Path Asymmetry Reconstruction via Deep Learning

Nada Alhashmi
EBTIC
Khalifa University
Abu Dhabi, UAE
nada.alhashmi@ku.ac.ae

EBTIC

Abstract—This paper proposes a novel scheme to enhance the
accuracy of packet-switched network synchronization systems by
estimating path asymmetry (PA) using convolutional denoising
autoencoders (CDAEs), Network synchronization is a key enabler
of several emerging applications, with increasingly tight accuracy
requirements especially for 5G. Path asymmetry, which arises due
to physical and stochastic network conditions, severely degrades
synchronization accuracy. In this paper, we propose a novel
technique based on the IEEE Precision Time Protocol (PTP),
which accurately reconstructs PA information from PTP packets.
The proposed PA estimator can be integrated with existing
synchronization systems as a pre-processing method to enhance
the overall performance. Simulation results using industry-
standard traffic profiles demonstrate significant improvements
in PA estimation accuracy compared to the state of the art.

Index Terms—Time Synchronization, IEEE 1588 Precision
Time Protocol, PTP, Path Asymmetry, Machine Learning, Deep
Learning

I. INTRODUCTION

Accurate synchronization is a key requirement for numer-
ous applications including industrial automation, smart grids,
high frequency trading and Internet of things (IoT) [1]-[3].
Synchronization requirements are especially prevalent in 5G,
which imposes stringent accuracy requirements up to 260ns
to support features such as coordinated multi-point (CoMP),
carrier aggregation (CA) and enhanced inter cell interface
coordination [4], [5].

The TIEEE Precision Time Protocol (PTP) enables scalable
and cost-effective synchronization by exchanging timing in-
formation over packet-switched networks between few highly
accurate clocks (master nodes) that are often Global Naviga-
tion Satellite System (GNSS) based, and multiple less accurate
yet relatively inexpensive slave clock devices [1], [6]. At the
slave side, accurate synchronization is achieved by periodi-
cally estimating and correcting unknown time-varying errors
between the master and slave clocks that include the phase
offset and the relative clock skew [7]. The estimation is based
on the exchanged timing messages, which represent samples
of the master and slave clocks corrupted predominantly by
queuing delays incurred along the forward (master to slave)
and reverse (slave to master) paths [8]. Joint model-based
estimation of the phase offset, skew, and queuing delays was
shown to be infeasible as it yields an under-determined system
[7]. A relaxed estimation problem pursued by several works
involves only the offset and skew as estimands by assuming
symmetrical (equal), and thereby mutually canceling, forward
and reverse path delays [9]-[11]. However, this assumption
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cannot be guaranteed in practice given the non-deterministic
nature of the network traffic leading to significantly biased
estimation and degraded synchronization accuracy when the
forward and reverse paths are asymmetric (unequal) [12].

This paper proposes a novel path asymmetry (PA) esti-
mation scheme for packet-switched networks without on-path
timing support using denoising autoencoders (DAEs), which
are trained to accurately reconstruct PA information at the
PTP slave side from corrupted observations. The proposed
scheme can be combined with model-based phase and skew
estimators to improve the synchronization accuracy by com-
pensating for the PA-induced bias inherent in model-based
estimates. Moreover, it can be flexibly generalized across
implementation scenarios given its data-driven nature. Using
simulation and industry-standard workloads, we demonstrate
that the proposed scheme achieves high estimation accuracy
compared with existing approaches.

The reminder of the paper is structured as follows: section
Il gives an overview of the synchronization related work,
followed by the synchronization mathematical model based
on the PTP messages in section III. The proposed DAE based
PA estimation technique for pre-processing is discussed in
Section IV, followed by the analysis and the results in section
V. Section VI is devoted to the conclusions of this work.

II. RELATED WORK

Given its detrimental impact on synchronization accuracy
[13], several works targeted PA estimation and mitigation
[14]-[18]. [14] estimates path biases based on the assumption
of a gamma-distributed queuing delays with a-priori known
parameters. By contrast, our proposed solution is data-driven
and not limited by distribution assumptions that might be
violated in practice. [16] proposes an asymmetry mitigation
technique for a PTP-aware network. PTP-aware networks have
the ability to reduce the effect of the network queuing-induced
packet delay variations (PDVs) using specialized nodes with
timing support including boundary clocks (BCs) and transpar-
ent clocks (TCs) [19]. Although such enhancements increase
the synchronization accuracy, PTP-aware networks incurs ex-
tra cost. Henceforth, our proposed solution is less restrictive
and can be implemented on commodity ethernet networks
without on-path timing support (PTP unaware networks).

A recursive path asymmetry estimator is proposed in [15]
based on finite difference of exchanged timing messages. The
technique can accurately estimate the inter-sample change
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in PA. However, it is biased by the initial recursion PA
value that is unknown and assumed zero. In [18], a joint
maximum-likelihood estimator of phase and skew under path
asymmetries caused by unknown deterministic propagation
delays as well as random queuing delays was proposed, where
a key component of the approach is to empirically estimate
the queuing-delay distribution using Gaussian-Mixture Models
(GMMs). Rather than tackling phase/offset estimation, our
work can be considered as preprocessing technique that es-
timates and removes PA from timing measurements prior to
the phase/skew estimation.

Estimating phase/skew in PTP-based synchronization was
adapted by several works using Kalman Filtering [10], [20],
likelihood estimation [21], [22], linear programming [9], [23],
[24] and machine learning [25]. These works can be coupled
with pre-processing techniques to reduce estimator input vari-
ance by filtering out PDVs [8], [26], [27] or by eliminating
other noise and error factors such as temperature variations
[28], and some of these techniques were analyzed by [13]
for lightly loaded network scenarios. Our technique can be
complementary to all of the above, where the estimated PA
signal can update the extracted timing information from the
PTP prior to further processing of the information.

III. SYSTEM MODEL

Consider Fig. 1, which illustrates a simplified view of a PTP
message exchange. The master initiates a message on the for-
ward link, which contains a master’s clock timestamp. Upon
arrival, the slave clock generates a corresponding reception
timestamp. We denote by 17 ,, and 75 ,, the forward-link mas-
ter transmission and slave reception timestamps, respectively,
where n is a non-negative message-exchange index.

Subsequently, the slave sends a response message that
results in reverse-link timestamps corresponding to the slave
transmission and master reception times, which are denoted as
T3, and T} ,,, respectively. Note that in practice, To ; ~ T3 ;,
for any j, since the message processing delay is relatively
negligible. The set of timestamps {77 1, T2,n, T35, Ta,n } Will
be available at the slave side provided the message exchange
is completed in the correct order.

The master-slave clock model is an affine relation parame-
terized by an intercept 6y, which is a fixed and time-invariant
phase offset, and a time-varying slope « (skew) representing
the rate of change of the phase error vs time [7]. The relation
between the forward path timestamps can be expressed as:

Tl,n = 90 =+ (]- + an)TQ,n - df,n ) (1)

where dy,, denotes the delay experienced by the packet in the
forward path. Similarly, we can model the relation between
the reverse path timestamps as:

T4,n = 90 + (1 + an)T3,n + dr,n ) (2)

where d,.,, is the reverse-path packet delay. Note that both d ,,
and d, , encompass a fixed propagation delay component, as
well as random queuing delay components dependent on path
traffic conditions. Adding (1) and (2), we obtain:

(Tin — Ton)+(Tan — Ts,n)
=200+ an(Ton + Tsn) + (drn — dfn)
=0, + Ad,,
(3)

where 0,, represents the instantaneous value of the phase error
growth due to the initial phase offset 6y and skew «,, and the
path asymmetry, which is given by:

Adn = dr,n - df,n . (4)

Note that (3) resembles the measurement equations used in
[11, [9], [10], [20], which typically assume path symmetry
(Ad,, = 0) and estimate 6,, using timestamp measurements
(LHS of (3)). However, in practice path symmetry cannot be
assured due to the random nature of queuing delays, leading
to biased skew and offset estimates. For Kalman-Filtering
based methods, it can be shown that the synchronization
error contribution of path asymmetry is %. Based on ex-
perimentally generated data using a setup described in the
sequel, Ad,, values range approximately between —100, 000
and 89, 000 nanoseconds, with an arithmetic mean of —10, 751
nanoseconds. These Ad,, values can introduce orders of mag-
nitude of synchronization errors, which violates application
specifications especially in mobile networks requiring sub-
microsecond accuracy [4]. Estimating Ad,, and removing it
from the measurement equation is therefore a key to maximize
synchronization accuracy.

IV. PROPOSED PA-ESTIMATION SOLUTION

Machine learning has been used previously in communi-
cation networks [29], [30] and our proposed novel approach
extend its use to cover network traffic based asymmetry recon-
struction. The proposed solution is illustrated in Fig. 2. Rather
than directly passing timestamp measurements expressed in
(3) to the phase/skew estimation algorithm, we propose a
preprocessing stage that produces a cleaned version through
the estimation and removal of Ad,,, which is carried out using
a Machine Learning approach that involves (1) the detection
of the occurrence of a known PA pattern, followed by (2)
the reconstruction of the PA pattern from noisy observations
using Convolutional Denoising Autoencoders (CDAEs), where
the scope of this paper will focus on the CDAE-based recon-
struction part.

Denote by p € R a known time-series asymmetry pattern
with values p = Ad; : j € [k, k+ N —1]. We assume in this
work that known patterns are found using offline profiling of
network traffic data, and can be detected in realtime using an
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Fig. 2. Proposed full solution

appropriate machine learning algorithm. When it occurs, the
slave can only observe p through timestamp measurements that
include the path asymmetry as well as instantaneous phase
values as expressed in (3). Hence, we define the corrupted
pattern observation as p, where

P=Ad;+6; : jelk,k+N-1] 5)

Using DAEs, we seek to reconstruct the original path asym-
metry vector p by denoising p; namely removing the instan-
taneous phase 0j components.

A. Denoising Autoencoder for PA Reconstruction

Denoising Autoencoders (DAEs) are variants of autoen-
coders that are trained with noisy versions of the original data,
and the task of the DAE is to learn a function for recovering
the original signal from noisy observations [31], [32]. DAEs
can be thought of as consisting of two functions: (), which
encodes the input by mapping to a lower dimensionality
space, and x(), which decodes or reconstructs the output of
the encoding function (). The DAE encoding and decoding
processes can be represented as follows:

P(p) = o(w*p+0b) 6)

p* =x® (D) = o(w*$(p) +b) @)

where wx + b represents the affine mapping performed by
each of network nodes with a weight of w and a bias of b,
* represents the convolution operation and o() refers to the
nonlinear (activation) operation.

By feeding the corrupted asymmetry pattern p to the DAE,
it aims to learn a representation that reconstructs the original
pattern p by undoing the corruption effects. If we denote by £
a loss function penalizing input difference [31], the aim of the
DAE training procedure is to minimize the objective function:

L(p,x(4(p))) ®)

As a loss function one can use the Mean Absolute Percentage
Error (MAPE) and its definition will be recalled in the next
Section. In the training process, the data set is fed to the
DAE and the error between the original p and reconstructed
pattern p* is iteratively minimized using back propagation
until convergence to an acceptable reconstruction error [31],
[32].

For this work, a convolutional DAE has been selected fol-
lowing the architecture shown in Fig. 3 for a vector length of
64. The rectified linear unit (ReLU) in the figure represents the
activation function used in the layers, where mathematically its
output y can be defined as function of its input = as following:
y = max {0, z}

D2 — Output
El - E2 E3 - D1
Up Sampling(2)
Conv (relu, 64,5
?\2:; éﬁﬁngé? ( ) Conv (relu, 1,5)
D1 - D2
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Con\y(relu, 16,5) Conv (relu, 64,5) Conv (relu, 32,5)
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E2 E3 D1
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Fig. 3. Architecture of the Convolutional DAE (input vector = 64)

B. Path Asymmetry Preprocessing

At the output of the DAE, we obtain a DAE-reconstructed
PA vector represented as:

p*=[Ad] Ady -+ Ady]T ©)

The aperiodicity of DAE-based estimates prohibits their
direct utilization in a uniform-sampling rate systems such
as offset and skew estimation algorithms. Accordingly, to
leverage p* in PA preprocessing, we propose a hybrid approach
by combining it with the recursive PA estimator in [15].

The core of the recursive PA algorithm in [15] is finding
the integral of the finite queuing differences for each indi-
vidual path. The finite queuing difference between any two
consecutive messages in the forward direction ddy and reverse
direction dd,. can be found as following:

0dgn =14 an)dTon —6T1, (10)

0dy .y = 6Ty p — (14 0y)0T5 1, (11)

where 61}, ;, = Tpm,k —Tm,k—1. The previous equations lead
to a delay estimation d for any sample n, represented as:

dfn = dfn+8dsn (12)
dr,n = dr,n—l =+ 5dr,n‘ (13)
The recursive estimator output Ad = (fr,n = df,n is

subtracted from the measurement equation (3), under the
assumption that the start of the recursion Ady = 0. This yields
to a biased estimation by the actual value of Adgy. Arbitrary
initialization of the recursion amounts to random sampling
of the asymmetry distribution, which can yield significant
bias. Thus, through the proposed hybrid approach, DAE-
based estimation can provide accurate initial conditions for
the recursion, namely Adg, resulting in an overall enhanced
synchronization performance.



V. SYSTEM EVALUATION AND RESULTS

To validate the suggested approach, two test cases defined
by the International Telecommunication Union (ITU), Rec-
ommendation G.8261, of traffic profiles that standardize IEEE
PTP device testing from a traffic load perspective [33] were
used. The test cases can be summarized as follows:

e fcl3: represents a network with sudden and big changes
in the load conditions. The forward path of tcl3 starts
with a background cross-traffic of 80% for 1 hour, then
fluctuates between 20% and 80% with equal period of
1 hour each. The reverse path for the same test case
background traffic starts at 50% for 1.5 hours, then
fluctuates between 10% and 50% with equal period of
1 hour each except for the last segment to assure equal
length with the forward path.

e fcl4: represents a network with a large slow-varying load,
where both the forward and reverse paths vary over a 24-
hours period, however, the background cross-traffic is on
different ranges where the forward direction changes with
slow rate from 20% to 80% then back, and the reverse
changes from 10% to 55% then back.

The network delay profile associated with each test case was
generated experimentally by injecting the traffic into a network
of 10 switches connected based on the ITU-T G.8261 setup,
and capturing a trace of inter-packet arrival times experienced
in both the forward and the reverse paths.

A. DAE Simulation and Training

To simulate and train the designed CDAE, we utilize tools
based on standard open source libraries: Keras [34], which
is built on TZensorflow backend [35], and sklearn [36]. As
highlighted is section IV, the proposed technique is based
on denoising known/reference asymmetry patterns. In this
work, we arbitrarily select 30 reference patterns from each
of tcl13 and tcl4 time series since the focus is evaluating
the denoising CDAE performance rather than reference-pattern
discrimination. Each reference pattern is a vector of length 64
following downsampling by a factor of 5000. Fig. 4 illustrates
reference pattern examples from tc13 and tc14, respectively. To
evaluate the denoising performance of the CDAE, we trained
two independent CDAE models one for each test case and with
30 different reference patterns each. The selected patterns were
corrupted with a fixed initial offset 8y and skew « values from
a uniform distributions observed based on experiments, where
o is assumed to be constant during the capturing window. The
sampling rate of both patterns is 128 messages per second,
which corresponds to one of the standard packet rates in the
PTP synchronization protocol. Examples of training samples
from tc13 and tc14 are shown in Fig. 5.

All the selected parameters for the training phase of the
autoencoder are listed in table I. The loss function £ is set as
the mean absolute percentage error function defined as :

100%

MAPE =
In addition, the created data set was divided between
training and validation with a ratio of (9:1). The associated

(yi — 93)
Yi

(14)
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Fig. 4. Training Reference Patterns Examples
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Fig. 5. Examples of Training Samples from tc13 and tc14

number of samples with each of these sets is presented in the
table below.

Fig. 6 illustrates the training and validation loss as a function
of the number of epochs, focusing on 100 epochs, where it is
clear that the convergence is achieved.

B. Asymmetry Estimation Results

To illustrate the improved estimation performance of the
proposed machine learning approach, we integrate it with
the recursive estimator discussed in [15] as described in
section IV then compare the error estimation of the proposed
hybrid approach with the recursive estimator as a baseline.
The integrated machine learning approach with the recursive
estimator is referred as the proposed hybrid ML-recursive



TABLE I

TRAINING PHASE PARAMETERS

Parameter Selected Value
Number of epochs 500
Total number of samples 600000
Training samples 540000
Validation samples 60000
Batch size 512

Range of training skew
Range of training offset
Loss Function

Uniform Distribution [—6e — 8, 6e — 8]
Uniform Distribution [—50000, 50000]
Mean Absolute Percentage Error

Optimizer ADAM
Autoencode loss tc13 Autoencode loss tc14
25 = validation loss a0 =~ validation loss
= training loss 35 = training loss
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Fig. 6. Loss Function for the DAE Model, x-axis Range of (0-100 epochs)

b. tcl4 pattern autoencoder

estimator. The error metric we use is the percentage of the
absolute normalized error e defined as:

(Ad; — Ad;)

e = 100% Ad,

5)

For the baseline recursive estimator, we evaluate the per-
formance using a range of initial recursion (bias) conditions
based on the selected pattern. For the proposed hybrid ML-
recursive estimator, we evaluate the performance using a range
of initial bias conditions drawn from the reconstructed pattern,
as well as a range of the phase shift values 6y and skew «
that are outside of the training set. Fig. 7 plots the empirical
cumulative distribution function (CDF) of the normalized
error of the baseline and the proposed hybrid ML-recursive
estimator respectively for both tc13 and tcl4, where each
test include 4 different combinations of 6y and « values. It
is apparent that, for both test cases, the performance gets
significantly improved by the ML approach, since 75% of the
error distribution is concentrated in 30% error. For the same
error percentage, the baseline algorithm managed to estimate
less than 40% of the data. From these results it is also shown
that tc13 results were better than tcl4, this may depend on
the pattern characteristics, however, the impact of different
characteristics on the learning process is outside the scope
of this paper. The results in Fig. 7 has confirmed that when
compared with the baseline algorithm, the proposed CDAE
managed to enhance the PA estimation accuracy.

C. Generalization of the Proposed Technique

To examine the generalization of the proposed solution, the
tc13-trained CDAE was tested for new patterns that are outside
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Fig. 7. CDF of the Baseline and Proposed Algorithms of an Absolute
Normalized Error for Both Systems with a x-axis Range of (0 — 50%)
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the training set, corrupted with offset 8y and skew « that were
also not covered during the training. The CDF associated with
3 different new patterns is shown in Fig. 8 .

The results in Fig. 8 demonstrate the effectiveness of the
method and its ability to reconstruct different signals using
the same computational power. This supports the conclusion
that the proposed solution is applicable in general and that
the DAE can be trained and implemented for different ob-
served patterns from the network (rather than implementing a
dedicated autoencoder for each of the possible patterns which
might not be practical).



