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Abstract: The increasing population, its requirements for food, and the environmental impact of the
excessive use of inputs make crop production a pressing challenge. Integrated nutrient management
(INM) has emerged as a critical solution by maximizing nutrient availability and utilization for crops
and vegetables. This review paper highlights the potential benefits of INM for various vegetables
and field crops and explores the conceptual strategies, components, and principles underlying this
approach. Studies have shown that a wide range of vegetables and field crops benefit from INM,
in terms of increased yield and improvements in yield attributes, nutrient contents and uptake,
growth parameters, and various physiological and biochemical characteristics. This paper discusses
biostimulants, their categories, and their impact on plant propagation, growth, photosynthesis, seed
germination, fruit set, and quality. Additionally, this review explores modern sustainable soilless
production techniques such as hydroponics, aeroponics, and aquaponics. These cultivation methods
highlight the advancements of controlled-environment agriculture (CEA) and its contribution to
nutrient management, food security and minimizing the environmental footprint. The review
concludes by proposing methods and fostering discussions on INM’s future development, while
acknowledging the challenges associated with its adoption. Finally, this review emphasizes the
substantial evidence supporting INM as a novel and ecologically sound strategy for achieving
sustainable agricultural production worldwide.
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1. Introduction

Efforts to satisfy the growing need for food (due to population growth and increased
consumption) are placing unprecedented strain on current agriculture and natural re-
sources, and this is exacerbated by shrinking acreage of arable land and other productive
units [1]. In developing nations, achieving food security under sustainable systems is a
major task that is vital to reducing poverty [2]. The already observable changes in the global
environmental conditions and the related uncertainties make yield enhancement extremely
challenging [3]. Modern cultures have ravenous needs for energy, water, wood products,
land area for infrastructure, urbanization, and the removal of industrial and urban trash
in addition to an endless supply of food [4]. Hence, the prime objective now should
be optimization across a significantly complicated terrain of production, environmental,
and social justice outcomes rather than just maximizing productivity. Farmers have used
chemical fertilizers and pesticides excessively to overcome the problem of an insufficient
yield, which has already begun to negatively impact the ecosystem. However, applying
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chemical fertilizer is now a crucial step in maintaining high and consistent crop yields,
providing between 30 and 50% of crop output and over half of the global population’s
protein needs [5]. Today, food security is ensured by fertilizers and sustainable agricultural
systems [6]. According to multiple reports, China is the world’s greatest producer and
consumer of fertilizers [7]. Between 1978 and 2019, China’s consumption of chemical
fertilizers rose from 8.84 to 54.0 metric tons, a 511% rise, while its grain output expanded
from 305 to 664 Mt, a 118% increase, during the same period [8]. By 2050, the world’s food
supply must rise by 70% to meet the growing demand, where an average yearly increase in
cereal production of 43 million metric tons is needed to fulfil this ambitious goal [9].

A significant rise in global greenhouse gas emissions (GHGs) by the agriculture sector
is evident, which primarily is due to the use of synthetic fertilizers and pesticides, both of
which have been increasing in use quickly in recent years. One of the main contributors
of environmental damage, including eutrophication and GHGs, is the use of fertilizer,
particularly nitrogen [10]. In Europe, the quality of drinking water and the safety of the
environment were threatened when the overall amount of nitrogen used for agricultural
production reached 200 million tons in the 1980s, leading to excessive nitrate (N) in the
water, eutrophication, and GHGs [11]. To prevent excessive fertilizer inputs, the European
Union (EU) passed several pieces of legislation and regulations, such as the EU Nitrates
Directive [12] and the EU Water Framework Directive [13]. In accordance with national
conditions and legal requirements, member nations implemented equivalent fertilizer re-
duction control policies. From 2000 to 2008, the Nitrate Directive’s implementation reduced
N leaching by 16%, NH3 by 3%, and N2O emissions by 6% [14]. However, studies compar-
ing fertilizer use to crop nutrient requirements have not been conducted extensively. For
example, China’s crop N use efficiency is only about 25%, well behind the global average of
42%, the 52% average in Europe, the 68% average in the US and Canada, and the 72% aver-
age in sub-Saharan Africa [7]. The partial factor productivities of N, P, and K fertilizers are
20 kg grain/kg N, 98 kg grain/kg P, and 61 kg grain/kg K in China, where average wheat
grain yields are approximately 4.9 t/ha. This is less than the 2.9 t/ha in North America and
the 7.5 t/ha in Western Europe (55 kg grain/kg N, 724 kg grain/kg P, 275 kg grain/kg K),
2.9 t/ha in North America (48 kg grain/kg N, 332 kg grain/kg P, 193 kg grain/kg K), and
1.7 t/ha in Australia (76 kg grain/kg N, 211 kg grain/kg P, 478 kg grain/kg K) [15]. Thus,
to increase production, agricultural programs must embrace sustainable agricultural de-
velopment by adopting agro-ecological approaches that prioritize resource conservation,
environmental impact mitigation, and global climate change mitigation. For example, in
regions with specialized cropping, well-planned crop rotations are believed to improve
agricultural sustainability, increase soil fertility, reduce insect life cycles, and maximize
resource utilization. These approaches also aid modern agriculture in addressing environ-
mental, human nutrition, and socioeconomic concerns; for instance, growers can increase
revenue by introducing high-value crops [16]. Previous research suggested that reducing
the cropping intensity and rotating water-efficient species can help slow the depletion of
the groundwater table [17]. Additionally, low-input rotations—such as those including
legumes—lessen the need for synthetic fertilizers, which lowers related pollution and
greenhouse gas emissions [18]. Legumes are the most varied and widely distributed group
of plants that can fix nitrogen from the atmosphere. They are an essential part of terrestrial
ecosystems and a source of nutrients and proteins for humans and animals. Leguminous
crops, for instance, provide half of the nitrogen required by agricultural systems, reducing
the need for chemical N fertilizer inputs into the soil and the associated environmental
harm [19]. They also help in decomposing litter more quickly and have higher N concen-
trations than non-leguminous species, which ultimately increases the availability of N in
the soil and improves the conditions for coexisting plant growth by raising the levels of
soil organic carbon (C), soil nutrients, and humus [20].

For the last two decades, there has been a relatively new approach to boosting agri-
cultural production in addition to alleviating the negative effects of climate change. This
approach includes the use of biostimulants, an easy-to-use, inexpensive, and organic or
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artificial extract [21]. The definition and idea of plant biostimulants is still developing based
on the consortia of two leading biostimulant regions, the European Union and North Amer-
ica. The European Biostimulant Industry Council (EBIC) defined biostimulants as follows:
“Plant biostimulants contain substance(s) and/or micro-organisms whose function when
applied to plants or the rhizosphere is to stimulate natural processes to enhance/benefit
nutrient uptake, nutrient efficiency, tolerance to abiotic stress, and crop quality” (reported
in the European regulation n. 2009/2019) [22]. Meanwhile, the North American definition
of biostimulants is the following: “Substances, including micro-organisms, that are applied
to plant, seed, soil or other growing media that may enhance the plant’s ability to assim-
ilate applied nutrients, or provide benefits to plant development. Biostimulants are not
plant nutrients and therefore may not make any nutrient claims or guarantees” [23]. The
two primary categories of biostimulants are non-microbial and microbial biostimulants.
Plant and seaweed extracts, humic compounds, protein hydrolysates, and substances such
as plant growth regulators (PGRs) are among the non-microbial biostimulants. Phyto-
hormones, chemicals (melatonin), and biostimulants derived from various sources (such
as organic materials from vermicompost) are examples of the latter. In addition to other
natural polymers, chitosan, chitin, or chitosan oligosaccharides can be employed as biostim-
ulants. Because of their elemental makeup, inorganic elements (NO and H2S) can also be
regarded as biostimulants if they have positive effects on plants without directly increasing
nutrient concentrations. Trichoderma, mycorrhizal and non-mycorrhizal fungi, and plant
growth-promoting rhizobacteria (PGPR) are examples of microbial biostimulants [24]. The
categories of biostimulants used in agriculture are represented in Figure 1.
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Integrated nutrient management (INM) is an approach to preserving the environment
for posterity while simultaneously improving the quality of the output where it depends on
the application and preservation of nutrients, the development of new technologies to in-
crease nutrient availability to plants, and the dissemination of information between farmers
and researchers [25]. It has been demonstrated that INM significantly increases crop yields
by controlling the nutrient supply and minimizing nutrient losses to the environment. This
leads to a high resource utilization efficiency, lower costs, and better tolerance of biotic and
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abiotic challenges [26]. A few of the primary objectives of INM include controlling and
maintaining agricultural productivity while simultaneously increasing farmers’ profitabil-
ity through the rational and effective use of its components such as chemical fertilizers,
organic manures, green manures, compost, including vermicompost, crop residues, and
biofertilizers, as shown in Figure 2. But this does not mean adding nutrients randomly;
rather, it demands highly calculated, effective, and practical combinations of several nu-
trient sources that can deliver required yields and sustain soil health over time. The INM
system aids in preventing new micronutrient shortfalls as well as assisting in maintaining
and restoring the crop output [27].
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A few of the benefits offered by INM are presented in Figure 3. With the continuous
increase in both the quantity and quality of experimental data, researchers are now able to
properly integrate, evaluate, and conclude on approaches for the betterment of crops and
the environment. Smallholder farmers could benefit more from technology transfer centers
that encourage the adoption of modern agricultural management techniques including
the use of sensors, drones, and inexpensive satellite imaging for better fertilization and
pest control [28]. Machine learning (ML) and ML algorithms can forecast yields based on
genetic information, environmental and land management variables, fertilizer rates, and
genetic data [29]. It is feasible to combine and interpolate several pieces of information
in the field of nutrient management that have never been investigated before. These
advances facilitate the inclusion of economic factors in decision-making and enhance our
general understanding of agricultural systems, including fertilizer requirements. A precise
assessment of the crop nutritional status and nutrient requirements is essential to overall
farm management, and it affects the farm’s economic viability as well as the environment.

Soilless farming is a cultivation technique that dispenses with the use of soil as a
rooting medium. In this approach, nutrients are absorbed by the roots, provided through
irrigation water. The methods include aeroponics, aquaponics, and hydroponics. Reduced
water consumption/loss, less soil exploitation, and reduced land usage may be achieved
with the disciplined resource conservation approaches of soilless farming [30]. In soilless
farming, careful nutrient monitoring and nutrient solution modifications are carried out to
suit the unique requirements of many plant species, and success is highly dependent on
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accurate nutrition management [31]. On the other hand, poor nutrient management can
result in stunted growth, low yields, and in severe situations, plant death. Hence, with
a resource optimization approach, this technique reduces waste and increases efficiency
by delivering nutrients in a controlled manner straight to the plant roots in addition to
lessening the negative effects on the environment [32].

Thus, in this article, we review the importance of INM in agriculture, its concepts and
objectives, procedures, and principles apart from sustainable agricultural production, and
its potential for reducing the overall environmental impact. This review paper explores
the scientific research from the literature found in the Google Scholar, Scopus, and Web of
Science repositories. The use of biostimulants, their categories, and their potential impacts
on vegetative as well as reproductive phases are discussed. Fruits/vegetables such as toma-
toes and field crops such as wheat and rice are presented as separate tables since these crops
have been extensively studied and possess sufficient nutrient management data. Soilless
agricultural production through hydroponics, aeroponics, and aquaponics is highlighted,
and their potential as excellent resource utilization and conservation practices is discussed.
The goal of this review is to demonstrate how resilient various agricultural systems are in
the face of environmental crises and climate change. Moreover, the information gathered
may be used to create environmentally friendly farming methods that are sustainable; in
the future, we can maximize the usage of these methods and create climate-smart farming
policies for a more sustainable future. Additionally, in creating this review, we have tried to
compile work carried out on various crops and fruits/vegetables using traditional nutrient
management approaches and modern approaches, which account for both micro- and
macronutrient management strategies and improvements in both indoor and outdoor crops
and fruits/vegetables.

Canva software (Canva Pro version 4.49.0, Perth, Australia) was used to construct the
schematic diagrams and figures (https://www.canva.com/en_gb/, accessed on 30 May 2024).
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2. Conceptual Basis and Principles of INM

INM primarily refers to the integration of traditional and contemporary nutrient man-
agement techniques into an environmentally sound and commercially optimal agricultural
system [29]. It makes use of all available sources of organic, inorganic, and biological
components and optimizes the nutrient cycle, including N, P, K, and other macro- and
micronutrient inputs and outputs, while minimizing the losses due to leaching, runoff,
volatilization, emissions, and immobilization [9]. Some of the key steps involved in the
INM strategy are listed in Table 1.

https://www.canva.com/en_gb/
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Table 1. Complete set of INM strategies from assessing the plant and soil nutrient deficiencies to
selecting the techniques for eradicating these problems and eventually evaluating the effects of those
techniques in addition to the key steps involved in the application.

No. Focus Points of INM Strategy Methods Detailed Strategies

1
Assessing plant nutritional

deficiency and soil
nutrient availability

Sampling and laboratory analysis

Soil sampling and post-harvest plant
tissue sampling are conducted apart from

the visual observation of nutrient
deficiencies in plants. Usually, the results

are compared with a reference healthy
plant considered as the standard

2
Evaluating the potential and

limitations of soil
fertility management

Monitoring the relationship
between the INM strategy and

nutrient diagnosis

Inspection related to overuse or underuse
of nitrogen fertilizers

3 Investigating the techniques and
technologies to balance nutrients

Nutrient intake and output
differential inspection and

computing the soil
nutrient budget

Choosing an appropriate INM after
analyzing the variables

4 Evaluating the productivity and
sustainability of INM activities

The use of locally
relevant technology

Active participation of farmers in testing
and analysis

The above-discussed INM strategy is centered on the timing and rate optimization
of fertilizer applications, where it assists in prescribing a basal fertilizer dose in terms of
N, P, and K requirements based on the soil’s capacity and its potential to supply overall
nutrients [9]. Based on INM strategies, the INM principles can be divided into three. The
first principle describes maximizing the intake by utilizing nutrients from all available
sources. A significant amount of N for crop growth is supplied by irrigation water and
atmospheric N deposition, where some of it is due to lightning. Lightning can create
nitrogen oxides (NOx ≡ NO + NO2) in the atmosphere [33]. The estimated annual emission
of atmospheric nitrogen by lightning falls within a range of 2 to 8 Tg N yr−1, which is
several times less than that from present-day anthropogenic and biomass burning sources
(~26 Tg N year−1) [34]. Excessive nitrate (N) aggregation in the soil profile is like a
massive “N resource” that has the potential to build up but will ultimately be released
into the environment through leaching or denitrification [35]. Thus, irrigation water and
atmospheric N deposition can be regarded as sources of important nutrient inputs for
the INM strategy. The second main principle involves coordinating the regional and
temporal distributions of crop demand and soil nutrient delivery. To achieve a high
nutrient use efficiency in crops, there is a need to coordinate the timing of application
with the crop nutrient requirements. This principally involves the frequent application of
N fertilizers but in low quantities, which leads to improved crop quality and potentially
reduce N losses [36]. In contrast, some non-traditional rice farmers apply 80% of the total
N fertilizer as a basal dressing prior to transplanting, and the remaining portion within
10–20 days following the transplant; this has led to both poor crop production and N
losses [37]. This strategy leads us to the third major INM principle, which asserts that the
agricultural yield can be increased by reducing N losses. Moreover, N application should
proceed in a controlled way to eradicate or minimize the deleterious environmental effects.
Numerous variables, including the N application pattern, crop characteristics, soil qualities,
climatic circumstances, and management techniques, affect the fate of nitrogen. Because of
this, INM, for instance, supports the deep placement of urea or ammonium bicarbonate,
which can greatly improve the N use efficiency while reducing nitrate leaching and NH3
volatilization [38]. Since N2O emissions usually occur during the nitrification processes
following fertilizer N application [39] and irrigation [40], applying nitrification inhibitors
can minimize N2O emissions. In addition to nitrification inhibitors, the soil quality and
ultimately yield can be improved by using organic manure together with crop residues
and conservation tillage practices [41]. Numerous studies have been performed over time
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on the application of INM, to observe the improvements in the agronomic as well as the
morpho-physiological attributes of crops.

3. Progress of INM Technology in Fruits, Vegetables, and Crops
3.1. Biostimulants

For the last two decades, applying biostimulants has presented a very useful and sus-
tainable option for encouraging positive plant growth under optimal or stressful conditions.
Regardless of their nutrient composition, they are known to improve nutrient availability,
nutrient uptake efficiency, productivity, flowering, fruit development, and plant growth
and tolerance of biotic and abiotic stress [42]. These biostimulants consist of a range of dif-
ferent microorganisms and components that stimulate plant growth and development and
help in reducing the need for fertilizers. Various applications and impacts of biostimulants
on different stages of crop growth are presented in Figure 4. Overall, biostimulants exhibit
good activity at low concentrations, help in enhancing the grain protein content, nutritional
value, and shelf life, and improve the nutritional quality and resilience of crops to abiotic
stress [43].
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Enhancements of root development and nutrient availability lead to an indirect in-
crease in the plant nutrient uptake efficiency [44]. For example, in maize, under a controlled
environment, the biostimulant betaine resulted in a better plant growth and water use
efficiency [45]. In another study, a biostimulant containing plant growth-promoting rhi-
zobacteria (PGPR) increased the yield and growth of maize when paired with a lower
fertilizer dosage [46]. Investigations into specific direct processes showed enhanced ex-
pression levels of genes encoding several nutrient transporters, primarily N and P, to meet
the ideal plant need. The productivity of plants increases when bacterial biostimulants
boost the efficiency of nutrient uptake, leading to an overall increase in plant growth.
Several biostimulants and their effects on crops in terms of propagation, vegetative growth
performance, photosynthesis, and fruit quality are represented in Table 2.
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Table 2. Biostimulants and their effects on plant propagation, vegetative growth, photosynthesis, and
leaf gas exchange.

Biostimulants Crops Effect of Biostimulants References

Plant propagation

Algamino plant White dogwood
(Cornus alba L.)

Improved rooting
speed in cuttings [47]

Arbuscular
mycorrhizal fungi Olive (Olea europaea L.) Enhanced rooting

and seeding quality [48]

Microalgae
Chlorella vulgaris and

Messastrum gracile

Crimson cattleya
(Cattleya labiate)

An alternative to plant growth
regulators for

in vitro propagation
[49]

Root Nectar (willow
bark extract and

Nutrifield’s
biostimulant complex)

Chrysanthemum,
lavender

(Lavandula angustifolia)

Improved development of root
branching and adventitious roots [50]

Microbial metabolites Pear (Pyrus communis L.) Enhanced auxin production that
enabled efficient rooting [51]

Vegetative growth

Moringa leaf extracts Kale, broccoli
(Brassica oleracea)

60% increased nitrate levels in
broccoli, while 70% reduced

in kale
[52]

Moringa leaf extract Quinoa
(Chenopodium quinoa)

Improved grain yield and
overall growth [53]

Seaweed-based extracts Cucumber
(Cucumis sativus) Improved growth and fruit yield [54]

True-Algae-Max
(seaweed liquid extract)

Hot peppers
(Capsicum annuum)

Improved fruit composition
and plant growth [55]

Photosynthesis and leaf
gas exchange

Ascophyllum nodosum
(seaweed extract)

Broccoli (Brassica oleracea),
spinach (Spinacia oleracea)

Reduction in stomatal closure,
improved water stress tolerance

and gas exchange
[56]

FOLIAR (amino acid
based)

Perennial ryegrass
(Lolium perenne)

95% increased photochemical
efficiency (Fv/Fm) [57]

PE Auxym (tropical
plant extract)

Nalta jute
(Corchorus olitorius)

SPAD index
and photosynthesis improved [58]

Moringa leaf extract Quinoa
(Chenopodium quinoa)

Improved photosynthesis and
leaf gaseous exchange [53]

Microbial biostimulants, like arbuscular mycorrhizal fungi (AMF) and PGPB, have
become more common in recent years as a sustainable way to increase both the quantity
and quality of the product [59]. Seeds treated with biostimulants are one of the most
creative and promising methods for enhancing seed germination, early radicle protrusion,
emergence, and seedling establishment under both normal and abiotic-stressed condi-
tions [60]. Additionally, bio-based biostimulants as seed coatings have been developed
using different sources of liquid and powder forms of vermicompost and soy flour [61]. The
plants’ biometric parameters and the nitrogen uptake per plant were significantly higher
with a biostimulant seed coating than in the control [62]. When using broccoli as a model-
ing system, biostimulant seed coating formulations through soy flour have shown lower
germination percentages than in control plants; however, 10-day-old seedlings from these
seeds showed better root and shoot growth [63]. Moreover, coating red clover (Trifolium
pratense L.) and perennial ryegrass (Lolium perenne L.) seeds with different combinations of
soy flour, diatomaceous earth, micronized vermicompost, and concentrated vermicompost
extract led to different germination percentages. In red clover, coated treatments signifi-
cantly improved the germination rate and uniformity, with no reduction in the germination
percentage, while in perennial ryegrass, a delayed germination rate and reduced germi-
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nation percentage were recorded compared to the non-treated seeds [64]. It has also been
demonstrated that biostimulants encourage flowering. A significant field of research is the
use of biostimulants at preharvest to extend the shelf life of cut flowers, which are extremely
valuable economically. Also, this is a sustainable and successful method to enhance the
fruit set, development, and quality of final produce [65], especially in terms of soluble
solids, phenols, and ascorbic acid [66]. Moreover, a previous study has explored how a
Bacillus-based microbial biostimulant promotes maize growth and drought tolerance by
influencing gene expression and metabolic pathways [67]. Table 3 summarizes the effect of
biostimulants on different plant developmental stages.

Table 3. Plant developmental stages: seed germination, flowering, and fruit setting in response to
the biostimulants.

Plant Developmental
Stages Biostimulants Crops Effects of Biostimulants References

Seed germination

Polysaccharide-enriched
extracts (PEEs) obtained
from Moroccan seaweed

Cherry tomato
(Solanum lycopersicum)

0.002 mg/mL of PEEs resulted
in an increased seed

germination
percentage and speed

[68]

Seaweed leaf extracts
(Laurencia obtusa, Ulva

fasciata, and
Cystoseira compressa)

Maize (Zea mays) and
cowpea

(Vigna unguiculata)

Improved seed germination
and enhanced seedling growth [69]

KIEM (lignin derivatives,
plant-derived amino
acids, molybdenum)

Cucumber
(Cucumis sativus)

Improved heat stress tolerance
of cucumber seeds [70]

Bacillus sp. MGW9 Maize (Zea mays)
Stimulated salt tolerance

mechanism during
seed germination

[60]

Micro-algae strains Spinach
(Spinacia oleracea) Better seed germination results [71]

Flowering

Borage leaf-extract-based
biostimulant Gladiolus cut flower

Better osmotic balance and
reduced oxidative stress

resulted in an
improved vase life

[72]

Moringa leaf extract Gladiolus (white
prosperity cultivar)

Improved performance
of cut spikes [73]

Protein hydrolysates (both
animal and plant origins) Chrysanthemum Improvement in the vase life [74]

Hydroxyquinoline sulfate
(8-HQS)

Cut rose
(Rosa hybrida L.)

Improvement in visual quality
and better vase life [75]

Moringa leaf and
seed extract

Cut flower
(Rosa hybrida cv.
“Upper class”)

Extended vase life, proline
accumulation, and reduction in

stomatal aperture
[54]

Fruit set and quality

Seaweed extract Eggplant
(Solanum melongena)

Improved antioxidant activity,
TSSs, anthocyanins,

and total polyphenols
[76]

Protein hydrolysates Annurca apples
(Malus domestica)

Improved total
polyphenol profile [77]

Seaweed extract, mycorrhiza,
and Trichoderma

Strawberries
(Fragaria × ananassa)

Enhanced anthocyanins, TSSs,
and total polyphenols [78]

CycloFlow (mixture of yeast
and sugarcane molasses)

Tomatoes
(Solanum lycopersicum) Increased vitamin C content [79]

Seaweed extract and fulvic
acid based

Guava
(Psidium guavaja L.)

Increased TSS, fruit size,
and fruit weight [80]

3.2. Nutrient Management and Soilless Cultivation Systems

Soilless culturing can be defined as “any technique for cultivating plants that does
not include the use of soil as a rooting medium and uses irrigation water to provide the
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inorganic nutrients for the roots to absorb” [81]. In this method, fertilizers containing
nutrients in appropriate concentrations are dissolved in irrigation water, and the resultant
solution is referred to as the “nutrient solution” [82]. This method of cultivation is heavily
employed to maintain control over the growth environment and prevent fluctuations in the
soil’s nutrient and water levels [83].

3.2.1. Hydroponics

“Hydroponics” was derived from the Greek word for agriculture, Geoponics (geo for
earth and ponos for work). Hence, hydroponics pairs Hydro for water and ponos for work or
labor. Soil serves as a substrate for plants to meet certain needs of theirs; however, it can be
substituted with an artificial support and supply of sufficient macro- and micronutrients,
which are necessary for plant growth and development and can be replaced by water
or an inert solid medium. This technique is termed hydroponics [82]. Table 4 shows
several popular growing media types that have been employed over time for various
fruit and vegetable production modes and have adequate porosity and water-holding
capacity. For example, Coco coir, derived from coconut husk, has good aeration and a
good ability to retain moisture. Because of its porous structure, hydroton, an expanded
clay product, is good at absorbing nutrients and water. Heat is employed to create perlite,
which gives it a high ability to hold water. Similarly, peat moss is a dark brown, fibrous
organic substance, while vermiculite is a naturally occurring mineral. Sawdust is an
environmentally friendly byproduct of cutting wood; its shelf life is limited but it is 100%
organic, contrary to rockwool, which is an inorganic soilless growing medium. Apart from
the above-mentioned options, soil particles of sizes 0.5–1 mm also serve the purpose of
holding plants and retaining water. Moreover, gravels with pea seed sizes are another
choice for the soilless growing medium, as they enhance drainage.

Table 4. Various hydroponic media, and their types and techniques, employed over time in the
production of different fruits, vegetables, and crops.

Media Types Crops References

Solid Inert Medium

Coco coir
Arugula (Eruca sativa),

basil (Ocimum basilicum),
sunflower (Helianthus annuus)

[84]

Hydroton Red lettuce (Lactuca sativa) [85]

Perlite Tomato (Solanum lycopersicum) [86]

Vermiculite Arugula (Eruca sativa) [87]

Peat moss Kale (Brassica oleracea), Swiss chard
(Beta vulgaris), arugula (Eruca sativa) [88]

Sawdust

Rice (Oryza sativa) dust, wheat
(Triticum aestivum) dust,
Pak choi (Brasica rapa),
arugula (Eruca sativa),
kale (Brassica oleracea)

[88,89]

Rockwool Microgreens, soybean [90–92]

Coarse sand Ethiopian kale (Brassica carinata) [93]

Pea gravel Spinach (Spinacia oleracea L.) [94]

Water Medium Culture

Circulating methods
(closed systems)

Nutrient film technique (NFT) Red and green lettuce
(Lactuca sativa), microgreens [95–97]

Deep flow technique (DFT)
Coriander (Coriandrum sativum),

wheat microgreen
(Triticum aestivum)

[98]

Non-circulating
methods (open systems)

Root-dipping technique Lettuce (Lactuca sativa), microgreens [99]

Floating technique Pak choi (Brasica rapa) [100]

Capillary action technique Pak choi (Brasica rapa) [101]

Ebb and flow system

Basil (Ocimum basilicum), kale
(Brassica oleracea), cherry tomato
(Solanum lycopersicum), pepper

(Capsicum annuum)

[102]
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The provision and choice of the nutrient solution are very important for this kind
of cultivation method because they determine the supply of essential mineral elements,
oxygen, and water to the roots of the plants [32]. The inorganic ions found in nutrient
solutions are often soluble salts of vital elements that the plant needs [103]. For plant
growth, the essential elements are as follows:

• Macronutrients: Carbon (C), hydrogen (H), and oxygen (O) are available in nature/the
atmosphere. Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium
(Mg), and sulfur (S) are required in large quantities.

• Micronutrients: Manganese (Mg), boron (B), iron (Fe), copper (Cu), zinc (Zn), molyb-
denum (Mo), chlorine (Cl), nickel (Ni), cobalt (Co), sodium (Na), and silicon (Si) are
required in very small quantities.

Four factors—pH, temperature, nutrient composition, and electrical conductivity
(EC)—should be taken into consideration while optimizing a hydroponic nutrient solution.
The ideal pH range for crop growth is 5.5 to 6.5 in hydroponic systems [104]. Therefore, pH
monitoring and adjustment are important to prevent the depletion of nutrients from the
solution and nutrient imbalance. A few of the hydroponically grown crops are shown in
Table 5 with their pH and electrical conductivity requirements. Temperatures can affect the
reaction rate of nutrients, the movement of nutrients through the medium, the physiological
aspects of ion uptake, and the activity of soil microbes. Plant metabolic activity can be
positively or negatively impacted by temperatures that are either below or above optimum
ranges [105]. This can involve the build-up of phenolic compounds, the production of
reactive oxygen species (ROS), the intake of nutrients, the creation of chlorophyll pigment,
photosynthesis, and ultimately, the growth and development of the plant [106].

Table 5. Common hydroponically grown crops and their optimum electrical conductivities
(EC mS/cm) and pH ranges.

Crops pH EC (mS/cm)

Pak choi (Brassica rapa L.) 7.0 1.5 to 2.0
Asparagus (Asparagus officinalis L.) 6.0–7.0 6.0–6.8

Basil (Ocimum basilicum L.) 5.5–6.0 1.0–1.6
Broccoli (Brassica oleracea L. var. italica) 6.0 to 6.8 2.8 to 3.5

Cucumber (Cucumis sativus L.) 5.0 to 5.5 1.7 to 2.0
Eggplant (Solanum melongena L.) 6.0 2.5 to 3.5

Cabbage (Brassica oleracea L.) 6.5 to 7.0 2.5 to 3.0
Lettuce (Lactuca sativa L.) 6.0 to 7.0 1.2 to 1.8

Tomato (Solanum lycopersicum L.) 6.0 to 6.5 2.0 to 4.0
Strawberry (Fragaria ananassa L.) 6.0 1.8 to 2.2

Zucchini (Cucurbita pepo L.) 6.0 1.8 to 2.4

The benefits that this technique offers are a yield increase, better space and energy
utilization, protection against soil-borne pathogens and pesticides, and safety against climate
change due to its controlled condition. Moreover, cultivation in space or under the oceans is
also feasible using these techniques, in plant-growing portable shipping containers [96].

3.2.2. Aeroponics

Aeroponics is a popular soilless crop production system that combines ecological
control, plant physiology, and nutrition; it benefits from minimal maintenance require-
ments, superior growth processes, automatic monitoring, protected cultivation, and high
yields [107]. This method involves suspending the roots, separating them from one another,
and keeping them in the dark while providing the necessary nutrient solution through
fogging or misting. Sufficient oxygen is supplied to the plant roots because they need
oxygen for cellular respiration. The energy (ATP) produced by this mechanism supports
nutrient intake, root growth, and other essential processes. Otherwise, a situation without
such energy will result in reduced nutrient absorption, slowed root growth, and higher
vulnerability to pathogens responsible for root diseases [108].

Aeroponics have been successfully used in the production of various fruits/vegetables
such as tomato [109], cucumber [110], sweet pepper [111], strawberry [112], potato [113],
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and leafy vegetables such as arugula [114] and lettuce [115]. Reduced nutrient and water
requirements, minimal cost, and a decrease in damage and disease are some of the potential
advantages of this strategy.

3.2.3. Aquaponics

Aquaponics, which combine hydroponics and aquaculture, allows for a symbiotic rela-
tionship between fish and plants in addition to providing benefits in terms of fruit/vegetable
and fish production that are not achievable with either method alone [116]. In this symbiotic
relationship, plants act as a biofilter and recycle water to ponds or containers containing
fish, where fish produce ammonia, which is later converted into nitrate and provides neces-
sary nutrients to plants [117]. A few of the analyzed fish and plant species in aquaponics
are presented in Table 6. The disparity in nutrient requirements between hydroponics
and aquaculture is one of the main obstacles in conventional aquaponics. The aquaponic
system, which only uses fish feed as a source of nutrients for the plants, is lacking in
some nutrients, such as K, Fe, and Ca, which are necessary for plant growth [118]. The
reduction in these nutrients is directly proportional to the decrease in the yield of the
fruits/vegetables, where the pH also influences the nutrient uptake in plants due to dif-
ferences in the pH requirements of plants (5–6 approx.) and fishes’ preferred pH values
(7–9 approx.) [119,120]. Therefore, to prevent deficiency and maximize plant production in
the aquaponic system, nutrient supplementation is necessary via foliar application [121],
into the culture water/fertigation [122], or through supplementation in the fish diet [123].
A basic illustration of soilless farming is shown in Figure 5.

Table 6. An overview of plant and fish species in the aquaponic system.

Plant Species Fish Species References

Spinach (Spinacia oleracea) Shark catfish (Pangasianodon hypophthalmus) [124]
Basil (Ocimum basilicum) African Catfish (Clarias gariepinus) [125]
Lettuce (Lactuca sativa) Tilapia (Oreochromis niloticus) [126]

Lemon grass (Cymbopogon citratus) Rohu (Labeo rohita) [127]
Swiss chard (Beta vulgaris) Tilapia (Oreochromis niloticus) [128]

Lettuce (Lactuca sativa), Pak choi (Brassica campestris),
Chinese cabbage (Brassica rapa), kale (Brassica oleracea),

collards, Swiss chard (Beta vulgaris)
Tilapia (Oreochromis niloticus) [129]

Tomato (Solanum lycopersicum) Pearlspot (Etroplus suratensis) [130]
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3.3. INM Effects on the Performance of Fruits and Vegetables

Fruits and vegetables are rich in nutrients and offer a balanced diet that includes
dietary fiber, proteins, fats, carbohydrates, vitamins, and minerals [131]. Since they are the
least expensive source of food, they regarded as the finest supplement to ensure nutritional
security. Also, they provide numerous health advantages for our body, including being
diuretic, laxative, and anti-diabetic and aiding in heart health, in addition to providing a
blend of bioflavonoids and antioxidants that scavenge free radicals and reduce the risk of
cancer [132]. Considering the above-mentioned benefits, fruit and vegetable production
is crucial and needs serious attention from growers. Although the use of high-input
technology, such as chemical pesticides, herbicides, and fertilizers, increases productivity,
there are rising concerns about the harmful impacts of chemical use on soil productivity,
human health, and environmental quality. Therefore, to solve problems like a low yield
and output, low nutritional value, and poor quality of fruits and vegetables, INM is crucial
for fruit/vegetable crops, and over time, several fruits and vegetables have come to be
known to benefit from the INM practices [133]. Table 7 summarizes the use of various INM
techniques, which assist in the production of different fruits and vegetables and affect the
overall morphological, physiological, and biochemical parameters while minimizing the
environmentally harmful effects.

Table 7. Effects of integrated nutrient management on the performance of different fruits and vegetables.

Fruits and Vegetables Impact of Integrated Nutrient Management References

Tomato (Solanum lycopersicum L.)

50% recommended dose of fertilizer (RDF) in combination with 5 t/ha ARV
(Agro Residue Vermicompost) resulted in an increased plant height, root

length, dry weight, chlorophyll content, leaf area index, number of flowers
per plant, and fruits per plant, which ultimately increased crop yield.

[134]

Pepper (Capsicum annuum L.)

Higher maximum plant height, increased leaf area index, improved
chlorophyll content, and an improvement in number of branches per plant
were observed after the treatment with 75% fertilizers and poultry manure

at the rate of 5 t/ha, in addition to biofertilizers
and 2% magnesium sulfate (MgSO4).

[135]

Eggplant (Solanum melongena L.)
100% NPK in combination with 25% N through Vermicompost yielded an

enhanced number of fruits per plant. The length as well as diameter, weight,
and yield of fruit per hectare improved.

[136]

Potato (Solanum tuberosum)
Integrated use of Tata Geo Green at 3.75 t/ha soil treatment along with 75%
NPK fertilizer (150:60:100) are optimal to produce greater plant growth, net

returns, and B:C ratios.
[137]

Bottle gourd (Lagenaria siceraria)
Inhibition of red pumpkin beetle and powdery mildew with an increment in
B:C and total soluble solids (TSSs) by using 50% NPK, 25% vermicompost,

and 25% compost.
[138]

Cucumber (Cucumis sativus L.)
Increased yield by using RDF + vermicompost at the rate of 5 t/ha in

addition to Azotobacter at the rate of 5 Kg/ha and adding
phosphate-solubilizing bacteria (PSBs) at the rate of 5 kg/ha.

[139]

Bitter gourd (Momordica charantia)
Increased total soluble solids, protein content, ascorbic acid, shelf life, and
total fruit yield were achieved using 100% RDF of NPK in addition to FYM

5 t/ha and biofertilizers at 4 kg/ha (Azotobacter and PSBs).
[140]

Ridge gourd (Luffa acutangular)
Use of 25% recommended dose of nutrients (RDN) in combination with 50%
RDF from Azotobacter + Bio-compost (2.5 L/ha + PSB 2.5 L/ha) was found

to be optimal for ridge gourd growth and yield metrics.
[141]

Cauliflower (Brassica oleracea var. botrytis)
100% RDF in combination with Azospirillium (5 L/ha), PSBs (5 L/ha), and
potash-mobilizing bacteria (KMBs) (5 L/ha) enhanced morphological and

quality attributes.
[142]

Broccoli (Brassica oleracea L. var. italica)
Gibberellic acid (GA3) application at 50 ppm in combination with

Azotobacter at 5 kg/ha enhanced the maximum head yield per plant, head
yield per plot, and total head yield.

[143]

Cabbage (Brassica oleracea L. var. capitata)
Application of farmyard manure (FYM) 50% with Azotobacter 50% to the

soil improved plant spread, leaves per plant, stalk length, leaf area, and leaf
length and width, along with minimizing the days to maturity.

[144]

Chinese cabbage (Brassica rapa) Mineral potassium 100% with the addition of potassium biofertilizer
yielded the maximum head diameter, height, and yield. [145]
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Table 7. Cont.

Fruits and Vegetables Impact of Integrated Nutrient Management References

Onion (Allium cepa)
Combination of FYM at 20 tons, vermicompost at 5 tons, poultry manure at

2 tons, and 100% recommended NPK enhanced the bulb weight, neck
thickness, plant height, and number of leaves.

[146]

Garlic (Allium sativum)

100% NPK in combination with 50 kg sulfur (S)/ha and 5% Jeevamrit (Jv) at
the rate of 1 L/m2 yielded an increased plant height, number of leaves per

plant, and bulb weight and diameter, ultimately positively affecting the
overall bulb yield.

[147]

Carrot (Daucus carota)
Carrot growth and yield increased after the combined treatment of organic
manures and inorganic fertilizers (5 t/ha cow dung (CD) + 5 t/ha poultry

manure (PM)).
[148]

Radish (Raphanus sativus)
90% recommended fertilizer dose in combination with 10% Spent

Mushroom Compost (SMC), apart from FYM, Azotobacter, and PSB, resulted
in a higher leaf number and size, root size, weight, and yield.

[149]

INM Effects on the Performance of Tomato

One of the most widely grown fruit crops is the tomato (Lycopersicum esculentum
Mill.), which has high levels of starch (0.6–1.2%), total sugar (2.5–4.5%), and minerals
(potassium, calcium, sodium, magnesium, phosphorus, boron, manganese, zinc, copper,
iron, etc.). In addition to these, fresh tomato fruit includes organic acids that are known
as health acids, such as citric, malic, and acetic acids [150]. Nutrient stress in crops such
as tomato can result from either excessive element concentrations or inadequate element
availability [151]. Soil nutrition is one of the key elements influencing plant productivity,
and the availability of nutrients is susceptible to climate change impacts [152]. Since carbon,
nitrogen, and phosphorus are necessary nutrients for plant growth and development,
their availability has a significant effect on plants [153]. Among fruits, tomato is the most
studied for integrated nutrient management. The application of both inorganic and organic
nutrient sources simultaneously can potentially improve the tomato growth, yield, and
quality in addition to a noticeable yield increase and disease reduction in tomatoes [150].
Consequently, it is essential to look at how tomato production and quality are affected by
the direct or combined application of organic manure, inorganic fertilizer, and biofertilizers,
with a possible inorganic fertilizer decrease. Therefore, in Table 8, we summarize some of
the studies that have accounted for morpho-physiological, yield, yield attribute, nutrient
uptake, and physio-chemical improvements in tomato fruits and other plants under diverse
INM approaches.

Table 8. Effects of integrated nutrient management on tomato performance.

Tomato Parameter Modes of INM Impact of Integrated
Nutrient Management References

Morphological parameters

50% RDN in combination with 25% N through VC
and 25% N through FYM treatment

All growth parameters
for tomato improved [154]

NPK (120:60:80 kg/ha) application in combination
with FYM 10 t/ha, S at 25 kg/ha, Azotobacter, and

mixed micronutrients

Increased tomato plant height
and leaf length [155]

Combination of 75% N through urea, muriate of
potash (MOP), single superphosphate (SSP), 25%
through vermicompost, B, Zn, Azotobacter + PSB

Plant spread and height improved [156]

50% RDF in combination with 50% N from FYM
and Bio NPK

Improved crop growth rate, relative
crop growth rate, and increased

number of primary branches and
plant height

[157]
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Table 8. Cont.

Tomato Parameter Modes of INM Impact of Integrated
Nutrient Management References

Yield and yield attributes

75% N through urea, MOP, SSP, 25% through
vermicompost, B, Zn, Azotobacter + PSB

Enhanced yield and
maximum B:C ratio [156]

50% RDF + 50% N from vermicompost + Bio NPK

Maximum number of fruits per
plant, fruit yield per plot, and

maximum fruit yield per hectare
and better B:C ratio

[157]

75% RDF + 25% organic (FYM + VC + PM) Maximum fruit yield [158]

Integrated crop nitrogen management compared
to traditional management Improved tomato yield by 32.1% [159]

Nutrient contents
and nutrient uptake

50% RDN in combination with 25% N through VC
and 25% N through FYM Increased uptake of N, P, and K [154]

50% RDN, 25% N through VC and FYM 39.7% increase in the N uptake [159]

Physio-chemical properties

75% RDF and 50% vermicompost Maximum TSS, titratable acidity
(TA), pH, and ascorbic acid content [160]

Combined treatment of NPK and FYM Elevated ascorbic acid contents [161]

Chicken manure and inorganic N fertilizer Increases in soluble protein and TA
by 124% and 118% [162]

3.4. INM Effects on the Performance of Field Crops
3.4.1. INM Effects on the Performance of Rice

One of the important cereal crops that can be grown in lowlands, uplands, and deep-
water conditions is rice (Oryza sativa L.). The most common cropping method used in rice
production is the rice–rice cropping sequence, which has a major negative effect on the
soil structure and ultimately depletes water and minerals from the soil [163]. Furthermore,
because of the high nutrient requirements, a decrease in net yield per unit area may result
due to the high cost of fertilizer, which is most of the time unaffordable for local farm-
ers [164]. Nutrient shortages during rice cultivation are generally caused by the leaching
of nutrients, particularly cations like potassium (K), calcium (Ca), and magnesium (Mg);
however, the use of chemical fertilizers without adding organic manure or micronutrients
also contributes to soil nutrient deficits [165]. The food and nutritional security of farmers
is directly impacted by these unbalanced nutrient levels, which also lower the crop and
soil quality. Thus, in light of the discussion above, various INM applications are known
to contribute to soil quality, a better yield, and a greater net return in rice production, as
shown in Table 9.

Table 9. Effects of integrated nutrient management on rice performance.

Rice Parameters Modes of INM Impact of Integrated Nutrient Management References

Growth parameters

100% RDF + S40Zn5B1.5 kg ha−1 Accumulation of dry matter
and plant height [166]

75% NPK + 25% FYM Plant maximum height [167]

75% RDN + 25% N Maximum plant height recorded at 90 days
after treatment (DAT) [168]

125% RDF + 25% vermicompost Dry matter accumulation [169]

75% RDN + 25% poultry manure Dry matter accumulation [170]

Yield and yield attributes

Integrated effect of fertilizer and FYM Increase in grain yield [171]

Application of poultry manure as soil and
panchakavya as foliar application Increase in grain yield [172]

Application of 100% RDF in combination
with 5 t ha−1 FYM

Highest number of panicles, increased
panicle length and test weight, and higher

grain and straw yields
[173]
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Table 9. Cont.

Rice Parameters Modes of INM Impact of Integrated Nutrient Management References

Yield and yield attributes

50% recommended NPK + 50% N as FYM in
addition to 5 kg zinc ha−1

All yield attributes influenced through INM
such as number of effective tillers, length of

panicle, grains per panicle, filled and
unfilled grains per panicle, and test weight

[174]

2.5 t poultry manure ha−1 along with
75 kg N + 16.5 kg P and 31.3 kg K ha−1

Higher crop
growth and improved grain yield [175]

Nutrient contents and
nutrient uptakes

75% RDN and 25% N
through vermicompost Increased N contents of both grain and straw [168]

100% RDF through inorganic fertilizer + 25%
RDN through Neem Cake

Increased uptake of nutrient contents (%) of
grain and straw [176]

Synchronized treatment of organic manure
and chemical fertilizer Significant uptake of N, P, and K [175]

Physio-chemical properties

Combination of organic manure
and fertilizer

Improved various physio-chemical
properties, improved uptake, and raised

nutrient absorption
[176]

Increased compost concentration along
with fertilizer Reduced pH and sodium absorption ratio [177]

Addition of inorganic fertilizers
with organic manures Improved mineralization [175]

3.4.2. INM Effects on the Performance of Wheat

Nitrogen use efficiency (NUE) is a crucial factor used to evaluate a crop production
system and improve the yield while maintaining environmental sustainability [178]. By
providing crops with the best possible nutrition and minimizing nitrogen losses from
the field, thus increasing the NUE, agricultural productivity can be increased. The INM
approach, which aims to substitute some organic nutrient sources for chemical fertilizers
without negatively impacting production, is considered a sustainable choice for wheat
cultivation [179]. For example, the continuous use of organic materials like crop residues,
green manures, and farmyard manures decisively affects N dynamics in the soil–plant
system [180]. Extensive research has been conducted on wheat crops regarding the use of
INM and its beneficial attributes. Table 10 shows that, in addition to better physiological
and biochemical traits, INM applications increased the growth parameters of wheat as well
as its nutrient levels, efficient nutrient uptake, yield, and yield attributes.

Table 10. Effects of integrated nutrient management on wheat performance.

Wheat Parameters Modes of INM Impact of Integrated Nutrient Management References

Growth parameters

- Increased plant height and accumulation of
dry matter [181]

Combined application of 4 t/ha
vermicompost and Azotobacter

chroococcum inoculation at the rate of
5 mL/kg seed and 100% RDN

Accumulation of dry matter and increased
plant height [182]

100% RDF and 25% N through
vermicompost + ZnSO4 at 25 kg/ha

Improved plant height (92.25 cm) and dry
matter accumulation (274.65 g m−2)

were achieved
[183]

Application of
100% NPK + 5 t/ha FYM + 5 t/ha

vermicompost
Higher leaf area, dry matter, and plant height [184]

RDF 100% in combination with
Azotobacter + PSB Significantly improved wheat plant height [185]
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Table 10. Cont.

Wheat Parameters Modes of INM Impact of Integrated Nutrient Management References

Yield and yield attributes

Application of 150% RDF together with 10
tons of FYM + 25 kg ZnSO4/ha

Maximum grain yield of 3.8–3.9 t/ha
was achieved [186]

-
Increased length of spike, number of grains

per spike, grain weight per spike, and
1000-seed weight

[181]

Application of inorganic fertilizer in
combination with higher/lower dose of

FYM, biofertilizer, and sulfur

Improved spike length and number of grains
per spike [187]

75% RDF + vermicompost at the rate of
1 t/ha·1 + PSB

Higher yield attributes and ultimately yield of
wheat, which led to higher uptake of NPK by

the crop
[188]

100% RDN + 25% N
through vermicompost

Higher number of effective tillers (94%),
longer spike length (34%), higher grain yield

(165%), and greater straw yield (157%) of
wheat over control

[189]

Nutrient contents and
nutrient uptakes

RDF 100% + vermicompost (2 t/ha) in
addition to PSB Significant nutrient uptake was registered [190]

75% RDF, in addition to vermicompost at
1 t/ha and PSB

Enhanced NPK availability in soil for the
wheat crop compared to control [188]

75% RDF and 25% N through FYM Efficient nutrient supply system for wheat
variety Malviya 234 was achieved [191]

Physio-chemical properties

Combine application of FYM
and 75% RDN

Sustained soil quality and ultimately wheat
productivity can be achieved [192]

- Increased protein content [181]

Applied potassium at the rate of
100 kg K2O/ha

Under Mediterranean rain-fed conditions
(Algeria), durum wheats’ physiological

indices improved
[193]

3.4.3. INM Effects on the Performance of Different Crops

Even though wheat and rice are the most studied crops for INM over time, INM has
been employed to test and evaluate several other crops, including cotton, millet, sorghum,
sugarcane, and chickpea, as shown in Table 11. INM stands out as a critical method for
striking a harmonious balance between productivity and sustainability in modern farming,
which is vital as global agriculture faces the challenge of feeding a growing population
while minimizing the environmental effect [194]. In modern agriculture, INM presents a
comprehensive and sustainable method for satisfying the capacity for crops to meet dietary
needs, standing as not merely a strategy, but a paradigm shift [195]. As the benchmark in
innovation, INM integrates many sources of nutrients to create a dynamic and balanced
supply for crops at every stage of growth [196].

Table 11. Effects of integrated nutrient management on different crop performance indicators.

Crops Impacts of Integrated Nutrient Management References

Cotton (Gossypium arboreum)
Soil fertility status improved using cotton stalks,

less dependency of FYM, and reduced costs
of inorganic nutrients by 20–25 USD/h

[197]

Pearl millet (Pennisetum glaucum)

Economically viable and environmentally friendly
recommended dose of inorganic fertilizer (25%) with the

combination of Azospirillum biofertilizers, PSB, and 2% foliar
application of urea is suitable for increasing pearl millet yield

[198]

Chickpea (Cicer arietinum L.) 75% RDF with vermicompost and Rhizobium resulted in an
increased growth and yield of the crop [199]

Fenugreek (Trigonella foenum-graecum)
Growing finger millet with the residual soil fertility of the

previous leguminous crop can result in adequate development
and output of this less nutrient-demanding crop

[200]
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Table 11. Cont.

Crops Impacts of Integrated Nutrient Management References

Finger millet (Eleusine coracana) Increased nutritional quality of the grains, nutrient uptake, and
nitrogen use efficiency indices were achieved through INM [201]

French bean (Phaseolus vulgaris)
75% RDF in addition to 1 t vermicompost was responsible for
an increased ascorbic acid content and dry matter content of

green pods
[202]

Sunflower (Helianthus annuus)

In addition to increasing the head diameter, the biological yields
of the 25 cultivars of Shams, Ghasem, and Haysan sunflowers
were enhanced by 39.2%, 31.5%, and 34.5%, respectively, when

treated with humic acid plus chemical fertilizer

[203]

Sorghum (Sorghum bicolor)
If manure and mineral fertilizer are combined, sorghum yields
can be increase by 500–5000 kg/ha depending on the type of

soil and amount of rainfall in the area
[204]

Sweet potato (Ipomoea batatas)
Incorporation of organic manures plus chemical fertilizers

enriched the crop yield and enhanced the water use efficiency
and economic return to farmers

[205]

4. Potential Constraints in INM

The key factors causing considerable damage to sustainable agriculture and irre-
versible productivity reductions are soil erosion, nutrient mining, structural deterioration,
and fertility loss [206]. Restoring soil productivity and preserving soil health are essential
to addressing and avoiding poor soil health. Accordingly, considerable initiative should be
taken to encourage the efficient application of INM. For example, biostimulants are known
to improve the crop output if the overall growth and productivity suffer from stress [24]. In
this context, biostimulant use must be subjected to various economical studies, to monitor
the viability of their applications. The need to control biostimulant costs is another issue
that prevents less experienced farmers from using these techniques. The increased cost
of a soilless cultivation system, lack of skilled manpower, and potential risks related to
humidity and disease onset are a few of the constraints on adopting this modern approach.
Also, energy costs are concerning in CEA, which uses a lot of energy for its automated
operations, such as the use of artificial lights [207,208] and pumps. On the one hand,
these create a source of GHGs if the energy used is from non-renewable sources, and on
the other hand, they are not cost friendly. Research suggests that the carbon footprint of
soilless cultivation is complex. Some studies show that it can be lower than in traditional
methods, particularly when considering factors like reduced transportation needs, water
use efficiency, and a precise nutrient supply, as soilless farms reduce the carbon footprint
associated with long-distance transportation of produce, often use significantly less water
than traditional agriculture, and allow for the controlled delivery of nutrients directly to
the plant roots, potentially minimizing fertilizer waste and runoff [209]. However, it is also
true that electricity use for the pumps can affect the carbon footprint, but the use here of
renewable energy sources like solar power can significantly reduce the carbon footprint of
soilless cultivation [210].

Furthermore, determining the nutrient balance in the soil while considering the nutri-
ents consumed by the present crop, as well as those needed for the next one, requires careful
consideration [211]. Given the anticipated rapid soil organic matter loss and the loss of soil
fertility, it is necessary to continuously examine the fertility of the soil, to determine the
amounts of nutrients lost through crop absorption, erosion, and leaching [212]. Addition-
ally, the high initial cost, intense monitoring, electricity dependence, low root oxygenation,
reduced technical expertise, and possibility of water-based microorganism infestations are
a few of the limitations of hydroponic agriculture. Likewise, difficult maintenance on a
large scale, clogged misting nozzles, and inadequacy and difficulty in knowledge transfer
to regular farmers are a few of the constraints in aeroponics [213].
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Similarly, due to the challenges of obtaining FYM and biofertilizers, as well as a lack
of expertise, inadequate advising services, and limitations in recycling organic wastes to
produce high-quality compost, certain low-income farmers find it difficult to gather organic
manure [214]. A few other constraints for INM include biotic or abiotic stresses [215],
inadequate tillage, and a shortage of necessary equipment. Moreover, a failure to provide
adequate extension services to support farmers and educate them about the value of
INM, and the absence of non-governmental organizations (which could offer support in
maintaining soil properties and the soil nutrient balance, reducing environmental impacts,
and boosting profitability), present further constraints on the use of INM [180].

5. Conclusions and Future Perspectives on INM

The utilization of nutrient inputs from organic fertilizers bears essential significance for
plant development and sustainability, since the ongoing misuse of chemical fertilizers is linked
to low resource use efficiency and substantial environmental contamination. In terms of better
fertilizer use efficiency, greater soil health, decreased environmental pollution, and increased
nutritional quality, INM has come to light as a potential method for producing crops, fruits,
and vegetables, both indoors as well as outdoors. However, an ongoing search for better
approaches, models, and their successful integration is necessary, which may allow for INM
with higher yields and a more sustainable and food-secure world. In INM techniques, soil
and plant nutrient management should be encouraged as a crucial component of a successful
agricultural system. Consequently, the productive potential of the soil resources should be
given the main emphasis in INM methods. Moreover, a certain amount of mechanization is
necessary for the broader adoption of INM techniques, because these systems frequently need
more labor inputs compared to those that only use inorganic fertilizers and basic management
techniques. Maintaining the existing nutritional supplies is less expensive and easier than
restoring and rebuilding degraded ones. Here, no-till, strip-till, ridge-till, and mulch-till are a
few of the conservation techniques that must be considered, as they assist in reducing the loss
of water and nutrients from agro-ecosystems due to decreased surface water flows and soil
erosion. Elsewhere, recycling residues or animal dung into organic fertilizer can improve the
efficiency with which readily lost nutrients, such as nitrogen, can be easily utilized, offering a
sustainable farming technique for environmental conservation.

Also, research on specific local plants that will generate the highest yields is neces-
sary in addition to the analysis of when to apply various treatments while considering
reasonable economic and environmental constraints. Extension personnel ought to take
into consideration both farmer expertise and relevant research findings when interpreting
research data for practical applications. Precision farming, sensor innovations, geographic
information systems (GIS), crop models, several software programs, the geographic posi-
tioning system (GPS), machine learning, and the Internet of Things (IoT) are a few examples
of the technological advancements that have contributed to INM, both in the soil as well
soilless agricultural operations. The physiological effects of biostimulants are well known.
In many cases, they act by regulating the activity of genes. Knowledge of such effects is
of interest in regard to producing genetically modified/genetically engineered plant vari-
eties/hybrids. More research on the transcriptome and proteomic effects of biostimulants
is needed, which will clarify the mechanisms with which they enhance nutrient uptake
and/or utilization by the plant. The findings will uncover how biostimulants help mitigate
reductions in plant growth under abiotic stress and will generally explain the mechanisms
behind stress tolerance responses. In addition to technology, which is continually develop-
ing, behavioral adaptations are also necessary to eradicate negative environmental effects
and increase crop productivity. In the end, providing incentives might be a major factor in
encouraging smallholder farmers to implement INM. There should be an intensification of
the dialogues between growers and policymakers, ensuring devoted cells are established
at local-level institutions for the further spread of INM. Finally, to encourage the use of
organic fertilizers and biostimulants and limit inorganic N and P fertilizers’ usage, nutrient
management regulations or nutrient input taxes should be taken into consideration.
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