
Evaluation of temperature- and ethanol-related developmental degree 
variations by a new scoring system (FETAX-score) applicable to Frog 
Embryo Teratogenicity Assay: Xenopus 

E. Menegola a,1, M. Battistoni a,2, R. Bacchetta a,3, F. Metruccio b,4, F. Di Renzo a,*,5 

a Dept of Environmental Science and Policy Universita ̀ degli Studi di Milano, Italy 
b ICPS, ASST Fatebenefratelli Sacco, Milan, Italy   

A R T I C L E  I N F O   

Keywords: 
Xenopus laevis embryo 
Data modelling 
Young for age 
Embryotoxicity 
Developmental degree quantization 

A B S T R A C T   

The aim of the present work is to propose a new quantitative assessment method (FETAX-score) for determining 
the degree of Xenopus laevis embryo development intended for use in embryotoxicity studies. Inspired by a 
similar scoring system used to evaluate developmental delays (young-for-age phenotypes) in rat embryos 
cultured in vitro, the FETAX-score was established by considering seven morphological features (head, naris, 
mouth, lower jaw, tentacles, intestine, anus) that are easily evaluable in tadpoles during the late stages of 
development at the conclusion of the test. Given that X. laevis development is temperature-dependent and that 
temperatures below 14◦C and above 26◦C are teratogenic, the FETAX-score was tested in embryos maintained at 
17, 20, 23 and 26◦C. No abnormalities were observed in any group, while the total score was temperature- 
related, suggesting that the FETAX-score is sensitive to moderate distress that does not influence general 
morphology. Intestine and anus were the least sensitive structures to temperature variations. To assess the 
applicability of the FETAX-score in developmental toxicological studies, we evaluated FETAX-score in tadpoles 
exposed during the morphogenetic period to Ethanol (Eth) at concentrations of 0, 0.25, 0.5, 1, 1.5, and 2 % v/v. 
Gross malformations were observed only in tadpoles from the Eth 2 % group. By contrast, data analysis of the 
other Eth groups showed dose-related reductions in the FETAX-score. Tentacles were the most sensitive struc
tures to Eth-related delays. These results support the use of the FETAX-score to quantitatively assess develop
mental deviations in FETAX embryotoxicity studies.   

1. Introduction 

In developmental toxicology, both epidemiological and experimental 
studies consider embryo/foetal lethality, gross malformations or alter
ations in the rate of development (such as delays or overgrowth, defined 
as young/old-for-age and small/large-for-age) as key endpoints, useful 
for risk assessment. Consequently, in experimental developmental 
toxicology, it is important to carefully assess the exact developmental 
stage at the end of the test as part of developmental and reproductive 
toxicology. Measuring overall embryonic development helps stan
dardize evaluation and can be applied to identify any deviations in 

growth from the normal developmental rate caused by exposure. Re
searchers have defined stages of embryonic development in humans and 
various animal models (Jirasek, 1978 for man [1]; Hamburger and 
Hamilton, 1951 for chick [2]; Theiler, 1972 for mouse [3]; Edwards, 
1968 for rat and rabbits [4] and Nieuwkoop and Faber, 1956 for the 
amphibian X. laevis [5]). In absence of easily detectable quantitative 
parameters for young/old-for-age assessment, different scoring methods 
were designed. Concerning alternative embryotoxicity tests, develop
mental degree scoring systems have been proposed in zebrafish 

[6,7] and in postimplantation rodents cultured in vitro (WEC (whole 
embryo culture) methodology) [8]. 
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Recently, we described a refined method (R-FETAX, Refined-Frog 
Embryo Teratogenicity Assay: Xenopus) as sensitive as WEC for devel
opmental toxicological purposes [9,10]. R-FETAX is a promising alter
native test to evaluate a spectrum of complex developmental disorders 
induced by chemicals, because it includes a windowed exposure period, 
covering specific developmental stages predictive for different out
comes: pre-organogenetic period, organogenetic period (sensitive for 
teratogenicity, evaluable by morphological examination techniques and 
functional tests), and spontaneous swimming acquisition period (sensi
tive for neuro-behavioural disorders, evaluable by functional tests) [9]. 
Like traditional FETAX, R-FETAX procedures are intended to end before 
Nieuwkoop and Faber (NF) stage 47 [5] considered the first stage 
included in EU Directive 2010/63/EU on the protection of animals used 
for scientific purposes [11]. According to NF staging criteria, the 
description of tadpole developmental stages at the end of the test con
siders a few simple main parameters, visible at NF stages 45, 46 and 47: 
NF stage 45 is characterized by “operculum partly covering gills with 
edge still straight, intestine spiralized in ventral aspects showing 1.5 
revolutions”; NF stage 46 tadpoles show “2 edge of operculum becoming 
convex, xantophores appearing on eye and abdomen, intestine showing 
2–2.5 revolutions, hindlimb bud visible for the first time”; NF stage 47 is 
described with “tentacles larger, edge of operculum forming quarter of a 
circle, xantophores forming opaque layer on abdomen, intestine 
showing 2.5–3.5 revolutions” [5,12]. Intestine coiling is the most 
evident and measurable parameter and therefore is considered crucial to 
evaluate stages 41–46 both in X. laevis and other Xenopus species [13]. 
Consequently, in our laboratory, a 2–2.5 turns coiled intestine was in the 
past considered representative of NF stage 46, normally reached at the 
end of R-FETAX [14,15]. However, we have often observed that intes
tine morphology, at the end of R-FETAX, may not align with the char
acteristics of other parameters classically assigned to NF stage 46. This 
highlighted the need for a quantitative method to precisely assess al
terations in the rate of development in FETAX tadpoles. 

The objectives of the present work were to assess a quantitative 
scoring system (FETAX-score) appliable to X. laevis tadpole evaluation. 
Temperature-related modifications in the time to reach specific devel
opmental milestones were induced to test the FETAX-score’s applica
bility. Finally, the FETAX-score was introduced to evaluate Ethanol 
(Eth)-related developmental delays reported in humans at not terato
genic exposure levels. Based on our previously published data, selected 
Eth concentrations were 0–0.1–0.5–1–1.5 % v/v, while Eth 2 % v/v was 
excluded from scoring . 

2. Methods 

2.1. Scoring system methodology 

The proposed scoring system (FETAX-score) was designed observing 
the normal development of unexposed embryos maintained under 
standard controlled experimental conditions and considering the normal 
table of X. laevis development: seven morphological features (head, 
naris, mouth, lower jaw, tentacles, intestine, anus) were selected as 
representative of developmental stages defined by Nieuwkoop and 
Faber [5,12] as stages NF 40–47. A score ranging from 0 to 7 was 
assigned for each feature, based on simple morphological characteris
tics. The sum of the scores for each parameter provided the individual 
overall morphological score (total score). 

2.2. R-FETAX methodology 

Adults of Xenopus laevis (Nasco, USA) were maintained in an auto
matic breeding system (TecnoPlus, Techniplast, Italia) with controlled 
conditions (T = 20+2◦C; pH = 7.5+0.5; Conductivity = 1000±100 μS), 
12 h light/dark cycle (light from 7:00AM to 7:00 PM) and fed with a 
semisynthetic diet twice a week (XE40 by Mucedola; Settimo Milanese, 
Italy). Embryos, obtained from overnight natural mating of pairs, were 

dejelled L-cysteine 2.25 % dissolved in FETAX solution, selected and 
maintained at 23◦C in Petri dishes containing FETAX solution (625 mg/L 
NaCl, 96 mg/L NaHCO3, 30 mg/L KCl, 15 mg/L CaCl2, 60 mg/L CaSO4 •
2 H2 O, and 70 mg/L MgSO4, Sigma) until they reached NF stage 8 
(midblastula), according to Nieuwkoop and Faber [5]. 

To check if the FETAX-score can measure developmental degree 
variations, samples were then maintained throughout the R-FETAX 
period (6 days) in different thermostatically controlled conditions, with 
temperatures set at 17◦-20◦- 23◦ or 26◦C. These temperatures are within 
the physiological range, and are considered able to change develop
mental speed without inducing abnormalities [16]. 

Groups exposed to Eth (Fluka, purity ≥ 99.5 %) were maintained at 
standard 23◦C temperature throughout the entire test period (6 days). 
During the first two experimental days (morphogenetic period, sensitive 
for teratogenicity) embryos were statically exposed (without medium 
renewal) to Eth directly dissolved in FETAX to obtain Eth concentrations 
0–0.1 % (concentration used when Eth is used as a solvent), 0.25 %, 
0.5–1–1.5–2 % v/v (similar to those reported in the literature [17–23]). 

At the end of the test (day 6), living tadpoles were overdosed with an 
anaesthetic (MS222, Sigma) (0.5 % dissolved in FETAX solution). 
Euthanized tadpoles were rinsed in FETAX, fixed in 50 %ethanol and 
preserved in 70 % ethanol. Tadpoles were morphologically evaluated 
under a dissecting microscope (Leica), scored and photographed. Any 
abnormalities were also recorded. 

2.3. Mathematical modelling (PROAST) 

The software package PROAST (70.3 version) developed by the 
Dutch National Institute for Public Health and the Environment (RIVM) 
(www. proast.nl) for the statistical analysis of dose-response toxicolog
ical data, was used for modelling. The benchmark dose approach was 
applied to the datasets, deriving the Critical Effect Dose (CED) at a 
Critical Effect Size (CES) set at − 0.05 percent change in the mean 
response compared to the mean response in the controls (CED-0.05, used 
as point of departure in modern risk assessment). 

2.4. Statistical analysis 

Quantal data were analysed by Chi-square for trend, and quantitative 
data were analysed using ANOVA followed by Tukey’s test. The level of 
significance was set at p < 0.05. 

3. Results 

3.1. FETAX-score parameters 

The developmental score sheet was created by considering the 
normal morphology of NF stages 40–47 (according to Nieuwkoop and 
Faber [5] and web resource [12]) focusing on seven easily recognizable 
characteristic features: head, naris, mouth, lower jaw, tentacles, intes
tine, anus (Fig. 1 showing graphical annotations on pictures; for the 
native pictures without annotations refer to the figure in supplemental 
material). Total scores, theoretically achievable at each stage, were 
calculated as the sum of individual scores (in the absence of 
stage-specific descriptions we referred to the previous score level: i.e. at 
stage 41 the head score is 0). 

3.2. Temperature-dependent FETAX-score data 

At the end of the test period (day 6), after evaluation under a dis
secting microscope (Leika), tadpoles developed at different tempera
tures (17–20- 23–26◦C) were morphologically examined and scored; 
individual total scores were then calculated. As expected in ectothermic 
animals like amphibians, the total scores reflect the dependency of 
Xenopus development on temperature (Table 1; Fig. 2). By contrast, the 
temperature range used did not induce abnormalities, suggesting that 
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the proposed scoring system is sensitive enough to detect effects (young/ 
old-for-age phenotypes) at sub-teratogenic conditions. Notably, the total 
score obtained in tadpoles maintained at 23◦C (the temperature indi
cated by the Nieuwkoop and Faber staging paper [5]) was 33.27 + 2.25. 
This value does not correspond to the theorical NF stage 46 full score 
(41, as shown in Fig. 1), suggesting different developmental conditions 
in our laboratory compared to 1956 Nieuwkoop and Faber staging 
(possibly related to differences in strain, mating procedures, mainte
nance equipment, etc). 

3.3. Effects of ethanol on FETAX-score 

To evaluate the applicability of FETAX-score in detecting minor 
xenobiotic-related alterations in developmental timing, X. laevis em
bryos exposed to non- teratogenic Eth concentrations were scored. As all 
tadpoles exposed to 2 % v/v Eth resulted malformed (22 % pluri
malformed tadpoles, 78 % tadpoles showing oedema, hydro
pericardium, head defects, ocular malformations) (Table 2) this group 
was excluded from scoring. Tadpoles exposed to 1.5 % v/v Eth showed 
some morphological aspects (head/mouth shape) (Table 2) attributable 
to developmental delays, therefore this group was included in scoring 
procedures along with the other groups (Eth 0–0.1–0.25–0.5–1 % v/v, 

where no abnormalities were recorded). Based of Table 2 data, the no 
adverse effect level (NOAEL, classically used as a point of departure in 
risk assessment) was determined to be 1 % Eth. 

By contrast, decreases in FETAX-scores for the seven different single 
parameters and the total score were also observed in the 1 % v/v Eth 
group (Table 3), highlighting the need to reposition the NOAEL at 0.5 %. 
Modelling (PROAST approach) showed a clear dose-relationship in all 

Fig. 1. FETAX-score sheet describing the characteristics of seven features during development, according to NF stages 40–47. Head: starting from a round head, 
cranium development progressively aligns brain vesicles, passing through squared and trapezoid morphologies. During this process, brain vesicles initially enlarge, 
then stretch. Naris: due to cranio-facial development, the naris position, initially aligned with the eye’s inferior border, gradually becomes dorsal. Initially the naris 
are closed to the olfactory forebrain bulbs, then they move the a rostral position as the naris appear far from the forebrain, and the olfactory nerves become visible. 
Mouth: when the stomodaeum opens,the mouth appears as a perfect circle on the top of the developing adhesive organ. During facial morphogenesis, the mouth 
becomes a flat opening and the adhesive organ gradually regresses. Finally, the mouth appears as the most anterior structure, with an oval to cup-shaped 
morphology. Lower jaw: an index of facial development, the lower jaw, initially aligned with the maxilla, progressively reaches a macrognathic position, pro
truding anteriorly. Tentacles: sensory organs formed on the upper lip border, they develop as a bud (round) and elongate, passing through a conical shape. Intestine: 
previously considered the simplest and most indicative parameter to detect Xenopus tadpole developmental degree, the initial linear gut shape progressively 
lengthens and reaches S- C and- G shapes, finally, coils into a spiralized structure. Anus: originating from the blastopore, the antero-verted anal canal characterizes 
embryonic stages, and in NF 40 tadpoles, it is perfectly at 90◦ with the tail. In later stages, the anal canal gradually becomes retro-verted and stretched, assuming a 
transitory hoof-shaped structure with an enlarged anal opening. To use the score sheet, each of the seven features is examined and scored, and the total of assigned 
scores for each parameter is the total score. Total scores, theoretically reachable at each stage, were calculated as the sum of individual scores. In the absence of stage- 
specific descriptions we referred to the previous score level: i.e. at stage 41 the head score was 0. The most common scores assigned in our X. laevis tadpoles 
developed at 23◦C are shown in grey. NF= Nieuwkoop and Faber stages, according to Nieuwkoop and Faber (1956) and the web resource (http://www.xenbase.org/, 
RRID:SCR_003280). 

Table 1 
Temperature-related increase of total score (M+SD) in samples maintained in 
thermostatically controlled conditions (17–20- 23–26◦C) for the whole test 
period (6 days). 23◦C is the standard maintenance temperature in FETAX tests. 
Tukey’s Post-hoc Test: a p<0.05 vs T17; aa p<0.01 vs T17; bb p<0.01 vs T20; cc 

p<0.01 vs T23.   

17◦C 20◦C 23◦C 26◦C  
N=15 N=15 N=15 N=15    

aabb aabb 
Head 1.87±1.60 2.60±1.30 5.07±0.59 5.80±0.41   

a aabb aabbcc 
Naris 2.53±0.74 3.20±0.77 4.00±0.00 5.53±0.74   

aa aabb aabb 
Mouth 0.93±1.67 2.80±1.86 5.33±0.49 5.93±0.46    

aabb aabbcc 
Lower jaw 0.00±0.00 0.53±1.41 4.20±0.41 5.73±0.70    

aabb aabbcc 
Tentacles 0.40±1.06 1.20±1.52 3.67±0.98 5.00±0.00    

aa aabbcc 
Intestine 4.33±1.05 5.07±0.80 5.47±0.64 6.47±0.64    

aa aabbcc 
Anus 2.67±0.82 3.07±0.46 3.53±0.52 4.93±0.70   

aa aabb aabbcc 
Total score 12.73±4.23 18.47±5.29 31.27±2.25 39.40±2.50  

Fig. 2. Temperature-related total FETAX-score, indicative of the general 
developmental degree, obtained in groups maintained at 17–20- 23–26◦C for 
the whole test period (6 days) and modelled by PROAST software package 
(exponential models applied). 
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FETAX-score parameters except for the anus and identified, based on the 
derived Benchmark Doses (CEDs, setting the critical response at 
CES-0.05), tentacles as the most sensitive structures (Fig. 3, Table 4). 

4. Discussion 

In addition to lethality and teratogenicity, the quantitative estima
tion of embryonic growth is a major concern in developmental toxi
cology evaluation. The present work aimed to identify and test a scoring 
method to evaluate young/old-for-age phenotypes in X. laevis tadpoles 
at the end of FETAX procedures. The method was based on Nieuwkoop 
and Faber staging [5,12] and assessed in samples developed at different 
maintenance temperatures. The obtained results suggest that the 
FETAX-score is sensitive to moderate distress not influencing general 
morphology (sub-teratogenic conditions). To test the applicability of the 
FETAX-score in detecting xenobiotic-related developmental delays, data 
on X. laevis embryos exposed below teratogenic concentrations of Eth 
(0–0.1- 0.25–0.5- 1–1.5 %) were assayed. Results on the FETAX-score 
support the specific activity of Eth in inducing developmental delays 
(young-for-age phenotype) at sub-teratogenic concentrations, showing 
tentacles as the most Eth sensitive embryonic target. 

Literature on X. laevis development describes, after continuous 
exposure to Eth 1–2–2.5 % v/v from late blastula stages until the end of 
the test, a typical phenotype (microcephalic, microphthalmic,or phe
notypes with multiple malformations including ventral oedema) 

[17–22]. In the present work, the exposure was limited to the first two 
days of development (NF 10–40, morphogenetic period) and marked 
teratogenic effects were obtained only at the highest concentration (Eth 
2 % v/v). In contrast, at lower (not teratogenic) concentrations, the 
dose-dependent decrease of total- and single-parameter scores (except 
anus) highlighted the presence of an Eth-related young-for-age pheno
type. In humans, the alcohol-related spectrum of physical, cognitive, 
and behavioral disabilities in newborns is known as fetal alcohol spec
trum disorder (FASD) [24–26]. The most severe form, which includes 
morphological abnormalities, is defined as fetal alcohol syndrome (FAS) 
[27–29]. 

Interestingly, facial features and growth deficiency are the most 
distinctive human FASD morphological characteristics [30]. Notably, 
according to Astley and Clarren [31], the four key diagnostic features of 
FAS are, in order: 1) growth deficiency, 2) FAS facial phenotype, 3) brain 
dysfunction, 4) gestational alcohol exposure; growth deficiencies and 
the FAS facial phenotype, in particular, are highly correlated with, and 
predictive of, severe brain dysfunctions (in detail: small palpebral fis
sures, a smooth philtrum and a thin upper lip linearly correlate, among 
individuals with prenatal alcohol exposure, to cognitive impairment) 
[31,32]. Our scoring method allowed us to describe a dose-dependent 
general developmental delay (total score decrease) at not teratogenic 
concentration levels, highlighting tentacles (expansions of the upper lip, 
a key structure in FASD) as the most sensitive structure, affected at Eth 
concentrations unable to induce gross abnormalities. 

Table 2 
Morphological characteristics of tadpoles in groups exposed to Eth 0–2 % v/v. Statistics (Chi-square for trend) on frequencies.   

Eth Eth Eth Eth Eth Eth Eth  

0 % 0.10 % 0.25 % 0.50 % 1 % 1.50 % 2 % p (Chi-square for trend) 

(N=15) (N=15) (N=15) (N=13) (N=14) (N=13) (N=9)  

Malformed tadpoles (%) 0 0 0 0 0 0 100  0.0000001 
Plurimalformed - - - - - - 22   
Head defects - - - - - - 22   
Eye malformations - - - - - - 22   
Hydropericardium - - - - - - 67   
Ventral oedema - - - - - - 11   
Tadpoles with developmental delays (%) 0 0 0 0 0 38 —  0.00016 
Head: not linear encephalon with micrognathia - - - - - 38     

Table 3 
FETAX-scores (M±SD) in groups exposed to Eth 0- 1.5% v/v. Tukey’s Post-hoc Test: a p<0.05 vs Eth 0 %; aa p<0.01 vs Eth 0 %; bb p<0.01 vs Eth 0.1 %; c p<0.05 vs Eth 
0.25 %; cc p<0.01 vs Eth 0.25 %; dd p<0.01 vs Eth 0.5 %; ee p<0.01 vs Eth 1 %.   

Eth 0 % Eth 0.1 % Eth 0.25 % Eth 0.5 % Eth 1 % Eth 1.5 %  
N= 15 N= 15 N= 15 N= 13 N= 14 N= 13       

a bb c dd ee 
Head 5.47±0.83 5.87±0.35 5.40±0.91 5.54±0.78 5.57±0.65 4.46±0.97       

aa bb cc dd ee 
Naris 6.80±0.41 6.27±0.46 6.33±0.49 6.00±0.41 6.64±1.08 3.08±1.50      

a aa bb cc dd 
Mouth 6.00±0.00 5.47±0.52 5.47±0.52 5.62±0.51 4.79±1.42 4.08±1.85      

aa bb cc dd aa bb cc dd ee 
Lower jaw 4.60±0.51 4.47±0.52 4.47±0.52 4.46±0.52 2.86±1.88 1.23±1.92      

aa bb cc dd aa bb cc dd 
Tentacles 3.00±0.00 3.00±0.00 3.13±0.52 3.46±0.88 0.86±1.41 0.46±1.13      

a bb c c 
Intestine 5.47±1.06 5.80±0.86 5.87±0.35 5.85±0.38 4.64±1.08 4.85±1.34        

Anus 3.87±0.83 3.27±0.59 3.33±0.49 3.23±0.44 3.93±0.62 3.08±0.28      
aa bb cc dd aa bb cc dd ee 

Total score 35.20±2.34 34.13±1.68 34.00±1.31 34.15±1.95 29.29±5.36 21.23±3.98  
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Fig. 3. Concentration-dependent reduction of single FETAX-scores and total FETAX-score in X. laevis tadpoles exposed to Eth (0–1.5 % v/v) during the organogenetic 
stages (PROAST modelling). Tentacles were the most sensitive parameter. 
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In conclusion, the overall obtained results support the use of this 
innovative scoring system to quantitatively assess alterations in the rate 
of development, useful, in embryotoxicity studies, to detect sub- 
teratogenic effects. 
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