017).  

The role of the Bf_crit parameter (i.e., the critical flat residue biomass above which the decomposition is 

slower) in the new module is worth mentioning: eight out of ten SAs included it in the list of the first three 

most influencing parameters. Even though Bf_crit is not explicitly related to the crop biomass properties, it is 

linked to the specific crop management. For example, in the cases of maize and wheat, the high amount of 

surface residues found after the harvest is a direct consequence of a farmer management choice. This 

parameter indirectly reflects the thickness of surface residue biomass, suggesting that the more residue 

biomass, the slower the decomposition process. Its importance was already reported by Thorburn et al. 

(2001) who stated that the "upper" mulch layer (i.e., the layer that is not in contact with the soil) has a 

negligible decomposition rate. The response of the model to this situation (i.e., when crop residue biomass 

is greater than 2 Mg ha-1, Table 1, Bf_crit) is essential to avoid early overestimation of the carbon and nitrogen 



accumulation in soil due to the whole residue decomposition after a harvest/termination event (Fang et al., 

2019). Further model improvements may consider recent findings that demonstrated that the upper mulch 

layer slowly decomposes and that there is a gradient of moisture and decomposition rate (Dietrich et al., 

2019).  

We concluded that for the new module application within ARMOSA model framework, an accurate 

estimation of Topt, SWCmin and Bf_crit is needed to properly simulate the residue decomposition. 

On the other hand, it seems also reasonable to include the two potential decomposition rates (PDRf and PDRf 

(leaves)) within the set of most influential parameters. Nevertheless, even if  𝜇∗ for these parameters was 

never      null, they never appeared in the most critical top-right quadrant (Fig. 2). For the new module, this 

is probably due to the large impact of the environmental factors on decomposition, as indicated by Topt and 

SWCmin. In addition, the fact that different PDRf and PDRf (leaves) values were assigned to each crop (Table 

1) did not overestimate or underestimate the maximum rate of residue decomposition (i.e., making the 

parameters impacting more on the SA), leaving the other parameters to drive this process. 

3.4.3 Temperature and potential decomposition rate drive residue decomposition in APSIM 
In APSIM, the SA concordance between short and long simulation periods within each crop was lower than 

in the new module. In other words, the APSIM parameter reacted more to the simulation period increment 

regardless the crop residues considered. This is evident by observing the SA results of maize (𝐶𝑇 = 0.79, p-

value = 0.1, Table 4) and wheat (𝐶𝑇 = 0.93, p-value = 0.012, Table 4) showed in figure 3. In the case of maize, 

the initial amount of residues (11.7 Mg ha-1) probably had a more considerable impact on the SSP SA output 

compared to the analysis "spreaded" between 17/09/2014 and 28/04/2015 (LSP). This is confirmed by the 

mathematical implementation shared with ARMOSA and reported in Eq. 13 (Appendix A): when Bf > Bf_crit, 

then the decomposition is reduced exponentially. Moving away from the harvest date (i.e., increasing the 

duration of the decomposition), the Bf_crit lost its importance (as already noted with rye (1) with the new 

module), favoring the temperature (through Topt) and the potential decomposition rate (Bf_degr) limitations 

(Fig. 3B). In the case of wheat instead (Fig. 3G/3H), the role of Bf_crit, together with Topt, became higher in the 

long compared to the short period. This is probably due to the inclusion of the winter season in the long 

period, that decreased the Bf_degr impact compared to the other parameters. In other words, when 



temperature does not limit decomposition (as it frequently happens during the short period for wheat), the 

potential decomposition rate (Bf_degr) is the parameter that limit the process the most. Conversely, in the long 

period most of the decomposition occurs during the coldest months of the year, therefore the temperature 

interacts more with other parameters (higher value of 𝜎, Fig. 3H), as showed in this case with Bf_crit. 

Looking at the general trends found in APSIM, the impact of the different parameters partially reflected what 

was found in the new module implemented in ARMOSA. We found Topt and Bf_degr in the first two ranking 

positions in almost all APSIM's SAs. Most of the SAs confirmed the high weight of these parameters except 

for the rye cover crop in 2015 ("Rye (1)", Fig. 3C/3D). This behavior in 2015 probably reflects the low water 

availability during summer (180 mm of rainfall between 21/04/2015 and 28/08/2015) limiting surface 

decomposition (through the cum_eos_max parameter) more than other factors. Thus, except for this specific 

situation, the only parameter related to water availability (cum_eos_max) did not influence the output as 

SWCmin did with the new module. The APSIM moisture factor considers the water availability using the 

cumulative potential soil evaporation (and thus the critical cumulative evaporation, cum_eos_max) to depict 

the effect that dry residues decompose more slowly than wet residues (Dietrich et al., 2019). Therefore, in 

this case, a soil property has been used as a proxy for surface residue moisture. 

Contrary to the new module, the APSIM potential decomposition rate (Bf_degr) significantly impacted the SA 

output compared to the other parameters involved. The assumption of a unique default value for the 

decomposition rate (Bf_degr = 0.1 kg m-2 day-1) in the APSIM model undoubtedly impacted the SA results more 

than the crop-specific rates employed in the new ARMOSA module. Specific calibration of this parameter is 

necessary to properly calibrate the model.  

Another similarity in the behavior of the two approaches concerns the importance of Bf_crit. This parameter 

is taken from the APSIM equation that limits the decomposition based on the residue amount on the soil 

surface. Sharing the same equation, the two models gave comparable weight to the limitation of the 

decomposition rate above a 2 Mg ha-1 residue biomass threshold, confirming that the models responded in 

the same way to the amount of crop residue.  



3.4.5 Evaluation of model plasticity 
As a general trend, the two approaches gave comparable results for crop residue that share the same season 

of decomposition, highlighting the impact of environmental conditions. This agrees with Francos et al. (2003) 

and Richter et al. (2010), who stated that sensitivity analysis refers to specific conditions and it is not a general 

property of a model. At least for the new module, the high value of the concordance coefficient, computed 

on the whole set of SAs, highlighted that some parameters are the most important regardless the specific 

conditions of the crop biomass.  

To better understand the model’s behavior, the plasticity index ("L") has been computed on the whole set of 

SAs according to Confalonieri et al. (2012). This index (that ranges between 0 and 1, with the highest plasticity 

at 0) defines the tendency of the model to change its behavior under different conditions. This index has to 

be intended only to compare models since specific minimum or maximum optimal plasticity values have not 

been defined. The low value obtained for APSIM (L = 0.14) describes a model with higher plasticity compared 

to the new module (L = 0.27). In other words, APSIM has more capability to react to an environmental change 

by altering the importance of its parameters (confirming the lower value of concordance coefficients). In the 

discussion above we highlighted that, in the new module, the Topt and SWCmin had always a great impact on 

the SAs, probably leading to a lower plasticity compared to APSIM. Nevertheless, situations like rye (1) or 

wheat (comparing SSP and LSP in Fig. 2) still defined a module capable to change its parameters sensitivity 

to the environmental changes. 

3.5 Conclusions 
 
With this work a new module has been developed to explicitly include surface residue pools in many relevant 

modelling processes. In fact, the implementation of this new module into ARMOSA allowed to simulate many 

processes in which crop residues, laying on the soil surface, play a crucial role in water and nutrient cycling 

dynamics. Despite previous implementation of the surface residue decomposition, we developed a new 

module that simulates this process including all the important factors that give a complete representation of 

residue decomposition. 

The APSIM model was used as a benchmark. This model was selected for its algorithm affinity to ARMOSA 

and for being a cropping system model widely cited in the literature. 



A sensitivity analysis was conducted for each crop residue under analysis (i.e., maize, rye, soybean and 

wheat). In the present SA we distinguished between long and short simulation periods with the advantage 

of recognizing if some parameters, within single crop, impacted on the decomposition process regardless the 

different environmental conditions. 

The most important parameters in the new module reflected the importance of the soil temperature (Topt), 

the soil water content (SWCmin), and the residue biomass (Bf_crit) on the decomposition process. The two 

decomposition rates (PDRf and PDRf (leaves)) had minor importance, highlighting that, when setting crop 

specific values, other environment-related parameters are more relevant for the actual decomposition rate. 

The APSIM model, showed a lower concordance of SA results passing from a crop residue to another and 

even when comparing short and long simulation periods within the same crop. For maize and wheat, the SA 

output showed how the duration of the decomposition along different seasons could heavily influence the 

parameters impact. As a general trend, we always found Topt and Bf_degr parameters in the first two rank 

positions. In addition, having assumed a unique default value for the decomposition rate, Bf_degr could have 

impacted the surface residue destiny more than the new module decomposition rates. 

The outcome of this work allowed us to identify the most relevant parameters for a future work of the model 

calibration and to evaluate its behavior under variable conditions of the residue surface decomposition 

process.  
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Appendix A 
The module divides surface residues in a standing (Bs, kg DM m-2) and a flat (Bf, kg DM m-2) component. The 

flat component is further divided in two pools (stem and leaves) to better represent the specific 

characteristics of the plant fractions (in terms of C:N ratio and potential decomposition rate). Numerical 

integration is performed to calculate the values of Bs and Bf at each time step (Eq. 1 and 2). 

𝐵𝑠(𝑡) = 𝐵𝑠(𝑡−1) − 𝑑𝐵𝑠_𝑑𝑒𝑔𝑟 + 𝑑𝐵𝑠_𝑝𝑎𝑟𝑡 − 𝑑𝐵𝑠_𝑐𝑜𝑛𝑣 − 𝑑𝐵𝑠_𝑡𝑖𝑙𝑙       [1] 

𝐵𝑓(𝑡) = 𝐵𝑓(𝑡−1) − 𝑑𝐵𝑓_𝑑𝑒𝑔𝑟 + 𝑑𝐵𝑓_𝑝𝑎𝑟𝑡 + 𝑑𝐵𝑠_𝑐𝑜𝑛𝑣 − 𝑑𝐵𝑓_𝑡𝑖𝑙𝑙                                         [2] 

The processes represented by the module rates are the following: residue decomposition (dBs_degr and dBf_degr, 

kg DM m-2 d-1), residue partitioning at harvest (dBs_part and dBf_degr, kg DM m-2 d-1), standing residue conversion 

into flat residue (dBs_conv, kg DM m-2 d-1) and residue incorporation into soil through tillage operation (dBs_till 

and dBf_till, kg DM m-2 d-1). 

Partitioning of the surface residue (Btot, kg DM m-2) in Bs and Bf is simulated using WEPP approach. The 

partitioning is estimated at harvest, before any other management operation, using the ratio between the 

cutting height (Hcut, m) and the crop height (Hcm, m) to determine the portion (Fpc, unitless, Eq. 3) of initial 

residue that becomes standing residue (Eq. 4). The portion of flat residue (Eq. 5) is determined as a 

complement (1-Fpc). 

𝐹𝑝𝑐 =
𝐻𝑐𝑢𝑡

𝐻𝑐𝑚
            [3] 

𝑑𝐵𝑠_𝑝𝑎𝑟𝑡 = 𝐵𝑡𝑜𝑡𝐹𝑝𝑐           [4] 

𝑑𝐵𝑓_𝑝𝑎𝑟𝑡 = 𝐵𝑡𝑜𝑡(1 − 𝐹𝑝𝑐)          [5] 

The decomposition of the standing residue (dBs_degr, kg DM m-2 d-1, Eq. 6) is also simulated adopting WEPP 

approach (Eq. 6).  

𝑑𝐵𝑠_𝑑𝑒𝑔𝑟 = 𝐵𝑠(𝑡−1)𝑒
−𝑃𝐷𝑅𝑠𝑡𝑎𝑛𝑑𝑓𝐷𝑠𝑡𝑎𝑛𝑑𝑆𝑖𝑧𝑒𝑖𝐹𝑒𝑟𝑡𝑖        [6] 

The amount of remaining standing residue biomass at the end of the simulated time step depends on three 

limiting factors (fDstand, Sizei and Ferti) that affect the optimal decomposition rate (PDRstand, kg m-2 d-1) of a 

specific residue type. fDstand, Sizei and Ferti consider respectively the limitations due to environment 

conditions, soil fertility and residue size.  

The limiting factor that represents the environmental limitations that condition standing residue 

decomposition in field (fDstand, unitless) considers the residue water content and the air temperature as 

independent limiting factors. The water limiting factor (fWstand, unitless, Eq. 7) is obtained as the ratio 

between the rainfall of the considered time step (Rain, m) and a parameter representing the amount of rain 

that saturates the standing residue (Rainsat, m) whose default value is 0.004. The limiting factor ranges 

between 0 and 1 depending on the standing residue water content and on daily average temperature (Tavg, 

°C).  
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𝑓𝑊𝑠𝑡𝑎𝑛𝑑 = {

𝑅𝑎𝑖𝑛

Rainsat
    𝑖𝑓 𝑃𝑅𝐶𝑃 ≤ Rainsat

1          𝑖𝑓 𝑃𝑅𝐶𝑃 > Rainsat
0                     𝑖𝑓 𝑇𝑎𝑣𝑔 < 0

        [7] 

The temperature limiting factor (fTstand, unitless, Eq. 8) ranges between 0 and 1, and it is calculated as a 

function of daily average temperature (Tavg, °C) designed for temperate regions and defined by two 

parameters: the maximum (Tmax, °C) and the minimum (Tmin, °C) temperature for microbial decomposition of 

residues. This function is limited also by the temperature above which the microbial activity stops (Tlim, °C).  

𝑓𝑇𝑠𝑡𝑎𝑛𝑑 = {

2(𝑇𝑎𝑣𝑔+Tmin)
2(Tmax+Tmin)

2−(𝑇𝑎𝑣𝑔+Tmin)
4

(Tmax+Tmin)
4

      

0  𝑖𝑓 𝑇𝑎𝑣𝑔 < Tmin 𝑜𝑟 𝑇𝑎𝑣𝑔 > Tlim
      [8] 

The decomposition of flat residue biomass (dBf_degr, kg DM m-2 d-1) is simulated adopting APSIM approach 

that estimates the fraction of decayed biomass for each time step (Eq. 9). This approach is similar to the one 

adopted for the standing residue (WEPP model) but employs additional limiting factors. The decomposition 

rate is described as a function of: an optimal decomposition rate (PDRflat, kg m-2 d-1), environmental limiting 

factor such as a temperature (fTflat, unitless) and a soil moisture (fWflat, unitless) factor, and residue 

dependent limiting factors such as the C:N ratio (fCNflat, unitless) and soil-residue contact degree (fContactflat, 

unitless) factor. 

𝑑𝐵𝑓_𝑑𝑒𝑔𝑟 = 𝐵𝑓(𝑡−1)𝑒
−𝑃𝐷𝑅𝑓𝑙𝑎𝑡𝑓𝑇𝑓𝑙𝑎𝑡𝑓𝑊𝑓𝑙𝑎𝑡𝑓𝐶𝑁𝑓𝑙𝑎𝑡𝑓𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑓𝑙𝑎𝑡        [9] 

All the limiting factors included are unitless and range between 0 and 1.  

The moisture factor (Eq. 10) represents surface layer soil water content (SWC, m3 m-3) influence on flat 

residue wetness and therefore on their decomposition rate. The moisture factor included in the integrated 

mulch model of ARMOSA differs from the one employed in APSIM.  

The modification was performed to use the moisture limiting factor equation both for flat surface and buried 

residue decomposition.  

𝑓𝑊𝑓𝑙𝑎𝑡 =

 

{
 
 

 
 
0                                                                                                     𝑤ℎ𝑒𝑛 𝑆𝑊𝐶 <  SWCmin

M𝐴min + (1 − MAmin)
(𝑆𝑊𝐶−SWCmin)

(SWCoptmin− SWCmin)
MAoptb

    𝑤ℎ𝑒𝑛 𝑆𝑊𝐶 <  SWCoptmin

1                                                                                                𝑤ℎ𝑒𝑛 𝑆𝑊𝐶 <  SWCoptmax

M𝐴sat + (1 − MAsat)(
(𝑆𝑊𝐶𝑠𝑎𝑡−𝑆𝑊𝐶)

(𝑆𝑊𝐶𝑠𝑎𝑡− SWCoptmax)
MAopta

                                                   𝑒𝑙𝑠𝑒

       [10] 

The temperature factor (Eq. 11) is obtained as a function or daily average air temperature (Tavg, °C) and is 

defined by a optimum decomposition temperature parameter (Topt, °C).  

𝑓𝑇𝑓𝑙𝑎𝑡 = {
(
𝑇𝑎𝑣𝑔

Topt
)2             

0  𝑖𝑓 𝑇𝑎𝑣𝑔 < 0
                     [11] 

The carbon to nitrogen ratio factor (Eq. 12) of a specific flat residue type is calculated as a function of the C:N 

ratio of the residue (CN, unitless) that is defined by three parameters: the optimum C:N ratio for 



decomposition (CNopt, unitless), the function slope coefficient (CNslope, unitless) and the C:N ratio value above 

which the decomposition stops (CNmax, unitless).  

𝑓𝐶𝑁𝑓𝑙𝑎𝑡 = {

𝑒𝑥𝑝
−CNslope(𝐶𝑁−CNopt)

CNopt
    

1 𝑖𝑓 𝐶𝑁 < CNopt   

0 𝑖𝑓 𝐶𝑁 >  CNmax

                              [12] 

The contact factor (Eq. 13) describes the effect of the flat residue biomass amount on the soil-residue contact 

degree and therefore on residue decomposition rate, since lower amount of residue biomass decomposes 

faster due to their higher contact degree with soil. This limiting factor is estimated as a function of flat residue 

biomass (Bf, kg DM m-2) defined by a critical residue biomass parameter (Bf_crit, kg DM m-2) The critical residue 

biomass is the value above which the decomposition is slowed down by the “haystack effect” described by 

Thorburn et al. (2001), which does not consider standing residue contribute.   

𝑓𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑓𝑙𝑎𝑡 = {
1                          𝑖𝑓 𝐵𝑓 < Bf_crit
Bf_crit

𝐵𝑓
                  𝑖𝑓 𝐵𝑓 > Bf_crit

                 [13] 

The conversion of standing residue to flat residue caused by weather events such as wind and snow 

respectively decreases standing residue (Eq. 14) and increases flat residue amounts. It is simulated by means 

of WEPP approach.  that employs an adjustment factor (Convfct, unitless) representing the fraction of standing 

residue not converted to flat residue from wind and snow for the considered site.  

𝑑𝐵𝑠_𝑐𝑜𝑛𝑣 = 1 − 𝐶𝑜𝑛𝑣𝑓𝑐𝑡𝐵𝑠(𝑡−1)                               [14] 

Surface flat residue water dynamics are simulated adopting STICS approach, which estimates the amount of 

water both intercepted and directly evaporated by the mulch layer.  

The amount of water which is intercepted by the mulch layer (WCmulch, Eq. 15) is the incident effective rainfall 

reaching the mulch layer (consisting in rainwater minus the amount intercepted by canopy of the crop). The 

intercepted water is simulated as a function of surface residue biomass (Bf, kg DM m-2) defined by one 

parameter representing the residue wettability (WETTmulch, mm Mg ha-1). According to Scopel et al. (1998), 

the residue wettability depends on residue size resulting from different management operations and ranges 

between 0.22 and 0.38 mm Mg ha-1. 

𝑊𝐶𝑚𝑢𝑙𝑐ℎ(𝑡) = 𝑊𝐸𝑇𝑇𝑚𝑢𝑙𝑐ℎ 𝐵𝑓(𝑡)                                [15] 

The mulch evaporation demand (Eq. 16) is estimated based on STICS approach multiplying the evaporation 

demand (EVAPd, mm) by the actual soil fraction covered by flat residue (Ctotal_actual, unitless). 

𝐸𝑚𝑢𝑙𝑐ℎ = 𝐸𝑉𝐴𝑃𝑑  𝐶𝑡𝑜𝑡𝑎𝑙_𝑎𝑐𝑡𝑢𝑎𝑙                               [16] 

The soil evaporation is adjusted subsequently to fulfil the unsatisfied evaporation request. 

The soil cover due to surface residue presence is simulated through WEPP approach, that estimates the total 

soil cover due to residue presence (Ctotal, Eq. 17) as the sum of two components: flat residue (Cflat, Eq. 18) and 



standing residue (Cstand, Eq. 19) soil cover. The soil covering effect is expressed as the fraction of surface 

covered by the residues and ranges from 0 to 1. 

𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐶𝑓𝑙𝑎𝑡(𝑡) + 𝐶𝑠𝑡𝑎𝑛𝑑(𝑡)                                [17] 

Soil cover due to flat residue is simulated as a function of its biomass using a crop specific parameter (rtCflat, 

m2 kg-1) representing the surface covered by a fixed amount of the specific crop residue.  

𝐶𝑓𝑙𝑎𝑡(𝑡) = 1 − 𝑒
−𝑟𝑡𝐶𝑓𝑙𝑎𝑡 𝐵𝑓(𝑡)                                     [18] 

Soil cover due to standing residue is estimated as a function of the ratio between the standing residue 

biomass at the considered time step and the standing residue at harvest (Bs(0), kg DM m-2). This function 

involves a crop specific parameter (Abm, unitless) describing the surface occupied by stem basal area at 

maturity per square metre of soil.  

𝐶𝑠𝑡𝑎𝑛𝑑(𝑡) = 
𝐵𝑠(𝑡)

𝐵𝑠(0)
 𝐴𝑏𝑚                                 [19] 

Tillage operations have two main effects on the mulch biomass, both depending on the tillage type and 

intensity. The first one is to transfer a fraction of the standing residue to the flat residue. The second effect 

is the incorporation of a fraction of the flat residue into the soil; this process creates pools of organic matter 

that will evolve independently during the simulation. 

 

The albedo of soil as influenced by both standing and flat surface residue presence is simulated adopting an 

approach derived from STICS. Soil albedo (ALBs, unitless, Eq. [20]) is simulated as a function of the soil cover 

due to surface residue presence (Ctotal, unitless). The parameter involved in the function are the ones 

describing dry soil albedo (ALBbare, unitless), mulch albedo (ALBmulch, unitless).  

𝐴𝐿𝐵𝑠(𝑡) = 𝐴𝐿𝐵𝑏𝑎𝑟𝑒 × (1 − 𝐶𝑡𝑜𝑡𝑎𝑙(𝑡)) + 𝐴𝐿𝐵𝑚𝑢𝑙𝑐ℎ × 𝐶𝑡𝑜𝑡𝑎𝑙(𝑡)                             [20] 

 


