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Abstract: Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential
role in numerous cellular processes such as cell proliferation and intracellular transport, making them
an attractive target for cancer and neurodegeneration research. To date, a large number of known
tubulin binders were derived from natural products, while only one was developed by rational
structure-based drug design. Several of these tubulin binders show promising in vitro profiles while
presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing
demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural
data is readily available, the employment of computer-aided design techniques can be a key element
to focus on the relevant chemical space and guide the design process. Due to the high diversity
and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand
structures. Furthermore, we review different ligand and structure-based methods recently used for
the successful selection and design of new tubulin-targeting agents.

Keywords: computer-aided drug design; microtubules; microtubule targeting agents; virtual
screening; molecular docking; molecular dynamics simulations; pharmacophore screening; QSAR

1. Introduction

Microtubules (MTs) are an essential part of the eukaryotic cytoskeleton and are im-
plicated in various diseases. They are highly dynamic polymers composed of α,β-tubulin
dimers in which each monomer is able to bind GTP. GTP hydrolysis is limited to the β-
monomer (E-site), providing energy for conformational changes required for MT formation.
Within the α-monomer GTP is always retained (N-site). Together, these proteins form
hollow, cylindrical structures, in cells mostly containing 13 protofilaments. Within the
cell, they are involved in numerous cellular processes such as cell signaling, morphology,
motility, growth, and long-distance trafficking regulation [1].

Naturally, any perturbation of the MT network severely affects cell survival, thus
making MTs attractive targets for cancer therapy. Presently, several MT targeting agents
(MTAs) such as vinca alkaloids and taxanes are used to treat different types of cancer. By
altering the MT homeostasis, they promote apoptosis of cancer cells via several independent
mechanisms [2]. Moreover, there is an increasing interest in MTs as a target for the treatment
of diabetes [3]. Furthermore, abnormal dynamics of MTs in neuronal cells is implicated to
play an important role in several neurodegenerative diseases (reviewed in [4]).
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Almost 40 years after the first mechanism was proposed [5], the details of MT for-
mation still remain an ongoing topic of discussion; the main steps as understood today
are outlined below: Nucleation of MTs occurs in cells at MT organizing centers (MTOCs)
such as the γ-TuRC complex (reviewed in [6–8]). Based on this template structure, MTs
grow by addition of a dimer carrying GTP in both nucleotide binding sites in a head–to-tail
fashion, always adding α-tubulin onto exposed β-tubulin. Thus, the MT is formed as a
polar structure and exposes β-tubulin at the growing end (MT plus end). Incorporation
of tubulin dimers into the MT lattice is accompanied by a conformational change of the
dimer from a curved towards a more rigid, straight structure (curved-to-straight transition),
which is then followed by GTP hydrolysis in the β-monomer [9]. Only at the plus end
of the MT a so-called “GTP-cap” consisting of dimers that contain GTP in both sites is
sustained, which is thought to stabilize the end against depolymerization [10].

Within cells, the MT cytoskeleton is maintained in what is termed the “dynamic equi-
librium”, alternating between phases of growth and shrinkage of individual MTs, which
allows them to perform their various physiological activities (Figure 1). MT associated
proteins, post-translational modifications, as well as small molecules MT targeting agents
(MTAs), modulate the dynamics of the MT network. MTAs at high concentrations exert
different mechanisms of actions, which are used to categorize them into two classes: MT
stabilizing agents (MSAs) that lead to an increased stability of the present MT by promoting
assembly or stabilization of the lattice structure, and MT destabilizing agents (MDAs)
which prevent the assembly of dimers into MTs.
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Figure 1. Microtubule dynamic equilibrium. MTs are constantly alternating between growth and
shrinkage phases, while the −end of the MT is displaying some dynamics the overall stability is
governed by quicker processes at the MT +end. Growth of an MT is facilitated by incorporation of
two GTP containing tubulin dimers onto the +tip, followed by lattice incorporation, which leads
to subsequent GTP hydrolysis. On the top of the growing MT a “GTP-cap” consisting of GTP-
dimers stabilizes the structure. Exchange of this capping dimers against GDP tubulin leads to
depolymerization. Adapted from “Microtubule (polymerizing and depolymerizing)” by BioRender.
com (accessed on 15 December 2022).

MTAs have been widely studied and characterized due to their long-standing use
as anti-cancer drugs. Routinely, MTAs are probed on their cytotoxicity and their ability
to influence MT polymerization. Further, to understand their mode of action a lot of
effort has been dedicated to solving high-resolution MT and ligand–tubulin complex

BioRender.com
BioRender.com


Biomolecules 2023, 13, 285 3 of 35

structures. Up to 2021, seven distinct binding sites for small molecules had been thoroughly
characterized by X-ray crystallography. In 2021, a combination of crystallographic fragment-
based screening and molecular dynamics (MD) simulations evidenced 10 binding sites
occupied by 56 chemically diverse fragments, of which six sites were completely novel [11].
A selection of these fragments was subsequently used in a straight-forward fashion to
develop a lead-like molecule from non-cytotoxic building blocks. It was named todalam
and occupies the 8th binding site on tubulin located at the inter-dimer interface [12].
Together, the large amount of biochemical data and ever-growing amount of structural
data available lay a solid foundation for the computer-aided development of novel tubulin-
targeting agents.

Computer-aided molecular design methods, such as ligand-based and structure-based
approaches, open new possibilities to further exploit current knowledge on MTs, tubulin
and MTAs. These two in silico strategies have been considered essential for accelerating the
research of MTAs assisting in the identification, design, and selection of new compounds.
Both are used to discover molecules with desired biological activity, but differ in terms
of the initial information exploited to generate their predictions. Ligand-based methods
“learn” from previously discovered ligands of a target, and their measured affinities. They
are agnostic in terms of ligand-target interaction mechanisms, but rely on interpolation
and extrapolation of predicted affinity of a new candidate based on the nearest known
examples of ligands. On the contrary, structure-based approaches base their predictions on
explicit modeling of presumed interactions between ligands and given biological targets.

The aim of this review is to summarize recent applications of state-of-the-art methods
of both computational ligand and structure-based approaches to successful design of new
MTAs. Note, however, that using in silico methodology to “discover” putatively active
compounds makes no sense unless those compounds are actually synthesized and tested.
Publishing in silico predictions without further validation should, in our opinion, be
strongly discouraged, because the likelihood of experimentalist readers embarking on the
difficult task of synthesis and testing of someone else’s predictions is very low (actually
null, as far as we can tell). Therefore, this work will only cite computer-aided design work
which is either (a) methodologically innovative, (b) reporting tool benchmarking studies or
(c) backed up by experimental validation.

2. Ligand-Based Approaches

Ligand-based strategies may be employed if rich and balanced structure-activity
information (at least ~100 known tested small molecules, including binders and non-
binders to the target) is available. They are of course the only option if no structure of
the target protein has been solved, but are irrespectively useful in the early stages of a
virtual screening (VS) campaign, as they are typically much faster than structure-based
algorithms. These methods algorithmically analyze molecules encoded by molecular
descriptors or ensembles of calculated conformations and extract chemical knowledge to
predict a given compound’s property. Such screening usually highlights structural patterns
deemed important for exhibiting a desired property.

Historically, these methods were the first to be applied to the problem of discovering
novel modulators of tubulin polymerization. This was mostly due to the low quality of
tubulin-related structural data at that time (reviewed in [13]). However, despite consid-
erable progress in tubulin crystallography and prevalence of structure-based methods in
modern tubulin research, ligand-based approaches are still useful and yield promising
results. This section highlights recent examples of successful application of such computa-
tional methods in tubulin-related drug design.

2.1. Similarity Search

A similarity search is used to filter a set of molecules, in search of those that dis-
play similar features to a query molecule. This method assumes that similar molecules
exhibit—statistically speaking—similar properties [14]. There is no absolute best way to
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encode molecular similarity, typically rendered by the metric (distance) of the two points
representing molecules in “descriptor space”. Fragment-based fingerprints (monitoring
the presence of specific substructures in each molecule) are common molecular descriptors
for this task; however, other features such as descriptors of molecular shape, topological
pharmacophores can be used. Any function that measures distance between two points in a
metric space is applicable to characterize “molecular dissimilarity”. The best combination of
descriptors and metric function is the one that guarantees the best “Neighborhood Behavior
Compliance”, e.g., by minimizing the occurrence of “property cliffs”—pairs of compounds
perceived as highly similar in spite of using widely different property values [15].

A similarity search is often used as a first step in VS. For example, Aoyub et al. [16]
and Guo et al. [17] performed 2D similarity searches in large compound databases as initial
phases of drug design cycles that resulted in development of novel MTAs binding to the
taxane and colchicine site, respectively. Several novel colchicine-site targeting agents were
also discovered by Mangiatordi et al., who based their design on a 3D shape similarity
screening [18]. Another two colchicine-site targeting hits were found by Federico et al., who
used not only 3D shape, but also electrostatic potential similarity in their VS campaign [19].

Coupling known active compound structures with information on their targets can
make the similarity search useful for establishing targets of novel compounds. This was
demonstrated by Lo et al., who developed chemical similarity networks based on two
and three-dimensional compound similarity (CSNAP2D and CSNAP3D, respectively).
By calculating similarities of molecules with cytotoxic action of unknown mechanism to
molecules within the network, the authors correctly predicted tubulin as a target for 37
novel compounds targeting the colchicine and taxane binding sites [20,21].

In Table A1 (Appendix A) we have summarized the implementations of the technique
used in mentioned references.

2.2. QSAR Modeling

Quantitative structure-activity relationship (QSAR) modeling finds a mathematical
function that relates chemical structure to values of some desired property, e.g. biological
activity. The process of fitting such a function is called model training. Typically, two-
or three-dimensional molecular structures are digitally encoded by various descriptors,
which are then input to machine learning algorithms along with corresponding target
property values, available from biological assays. These values can be continuous (pIC50
values, binding affinity) or discrete (active/inactive classification), corresponding to either
regression or classification problems. Afterwards, a trained model can be used to predict
target values for new molecules, not included in the training set. The predictive power
of a QSAR model depends on careful curation of input data, rigorous validation, and
adequate assessment of its applicability domain. State-of-the-art approaches in these topics
are described in more detail in [22–24].

This method is particularly useful for rational drug design as it provides insight into
which molecular features correlate the most with changes of desired property values. For
example, Gaikwad et al. used two-dimensional QSAR modeling to establish structural pat-
terns that significantly correlate with cytotoxicity of colchicine site-targeting phenylindoles
against cancer cells [25]. High utility of QSAR modeling in VS was demonstrated in works
by Guo et al. [26] and Stefanski et al. [27], who used consensus QSAR modeling in VS cam-
paigns that yielded a total of three novel colchicine site targeting tubulin polymerization
inhibitors.

3D QSAR was shown to be a convenient way to rationalize ligand optimization in
works by Quan et al. [28] and Pandit et al. [29]. Both works used CoMFA and CoMSIA
methods to rationalize structure-activity data for limited datasets of similar scaffold-based
compounds, suggesting possible structure optimization patterns, which, in case of the latter
work, yielded a new class of cytotoxic in vitro tubulysin derivatives targeting the vinca
binding site. A summary of the experimental conditions for the above-mentioned QSAR
works is provided in Table A2.
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It is worth noting that the use of machine learning in this field has been limited due to
the scarcity of publicly available data. The lack of large, diverse tubulin-related structure-
activity datasets makes it difficult to train adequate machine learning models that can be
used in a large-scale virtual screening context. For example, querying the ChEMBL database
(v.26) for “Tubulin” returns more than 8000 raw structure-activity records, but these are a
heterogeneous collection of results from widely different assays at diverse experimental
setups, using the MTs or tubulin of widely different species (from Arabidopsis to Homo
Sapiens). Or, machine learning requires homogeneous, comparable experimental activity
entries to serve for calibration of empirical functions trying to approximate them upon
input of a molecular structure. Thus, only entries sourcing from a same experimental setup
(listed under a same ChEMBL Assay ID) can be safely compared. Deceivingly, there is only
one such assay (CHEMBL817769; Inhibition of tubulin polymerization interacting at the
colchicine binding site of Sus Scrofa) featuring more than 100 entries (103, precisely)—a rule-
of-thumb minimal threshold of training set size to start envisaging machine learning. Size
is necessary, but far from sufficient—a balanced presence of active and inactive compounds
is of paramount importance, whereas the chemical diversity of the compounds sets the
limit for the applicability domain of the model. Machine learning is likely to play a more
prominent role in this regard if more relevant data becomes publicly available.

2.3. Pharmacophore Screening

A pharmacophore is an abstract description of the set of local steric or electronic prop-
erties (hydrophobicity, H-bond acceptor/donor features, charged groups) that a molecule
should contain in order to interact with a particular biological target at a specific site. A
set of such properties, with defined positions in space relative to each other is called a
pharmacophore model. For a given ligand, it is mostly related to fragments of chemical
structure and is binding site-specific. It is assumed that molecules that follow the same
pharmacophore pattern may have similar biological activity (even though they may differ
in other, less relevant structural aspects). This makes pharmacophore-based VS useful for
searching and designing new drugs, escaping the rather narrow domain accessible by strict
similarity-driven searching.

In particular, experimental structure-activity data can be used to automatically con-
struct ligand-based pharmacophore models. A detailed explanation of pharmacophore
model generation steps is given by Giordano et al. [30]. In short, models are obtained by
computing and aligning 3D conformations of selected molecules, with pharmacophore
features assigned to overlapping structural fragments. Several models may be built for
different alignments. A fitness function estimates how well the molecules fit into a given
model, leading to selection of the best model.

Screening with such models can be used to filter compounds in a large library, leaving
only those that match the required model in at least one of several conformations. Models
always need to be validated before use in VS. A model is considered valid if it can discrimi-
nate known active molecules from decoys—structurally similar compounds not showing
the desired activity [31].

Ligand-based pharmacophore screening is often used in combinations with other
computational methods to lower the number of candidates that need to be tested by
subsequent approaches. For example, Zhang et al. used a pharmacophore model based
on taxane-site ligands to reduce the number of compounds processed by structure-based
pharmacophore model and protein-ligand docking, eventually leading to a discovery of
two novel tubulin-targeting cytotoxic agents targeting this site [32]. In a similar manner, a
ligand-based pharmacophore model developed by Lone et al. was shown to be useful for
vinca-site targeting agents design [33]. Moreover, Niu et al. successfully applied a ligand-
based pharmacophore model to discover two novel colchicine-site targeting modulators of
tubulin polymerization [34]. Stefanski et al. used a ligand-based pharmacophore model
in a VS campaign that discovered two potent in vitro cytotoxic colchicine-site targeting
agents [27].
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As can be seen, despite ligand-based pharmacophore screening not being featured
in many recent tubulin-related computational studies (structure-based pharmacophores
or docking being preferable, as soon as experimental protein structures are available), it
is still a viable method that is used to design and screen for novel modulators of tubulin
polymerization. Table A3 provides an overview of recent works that used this approach.

3. Structure-Based Approaches

Contrarily to ligand-based methods, structure-based approaches exploit the 3D struc-
ture of a macromolecular biological target to estimate a given molecule’s affinity to a
targeted binding site. The main sources of information for these methods are either ex-
perimental data generated by X-ray crystallography, NMR spectroscopy, cryo-electron
microscopy or computationally predicted data. Analyzing bound ligand poses helps
to determine the key residues defining the binding site, as well as pinpoint to the key
fragments of molecular structure that contribute to interaction with the target protein.
Success in high-resolution determination of biological macromolecule structures drove
the usage of these structure-based techniques in modern drug discovery pipelines, and
tubulin-related research is no exception. In this section, we review recent examples of
structure-based methods application in search and design for novel modulators of tubulin
polymerization [35,36].

3.1. Structural Data on Tubulin
3.1.1. Tools to Study Tubulin 3D Structures

Possibly, the most important decision in carrying out a structure-based drug design
project on tubulin is the selection of the correct tubulin model. While the sheer abundance of
accessible information is a huge benefit for any of such projects, the numbers and diversity
of available structures can be overwhelming. In order to select the best possible model for
one’s purpose, it is important to consider the method and system in which the structure
was obtained. Therefore, we will give a brief overview of the available structures and
setups that were used to determine them, as well as highlight a few key points to consider
when selecting the structure.

By comparing the different structures obtained of tubulin and MTs, it was observed
that tubulin dimers are able to adopt two prominent tubulin conformations that are related
to its assembly state: a “straight” conformation is present in assembled MTs and a “curved”
conformation is observed in soluble tubulin. The conformational transition from curved-to-
straight is needed to establish lateral tubulin contacts between protofilaments in MTs. This
curved-to-straight transition requires rearrangements of the tubulin monomers, in which
the intermediate domain of the tubulin monomer moves with respect to a larger ensemble
comprising both the N- and C-terminal domains. Due to this repositioning within the
straight MT lattice, the α monomers are almost perfectly aligned with the β monomers,
thus it is possible to superpose α onto β simply by translation (Figure 2A). Whereas, within
the soluble dimer there is an intrinsic curvature of one monomer against the other, thus
translation alone is not sufficient to superpose one monomer onto another (Figure 2B). The
degree of this curvature varies; it can range from 9–18 degrees depending on the binding
partners present [37].

This conformational state is one of the main differences observed between all available
crystal structures and the CryoEM data on MTs: All crystal structures depict the soluble and
“curved” conformation of tubulin and all MT structures show the "straight” conformation.
Thus, it is important to consider on which “state” of the tubulin structure is used, as
basis for the computational work. Despite these major differences, the crystal structures
are remarkably well suited for the design and optimization of drugs. Up to now, five
different systems have been described for the crystallization of tubulin. All rely on proteins
stabilizing the tubulin in its dimeric or tetrameric form, as the uncoordinated, soluble
tubulin is polymerizing rather than forming nicely diffracting crystals. This is highlighted
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by the fact that the first high-resolution crystal structure has only been reported after the
tubulin–stathmin interaction had been discovered and exploited [38,39].
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present in the MT lattice, is shown in ribbon presentation in light gray (PDB ID 7SJ7). A protofilament
constituted of tubulin in a curved conformation is shown in blue (from PDB ID 5LXT). (B) The
intrinsic curvature and structural differences on a single dimer are shown: A heterodimer in the
straight conformation is depicted in light gray and the curved conformation in light blue. The main
differences in the structures are within the intermediate domain (residues 206–384), highlighted in
darker blue, which upon curved-to-straight transition moves relative to the other domains. This is
also indicated in the schematic drawing of both straight and curved dimers. The angle corresponds
to the relative curvature of one monomer to the other. (C) The structural elements of the intermediate
domain are shown in more detail, the changes necessary for “straightening” are mainly translation of
the shown H7 as well as rotation of the neighboring structural elements H6-10 and B7-10.

The very first structural information on tubulin was obtained in 1998 by Nogales
et al. using electron crystallography on taxol stabilized zinc-induced protofilaments. This
allowed the determination of a first model of the structure of tubulins, the assignment of
domains and identified the taxol binding site on β-tubulin [40]. However, the arrange-
ment of the protofilaments in this crystal system is antiparallel and does not reflect the
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protofilament-assembly found in MTs. Accordingly, this system was not further used for
X-ray crystallographic studies.

Soon afterwards, the tubulin stathmin-like domain SLD (T2R) system was the begin-
ning of tubulin complex crystallization with the first crystal structure in 2000 [41], followed
by the first tubulin-small molecule complex in 2004 [42], which revealed the position of the
colchicine site. Later, it was noted that cleavage of the C-terminal tubulin tails increases
the resolution of the T2R system significantly. Furthermore, this system evolved to be
the most commonly used T2R-tubulin tyrosine ligase setup (T2R-TTL, Figure 3A) [43,44],
which was used to solve most tubulin-small molecule structures. In both complexes, two
tubulin dimers are coordinated by a stathmin-like protein RB3 that prevents tubulin poly-
merization by its N-terminal β-hairpin cap bound to α1 tubulin. In the T2R-TTL system,
the TTL protein is bound at the same end of the tetramer on α1 tubulin. The overall tubulin
structure does not differ significantly between the two setups.

Since the SLDs and TTL used in these crystallization systems may prevent binding
of proteins to tubulin, alternatives have been developed. The tubulin Designed Ankryin
Repeat Protein DARPin crystallization system (Figure 3B) [45] is the second most frequently
used one. This system allows to achieve even higher resolution compared to the T2R-TTL
one, with the best resolved structure ranking at 1.5 Å resolution (PDB ID 6S8K, [46]). In
this system, only one tubulin dimer is coordinated by the selected DARPin, resulting in a
much more densely packed and smaller unit cell.
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Figure 3. The crystallization systems (A) T2R(-TTL) (PDIB ID: 4I55, [44]), (B) TD1 (PDB ID 4DRX, [45],
(C) Tubulin-TOG1 (PDB ID: 4FFB, [47]) and (D) Tubulin-αRep (PDB ID: 6GWC, [37]) are depicted.
The proteins are shown in ribbon representation, α- and β-tubulin are colored dark and light grey,
respectively. The SLD/RB3 protein is colored orange, the TTL in blue, DARPin in green, TOG1 in
yellow and alpha-Rep in brownish color. Nucleotides are shown in sticks representation and colored
red. The structure of the SLD tubulin complex, T2R crystallization system corresponds to the T2R-TTL
structure without the bound TTL and thus was not shown separately.

Up to now, the described systems T2R, T2R-TTL and TD1 are the only ones that have
been used to elucidate the structures of tubulin-small molecule complexes. Nevertheless,
the following two crystallization systems for the study of protein-protein interactions have
been included to provide a complete overview of tubulin crystallization systems.

In order to investigate the interaction of the cellular MT growth factor, Stu2p, Ayaz et al.
co-crystallized its tumor overexpressed gene domain TOG1 with tubulin [47]. Surprisingly,
it was found that TOG1 was establishing interactions with both α- and β-tubulin and
preferentially bound to the curved state of soluble tubulin dimers (Figure 3C).
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More recently, a fifth crystallization system, targeting MT binding proteins, has been
introduced. Therein, one artificially designed α-Rep protein is used to prevent tubulin
polymerization and to enable crystallization of the complex (Figure 3D). α-Rep was specifi-
cally designed to bind to tubulin sites involved in longitudinal protofilament interactions
in order to expose the surface of tubulin, which would be on the exterior site of the MT [37].
So far, the system has been used to elucidate the structural details of centrosomal P4.1-
associated protein CPAP [48], allowing a more throughout investigation compared to the
previously published CPAP –tubulin DARPin structures [49,50].

3.1.2. Binding Sites on Tubulin

As mentioned in the introduction, extensive work has been done on determining the
binding mode of tubulin-targeting agents. Here, we would like to give a brief overview
of the eight established binding sites (Figure 4) and their mode of action on modulating
MT dynamics (in more detail reviewed in [51]). The most prominent member of MTAs is
paclitaxel, sold as a blockbuster drug under the name Taxol®, which is an MSA that binds to
an exposed pocket on β-tubulin. Taxane-site ligands are able to enhance MT stability, either
by promoting the curved-to-straight transition, e.g., paclitaxel [52,53] or by direct structural
stabilization of the βS7-βH9 loop (M-loop), a key structural element forming inter-dimer
contacts in MTs [54], e.g., epothilone A or zampanolide [44]. Laulimalide-/Peloruside-site
agents strengthen the interactions of tubulin dimers across neighboring protofilaments in
MTs by binding to a pocket near the lateral protofilament interface. Moreover, these agents
have been described to allosterically stabilize the M loop to some extent [55,56].
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and colored following the color code of their sphere model.

In the group of MDAs, colchicine-site ligands are present with a great variety and
a high number of different scaffolds. They bind in a buried pocket at the intra-dimer
interface of α and β tubulin, flipping the βT7 loop out of its native position. By occupying
this binding site, they effectively prevent the curved-to-straight transition by blocking the
compaction of the pocket formed by the strands βS8 and βS9, and by the helices βH8 and
αH7 [42,57].
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Another well-known group of MDAs are the vinca alkaloids, which bind at the
longitudinal interface between tubulin dimers. Vinca-site ligands induce a ‘wedge’ [58]
at the tip of the MT and thus prevent the straightening of the dimers. Additionally, they
promote the assembly of small helical tubulin polymers, thereby effectively reducing the
amount of assembly-competent tubulin. It has also been noted that vinca-site ligands
interfere with the hydrolysis of GTP by blocking the proper alignment of the catalytic
residues, thereby further hindering the polymerization process [59,60].

The group of maytansine-site ligands blocks the assembly of MTs by inhibiting the
addition of new tubulin dimers to the growing end. This is achieved by binding to the
exposed site of β-tubulin and then effectively blocking the site that should accommodate
the αH8 and αT7 loop of the binding tubulin dimer [61]. Ligands bound at this site not
only block further growth of MTs, but are also capable of fully blocking the formation of
smaller tubulin oligomers, at high concentration, effectively keeping tubulin within the
dimeric state.

So far, the only ligand known to exclusively bind to α-tubulin is pironetin, which
binds to a buried pocket by covalent attachment to Cys316 [62,63]. Binding of pironetin
perturbs the above-mentioned helix αH8 and the αT7 loop, thus similar to maytansine
preventing the interaction of these elements with the neighboring tubulin and fixing tubulin
in an assembly-incompetent state. Furthermore, pironetin also prevents the growth at the
−end of the MT, which exposes the α-tubulin surface harboring both the helix αH8 and
the αT7 loop and thus eventually promotes the disassembly of already formed MTs [62].

Recently, both the 7th and the 8th distinct binding sites on the tubulin dimer have
been described. Gatorbulin, a cydodepsipeptide isolated from marine cyanobacteria,
was found to bind to the intra-dimer interface adjacent to the well-known colchicine
binding site [64]. Todalam, the first rationally designed tubulin binder, which emerged
from a crystallographic fragment screen [11], binds at the inter-dimer interface at a site
located between the maytansine site on β-tubulin and the end of the pironetin pocket on α-
tubulin [12]. Both compounds are thought to hinder MT formation by a mechanism similar
to that of the vinca-site ligands, by creating a wedge into the tubulin-oligomer structure. As
observed for vinblastine, todalam as well was shown to promote the formation of ring-like
tubulin oligomers, further decreasing the pool of tubulin available for polymerization.

The position of the binding sites has clear implications on the choice of the crystal-
lization system: due to its size, the TD1 crystallization system is well suited for molecules
bound internally within one dimer (e.g., colchicine, gatorbulin), however the binding sites
at the inter-dimer interface such as for example the vinca-site can only be targeted by using
the T2R(-TTL) systems.

3.1.3. System Selection for Virtual Screening (VS) and MD Simulations

Not all out of the more than 300 crystal structures within the PDB database were
equally often used in computational experiments, as we noticed in our analysis of the most
recent MD simulation literature (overview in Table A6). Surprisingly, we found that even
20 years after the first description of the tubulin structure at near-atomic resolution [54],
simulations of taxane-site ligands or apo tubulin are often based on some of the very first
tubulin datasets obtained with electron diffraction in 1998 (PDB ID 1TUB, 3.7 Å, [40]) and
2001 (PDB ID 1JFF, 3.5 Å, [54]). There is a bit more of variety in the colchicine site structures
that were selected for simulations, although only a fraction of the great number of available
high-resolution tubulin colchicine site structures have been considered: PDB ID 1SA0 2004
3.6 Å [42], PDB ID 1Z2B 2005 4.1 Å [58], PDB ID 3E22 2008 3.8 Å [59], PDB ID 3HKC 2009
3.8 Å [57], PDB ID 4O2B 2014 2.3 Å [65], PDB ID 6Y6D 2020 2.2 Å [66]. For simulations
of other ligands, since a lower number of structures is available, the choice of the starting
model was obvious: vinca-site ligands PDB ID 3E22 2008 3.8 Å [59], PDB ID 4O4J 2014
2.2 Å [56], PDB ID 5JH7 2016 2.2 Å [67], and laulimalide site: PDB ID 4O4H 2014 2.1Å [56].

While this analysis reflects on only a fraction of the most recent literature, we see a
trend that not always the most recent or high-resolution structures are selected. Due to the
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importance of the selection of the starting model for virtual screening and MD simulations
we provide in Table 1 an overview of the highest resolution structures available to support
the selection process. Further, in Table 2 we have compiled a list of the CryoEM models
for MT structures with highest resolution for tubulin-small molecule complexes, a field in
which not many structures are available yet.

Table 1. List of high-resolution tubulin crystal structures by binding site.

Binding Site PDB ID Resolution (Å) Crystallization System Bound Ligand

Apo
5NQU [68] 1.8 TD1 -
3RYC [69] 2.1 T2R -
4I55 [44] 2.2 T2R-TTL -

Taxane site
4I4T [44] 1.8 T2R-TTL Zampanolide
5LXT [70] 1.9 T2R-TTL Discodermolide
6SES [71] 2.0 T2R-TTL B2

Laulimalide/Peloruside
4O4H [56] 2.1 T2R-TTL Laulimalide
4O4J [56] 2.2 T2R-TTL Peroluside A

Maytansine
4TV9 [61] 2.0 T2R-TTL PM060184
6FJM [72] 2.1 T2R-TTL Disorazole Z
4TV8 [61] 2.1 T2R-TTL Maytansine

Colchicine

6S8K [46] 1.5 TD1 Plinabulin
6ZWB [73] 1.7 TD1 Z-SBTub3 photoswitch
7Z2P [74] 2.0 T2R-TTL Nocodazole
5M7E [75] 2.0 T2R-TTL BKM120
6TH4 [76] 2.1 T2R exo-methylene-nor-colchicine

Vinca
5IYZ [77] 1.8 T2R-TTL Monomethylauristatin E
5J2T [77] 2.2 T2R-TTL Vinblastine
5JH7 [67] 2.3 T2R-TTL Eribulin

Pironetin
5LA6 [62] 2.1 T2R-TTL Pironetin
5FNV [63] 2.6 T2R-TTL Pironetin

Todalam
5SB3 [12] 2.2 T2R-TTL Todalam precursor 4
5SB6 [12] 2.3 T2R-TTL Todalam derivative 10

Gatorbulin 7ALR [64] 1.9 TD1 Gatorbulin

Table 2. High-resolution CryoEM MT structures.

MT Structure PDBID Resolution (Å)

Taxol-stablized MTs 6WVR [78] 2.9
Peloruside stabilized MTs 5SYC [55] 3.5

Taxol/Peloruside MTs 5SYE [55] 3.5
Taxol MTs 5SYF [55] 3.5

Zampanolide MTs 5SYG [55] 3.5
Undecorated MTs recombinant tubulin 7SJ7 [79] 3.8

When choosing the VS system, one should also consider the target of the desired
molecule. If one is aiming for an MT-binder, one might compare the binding pocket
found in crystallization systems with the CryoEM MT structures to evaluate the differences
and the impact of MT formation on the specific binding site. However, one needs to be
careful because most of the structures have been obtained by stabilizing the MT with small
molecules, most often paclitaxel, or using non-hydrolyzable nucleotides. Therefore, these
structures could also be different from the MT structure in the absence of stabilizers or
artificial nucleotides.

The next consideration on the selection of the system for MD simulation is the assembly
of tubulin into protofilaments and MT structures. If the binding site studied is far from any
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tubulin inter-dimer interface (e.g., colchicine site, gatorbulin) or is considered to completely
prevent the interaction of two dimers (e.g., maytansine site, pironetin site), a dimer can
serve as a model for tubulin binders. It can be extracted from either T2R, T2R-TTL or TD1
structures, however the presence of the stabilizing proteins could artificially modify the
tubulin structure in the proximity of their binding site. Ideally, the site of VS should be
far from crystal contacts established in the system and the binding sites of the stabilizing
proteins DARPin, RB3 and TTL.

If the binding site is present at the longitudinal inter-dimer interface (e.g., vinca,
todalam, gatorbulin) or the lateral axes (e.g., taxanes), a more complex system may need
to be considered. To extract two dimers in the curved conformation either T2R or T2R-
TTL structures can be used to generate longitudinally linked tetramers. In the case of
both longitudinal and lateral axes as present only within the context of an MT, a CryoEM
structure should be used as a basis. For example, scientists such as Castro-Álvarez et al. [80]
opted to study a ‘tetramer’ model to investigate binders at the taxane site, since the
M loop stabilized by some taxane-site ligands is establishing lateral interactions with the
neighboring tubulin dimer. The choice of the system size is a trade-off between the accuracy
of the site and the computational effort needed.

3.2. Tubulin-Related VS Strategies
3.2.1. Pharmacophore Screening

We already discussed ligand-based pharmacophore modeling and its application in VS,
where models are generated from structures of active molecules relying on conformational
space sampling and ligand alignment. In structure-based pharmacophore modeling, a
ligand’s bioactive conformation in the binding site along with knowledge of the receptor
structure guides the pharmacophore features placement and often provides higher quality
models than those deduced by the ligand-based approach [31].

It is common to start such modeling by choosing one or several protein structures
with bound ligands. Then, possible interactions are estimated between ligand and binding
site atoms. After that, pharmacophore features are automatically assigned to regions
of binding site space based on estimated H-bond formation, charge, and hydrophobic
contact. Such models can be combined by merging over common features or refined
manually [81]. The same validation strategy is applied before usage in VS, as described for
ligand-based models.

Structure-based pharmacophore screening has shown significant value in tubulin-
related research. It has been mostly used as one of the steps in multi-step VS campaigns that
yielded novel colchicine and taxane-site targeting modulators of tubulin polymerization.
Interestingly, recent successful works used different approaches to model building and
selection. As such, Nagarajan et al. [82] built six colchicine-site interaction models based on
relevant crystal structures and merged them by common features to obtain a model later
used in a VS. Mangiatordi et al. [18] built seven colchicine-site models based on manually
selected relevant PDB structures, validated them with a set of actives and decoys, and used
the model with the best discriminative performance for VS. On the contrary, Zhou et al. [83]
built four pharmacophore models based on relevant well-resolved PDB structures contain-
ing colchicine-site ligands and refined them manually, putting emphasis on interactions
with experimentally known key residues. Similarly, Zhang et al. [32] derived seven phar-
macophore models of the taxane site interactions from a single PDB crystal structure and
refined all of them to highlight only the most important features. However, Gallego-Yerga
et al. [84] noted that defining a single pharmacophore model puts unnecessary constraints
on the model. Instead, they used an ensemble of 118 pharmacophore models derived from
all resolved structures of tubulin with different bound colchicine-site targeting ligands in
an attempt to capture flexibility of the site and variating nature of ligands. By contrast,
Elseginy et al. [85] was able to produce good results by using a single model automati-
cally extracted from a relevant colchicine site structure without any additional refinement.
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Table A4 provides an overview of pharmacophore screening implementations from each
mentioned VS campaigns.

3.2.2. Protein-Ligand Docking

One of the most frequently used structure-based drug design methods is protein-
ligand docking. It is used to estimate with a considerable degree of accuracy the most likely
conformation of a ligand within a given binding site, and therefrom extrapolate—with,
unfortunately, not very good accuracy—its binding affinity.

By computationally predicting the binding affinity of tubulin-targeting agents, re-
searchers identify compounds that have a high binding affinity for tubulin and are therefore
more likely to be effective binders. This information can be used to prioritize compounds
for further experimental validation, such as performing in vitro or in vivo assays to confirm
their binding activity and efficacy. It’s worth noting that computational predictions of
binding affinity are not always accurate, and experimental validation is needed to confirm
the predictions. However, computational predictions can be very useful for rapidly and
efficiently identifying potential binders and prioritizing them for further experimental
validation. Then, the success rate can vary depending on several factors, such as the quality
of the computational method, the quality of the input data, and the complexity of the
system being studied.

Protein-ligand docking tools operate on 3D structures of proteins and ligands. Typical
docking computations involve sampling of a ligand’s conformational space, and ranking the
computed poses by estimating the (free) energy of interaction between the ligand in a given
pose and the binding site using specific scoring functions. These computations may consider
the binding pocket’s residues to be rigid or flexible. Rigid docking is computationally faster,
but unable to account for ligand-specific adjustments of the protein site geometry.

Algorithms for conformation sampling modify torsional, translational, and rotational
degrees of freedom of a given ligand in a site in either a systematic sequential or a stochastic
randomized fashion. Detailed reviews of sampling methods were compiled previously for
example by Sulimov et al. [86] or Halperin et al. [87].

Sampling algorithms visit many putative poses of a ligand within the site and the
docking software ranks all of them according to a scoring function. These functions aim to
estimate a ligand’s affinity toward the binding site in each specific sampled pose, taking into
account intermolecular interactions and other physicochemical effects. The calculations are
based on either force fields, modeled contribution of empirically defined physicochemical
parameters, or knowledge of different atom-type interactions statistically extracted from
resolved co-crystallized protein-ligand structures.

Before use, protein structures are pre-processed by adding missing hydrogens, comput-
ing charges, removing solvent molecules, ligands, and other heteroatoms. It is considered
good practice to validate the suitability of a chosen docking software to model a desired
binding pocket, which is most often done by re-docking. It consists of removing a native
ligand from the modeled system and placing it back using the docking method of choice.
If the best pose output by the software matches the bioactive pose of the native ligand,
it is assumed that both the conformation sampling algorithm and the scoring function
adequately describe the modeled system and can be used to model interactions of novel
ligands with the pocket [88,89].

With protein-ligand docking being an efficient and quick way to obtain significant
intuition for drug design and optimization, it has been used in several contexts of tubulin-
related drug design. For example, it is often included in VS campaigns as one of the last
steps to prioritize a virtual hit for further investigation. As such, Mangiatordi et al. used
protein-ligand docking to further filter the results of a prior pharmacophore screening and
prioritize remaining compounds, the latter containing 31 novel colchicine-site targeting
agents with in vitro anti-proliferative properties [18]. In a similar manner, Guo et al.
reported protein-ligand docking as an essential step that allowed them to discover eight
confirmed cytotoxic agents targeting the colchicine binding site [26]. Moreover, Zhou
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et al. used protein-ligand docking to highlight five virtual hits found by pharmacophore
screening as most promising ones, their cytotoxic action related to binding at colchicine
site was later confirmed in vitro [83]. A work by Ayoub et al. showed how docking-based
optimization of VS hits could benefit from pose rescoring using the MM/PBSA method [16].

A noteworthy work by Zhang et al. compared five docking programs by re-docking
10 complexes of tubulin co-crystallized with taxane-site targeting ligands and selecting
the three best software programs for evaluation of virtual hits found by pharmacophore
screening; among the prioritized molecules, two were established as cytotoxic agents,
supposedly targeting the taxane binding site [32]. Protein-ligand docking was instrumental
in highlighting 15 virtual hits found by pharmacophore screening in the work by Nagarajan
et al., later experimentally confirmed to be cytotoxic in vitro due to targeting the colchicine
site of the tubulin protein [82]. Similarly, Federico et al. used docking to evaluate poten-
tial affinity of found virtual hits toward tubulin’s colchicine site, eventually discovering
seven micromolar inhibitors of tubulin polymerization [19]. Consensus docking of pharma-
cophore screening virtual hits helped Elseginy et al. establish four novel compounds with
significant antiproliferative activity against cancer cells due to targeting the colchicine site
of the tubulin protein [85]. Interestingly, Mao et al. incorporated protein-ligand docking
and interaction fingerprint similarity comparison to discover a novel taxane-site targeting
promoter of tubulin polymerization [90]. Lastly, Stefanski et al. also combined docking and
fingerprint similarity measure of protein-ligand interactions as a last step of a VS campaign
that yielded two potent in vitro cytotoxic colchicine-site targeting agents [27].

Protein-ligand docking is a powerful VS tool that alone can produce high-quality
results. For example, Zúñiga-Bustos et al. used only protein-ligand docking to screen a large
compound library, with virtual hits being confirmed promotors of tubulin polymerization
targeting the laulimalide binding site [91]. In another study, Liu et al. screened a large
database with consecutive docking experiments with increasing rigor of conformational
sampling, eventually yielding six hits with in vitro antitumor activity due to targeting the
colchicine binding site [92]. In a similar manner, Liu et al. docked a large compound library
and discovered two colchicine-site targeting in vitro inhibitors of tubulin polymerization
among the highest ranked molecules [93].

Often, protein-ligand docking is used as a way to provide rationale for a tubulin-
targeting agent’s biological action. In such case, designed molecules are docked into one or
several potentially targeted binding sites. Best estimated poses are then examined in terms
of docking scores and physicochemical interactions within the site. Such analysis may also
provide ideas for further compound optimization. For example, docking studies were used
to assess possible binding modes and guide rational design of colchicine-site targeting
compounds of different classes independently reported by Ameri et al. [94], Guo et al. [17],
Riu et al. [95], Patel et al. [96], and Mustafa et al. [97]. In a similar manner, Tripathi et al. [98],
Ayoub et al. [99], and Chávez-Estrada et al. [100] used protein-ligand docking to estimate
putative binding modes of taxane-site targeting molecules. Interestingly, Forero et al. [101]
predicted possible binding modes of the designed compounds by docking them into both
colchicine and taxane site, eventually settling on colchicine site as the possible target of the
designed compounds based on interaction analysis. Finally, Pandit et al. [29] used docking
to evaluate binding regimes of vinca-site targeting peptides. Table A5 provides an overview
of exact implementations of docking protocols used in mentioned works.

3.3. Molecular Dynamics (MD) Simulations to Study Tubulin-Ligand Complexes
3.3.1. Classical MD Simulations Used on Tubulin

Molecular dynamics (MD) is a computational simulation technique that allows ex-
ploration of the behavior of a molecular system over time by solving Newton’s equations
of motion. This is of great importance for research, as biomolecules are dynamic entities
whose atoms are in constant motion. In this way, by using MD, time-dependent processes
in molecular systems can be monitored to facilitate the analysis of their structural, dynamic,
and thermodynamic properties.
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MD simulations can provide valuable information that is not accessible from experi-
ments, allowing the formulation of new hypotheses. In addition, technical progress, both
in algorithm efficiency and computational power, allows the study of biological macro-
molecules of larger dimensions on longer timescales, and the predictions that are inferred
from these simulations make MD simulations a very valuable computational approach in
the drug design field.

MD is widely used as a computational technique to examine protein-ligand complexes,
such as the binding of molecules to tubulin and MTs, to analyze the effects on the tubulin
structure upon ligand binding.

In the study of MTAs in complex with tubulin using classical MD simulations, different
settings need to be considered during system preparation. For instance, the choice of the
force field that best suits the system under study is important, since the quality of the
MD simulations results depends on the quality of the energy function used to treat the
interactions among atoms in the system. Additionally, the simulation time and the MD
engine used are important factors that also condition the accuracy of the simulations.

In this review, Table A6 summarizes the settings used by scientists to set up classical
MD simulations to investigate tubulin-ligand complexes. Due to the number of articles
related to this topic published since 2019, we have decided to dedicate the review of
classical tubulin MD simulations to the articles which were published in the last three years
and thus are the most up-to-date manuscripts.

By analyzing Table A6, we can observe that most often the tubulin-ligand complex sys-
tems are simulated under periodic boundary conditions, solvated in explicit water (TIP3P
or SPC water model) in cubic or octahedral box at room temperature and atmospheric
pressure. The typical simulation time is ~100 ns. While different force fields are explored,
the most prevalent are Amber Force Fields FF99SB and the more recent one FF14SB.

3.3.2. Enhanced Sampling Methods

Enhanced sampling algorithms have appeared as a powerful tool for increasing the
efficiency of classical MD simulations. During a certain simulation time, enhanced sampling
methods allow for the sampling of larger areas of a complex system configuration space.
The accuracy of the results is highly dependent on the selection of the simulation settings.
Here, we outline three different enhanced sampling methods used to study tubulin-ligand
binding mechanisms.

4. Umbrella Sampling (US)

Umbrella sampling (US) is an enhanced sampling computational technique applied to
expand the sampling of a system in which ergodicity is hampered by the form of the energy
landscape of the system. US is used to calculate the thermodynamic parameters for the
binding of a ligand to a protein. In the tubulin field, US has been used to predict the strength
of binding (binding energy) of a ligand to tubulin by slowly pulling away the ligand from
the binding site. ∆Gbind derives from the potential of mean force (PMF), obtained from a
series of US simulations. Several initial positions of the ligand with respect to the protein
of interest are generated, each corresponding to a location where the ligand is harmonically
restrained at increasing center of mass (COM) distance from other selected groups via an
umbrella biasing potential. These restraints allow the ligand to sample the conformational
space in a defined area along a single degree of freedom (reaction coordinate) [102].

US is subject to certain limitations, such as biases in sampling due to improper se-
lection of reaction coordinates (RCs), challenges in identifying appropriate RCs for com-
plex systems, the need for multiple RCs in systems with multiple reaction pathways,
and the method being dependent on the choice of RC. Additionally, the method can be
computationally expensive and limited to systems with multiple reaction pathways and
high-dimensional systems.

Zhang et al. used US simulations to retrieve the free energy potential of αβ-tubulin
separation upon binding to a certain ligand [103]. Also, Zhou et al. and Mane et al.
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simulated the αβ-tubulin dissociation free energy under different system conditions using
the US method [104,105].

5. Steered Molecular Dynamics Simulations (SMD)

Steered molecular dynamics (SMD) is another enhanced sampling method in which an
additional external force is applied to one or more atoms in the studied system to maintain
the constant speed of motion along a selected coordinate [106]. SMD emulates atomic force
microscopy (AFM) experiments. It allows the study of molecular processes, such as the
protein-ligand unbinding mechanism, by focusing on selected degrees of freedom. It is
important to keep in mind that in SMD the force applied is not necessarily proportional to
the binding free energy, as it aims to simulate the process of binding a molecule to another,
rather than the equilibrium state of the bound complex.

Rai et al. performed SMD to study the bonding strength between eribulin and tubulin
isotypes to which it presented the highest (aVIIIbIII) and lowest (aIbII) binding energies,
which were previously calculated computationally. They kept the tubulin structures fixed
by setting position restraints on their heavy atoms, whereas the eribulin structure was
dynamic. They observed that a three-fold greater force was required to pull out eribulin
from the active site of one tubulin isotype in comparison to that of another isotype [107].

6. Metadynamics (MetaD)

Metadynamics is an enhanced sampling technique that enables conformational sam-
pling of the free energy landscape of a system through the use of collective variables that
describe it. Castro-Álvarez et al. used MetaD to study the effect in the tubulin M loop on
the binding of laulimalide and peloruside A to the taxane site [80].

Binding pose metadynamics (BPMD) allows for the assessment of the stability of the
ligand in solution. This is because BPMD can differentiate between stable and unstable
binding geometries. It is expected that the unstable ligand poses will rarely be occupied
in the energy landscape under MetaD simulation bias. As a result, unstable ligand poses
make a minimal contribution to binding affinity.

Boichuk et al. applied BPMD to evaluate the stability of a colchicine binder in complex
with tubulin and to select its most stable conformation using as collective variables the
RMSD values of the heavy atoms of the ligand [108]. Fusani et al. compared the binding
mode of epothilone A in complex with tubulin of the first published 3D structure solved by
Nettles et al. (PDB: 1TVK) and a later one solved by Prota et al. (PDB: 4I50) using BPMD.
Fusani et al. wanted to differentiate between the correct and incorrect ligand binding poses
by applying BPMD [109].

Moreover, Gaspari et al. used MetaD to induce the cis-to-trans isomerization of a
colchicine binder in complex with tubulin. This allowed the authors to calculate the
difference in binding free energy between the cis and trans isomers of the ligand via a
thermodynamic cycle. Furthermore, Gaspari et al. also used MetaD to gain insight into
the differences in the unbinding process of colchicine and another colchicine site binder
studied in complex with tubulin [110].

When using MetaD as an enhanced sampling method, it is important to be aware
of its limitations, particularly in relation to the selection of the collective variable (CV).
These limitations include potential bias in sampling, challenges in identifying appropriate
CV for complex systems, increased computational cost for high-dimensional systems, and
limitations in exploring the free energy surface.

7. Applications of MD for Tubulin-Ligand Studies
7.1. Docking Validation and Refinement

MD is often used as a post-processing technique to validate and refine the binding
modes of the protein-ligand complexes obtained from docking experiments. MD applied
for docking validation has also been used in the tubulin research field.
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For example, Hadizadeh et al. investigated the possible binding mode of an active
tubulin binder (9IV-c) that showed high activity against human tumor cell lines. For this,
they used computational methods such as docking and MD. First, they docked 9IV-c in the
colchicine site, and the output was later submitted to MD simulations to evaluate and refine
the docking results. The simulation of the complex was analyzed using root mean square
deviation (RMSD), radius of gyration (Rg), and hydrogen bond stability values. In this way,
they obtained a successful prediction of the way 9IV-c binds to tubulin, allowing them to
conduct further computational studies to identify new potent tubulin inhibitors [111].

El-Mernissi et al. designed four new colchicine site binders using 3D-QSAR mod-
els and docking based on a series of 2-oxoquinoline arylaminothiazole derivatives that
were identified as promising tubulin inhibitors. Among the four newly designed binders,
MD simulations of the compound with the best docking score were performed to val-
idate its docking binding pose using the RMSD, root mean square fluctuation (RMSF),
Rg, and solvent accessible surface area (SASA) metrics. By performing MD simulations,
they confirmed the conformational stability of the complex, thus validating their docking
experiments [112].

Zhang et al. performed VS using a combination of molecular docking methods of
50 compounds in the taxane site to search for novel tubulin polymerization inhibitors.
Subsequently, the best hits were submitted to IC50 experiments, from which the two
compounds with the highest antiproliferative activity were selected for MD simulations
along with the tubulin-paclitaxel complex. By performing MD simulations, they further
studied the binding mode, stability, and molecular interaction pattern of the docking results.
Apart from using RMSD, RMSF, and Rg as MD analysis metrics, they performed clustering
analysis to extract information on how tubulin in complex with the three studied taxane-
site binders is sampling the conformational space. They used ‘BitClust’ [113], which is a
relatively new faster implementation of the Daura et al. clustering algorithm that performs
rapid structural clustering of long trajectories [114]. In this way, using MD simulations,
they validated the stability of tubulin in complex with the two compounds and probed the
mechanism of their interactions, which aligned with the experimental results [115].

Elhemely et al. observed that a meta-substituted 3-arylisoquinolinone that had shown
a high cytotoxic effect in several cancer cell lines mimicked the structure of colchicine. They
hypothesized that its mode of action could be related to its binding to the colchicine site
of tubulin. To test the suitability of the compound to bind to this site, the authors first
performed docking experiments, which were later refined by MD. These computational
studies suggested that the meta-substituted 3-arylisoquinolinone was able to bind well to
the colchicine binding site [116].

7.2. Comparison of the Binding Free Energy of Different Ligands

The resulting trajectories from MD simulations are also used to compute the free energy
of binding of different molecules binding to the same site to obtain a quantitative measure
to compare and rank the best hits normally resulting from docking studies. There are
different methods to estimate the free energy of binding of protein-ligand complexes such
as Free Energy Perturbation (FEP), Molecular Mechanics Generalized-Born Surface Area
(MM-GBSA), and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA). Due
to the numerous computational resources required for the performance of MD simulations,
this approach can only be used to rank a low number of molecules, in the tens range.

Elhemely et al., in the article mentioned above, computed the free energy of bind-
ing applying the MM-GBSA method using the MD-based refined complexes of two 3-
arylisoquinolinones bound to tubulin that only differed in the location of a substituent in
their structure (meta versus para). The authors wanted to investigate how the change in the
substituent position could alter the free energy of binding and compare the binding mode
of the molecules in the tubulin sub-pocket. The computational results aligned with the
experimental ones, concluding that the meta-substituted molecule was a better colchicine
site binder than the para-substituted compound [116].
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Stroylov et al. used FEP calculations based on MD simulations for predicting tubulin-
ligand free binding energy differences of new tubulin polymerization inhibitors targeting
the colchicine site [117].

Mao et al. with the goal of discovering new tubulin inhibitors capable of binding to the
taxane site, performed a VS of ~1.6M molecules retrieved from the ChemDiv database. After
applying different computational filters, 17 hit compounds were selected and submitted for
experimental evaluation. The in vitro tubulin polymerization assay found P2 to be the most
promising compound. Therefore, P2 was submitted to MD simulations not only to further
investigate the interactions between P2 and tubulin based on the docking results but also
to compare it with paclitaxel, an already known active taxane-site binder. They calculated
the free energy of binding of both complexes using the MM-PBSA method obtaining—
68.25 ± 12.98 kJ mol−1 for the tubulin-P2 complex and—146.05 ± 16.17 kJ mol−1 for the
tubulin-paclitaxel complex. These results were in line with the experimental evidences,
defining P2 as a lead compound that could be used for new tubulin inhibitors drug design
campaigns [90].

7.3. Identification of Key Binding Site Residues

MD is also used to further investigate the mechanisms of interactions between tubulin
and hits, as previously reported, and to find key amino acids in the protein that are
especially important for binding to the studied ligand within a given tubulin binding site,
also called ‘hot spots’.

Neto et al. studied a series of chalcones predicted to bind to the taxane site using both
experimental and computational approaches, including MD simulations. To identify the
key binding site residues establishing the strongest interactions with the studied ligands,
the authors performed Computational Alanine Scanning (CAS) of each tubulin-ligand
interface. This allowed analysis of the free energy contribution of the amino acids located
at the taxane site, bringing new insights into this tubulin site for further exploitation using
chalcones [118].

Gamya et al. reported a noscapine derivative (VPN) discovered and validated using
computational tools such as docking and MD simulations. VPN was able to be properly
accommodated in the colchicine site according to the docking results, which were then
submitted to MD studies for validation of its stability at the site by calculating the RMSD
and RMSF values, and its binding free energy using the MM-GBSA and MM-PBSA methods.
Furthermore, they performed a deeper analysis of the interactions established between
the residues of the receptor with the ligand by calculating the energy contribution of each
residue in the binding of VPN by performing Per Residue Energy Decomposition (PRED)
analysis using the MM-GBSA method. In this way, they were able to identify the residues
that have the greatest impact on the binding and stability of VPN, the ‘hotspots’ [119].
Other researchers have also applied PRED analysis to the search for ‘hotspots’ to investigate
the details of tubulin-ligand interactions at the atomic level [90,120].

7.4. Analysis of Local and Global Effects upon Ligand Binding

Structure-based computational approaches have also been used to investigate the effect
of different MTAs on the local geometry of tubulin. Moreover, since MTs are formed by
allosteric proteins, the effect of binding of a ligand at one site can also cause non-local effects
in MTs, and therefore, the study of global effects caused by ligand binding is also important.

For example, the M loop has been widely studied by X-ray crystallography and other
structural techniques to understand the effect of taxane site binders on this loop [44,70].
This is due to the fact that the M loop is found at the β1/β2 interface and is involved
in the stability of the interaction. However, the dynamics of M loops remains unclear,
and other research groups approach these questions using SB computational techniques.
Castro-Álvarez et al. performed MetaD simulations of laulimalide and peloruside A to
analyze the changes produced in the M loop upon binding of these ligands [80]. MetaD
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helped explain how laulimalide and peloruside A shift the M loop to an α-helix structure
by bringing together different residues at the external site of β1.

Basu et al. studied the collective changes that the tubulin over-stabilizing agents
paclitaxel and taxotere induce on the structure and dynamics of the α,β-tubulin dimer by
performing MD simulations. To study the conformational effects of tubulin induced by the
binding of the ligands, they also performed MD of the apo protein to compare the results of
the simulations of apo tubulin with those of holo tubulin. They investigated the influence of
ligand binding on the essential dynamics of tubulin using Principal Components Analysis
(PCA). They observed that the apo tubulin samples a broader range of conformations than
that of the holo tubulin. Therefore, the presence of the ligands biases the system toward
a more stabilized conformation. Moreover, for a more local structural exploration, the
authors performed a Define Secondary Structure of Proteins (DSSP) analysis to study the
conformational changes of the M loop and its associated regions induced by the binding of
the two ligands. More computational analyzes were performed to thoroughly investigate
the effect of binding of both paclitaxel and taxotere on the dimeric structure, concluding
that these ligands enhance the α,β-tubulin dimer to be more favorably accommodated into
the MT superstructure [121].

7.5. Exploration of Ligand Binding to Different Tubulin Isotypes

The α and β tubulin in eukaryotes consist of isotypes that differ in their aminoacidic
sequence. Therefore, in the field of tubulin, researchers study not only the binding of
different ligands to the same binding site of a certain tubulin isotype, but also the binding
of the same ligand to different tubulin isotypes [122]. In silico approaches have a great
advantage in the study of tubulin isotypes, since they are rarely accessible to be investigated
experimentally. In silico strategies allow for the analysis of the sensitivity of a certain ligand
to bind to tubulin isotypes which would be highly demanding to do experimentally. Rai
et al. performed MD simulations of the potent anticancer drug eribulin bound to different
tubulin isotypes to report differential binding affinities. However, it remains to be explored
how the residue composition at the binding site between tubulin isotypes translates into
major changes in the tubulin conformation and the binding affinities with ligands [107].

7.6. MD Analysis Metrics

As previously described, MD simulations have multiple applications in the in silico
study of tubulin-ligand complexes. To extract the information of interest from the output of
MD simulations (trajectory), different analysis metrics are available. In Table 3 we present
the techniques that have been used in the selected tubulin-related articles to analyze MD
simulations of tubulin and its interactions with MTAs.

Table 3. A glossary of key parameters and procedures used to analyze observed conformational
changes during MD trajectories.

MD Analysis Metrics Definition Examples of Application

RMSD

The root mean square deviation (RMSD) is a
standard measure of the structural distance between

coordinates: it measures the average distance
between a group of atoms. RMSD values help to

evaluate the global structural stability of the system
studied in the simulation.

Dash 2022 [119], El-Mernissi 2022 [112],
Zhang 2022 [115], Zhao 2022 [120], Radha

2022 [123]

RMSF

The root mean square fluctuation (RMSF) represents
the quadratic deviation of the atoms in temporal

averages. RMSF values help to evaluate the internal
structural flexibility of the studied system in

the simulation.

Dash 2022 [119], El-Mernissi 2022, Zhang
2022 [115]

Radha 2022 [123],
Talimarada 2022 [124]
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Table 3. Cont.

MD Analysis Metrics Definition Examples of Application

Rg

The radius of gyration (Rg) is defined as the
mass-weighted root mean square atomic distance

from the center-of-mass and can be applied to
measure the level of structural compactness of a

protein at different time points during the trajectory.

Hadizadeh 2022 [111],
El-Mernissi 2022 [112], Zhang 2022 [115],

Radha 2022 [123]. Rai 2022 [107]

SASA

The solvent accessible surface area (SASA) permits
assessment of the overall changes in the tertiary

structure of a molecule and its solvent accessibility
over the course of the simulation.

El-Mernissi 2022 [112]
Rai 2022 [107]

2D interaction analysis

2D interactions established between the protein and
the ligand along the course of the simulations help
to identify the residues within the binding site that

play an important role in the binding of the ligand to
the receptor and to list the ‘hot spots’ between the

ligand and the protein.

Basu 2022 [121], Mao 2022 [90], Zhao
2022 [120], Rai 2022 [107], Zhang

2022 [103], Majumdar 2022 [125], Mao
2022 [90],

Hadizadeh 2022 [111], Zhang 2022 [115]

DSSP

The Define Secondary Structure of Proteins (DSSP)
algorithm is the standard method for assigning a

secondary structure to amino acids of a protein given
the atomic resolution coordinates of the protein.

Mao 2022 [90], Basu 2022 [121]

Clustering
Clustering is a data mining technique that allows

molecular configurations to be grouped into subsets
based on the similarity of their conformations.

Zhang 2022 [115]

Binding free energy

The Gibbs free energy (G) provides valuable
information about the structure and stability of

biomolecules. It is possible to calculate the predicted
binding energy (∆Gbind) of a given tubulin-ligand
complex using the MD simulation trajectory of this

biomolecular association.

Zhao 2022 [120], Zhang 2022 [115],
Elhemely 2022 [116], Rai 2022 [107],

Radha 2022 [123], Majumdar 2019 [125]

PRED

The Per Residue Energy Decomposition (PRED) is a
computational tool that is used to obtain the

residue-wise contribution to the total binding free
energy. It provides information on the key residues

that contribute to protein-ligand association, the
so-called ‘hot spots’.

Dash 2022 [119], Mao 2022 [90], Zhao
2022 [120], Zhang 2022 [120]

CAS

Computational Alanine Scanning (CAS) is a
technique that consists of the mutation of amino

acids present on the interaction surface between the
protein and the ligand to alanine, and the

measurement of the difference in binding free energy
between the ligand and the native protein and the

ligand and the multiple mutated proteins to identify
‘hot spots’.

Neto 2022 [118]

PCA

Principal Component Analysis (PCA) is a linear
dimensionality reduction tool used in the MD field

to map the coordinates of each frame of the
trajectory to a linear combination of orthogonal
vectors and to investigate the internal modes of

motion of the system under study.

Basu 2022 [121]

8. Conclusions

In this review, we provide an overall picture of the different ligand and structure-
based computational methods that have been used in recent years for the study of tubulin-
targeting agents, and an overview on the available MT and tubulin structural data. We
observed that computer-aided methods have had significant contribution to the field of
tubulin-targeting drug design. VS of compounds, applying both ligand and structure-based
approaches, provided many hits with in vitro bioactivity. An advantage of ligand-based
methods is their computational efficiency and ability to work with big data. They are often
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beneficial to the early stages of VS, where the goal is to filter out compounds irrelevant to
the task at hand in a fast manner. These initial results are well suited for subsequent filtering
by structure-based methods, which provide more intuition behind the physico-chemistry
of potential interactions between a given virtual hit and the desired biomolecular target.
Computational methods were also shown to guide in rational design and optimization of
novel tubulin-targeting agents.

Moreover, despite the large number of available tubulin binding sites (8), our analysis
shows that the colchicine and the taxane sites are the most studied ones in tubulin-related
computational research while the rest are underrepresented. We also observed a tendency
to mainly use structure-based methods to find tubulin-targeting agents such as molecular
docking for VS and MD for the refinement of the resulting docking hits.

MD simulations have widely been used in the tubulin-directed drug discovery field.
In the recent literature, there is a tendency to use MD as a computational docking post-
processing method that allow the validation and refinement of the docking results, the
analysis of the ligand–tubulin dynamics and the estimation of binding free energies.

We expect growth of interest in these computationally understudied sites in the near
future since computational strategies are becoming essential in the first steps of the drug
design campaigns.
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Appendix A

Table A1. Summary of similarity search implementations.

Reference Screened Dataset Dataset Size Software Descriptors Similarity Metric Result

Ayoub
2013 [16] PubChem 33 × 106 Built-in web

search

881-bit PubChem
subgraph

fingerprints [URL]

Tanimoto, 80% similarity
threshold

Virtual hits ranked by
protein-ligand docking, one

compound used as a
reference for further

successful design

Guo 2019
[17] ChemDiv 1.7 × 106 Discovery Studio

(Biovia) ECFP-4 Tanimoto, 50% similarity
threshold

Virtual hits were found to be
cytotoxic, one was confirmed

as a colchicine site binder

Lo 2015
[20]

ChEMBL, PubChem 35 × 106

CSNAP2D OpenBabel FP2 Tanimoto, 85% similarity
threshold

Correctly identified and
validated tubulin as a target
for 36 molecules that showed
cytotoxicity in a HTS setting

Lo 2016
[21] CSNAP3D ShapeAlign 3D Tanimoto, 85%

similarity threshold

A virtual hit was established
to promote tubulin

polymerization by binding at
the taxane site

Magiatordi
[18] CoCoCo 3.7 × 106 Phase

(Schrödin-ger)
Atom-type-based

3D shape

Atom-type volume
scoring, 0.65 similarity

threshold

31 virtual hits have been
confirmed to decrease

microtubule polymerization
in vitro.

Federico
2020 [19]

ZINC *, Chembridge
Diverset CL,

Chembridge Diverset
EXP,

BindingDB FDA,
MayBridge

164 × 717

ROCS (OpenEye)
Smooth 3D

Gaussian functions
for each atom

Tanimoto similarities of
aligned overlap volumes
(no threshold, top 5000
selected for ROCS, top

2000 for EON)

Two virtual hits established
by shape and electrostatic

similarity to a known active
were shown to inhibit tubulin

polymerization in vitro.EON (OpenEye)

Electrostatic
potential maps of

pre-aligned
molecules

* (Drug Database, Naturals).
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Table A2. Summary of recent ligand-based QSAR modeling.

Reference Modeled Data Descriptor Type Algorithm Validation Strategy Application and Result

Gaikwad 2018 [25]
IC50 of 102 phenylindoles
cytotoxic against MCF7

cancer cell line

Fragment-based holograms
implemented in SYBYL-X

(Certara)
PLS Two sets were used: training

(77) and test (25). Leave-
one-out and five-fold

cross-validation were used.

Analysis of literature data allowed
the authors to highlight structural
features important for cytotoxicity.Extended connectivity

fingerprints, physicochemical
descriptors

Naïve Bayes (Discovery
Studio 3.0, Accelrys)

Guo 2020 [26]

1076 diverse colchicine-site
targeting small molecules

extracted from the ChEMBL
database

Extended-connectivity
fingerprints, path-based

fingerprints

Naïve Bayes
Five-fold cross-validation.

A colchicine site-binding inhibitor of
tubulin polymerization was

established after a virtual
screening campaign.

Single Tree
Random Forest

Stefanski 2018 [27]
IC50 of 83 thio-derivatives of

combretastatin-A4 mined
from literature

Extended connectivity
fingerprints, physicochemical

descriptors

Naïve Bayes
Leave-one-out,

cross-validation, and external
test set methods. The external

validation test set was
composed of 20 tubulin

inhibitors and 800 decoys.

Two virtual hits selected by
consensus QSAR modeling were

later confirmed to be cytotoxic due to
perturbing microtubule

polymerization by binding at the
colchicine site.

Multiple Linear Regression

Quan 2018 [28]
IC50 values of 64

literature-mined derivatives
of combretastatin A-4

CoMFA (steric and
electrostatic fields)

PLS (SYBYL-X 2.0, Tripos) Leave-one-out validation
A 3D QSAR study highlighted

structural elements with pronounced
relation to activity value, useful for

further optimization.

CoMSIA (steric, electrostatic,
hydrophobic, hydrogen bond

donor, and hydrogen bond
acceptor fields)

Pandit 2021 [29] IC50 values of 49 tubulysin
derivatives reported in the

literature

CoMFA (steric and
electrostatic fields)

PLS (SYBYL-X 2.0, Tripos) Cross-validation

3D QSAR investigation of
structure-activity data on tubulysins
lead to rational design and synthesis

of a new class of cytotoxic in vitro
tubulysin derivatives

CoMSIA (steric, electrostatic,
hydrophobic, hydrogen bond

donor, and hydrogen bond
acceptor fields)
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Table A3. Summary of ligand-based pharmacophore screening campaigns.

Reference Compound Library
Compound Set

Used to Build the
Model

Software Used to
Build the Model

Model Generation
and Validation

Settings
Validation Set Validation Metric

and Score Screening Result

Zhang 2021 [32] BioDiversity,
30,000 molecules

Six agents targeting
taxane site

HipHop algorithm
from Discovery

Studio 3.5 (Accelrys)

Five features were
used (HBA, HBD, HP,

HP-A, and R-A) 1,
paclitaxel used as

reference

467 inactive
molecules from

ZINC15 database, 33
known inhibitors

Gunner-Henry (GH)
score of 0.62

Large database filtered
to focus on a subset

that eventually led to
discovery of two

taxane-site targeting
cytotoxic agents

Lone 2017 [33]
IBScreen Natural
Product Database,
84,215 molecules

Four C20 substituted
vinblastine analogues

extracted from
literature

Phase (Schrödinger) HBA, HBD, HP, PI,
and R-A 1

35 inactive and four
active C20
substituted

vinblastine analogues

The Survival-inactive
score of 4.006.

Possibility of
scaffold-hopping for
vinca-site-targeting
compounds design

was shown

Niu 2014 [34]
Specs Screening

Database,
202,919 molecules

26 compounds
designed to target
colchicine site with

known cytotoxic
action

HypoGen module
from Discovery

Studio 2.5 (Accelrys)

HBD, HBA, HP, and
R-A 1

66 colchicine
site-targeting

compounds with
known cytotoxicity

(26 actives, 40
inactives)

Cost difference

Two compounds with
good fitness to the

developed
pharmaco-phore model

were shown to be
tubulin polymerization

inhibitors in vitro.

Stefanski 2018 [27]

A custom-designed
virtual combinatorial

library of 1159
combretastatin A-4

analogs

21 active colchicine
site-targeting

molecules mined
from literature

Discovery Studio 3.5
(Accelrys)

HBA, HBD, HP, and
HP-A 1

20 tubulin inhibitors
and 800 decoys

mined from ChEMBL

Area under
receiver-operator
curve (AUROC)

Two virtual hits were
established as in vitro

cytotoxic agents
targeting colchicine

binding site
1 HBA = hydrogen bond acceptor, HBD = hydrogen bond donor, HP = hydrophobic, HP-A = hydrophobic-aromatic, R-A = ring-aromatic, PI = positive ionizable bond.
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Table A4. An overview of structure-based pharmacophore screening implementations.

Reference Data Used to Build the
Model Software Validation Set Screened Data Result

Nagarajan 2015 [82]

1SA0, 1SA1, 3HKC, 3HKE,
3HKD, 3N2K, 3N2G; model

derived from 1SA0 was
manually removed of a
hydrogen bond feature,

shown best result in
validation

Model building: LigandScout
v3.1 (Inte:Ligand);

Screening—Phase v3.4
(Schrödinger)

52 active colchicine site
binders mined from literature,
1800 decoy molecules from

the DUD database

The CoCoCo database,
containing multiconformer

data on 3.7 million
purchasable compounds

31 novel colchicine
site-targeting inhibitors of

tubulin polymerization were
established that match the
derived pharmacophore

model

Mangiatordi 2017 [18] 6F7C, 5EYP, 5YL2, 4O2B
(common feature model)

MOE (Chemical Computing
Group Inc.)

970 inactive molecules and 30
known inhibitors with

experimental activity mined
from literature

Specs database, 202,919
molecules

The screening established five
virtual hits that are cytotoxic
in vitro, one most potent hit

confirmed to bind at the
colchicine site

Zhou 2019 [83]

118 crystal structures of
tubulin co-crystalized with

colchicine site binding
ligands

LigandScout v3.1
(Inte:Ligand), Phase v3.4

(Schrödinger),
Pharmer

81 co-crystalized ligands and
3354 decoys randomly

extracted from the DUD-E
database

A subset of specifically
selected

8918 purchasable compounds
from the ZINC database

Ensemble of many
pharmacophore models

based on colchicine
site-bound ligands structures
was used in virtual screening

which led to discovery of a
potent tubulin-targeting

cytotoxic agent

Zhang 2021 [32] 1JFF Discovery Studio 3.5
(Accelrys)

467 inactive molecules from
ZINC15 database and 33
known inhibitors with
experimental activity

BioDiversity, 30,000
molecules

Large database filtered to
focus on a subset that

eventually led to discovery of
two taxane-site targeting

cytotoxic agents

Gallego-Yerga 2021 [84] 1SA0

Protein-ligand interaction
fingerprints (PLIF)

implemented in MOE
(Chemical Computing Group

Inc.)

No additional validation
performed

A subset of 100, 000
compounds from ZINC15

database

Virtual screening campaign
yielded a novel cytotoxic
agent disrupting tubulin

polymerization by binding at
colchicine site

Elseginy 2022 [85] 3E22, 3HKD, 3HKE, 3HKC,
1Z2B, and 1SA1

Discovery Studio 2.5
(Accelrys)

40 literature-mined tubulin
inhibitors targeting the

colchicine site, 2000 decoy
molecules randomly selected

from ChemDiv library

ChemDiv library, 700,000
molecules

A virtual screening campaign
discovered an in vitro potent

cytotoxic hit targeting the
colchicine binding site
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Table A5. Protein-Ligand Docking.

Screening Setup Results Reference

Binding Site Binding Site
Definition Docking Software Screened Set Hit

No Hit Rate, % Best Compound’s Activity

Virtual screening in succession to other computational methods

Colchicine

Extracted from 1SA0 as a
10 Å-wide cubic box around

the center-of-mass of the
native ligand

Glide SP
25,146 virtual hits established
by pharmacophore screening

of CoCoCo database
68 35% Inhibition of tubulin

polymerization at IC50 of 3 µM
Mangiatordi

2017 [18]

Colchicine

Extracted from 5H7O as
10 Å-wide cubic box around

the center-of-mass of the
native ligand

Glide SP, Glide XP
30,327 virtual hits of

pharmacophore screening of
SPECS library

8 20%
Anti-proliferative activity (IC50)
against different cancer cell lines

in range 6.14–15.06 µM
Guo 2020 [26]

Colchicine Extracted from 6F7C (exact
settings not specified) MOE

3135 virtual hits found by
pharmacophore screening of

SPECS library
5 100% 80% growth inhibition rate against

five different cell lines Zhou 2019 [83]

Taxane

Extracted from 1TVK as a grid
box centered around the
native ligand with each

dimension a size of 5.8 Å

AutoDock 4.2 645 virtual hits yielded by
similarity search in PubChem 1 20%

Established hit got satisfactory
predicted physiochemical

properties; later work saw an
analog compound synthesized

and tested

Ayoub 2013 [16]

Taxane
Extracted from 1JFF as a

sphere containing the residues
within 11.5 Å from the ligand

AutoDock Vina 1309 virtual hits established by
a pharmacophore screening of

the BioDiversity database
11 22%

Anti-proliferative activity (IC50)
against four cancer cell lines

ranging from 10.31 µM to
21.04 µM

Zhang 2021 [32]Gold
CDOCKER

Colchicine
Extracted from 1SA1 as all

residues around the ligand at a
6.5 Å distance

SurFlex-Dock
1739 virtual hits found by

pharmacophore screening of
the ChemDiv library

1 1.78% Tubulin polymerization inhibition
IC50 value of 17.6 µM

Nagarajan
2015 [82]

Colchicine
Extracted from 4O2A as a

sphere of 8 Å radius around
the native ligand

GOLD

Around 3000 virtual hits
procured by ligand-based

virtual screening of six
chemical libraries

3 43% IC50 of 83.61 µM in hepatotoxicity
model

Federico
2020 [19]

Three databases: Chembridge
Diverset EXP, Chembridge

Diverset CL, and ZINC
natural products

4 66%
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Table A5. Cont.

Screening Setup Results Reference

Binding Site Binding Site
Definition Docking Software Screened Set Hit

No Hit Rate, % Best Compound’s Activity

Colchicine

Defined as a 20 Å-wide grid
box around the centroid of the
native ligand from the 1SA0

structure

MOE, BUDE,
AutoDock 4.2

2746 virtual hits from a
pharmacophore screening of a

subset of ZINC15 library
4 30% Tubulin polymerization inhibition

IC50 = 6.1 µM Elseginy 2020 [85]

Taxane
Extracted from 1JFF as a

23 Å-wide box around the
native ligand

AutoDock Vina 1,601,806 compounds from the
ChemDiv library 1 5.8%

IC50 value against four cancer
cells in range from 9.21 to

17.30 µM
Mao 2022 [90]

Colchicine Extracted from 1SA0, 1SA1
(exact procedure not specified) Glide SP 1159 compounds from an

in-house library 6 35% Tubulin polymerization inhibition
at IC50 = 0.85 µM

Stefanski
2018 [27]

Virtual screening based on protein-ligand docking only

Peloruside Extracted from 4O4J as a cubic
grid of 20 Å in size AutoDock 4.2

2000 virtual hits established
after docking a 6 million ZINC

subset with AutoDock Vina
3 48%

Cell viability of HeLa cells
decreased after 48 h by 60% at

100 µM

Zuniga-Bustos
2020 [91]

Colchicine

Extracted from 4O2B as all
residues closer than 12 Å to

the centroid of the native
ligand

Glide SP, GOLD

40,000 virtual hits obtained by
high-throughput docking with

Glide HTVS of IBScreen
library

2 13% Tubulin polymerization inhibition
IC50 = 23.5 µM Liu 2022 [92]

Colchicine Extracted from 4O2B as a
cubic grid of 20 Å in size AutoDock 4.2 212,449 compounds from the

SPECS library 2 5.5% Tubulin polymerization inhibition
activity with IC50 value of 1.68 µM Liu 2019 [93]

Binding mode assessment

Colchicine

Extracted from 1SA0 as a
15 Å-wide cubic grid box
centered on root point of

native ligand

AutoDock 4.2 An in-house library of
48 Schiff bases 1 – Tubulin polymerization inhibition

activity with IC50 value of 0.16 µM Ameri 2018 [94]

Colchicine
Extracted from 4O2B as a
sphere of 12 Å in diameter
center on the native ligand

CDOCKER
A virtual hit from a

ligand-based screening of the
ChemDiv library

1 – IC50 of 2.99 µM against CNE2
cancer cell line Guo 2019 [17]

Colchicine

Extracted from 4O2B as a
30 Å-wide cubic grid box
centered on root point of

native ligand

AutoDock Vina

A single compound from an
in-house designed library of

colchicine site targeting
ligands

1 –
IC50 = 0.6 µM in an

anti-proliferative assay against the
HeLa cancer cell line

Riu 2022 [95]
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Table A5. Cont.

Screening Setup Results Reference

Binding Site Binding Site
Definition Docking Software Screened Set Hit

No Hit Rate, % Best Compound’s Activity

Colchicine
Extracted from 6Y6D as a

12 Å-wide grid box around the
native ligand

Glide XP In-house library of 9-arylimino
noscapinoids 3 –

Anti-proliferative activity with
IC50 of 10.8 µM against MCF-17

cancer cell line
Patel 2021 [96]

Colchicine
Extracted from 1SA0 as a
25 Å-wide box around the

native ligand
AutoDock Vina An in-house library of

combretastatin A4 derivatives 2 –
Anti-proliferative activity with
IC50 = 0.62 µM against HepG2

cancer cell line
Mustafa 2017 [97]

Taxane
Extracted from 1JFF and 1TUB
a 30 Å-wide grid box around

the native ligand
AutoDock 4.2 Only a paclitaxel molecule was

docked into tubulin mutants 1 –
Docking was used to provide

rationale for paclitaxel resistance
in mutant cancer cells

Tripathi 2016 [98]

Taxane

Extracted from 1TVK, 5MF4,
5LXT, and 3J6G as all residues
within 6 Å distance from each

native ligand

GOLD
FRED

Only a lankacidin C molecule
was docked into several

conformations of taxane site
1 –

Ensemble docking was used to
account for binding site flexibility
and establish the binding mode of

a recently discovered
microtubules stabilizer targeting

the taxane site

Ayoub 2019 [99]

Taxane

Extracted from 1JFF as a grid
rectangle with a size of x = 30,
y = 34, z = 26 centered on the

native ligand

AutoDock 4
A single hit with the best

in vitro microtubule
stabilizing properties

1 –

Binding to taxane suggested as a
mechanism of action, promotion
of tubulin polymerization by 76%

at 50 µM

Chavez-Estrada
2020 [100]

Taxane
Extracted from 1JFF as a

21 Å-wide grid box centered
on the native ligand AutoDock 4

Three compounds with the
best in vitro anti-proliferative
properties from a library of 32

marine natural and
semisynthetic diterpenes

3 –

Interactions fingerprint analysis
after docking prioritized the

taxane site as the probable binding
site for designed molecules with
IC50 < 1 µM against three cancer

cell lines

Forero 2021 [101]

Colchicine
Extracted from 1SA0 as a

21 Å-wide grid box centered
on the native ligand

Vinca
Extracted from 4ZOL

following an unspecified
protocol

SurFlex-Dock A known vinca-site ligand 1 –

Docking was used to guide the
rational design of novel

derivatives of tubulysin, which
led to synthesis and validation of

a hit with pronounced
anti-proliferative properties
attributed to binding at the

vinca-site (IC50 = 9.4 nM against
HeLa cell line)

Pandit 2021 [29]
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Table A6. Details of implemented classical molecular dynamics protocols for the study of tubulin-ligand complexes.

Reference PDB Object of Study MD Engine Force field Water Model Time

Zhang 2019 [103] 1Z2B Docking refinement of DVB-α,β-tubulin complex GROMACS 4.5 SPC 100 ns

Majumdar 2019 [125] 3HKB 3HKC Comparison of the apo α,β-tubulin dimer and
α,β-tubulin dimer bound to E7010 NAMD 2.9

Tubulin:
CHARMM36

Ligand:
CGenFF

TIP3P 120 ns

Zhang 2021 [32] 1JFF Docking validation of ligand–tubulin complex for GROMACS 2019.1
Tubulin: Amber99sb-ildn

Ligand:
ACPYPE

SPC216 90 ns

Kumbhar 2021 [122] 4O4J Docking validation of PLA in complex with
α,β-tubulin isotypes GROMACS 5.0

Tubulin:
ff99SB-ildn

Ligand:
GAFF

TIP3P 100 ns

Elhemely 2022 [116] 4O2B

Docking of molecules at the colchicine site using an
α,β-tubulin dimer.

MD was used to study interactions and validate ligand
persistence in binding site and SAR studies.

AMBER 19

Tubulin:
ff14SB
Ligand:

antechamber
GAFF2

TIP3P 50 ns

Dash 2022 [119] 1SA0

Docking of molecules in the αβ-tubulin interface using
a tubulin dimer.

MD was used to study interactions, validate ligand
persistence at the binding site, and calculate binding

free energies.

AMBER 16

Tubulin:
ff14SB
Ligand:
GAFF

TIP3P 100 ns

Hadizadeh 2022 [111] 4O2B
Docking of molecules at the colchicine site.

MD was used to study interactions and validate ligand
persistence at the binding site.

NAMD 2.12

Tubulin:
CHARMM27

Ligand:
provided by SwissParam

TIP3 100 ns

Mao 2022 [90] 1JFF

Docking of molecules in the taxane site using a
monomer of β-tubulin.

MD was used to study interactions, validate ligand
persistence at the binding site, and calculate binding

free energies.

GROMACS 2019.1

Tubulin:
Amber99sb-ildn

Ligand:
ACPYPE

TIP3P 80 ns

Neto 2022 [118] 4O2B

Docking of chalcones in the colchicine site.
MD was used to study interactions, validate ligand

persistence at the binding site, and calculate binding
free energies.

Discovery Studio
software implicit 1000 ns
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Table A6. Cont.

Reference PDB Object of Study MD Engine Force field Water Model Time

Pragyandipta 2022 [126] 6Y6D

Docking of molecules in the noscapinoids site.
MD was used to study interactions, validate ligand

persistence at the binding site, and calculate binding
free energies.

GROMACS 2019.2

Tubulin:
GROMOS96

Ligand:
ACPYPE

TIP3P 100 ns

Yang 2022 [127] 1JFF
4O4H

Study of wangzaozin as a binder for the taxane and
laulimalide sites. GROMACS 2019.1

Tubulin:
Amber99sb-ildn

Ligand:
ACPYPE

TIP3P 90 ns

Boichuk 2022 [108] 4O2B
Assess the position of the ligand at the colchicine

binding site and determine key amino acid
interactions using the EAPC-67-tubulin complex.

Desmond in Schrödinger
suite 2021-2 SPC 100 ns

Basu 2022 [121] 1JFF 1TUB Comparison of apo α,β-tubulin dimer, bound to taxol,
and bound to Taxotere. NAMD 2.11

Tubulin:
CHARMM36

Ligand:
CGenFF

TIP3P 200 ns

El-Mernissi 2022 [112] 3E22
3E22-colchicine in complex with tubulin and two
selected tubulin compound complexes to examine

protein-ligand interactions.
Desmond Dynamics OPLS 50 ns

Zhang 2022 [115] 1JFF Docking validation of hits bound to the
taxane site GROMACS 2019.1 Tubulin:

Amber99sb-ildn SPC216 90 ns

Zhao 2022 [115] 4O2B Docking validation of styrylquinoline tubulin
inhibitors AMBER16

Tubulin:
Amber ff99SB

Ligand:
GAFF

TIP3P 100 ns

Radha 2022 [123] 6Y6D Docking validation of shikonin as a tubulin inhibitor GROMACS 2019.2

Tubulin:
Amber ff99SB

Ligand:
GAFF

TIP3P 100 ns

Rai 2022 [107] MD used for the analysis of the Interactions between
eribulin and different tubulin isotypes AMBER 12

Tubulin:
Amber ff99SB

Ligand:
Antechamber tool

implicit 60 ns

Note: the majority of these simulations were performed at a temperature of ~300 K, a pressure of 1 bar, in Periodic Boundary Conditions (PBC) at a constant temperature and pressure
(NPT ensemble).
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