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Abstract
Purpose  People with drug-refractory epilepsy are potential candidates for surgery. In many cases, epileptogenic zone locali-
zation requires intracranial investigations, e.g., via ElectroCorticoGraphy (ECoG), which uses subdural electrodes to map 
eloquent areas of large cortical regions. Precise electrodes localization on cortical surface is mandatory to delineate the 
seizure onset zone. Simple thresholding operations performed on patients’ computed tomography (CT) volumes recognize 
electrodes but also other metal objects (e.g., wires, stitches), which need to be manually removed. A new automated method 
based on shape analysis is proposed, which provides substantially improved performances in ECoG electrodes recognition.
Methods  The proposed method was retrospectively tested on 24 CT volumes of subjects with drug-refractory focal epilepsy, 
presenting a large number (> 1700) of round platinum electrodes. After CT volume thresholding, six geometric features of 
voxel clusters (volume, symmetry axes lengths, circularity and cylinder similarity) were used to recognize the actual elec-
trodes among all metal objects via a Gaussian support vector machine (G-SVM). The proposed method was further tested on 
seven CT volumes from a public repository. Simultaneous recognition of depth and ECoG electrodes was also investigated 
on three additional CT volumes, containing penetrating depth electrodes.
Results  The G-SVM provided a 99.74% mean classification accuracy across all 24 single-patient datasets, as well as on the 
combined dataset. High accuracies were obtained also on the CT volumes from public repository (98.27% across all patients, 
99.68% on combined dataset). An overall accuracy of 99.34% was achieved for the recognition of depth and ECoG electrodes.
Conclusions  The proposed method accomplishes automated ECoG electrodes localization with unprecedented accuracy and 
can be easily implemented into existing software for preoperative analysis process. The preliminary yet surprisingly good 
results achieved for the simultaneous depth and ECoG electrodes recognition are encouraging.
Ethical approval n°NCT04479410 by “IRCCS Neuromed” (Pozzilli, Italy), 30th July 2020.

Keywords  Epilepsy surgery · ElectroCorticoGraphy · Electrodes recognition · CT image processing · Shape analysis · 
Gaussian Support Vector Machine

Introduction

Epilepsy affects 39 to 50 million people worldwide [1, 2], 
about 3–10 per 1000 [1]. Of these, 30–40% are drug-resist-
ant and need alternative treatments [2]. Drug-refractory 
patients with focal epilepsy represent potential candidates 
to surgical treatment, which consists in the resection of the 
epileptogenic zone, defined as the site of the beginning of 
the epileptic seizures. A Cochrane review reported that 65% 

of about 16,000 patients had a good outcome from surgery 
[1], but it strongly depends on accurate localization of the 
seizure onset zone [3]. In about 70% of patients, the localiza-
tion is achieved by combining neuroimaging techniques with 
noninvasive electrophysiological recordings, such as Elec-
troEncephaloGraphy (EEG) [1]. However, EEG does not 
provide very accurate location of the epileptogenic zone, and 
especially for drug-resistant epileptic patients, invasive elec-
trophysiological investigations should be carried out. Elec-
troCorticoGraphy (ECoG) is the most widespread technique 
to acquire intracranial EEG and is performed by implanting 
subdural electrodes directly onto the patient’s brain surface 
[4]. Compared to the EEG electrodes applied on the scalp, 
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the subdural electrodes provide a signal with a much higher 
resolution and allow a very clear view of the small activity 
foci [5]. Subdural electrodes allow not only the localiza-
tion of abnormal epileptic tissue, but also the localization of 
adjacent normal functions. Therefore, the precise anatomical 
localization of the electrodes on the patient’s brain plays a 
key role in the definition of the epileptogenic zone [6] or in 
the mapping of eloquent cortex [7]. From a clinical point of 
view, the accurate localization of the anatomical boundaries 
of the epileptogenic zone allows excluding eloquent areas, 
avoiding deficits to patient and minimizing brain volume 
resection. The localization of these electrodes is generally 
obtained by matching the locations of the electrodes with the 
brain anatomy of the patient [8].

Commonly, a pre-implant magnetic resonance image 
(MRI) is co-registered to a post-implant computed tomog-
raphy scan (CT) [9, 10], because MRI offers higher brain 
tissue contrast, while CT supports electrodes localization 
[5], even if CT images are affected by metal artifacts.

Various dedicated software tools that support pre-surgical 
evaluation are currently available as MATLAB-based pack-
ages or open-source software, also with graphical user inter-
faces. They mainly provide MRI-CT co-registrations and 
offer only basic features for recognition of ECoG electrodes 
from CT scans. Synoptic Table 1 reports the most recent 
software tools, also outlining their main features and limi-
tations for electrodes localization. Most software segments 
the electrodes via simple image thresholding and requires 
manual interaction to correct the data. Manual methods are 
very time-consuming, user-dependent and prone to inaccu-
racy. On the other hand, the mere CT image thresholding 
method is not able to recognize all the electrodes and to 
completely exclude other metal objects, such as wires, tooth 
fillings, intracranial clips, splinters, stitches, hearing aids 
and intracranial stents. Hence, manual intervention is often 
required to adjust the data. The ALICE tool, proposed in 
[11], considers the volume of segmented clusters to identify 

the electrodes, but turned out to be unable to exclude other 
objects with comparable volumes (e.g., wire clusters).

This paper presents a novel, more robust, automated 
method to recognize ECoG electrodes in CT volumes. 
It consists of identification of metal objects and analysis 
of their shapes to recognize ECoG electrodes among all 
detected objects and provide their locations. The proposed 
approach can be easily implemented in existing tools.

Materials and methods

Patients cohorts

Neuromed database

Head CT scans of 24 patients (10 females and 14 males, 
age 35.4 ± 9.25 years) undergoing epilepsy surgery were 
provided by the “IRCCS Neuromed” (Pozzilli, Italy) and 
included in this study. Before the acquisition of CT scans, 
patients underwent craniotomy and ECoG electrodes were 
placed onto their brain surface. CT images were acquired by 
a General Electric LightSpeed Pro 16 Multi-Slice scanner. 
RX tube parameters were set to 120 kV, 600 mA for a total 
of 37 mAs. The CT gantry was not tilted. The pixel size 
ranged from 0.44 to 0.98 mm, and the slice thickness was 
0.625 mm.

Flexible ECoG electrode arrays (Ad-Tech Medical Instru-
ment Corporation, 400 West Oakview Parkway Oak Creek, 
WI 53,154 USA) were used. Each electrode consisted of 
a platinum–iridium disc with a diameter of 4 mm and a 
thickness of about 0.5 mm. Electrodes inter-distances were 
10 mm (nominal center-to-center spacing). Electrode arrays 
were embedded in flexible sheets and arranged either in 
strips or grids (see Fig. 1). The strips contained 4 (Fig. 1a), 
6, 8 or 12 electrodes, while the grids were composed of 
matrices of 8 × 8 (Fig. 1b) or 6 × 8 electrodes. They were 

Table 1   List of software tools for epilepsy pre-surgical evaluation and their approach for electrodes recognition

Reference, name Proposed approach Limitations

[10] Manual + threshold It is time-consuming and operator-dependent
[6] Threshold Other metallic objects are not excluded
[8] Threshold It requires the neurosurgeon to previously estimate trajectories and target points
[12] Threshold It is not successful in the presence of nearby wires, skull artifacts or overlapping electrodes
[13, 14], iELVis, 

BioImage 
Suite

Manual + threshold It is time-consuming and operator-dependent

[15], iElectrodes Manual + threshold It requires manual selection of electrode voxels and not-electrodes objects must be manually removed
[11], ALICE Threshold + clustering It requires manual selection of overlapping or missing electrodes
[16] Threshold It is time-consuming and a semi-manual identification of each electrode centroid must be performed 

by an expert user
[17], iEEGview Threshold + manual It requires manual electrodes identification to obtain their 3D coordinates
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conveniently placed where needed, onto the frontal, tem-
poral or parietal cortex. Electrodes were connected to the 
recording device via CABRIO or TECH-ATTACH cables, 
ending with standard 1.5 mm safety socket DIN connec-
tors. Grid electrodes enclosed a platinum marker to identify 
electrode numbered as 1 (see Fig. 1b). Table S1 (the current 
table and all the subsequent ones are available in supplemen-
tary materials) shows the number of implanted electrodes, 
strips, grids and other metal objects per patient.

As an example, Fig. 2 shows a 3D rendering (Fig. 2a) 
of the CT volume of Neuromed patient #15, along with the 
axial (Fig. 2b), sagittal (Fig. 2c) and coronal (Fig. 2d) cut 
planes. ECoG electrodes are indicated by red arrows.

Mayo database

A smaller patient cohort from a database of CT volumes, 
made available by Mayo Clinic (200 First St. SW Rochester, 
MN 55,905, USA) on the IEEG public repository [18], was 
also considered. In particular, only the studies feature a com-
plete head volume and a resolution comparable to electrodes 
size. The CT volumes including only ECoG electrodes were 
first considered in the analysis, that is, the ones with Mayo 
patient IDs #12, #16, #20, #22, #26, #28, #31 (two females 
and five males, age 17.4 ± 13.8 years).

Moreover, the CT volumes with penetrating depth elec-
trodes (arrays of coaxial sleeve-shaped electrodes arranged 
on a thin tip) were also considered, i.e., the ones with Mayo 
patient IDs #5, #17, #27 (one female and two males, age 
33.0 ± 6.56 years). In particular, the first two include only 
depth electrodes, while the third includes both depth and 
ECoG electrodes. Table S2 reports the number of implanted 
ECoG electrodes, strips, grids, depth electrodes, depth con-
tacts and other metal objects per patient.

Electrodes recognition workflow

Figure 3 shows the workflow of the proposed automated 
method for electrodes recognition. A first preprocessing 
stage is implemented to identify all the metal objects within 
the CT volume. Afterward, a shape analysis is performed to 
recognize the actual electrodes among all the metal objects 
previously detected. The subsequent paragraphs explain the 
steps of the proposed method in details. In this study, all the 
described steps were performed in MATLAB®.

CT pre‑processing

The CT volumes were first re-sampled via a cubic inter-
polation, to obtain a cubic voxel of 0.5 mm side, which 

Fig. 1   Sketch of the ECoG electrodes arrays: a Strip of 4 electrodes; b Grid of 8 × 8 electrodes (www.adtec​hmedi​cal.com, Catalog #: IS04R-
SP10X-000, Catalog #: FG64C-SP10X-0C6)

http://www.adtechmedical.com


546	 International Journal of Computer Assisted Radiology and Surgery (2021) 16:543–554

1 3

makes the geometric features rotationally invariant. Then, 
a thresholding on radiodensity values (Hounsfield Units, 
HU) was performed to detect the metal objects within the 
CT volume. As shown in Fig. 3, all metal objects with 
high attenuation coefficients were identified by using 
an HU threshold of 2500. (It is greater than the typical 

HU values of compact bone.) This operation identified 
the electrodes, but also wires, stitches, connectors, metal 
dental fillings. Therefore, the thresholding was not able 
to selectively identify the electrodes. A large part of the 
wires and stitches were located outside patients’ head.

Fig. 2   CT volume of Neuromed 
patient #15: a 3D rendering, 
b–d axial, sagittal and coronal 
cut planes. The red arrows point 
to electrodes. In the 3D render-
ing both an 8 × 8 grid electrodes 
and some strip electrodes are 
clearly visible. Cranium cuts 
are clearly recognizable in the 
axial view

Fig. 3   Workflow of the proposed automated method for electrodes recognition
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Shape analysis

The binary volumes obtained after the thresholding were 
processed to identify clusters of six-connected voxels (i.e., 
with at least six faces attached to another voxel above the 
threshold). Then, a shape analysis of these binary clusters 
was carried out to separate the electrodes from the other 
metal objects. Six geometric features were extracted for 
each cluster of voxels: (1) Volume; (2) Primary axis length; 
(3) Secondary axis length; (4) Tertiary axis length; (5) Cir-
cularity and (6) Cylinder similarity. The volume, primary, 
secondary and tertiary axes lengths were computed via the 
MATLAB® function “regionprops3,” which also provided 
the 3D coordinates of centroids belonging to each cluster 
of voxels. The volume is defined as the number of voxels 
belonging to the cluster. The primary, secondary and ter-
tiary axes lengths (sorted from the highest to the lowest) 
correspond to those of an ellipsoid that entirely comprises 
the cluster [19]. The circularity describes the roundness of 
a cluster and is defined as:

The cylinder similarity indicates how similar the cluster 
is to a cylinder with a diameter equal to the average of pri-
mary and secondary axes lengths, and the height equal to the 
tertiary axis length. It is defined as:

The electrodes essentially have the shape of a consider-
ably flattened cylinder (like a small coin), therefore, they 
should have circularity and cylinder similarity both equal to 
1; on the contrary, the circularity and cylinder similarity of 
threads and sutures segments, which have an elongated and 
potentially curved shape, should exhibit substantial devia-
tions from unity.

The shape analysis is divided in two steps (see Fig. 3), 
namely the geometric features extraction and the classifica-
tion. The former is aimed at extracting the considered geo-
metric features for each of the metal objects within the CT 
volume, as well as their centroids, and organizing them in a 
proper dataset; the latter takes such dataset as input and pro-
vides the predicted class for all considered objects as output. 
A training phase is usually required for a classifier to achieve 
good performances and demands the a priori knowledge of 
the true class for each object. Indeed, this is required by 
the classifier to learn the optimal criteria for discriminating 
between instances of different classes.

(1)Circularity =
primary axis length

secondary axis length

(2)
Cylinder − similarity =

(

primary axis length+secondary axis length

4

)2

⋅ � ⋅ tertiary axis length

volume

In practice, before being able to use the proposed method 
to automatically recognize electrodes, the construction of 
a training dataset via feature extraction and manual clas-
sification, as well as the classifier training are mandatory. 
To this aim, a distinct dataset was built for each patient, 
with rows corresponding to all metal objects within the CT 
volume, and columns to the six geometric features and a 
manually assigned class. By considering the 24 Neuromed 
single-patient datasets, and the seven Mayo single-patient 
datasets including only ECoG electrodes (Mayo patient IDs 
#12, #16, #20, #22, #26, #28, #31), two classes were con-
sidered: “ECoG” and “Non-electrode”. Moreover, for the 
two Mayo single-patient datasets including only depth elec-
trodes (Mayo patient IDs #5, #17), the two classes were: 
“Depth” and “Non-electrode.” Finally, in case of the Mayo 
single-patient dataset with both ECoG and depth electrodes 
(Mayo patient ID #27; 12 depth electrodes, 35 ECoG elec-
trodes and 92 non-electrodes), three classes were taken into 
account: “ECoG”, “Depth” and “Non-electrode”. “ECoG” 
and “Depth” classes were assigned to the actual electrodes, 
while the “Non-electrode” class was assigned to all the other 
metal objects detected (screws, cables, etc.).

Furthermore, combined datasets were also built and 
named as:

•	 “C1” (1753 ECoG electrodes, 17928 non-electrodes) 
obtained by joining all Neuromed single-patient datasets;

•	 “C2” (531 ECoG electrodes and 4848 non-electrodes) 
obtained by joining the seven Mayo single-patient data-
sets containing ECoG electrodes (IDs #12, #16, #20, #22, 
#26, #28, #31);

•	 “C3” (32 depth electrodes, 531 ECoG electrodes and 
5970 non-electrodes) obtained by joining the seven Mayo 
single-patient datasets containing ECoG electrodes (IDs 
#12, #16, #20, #22, #26, #28, #31) and the two Mayo 
single-patient datasets containing depth electrodes (IDs 
#5, #17).

A Gaussian support vector machine (G-SVM) [20] was 
used as a classifier to discriminate between the considered 
classes and its classification performances were assessed by 
applying the tenfold cross-validation on each single-patient 
and combined dataset. In tenfold cross-validation, the data-
set is randomly divided into ten subsets of equal size, and 
then each subset is tested using the classifier trained on the 
remaining nine subsets. Then, the obtained ten classification 
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accuracies are averaged to provide an overall classification 
accuracy [20].

Further analyses were carried out by using completely 
distinct datasets for classifier training and testing (i.e., with-
out using the tenfold cross-validation on the same dataset). 
First, the feasibility of recognizing ECoG electrodes in CT 
volumes of a medical center by using a classifier trained on 
data acquired from another center was investigated. To this 
aim, a G-SVM classifier was trained on the combined dataset 
C1 and tested on the single-patient datasets with Mayo IDs 
#12, #16, #20, #22, #26, #28, #31. Finally, the three-class 
classifier trained on the combined dataset C3 was tested on 
the Mayo single-patient dataset ID #27.

Results

Descriptive statistics of geometric features 
on Neuromed database

As an example, Fig. 4 shows some details renderings from 
the CT volume of Neuromed patient #15, obtained after the 
thresholding operation. Figure 4a clearly shows a grid of 64 
electrodes (note the platinum marker between the top elec-
trode and the next lower left), other two electrodes below the 
grid, as well as some wires and stitches, which hinder simple 
automatic electrodes recognition. Figure 4b, c shows strips 
of 12 and 4 electrodes, respectively. Figure 4d clearly shows 
a bundle of some wires, while Fig. 4e shows various stitches.

The following information was extracted to obtain sta-
tistics on voxels clusters that represent the electrodes. Each 
cluster actually corresponding to an electrode was manu-
ally selected (e.g., those represented in Fig. 4c) for a total 

number of 1753 electrodes. Thirteen electrodes turned out 
to be fused with other electrodes or structures and were dis-
carded. In detail, for Neuromed patient #4, #5, #11, #22, two 
electrodes were partially placed one above the other; this 
overlap generated a unique, larger cluster comprising both 
electrodes. Also, in the case of Neuromed patient #9, one 
electrode belonging to a grid and another one belonging to 
a strip were superimposed (see Fig. 5).

Table S3 outlines the descriptive statistics (mean; stand-
ard deviation; minimum, 25th percentile; median, 75th per-
centile; maximum) of the six considered geometric features 
of ECoG and non-electrode classes.

Figure 6 depicts the compared box and whiskers plots of 
each of the ECoG and non-electrodes features, while Fig. S1 
(available in the supplementary materials) shows the occur-
rence histograms of each of the six considered geometric 
features for the ECoG class.

Performances of shape analysis for electrodes 
recognition

ECoG electrodes from Neuromed datasets

Table  S4 shows the classification accuracies obtained 
by the G-SVM on each Neuromed single-patient dataset. 
The average classification accuracy across all patients was 
99.74% (SD: 0.2967%), the related confusion matrix (right 
and wrong average recognition percentages across all 24 
patients) is shown in Fig. 9a, and both the false negatives 
and false positives per patient are reported in Table S5.

The classification accuracy achieved by the G-SVM 
on the combined dataset C1 was 99.74% and the related 

Fig. 4   Renderings from the CT volume of Neuromed patient #15 after thresholding (HU > 2500): a 64 electrode grid, two more electrodes and 
other structures (e.g. wires); b 12 electrodes strip; c 4 electrodes strip; d bundle of electrode wires; e stitches or clips next to each other
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confusion matrix (right and wrong average recognition per-
centages) is shown in Fig. 9b.

As an example, Fig. 7 shows the case of a metal agglom-
erate, made up of a metal screw, mistakenly classified as 
an electrode (false positive) in the Neuromed single-patient 
dataset #21.

Table  S6 outlines the classification performances 
accomplished on the combined dataset C1, by using a 
G-SVM with different features combinations. The “vol-
ume” feature was considered as the most representative of 
an ECoG electrode, and for this reason was always taken 
into account. The highest classification accuracy (99.74%) 
was achieved on the combined dataset C1 by considering 
all features. It is worth noticing that all analyzed feature 

combinations achieved classification accuracies in excess 
of 99%, except for the classification based on the volume 
alone.

ECoG electrodes from Mayo clinic datasets

Table S7 shows the classification accuracies obtained by the 
G-SVM classifier on each of the seven Mayo single-patient 
datasets (Mayo patient IDs #12, #16, #20, #22, #26, #28, 
#31). The average classification accuracy across all patients 
was 98.27% (SD: 1.971%), the related confusion matrix is 
shown in Fig. 9c, and both the false negatives and false posi-
tives per patient are reported in Table S8.

Fig. 5   Example of overlapping electrodes (false negative): a 3D 
volume rendering of the CT volume of Neuromed patient #9; b The 
overlapping of one electrode belonging to a grid and another one 

belonging to a strip generates a unique cluster, classified as a single 
electrode; c Magnification of panel b showing the two overlapped 
electrodes

Fig. 6   Box and whiskers plots of the geometric features of electrodes 
and non-electrodes. The continuous lines within the boxes indicate 
the median values, the lower and upper boxes limits indicate the 25th 

and 75th percentiles, and the whiskers lengths indicate the maximum 
and minimum values
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The G-SVM achieved a classification accuracy of 
99.68% on the combined dataset C2, and the related con-
fusion matrix is shown in Fig. 9d.

Table  S9 outlines the classification performances 
achieved on the combined dataset C2 by considering dif-
ferent features combinations. The highest classification 
accuracy (99.68%) was achieved on the combined data-
set C2 by considering all features. All analyzed features 
combinations achieved classification accuracies in excess 
of 99%, except for the classification based on the volume 
alone.

Table  S10 outlines the classification performances 
achieved by testing, on the seven Mayo single-patient data-
sets (IDs #12, #16, #20, #22, #26, #28, #31), a G-SVM 
classifier that had been previously trained on the combined 
dataset C1. The average classification accuracy across all 
patients was 98.94% (SD: 0.9932%), and the related confu-
sion matrix is shown in Fig. 8.

Depth and ECoG electrodes from Mayo datasets

The first test for depth and ECoG electrodes recognition 
was carried out on the combined dataset C3. The three-class 
G-SVM achieved an accuracy of 99.34%, as well as a sensi-
tivity of 93.75% and 97.93% and a specificity of 99.86% and 
99.63%, for depth and ECoG electrodes, respectively. The 
related confusion matrix is shown in Fig. 9e.

A final test was carried out on the Mayo single-patient 
dataset #27, which had not been used for the previous clas-
sifier training. The G-SVM classifier, previously trained on 
the combined dataset C3, achieved an overall accuracy of 
95.68%, as well as a sensitivity of 83.33% and 97.14%, and 
a specificity of 100.0% and 97.06%, for depth and ECoG 
electrodes, respectively. The related confusion matrix is 
shown in Fig. 9f.

Discussion and conclusions

This study focused on the specific task of automated 
ECoG electrodes recognition from CT volumes. Cur-
rently, only basic automated algorithms are available 
for this task, which are based on thresholding methods. 
Indeed, electrodes exhibit higher radiodensities than com-
pact bone, which facilitates their detection by applying 
a proper threshold on HU values. However, other metal 
objects (e.g., stiches, clips, connecting wires of electrodes) 
exhibit such high HU values too, thus impairing electrodes 
recognition. Moreover, it is well-known that any metal 
object causes streak metal artifacts on CT images, which 

Fig. 7   Example of a metallic agglomerate mistakenly classified as an 
electrode (false positive): a 3D volume rendering of the CT volume 
of Neuromed patient #21; b Metal objects detected in the image pro-

cessing phase; c Magnification of panel b showing the metallic screw 
(the topmost element in the rectangle)

Fig. 8   Confusion matrix, averaged across all patients, presenting the 
classification accuracies (in percentages) achieved on the datasets 
with Mayo patient IDs #12, #16, #20, #22, #26, #28, #31, by using 
a G-SVM classifier trained on the combined dataset C1 (Neuromed 
database). Rows correspond to true classes and columns to predicted 
classes
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may cause alterations of electrodes shapes. Hence, these 
methods still require intensive, time-consuming manual 
intervention, to obtain a reasonable accuracy in electrodes 
localization.

The method presented in this article addresses these 
issues by means of an automated shape analysis based on 
machine learning. In particular, the method extracts geo-
metric features of metal objects and applies G-SVM clas-
sification to identify the disc-shaped electrodes. It is worth 
mentioning that the Neuromed database does not include any 
CT scan acquired with tilted gantry, nor cases with micro-
electrodes and penetrating depth electrodes. However, the 

performances of the proposed method were further assessed 
on CT volumes from a public repository, which included 
also penetrating depth electrodes.

The analysis of the results highlighted that the partial vol-
ume effect caused an increase in the volume of the electrodes 
determined from the CT volumes, as compared to their real 
size. Indeed, the volume of voxel clusters corresponding 
to an electrode resulted more than double of its real value. 
This is very evident from the mismatch between the actual 
electrodes thickness and the length of the tertiary axis. Fur-
thermore, the spatial orientation of electrodes with respect to 
the CT slice planes caused slight alterations of their shape, 

Fig. 9   Confusion matrices 
presenting the G-SVM clas-
sification accuracies: a averaged 
across all Neuromed single-
patient datasets; b computed 
on the combined dataset 
C1(Neuromed database); c aver-
aged across on the seven Mayo 
single-patient datasets with only 
ECoG electrodes; d computed 
on the combined dataset C2 
(Mayo database); e computed 
on the combined dataset C3 
(Mayo database); f computed on 
the Mayo single-patient dataset 
#27, with the G-SVM trained on 
the combined dataset C3
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which may explain the variability observed in the geomet-
ric features. The problem of overlapping electrodes remains 
unsolved and still requires manual intervention or the adop-
tion of suitable strategies [11]. In addition, metal artifacts 
could imply issues in the correct recognition of electrodes 
with very small inter-distances, since they could be detected 
as superimposed.

The results obtained both on the 24 Neuromed single-
patient datasets and on the seven Mayo single-patient data-
sets (IDs #12, #16, #20, #22, #26, #28, #31) show a very 
high percentage of recognized ECoG electrodes with rejec-
tion of almost all the other metal objects. The G-SVM aver-
age classification accuracies across all patients were 99.74% 
and 98.27% for the Neuromed and Mayo databases, respec-
tively. The G-SVM achieved comparable performances also 
on the combined datasets C1 and C2, by scoring classifi-
cation accuracies of 99.74% and 99.68%, respectively. The 
higher accuracy accomplished on the combined dataset C2 
from the Mayo database, as compared to the related mean 
accuracy across patients, was reasonably due to the avail-
ability of more extensive information on ECoG electrodes 
features, which led to a more efficient classifier training. 
Remarkable results were also achieved on the combined 
datasets by considering a lower number of features, which 
resulted in classification accuracies in excess of 99%, apart 
from using the volume alone.

Moreover, the performances of a G-SVM classifier, 
trained on the combined dataset C1 (Neuromed database), 
were assessed by testing it on the combined dataset C2 (Mayo 
database), which had not been used for classifier training. In 
these tests, the G-SVM scored a mean classification accuracy 
of 98.94%, which was higher than the one obtained by the 
tenfold cross-validation performed on the same seven Mayo 
single-patient datasets. These results confirm, as expected, 
that the classifier performances benefited from training on a 
larger dataset, but they also suggest the possibility to apply 
our method also without training on new data, by using a 
previously trained classifier. It should be underlined that the 
limited availability of data for Mayo patients with only ECoG 
electrodes did not allow to train the classifier on a number of 
instances comparable to those of Neuromed datasets.

Further tests were carried out on the three additional 
Mayo single-patient datasets (IDs #5, #17, #27), which 
also included depth electrodes. A three-class G-SVM clas-
sifier was used to separately recognize depth and ECoG 
electrodes from all other metal objects. The results of the 
tenfold cross-validation on the combined dataset C3 show 
a surprisingly high overall percentage of correctly classi-
fied objects (~ 99%), with sensitivities to depth and ECoG 
electrodes, respectively, of 93.75% and 97.93%, and spe-
cificities of 99.86% and 99.63%. The three-class G-SVM 
classifier, previously trained on the combined dataset C3, 
was tested on the Mayo single-patient dataset #27, which 

had never been used for classifier training. The classifier 
scored an overall accuracy of about 96%, with sensitivities 
to depth and ECoG electrodes, of 83.33% and 97.14%, and 
specificities of 100.0% and 97.06%. The apparent reduc-
tion in the sensitivity to depth electrodes was mainly due 
to the very small number of instances included in the test 
set. The encouraging results obtained in depth electrodes 
recognition by using the same geometric features consid-
ered for ECoG electrodes could be ascribed to the CT finite 
resolution and the partial volume effect, which probably 
transformed the sleeve-shaped electrodes in full cylinder-
like solids. However, the number of depth electrodes the 
method has been tested on is not as statistically relevant as 
that of ECoG electrodes in the Neuromed database. There-
fore, a more extensive investigation should be carried out 
in future studies to assess the actual performances of the 
proposed method for depth electrodes recognition.

The proposed automated method, even when trained with 
a very limited training set, is able to identify at least the 
98% of ECoG electrodes in a CT scan with the 2.7% of mis-
classified electrodes. When properly trained on a sufficient 
number of instances, it is able to recognize more than 99% 
of ECoG electrodes with less than 1% of misclassified elec-
trodes. Hence, to the best of our knowledge, the proposed 
method achieves unprecedented recognition accuracy, and 
could provide a substantial reduction in the effort and time 
consumption required for manual intervention. Moreover, 
the method proved capable of recognizing depth and ECoG 
electrodes simultaneously in the same CT volume, thus it 
could be used also in recent studies that involve both elec-
trodes types. However, in order to attain the highest clas-
sification performances, a proper classifier training should 
be performed which requires the availability of a sufficient 
number of instances related to electrodes with compara-
ble shape, size and arrangement. Indeed, the use of very 
few data and/or data obtained with different electrodes can 
limit the performance of the classifier. Finally, the proposed 
method can be easily implemented into software suites, such 
as iELVis [13] and ALICE [11], which are widely used to 
manage the whole preoperative analysis process.
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