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A B S T R A C T

Compilers pose significant challenges in their development as software products. Language developers face the
complexities of ensuring efficiency, adhering to good design practices, and maintaining the overall codebase.
These factors make it difficult to predict the unexpected impact of updates on existing software built on the
current compiler stack. Furthermore, software created for a specific compiler often lacks reusability for other
compiler environments. In this study, we propose a comprehensive framework for the uniform development
of compilers that addresses these issues. Our approach involves developing compilers as a collection of
small transpilation units, referred to as deltas. The transpilation infrastructure takes source code written in
a particular source language and searches for a path of deltas to generate equivalent source code in the target
language. By adopting this methodology, language developers can easily update their languages by introducing
new deltas into the system. Existing code remains unaffected as old transpilation paths remain available. To
support this framework, we have devised a metric space for efficient delta search. This metric space enables
us to define a non-overestimating heuristic function, which proves valuable in solving the search problem.
Leveraging the A* search algorithm, we can efficiently transpile programs from a source language to the target
language. To evaluate the effectiveness of our approach, we conducted a benchmark comparison between the
A* search algorithm and the simpler breadth-first search (BFS) algorithm. The benchmark consisted of over
100 transpilation searches, providing valuable insights into the performance and capabilities of this framework.
1. Introduction

Overview. Programming languages are crucial tools for software de-
velopers, but building the ecosystem around them, which includes
compilers/interpreters, debuggers, and integrated development envi-
ronments, remains a significant hurdle in programming language devel-
opment (Bertolotti et al., 2023; Wachsmuth et al., 2014). The research
community has put a lot of effort into developing techniques that
ease the development of the languages and their ecosystems. Language
workbenches (Vacchi and Cazzola, 2015; Kats and Visser, 2010; Klint
et al., 2009) and language product lines (Kühn and Cazzola, 2016; Kühn
et al., 2019; Méndez-Acuña et al., 2016) are some of the most promis-
ing tools for taming the complexity arising from the development of
programming languages and their ecosystems. Notwithstanding this,
the adoption of new programming languages is struggling to take root.
This is because a new language must have an ecosystem as rich as its
competitors in order to be accepted, and this can take years of further
development (Stefik and Hanenberg, 2014; Meyerovich and Rabkin,
2012, 2013).
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1 https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html
2 https://python-modernize.readthedocs.io/en/latest/

Problem statement. To facilitate the widespread adoption of newly
introduced programming languages, it is crucial that they provide
comprehensive and user-friendly development libraries capable of ef-
fectively addressing common tasks across various domains. The soft-
ware community typically addresses this challenge through various
methods, including source-to-source transpilers (Albrecht et al., 1980;
Seymour and Dongarra, 2003; Coco et al., 2018), a shared virtual
machine (Box and Sells, 2002; Würthinger et al., 2013), inter-process
communication (Slee et al., 2007; Vinoski, 1997), and multi-language
run-times (Grimmer et al., 2018; Bolz et al., 2009). However, these ap-
proaches have some limitations, because even current language work-
benches address these issues on a case-by-case basis, an activity that is
laborious, demanding, and time-consuming. Unfortunately, traditional
language workbenches require a significant amount of effort to seam-
lessly migrate existing code from one language to another, or even to
an updated version of the same language (Bertolotti et al., 2023). Some
notable exceptions that offer similar support are Rust and Python code
version migration tools.1,2 This limitation further hinders the adoption
and evolution of programming languages.
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Existing approaches. In the past years, the research community has
ackled this problem in a variety of ways. Virtual machines (VMs)
sually allow code access from different languages as long as the
ode can be compiled towards a common (internal) representation.
or example, the Scala programming language (Odersky and Rompf,
014), running on top of the Java virtual machine (Venners, 2000),
atively supports interoperability with the Java language ecosystem.
nother viable approach is to directly translate the library into a
ifferent language. Haxe (Díaz Bilotto and Favre, 2016) programs can
e compiled in a variety of languages and it is used to develop the cross-
anguage library. Similarly, the development of language-to-language
ranspilers (Schultes, 2021) leads to reuse opportunities. Recently,
eep learning applications have shown promising results in the area
f source-to-source translation (Roziere et al., 2020). Unfortunately,
hese approaches solve the problem only partially. Using a unique
ntermediate representation (such as the bytecode) allows to reuse code
hat can be compiled towards the same bytecode. On the other hand,
axe still needs to rely on library bindings that support only one of

he target languages at a time. Both approaches lack the capabilities to
e generalized on scenarios with languages using completely different
ompilation stacks.

roposed solution. In this work, we propose a framework—dubbed
piler3—that can automatically compose simple and small transpila-

ion functions—dubbed deltas—to achieve an entire source-to-source
ranslation. These deltas are developed independently from each other.
ne can achieve complete transpilers by composing deltas. Starting

rom a program, the subsequent application of deltas induces a graph
here nodes are transpiled programs and edges represent the appli-

ation of a delta (see Fig. 3). By searching on this graph, we can
btain a path of deltas that, composed together, achieves a complete
ranspilation of the input program. Unfortunately, depending on the
opology of the graph, a naive search for the right transpilation can
asily become infeasible. However, by establishing a well-defined met-
ic space on the graph, we can equip a search algorithm with a powerful
euristic function that effectively guides the search towards promising
irections. A* is a popular (Cui and Shi, 2011) search algorithm that,
quipped with a non-overestimating heuristic, performs otherwise long
earches in a matter of seconds.

esearch questions. To evaluates our framework, we developed three
anguages: S, S++, and S#. These languages are simplifications of C,
++ and C# respectively. We will use them to answer the following
esearch questions:

Q1. Can the ★piler be used to transpile languages in a timely
matter?

RQ2. Can the ★piler be used to migrate a library from a language
to another?

RQ3. What are the strengths and weaknesses the ★piler frame-
work?

In particular, to answer RQ1, we will empirically evaluate the per-
formance of ★piler on more than 100 translations across different
languages with two search algorithms (BFS and A*). Meanwhile, RQ2
nd RQ3 will be answered from a qualitative perspective.

rganization. The rest of this work is organized as follows. Section 2
ntroduces notations and known concepts from the literature. Section 3
iscusses the ★piler from a theoretical perspective. Section 5 shows a
unning example of a few simple languages (discussed in Section 4).
ection 6 shows the results of the experiments. The results alongside
he research question answers are discussed in Section 7. Finally,
n Section 8 and Section 9, we discuss related work and draw our
onclusions respectively.

3 ★piler reads as starpiler after the A* (Cui and Shi, 2011) search algorithm
dopted by the framework.
2

e

Fig. 1. The parsing process given a simple grammar starting from a text expression to
the parse tree.

2. Foundations

In this section, we will briefly introduce concepts and terminologies
used in the paper.

Grammar. A grammar is a quadruple 𝐺 = (𝑁,𝛴,𝑅, 𝑆) where 𝑁 is a
inite set of nonterminal symbols, 𝛴 is a finite set of terminal symbols

with 𝛴∩𝑁 = ∅, 𝑅 is a finite set of production rules and 𝑆 is the starting
axiom. We use the Backus–Naur form (BNF) to describe the set of rules
𝑅. A rule has the form nonterminal ∶∶= expression. On the left
side of ∶∶= , there is a symbol from 𝑁 . On the right side of ∶∶= there is
a sequence of terminal or nonterminal symbols. Here terminal symbols
are enclosed with double quotes. To avoid ambiguities, when using
multiple grammars, we will denote elements of grammar by adding the
grammar name as a subscript to the set name, e.g., 𝛴𝐺 for the set of
terminals of the grammar 𝐺.

Concrete Syntax Tree (CST). For our purposes, the CST is a tree repre-
sentation of a program. The CST is obtained by parsing the program.
For example, Fig. 1 shows the CST obtained from parsing the string
" x + (y + z)" according to the shown grammar. Formally, a CST is
a couple 𝜏 = (𝑉𝐺 , 𝐸𝐺) where 𝑉𝐺 ⊆ 𝑁𝐺 ∪𝛴𝐺 and 𝐸𝐺 ⊆ 𝑉𝐺 × 𝑉𝐺. Finally,
𝜏 is connected and acyclic. We use the dot notation . ∶ 𝑉𝐺 ×N → 𝑉𝐺 to
denote the sub-tree node of a tree node (numbered from left to right
starting from 0). For example, in Fig. 1 we write r.2.1.0 to denote the
inner add sub-tree. Notice that, Barthwal and Norrish (2009) proved
that it is always possible to verify that a CST is generated from a certain
grammar. The verification process checks that each node is compliant
with the rule that generated the parent. We will write 𝜏 ⊲ 𝐺 when the
CST 𝜏 is compliant with the grammar 𝐺, (i.e., 𝜏 ∈ 𝐺 where 𝐺 is the
language defined by 𝐺).

Semantics. For our purposes, we use the notation [[𝜏𝐺]](𝜌) to denote the
evaluation of the CST 𝜏𝐺 on the context 𝜌 (similarly to Tennent (1976)).
𝜌 is a function 𝜌 ∶ 𝑉𝐺 →  ∪ {⊥} mapping variable names to values
from the semantic domain () alongside a special value for undefined
variables, ⊥. The semantic domain is extended with the undefined
symbol ⊥. We will denote with P the set of all possible contexts. For
example, the evaluation of the sub-tree r.2.1.0 from Fig. 1 is defined as
[[𝑟.2.1.0]](𝜌) = [[𝑟.2.1.0.0]](𝜌) + [[𝑟.2.1.0.2]](𝜌). Instead, [[𝑥]](𝜌) = 𝜌(𝑥) which
may have a well-defined value or ⊥ according to the context function.
n the paper, for the sake of brevity, we will rarely explicitly define
he semantics of a language, we rather implicitly adopt the intuitive
emantics for each construct. For example, the semantics of a mul tree
s the computation of the multiplication but we will not explicitly define
hat.

etric space. A metric space is a couple (𝑋, 𝑑) where 𝑋 is a set of

lements and 𝑑 ∶ 𝑋 → 𝑋 is a non-negative map—called distance
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function—such that:

1. ∀𝑥 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑥) = 0.
2. ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦 ∶ 𝑑(𝑥, 𝑦) > 0.
3. ∀𝑥, 𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
4. ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

A*. The A* algorithm (Hart et al., 1968), a widely-used pathfinding
technique, employs a systematic approach to finding the shortest path
between two points on a graph or grid while considering associated
costs. A* is an informed search algorithm that blends aspects of Dijk-
stra’s algorithm and greedy best-first search. It operates through several
key steps: Initializing the open and closed sets, which manage the nodes
under evaluation and those already assessed, respectively. The cost and
heuristic values for each node are set at the start, with 𝑔(𝑛) representing
the cost from the start node and ℎ(𝑛) the estimated cost to the goal
node, calculated using an admissible heuristic function. The main loop
involves selecting nodes with the lowest 𝑓 (𝑛) values, where 𝑓 (𝑛) equals
the sum of 𝑔(𝑛) and ℎ(𝑛). If the goal node is reached, the algorithm
ends. Otherwise, it generates successors, calculates tentative 𝑔 values
for neighbors, and updates their attributes accordingly. Subsequently,
successors are added to the open set, and the process repeats until
the open set is empty or the goal is reached. When the heuristic is
admissible, A* is both a complete and optimal pathfinding algorithm,
making it invaluable in applications like map routing, video games,
robotics, and various other scenarios requiring efficient pathfinding.

3. ★Piler framework

Overview. The ★piler framework is rooted in the concept of delta.
Conceptually a delta is a small transpilation unit. As such, a delta is
fed with a CST and it returns a CST while preserving the underlying
semantics. For example, the identity function is a trivial example of a
delta. Also, a full language-to-language transpiler is a proper example
of a delta. However, to fully benefit from the framework, deltas should
be also compact and reusable units. Thus a correct design of delta
should target only a single μ-language, i.e., a small group of language
features logically related (Cazzola et al., 2018). For example, a delta
could focus only on the transpilation from a for-style loop to a while-
style loop. Given a set of these deltas, a target grammar, and a starting
program, we want to obtain an equivalent program compliant with
the target grammar. Fundamentally, we need to search for a chain of
deltas (if one exists) that achieves the desired result (it translates the
starting program to the target grammar). The search can be performed
by recursively applying deltas to the CST of the starting program. After
each application, we check if the current CST is compliant with the
target grammar. If it is compliant, we stop. Otherwise, we keep on
searching. Trivially, the recursive application of delta can be performed
according to BFS. However, this choice, as we will show, renders the
★piler slow. Instead, adopting the A* search algorithms renders the
★piler performant. The usage of A* requires a non-overestimating
heuristic function. In this section, we develop a metric space from
which the mentioned heuristic is derived.

★Piler foundations. Let us formalize the framework from a theoretical
perspective.

Definition 1 (Node-set). Let us define the node-set function 𝜆 that given
a CST 𝜏𝐺 = (𝑉𝐺 , 𝐸𝐺) returns the set of nonterminals from all non-leaf
nodes of the tree, i.e.,

𝜆(𝜏𝐺) =
{

𝑣 ∣ 𝑣 ∈ 𝑉𝐺 ∧ ∃𝑤 ∈ 𝑉𝐺 s.t. (𝑣,𝑤) ∈ 𝐸𝐺
}

.

For example, the application of the 𝜆 function to the root node of
the CST in Fig. 1 is 𝜆(𝑟) = {𝗂𝖽, 𝖺𝖽𝖽, 𝗌𝗎𝖻𝖾𝗑𝗉𝗋}. Notice that the node-set
function always returns a subset of the non-terminals of the grammar
of the language used to write the program represented by the parse
tree.
3

Fig. 2. The application of a delta function—𝛿—that transpiles the multiplication by a
number to sequence of additions.

Definition 2 (Delta). Given 𝐺0, 𝐺1 ∈  (set of all possible grammars).
A delta is a function, 𝛿 ∶ 𝐺0

→ 𝐺1
that maps a CST into another one

such that:

∀𝜌 ∈ P, 𝜏 ∈ 𝐺0
∶ [[𝜏]](𝜌) = [[𝛿(𝜏)]](𝜌) (1)

where 𝐺 is the set of all possible CSTs such that 𝜏 ∈ 𝐺 ⟹ 𝜏 ⊲ 𝐺
(with 𝐺 ∈ ).

This means that the application of a delta will not change the result
of the evaluation regardless of the program (𝜏) or context (𝜌) at hand.
For example, Fig. 2 shows the application of a 𝛿 that replaces the
mul sub-tree with a sub-tree containing only add nodes. The applied
transformation is a proper delta as it preserves the semantics of the
original CST. Notice that, the grammars 𝐺0 and 𝐺1 may only slightly
differ and the difference depends on the syntactic changes applied by
the 𝛿 function to the original CST. We will often refer to deltas as
transpilation functions.

It is important to note that while the formal correctness of the
★piler framework depends on the formal correctness of individual
deltas, the ★piler can also be used with unverified deltas, similar
to other transpiler infrastructures that rely on transpilation passes,
such as Keep and Dybvig (2013). Of course, using unverified deltas
results in an overall unverified transpiler, which is generally considered
acceptable for most applications.

Remark 1 (Delta Composition). Given two deltas, 𝛿1 and 𝛿2, their
composition, 𝛿1◦𝛿2, is still a delta.

This remark can be trivially verified by considering that deltas
preserve the CST semantics by definition, therefore

∀𝜌 ∈ P [[𝛿1(𝛿2(𝜏))]](𝜌) = [[𝛿2(𝜏)]](𝜌) = [[𝜏]](𝜌).

Thus, any finite composition of deltas remains a delta. Potentially, by
composing the right deltas, we can achieve full language-to-language
transpilation.

Definition 3 (Transpilation). Given 𝛿𝑖0 ,… , 𝛿𝑖𝑛 deltas, we denote their
composition 𝛿𝑖0◦… ◦𝛿𝑖𝑛 as ⃖⃖⃖⃗𝛿𝐼 , where 𝐼 = [𝑖0,… , 𝑖𝑛]. Given a CST
𝜏𝐺1

⊲ 𝐺1, ⃖⃖⃖⃗𝛿𝐼 performs a transpilation to a grammar 𝐺2 if

⃖⃖⃖⃗𝛿𝐼 (𝜏𝐺1
) ⊲ 𝐺2

Remark 2. If ⃖⃖⃖⃗𝛿𝐼 is a transpilation from 𝜏1 ⊲ 𝐺1 to 𝜏2 ⊲ 𝐺2 then:

𝜆(⃖⃖⃖⃗𝛿𝐼 (𝜏1)) ⊆ 𝑁𝐺2

This means that we can search for deltas that change the CST node-
set to any subset of 𝑁𝐺2

and if the resulting tree is a CST belonging to
𝐺2 then, we have obtained a proper transpilation to the target language.

As mentioned earlier, the delta application induces a graph where
nodes are CSTs and edges are applications of a delta. For example,
Fig. 3 shows a possible graph induced from the application of a few
deltas (𝛿1,… , 𝛿6) to an initial CST 𝜏1. If 𝜏6 represents the target CST,
to achieve the desired transpilation, we simply need to search for the
right sequence of deltas that achieves the desired result. Formally:
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Fig. 3. A graph induced by the application of deltas {𝛿1 , 𝛿2 , 𝛿3 , 𝛿4 , 𝛿5 , 𝛿6 , } on the syntax
ree 𝜏1.

otation 1 (Slice). We adopt a python-like notation to describe slices of
vector. Let 𝑥 = [𝑥0,… , 𝑥𝑚], then 𝑥[∶ 𝑘] = [𝑥0,… , 𝑥𝑘] when 0 ≤ 𝑘 ≤ 𝑚.
therwise, 𝑥[∶ 𝑘] = 𝑥.

efinition 4 (Search Graph). Let 𝛥 = {𝛿0,… , 𝛿𝑁} be a set of deltas.
et 𝑉 ⊆ 𝛤 be a set of CSTs from grammars 𝛤 = {𝐺0,… , 𝐺𝑀}. Let
= {(𝜏1, 𝜏2) ∈ 𝑉 × 𝑉 | ∃ 𝛿 ∈ 𝛥 s.t. 𝛿(𝜏1) = 𝜏2}. We call 𝑆𝛥,𝛤 = (𝑉 ,𝐸) a

earch graph.

efinition 5 (Search Problem). The search problem is defined by the
riple (𝑆𝛥,𝛤 = (𝑉 ,𝐸), 𝜏, 𝐺), where 𝑆𝛥,𝛤 is a search graph, 𝜏 ∈ 𝑉 is the
tarting CST, and 𝐺 ∈ 𝛤 is the target grammar.

efinition 6 (Search Solution). Given the search problem (𝑆𝛥,𝛤 =
𝑉 ,𝐸), 𝜏, 𝐺), a transpilation ⃖⃖⃖⃗𝛿𝐼 is a solution when:

1. ⃖⃖⃖⃗𝛿𝐼 (𝜏) ⊲ 𝐺.
2. ∀𝑖 ≥ 0 ∶ ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝛿𝐼[∶𝑖](𝜏) ∈ 𝑉
3. ∀𝑖 ≥ 0 ∶ (⃖⃖⃖⃖⃖⃖⃖⃖⃗𝛿𝐼[∶𝑖](𝜏), ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝛿𝐼[∶𝑖+1](𝜏)) ∈ 𝐸

This means that a transpilation is a solution if it maps the input
ST to a CST from the target grammar (point 1) while adhering to the
earch graph definition (points 2 and 3).

The search problem can be solved with algorithms such as breadth-
irst search (BFS) or depth-first search (DFS). However, since the num-
er of nodes grows exponentially with the number of deltas, the search
ecomes impractical soon. Notice that, BFS will reach always a so-
ution if one exists. Otherwise, it will explore the entire graph and
erminate, if the graph is finite. If the graph is not finite, it may not
erminate. To overcome the impracticality issue, we are going to define
simplification of the original search problem.

efinition 7 (Simplified Search Graph). Let 𝛥 = {𝛿0,… , 𝛿𝑁} be a set of
eltas. Let 𝑉 ⊆ 𝛤 be a set of CSTs from grammars 𝛤 = {𝐺0,… , 𝐺𝑀}.
et 𝑉 ′ = {𝜆(𝜏) | 𝜏 ∈ 𝑉 }. Let 𝐸′ = {(𝜆(𝜏1), 𝜆(𝜏2)) ∈ 𝑉 ′ × 𝑉 ′

| ∃ 𝛿 ∈
, 𝜏1, 𝜏2 ∈ 𝑉 s.t. 𝛿(𝜏1) = 𝜏2}. We call 𝑆′

𝛥,𝛤 = (𝑉 ′, 𝐸′) the simplified
earch graph of the search graph 𝑆𝛥,𝛤 = (𝑉 ,𝐸).

The simplified search graph is simply the search graph where in-
tead of using CSTs as nodes, we use their node-sets. Notice that, the
implified search graph can be built starting from an original search
raph.

efinition 8 (Simplified Search Problem). The simplified search problem
s defined by the triple (𝑆′

𝛥,𝛤 = (𝑉 ′, 𝐸′), 𝜏, 𝐺), where 𝑆′
𝛥,𝛤 is a simplified

search graph. 𝜏 is a starting CST from 𝑉 ′. 𝐺 is a target grammar from
𝛤 .

Definition 9 (Simplified Search Solution). Given the simplified search
′ ′ ′ ⃖⃖⃖⃗
4

problem (𝑆𝛥,𝛤 = (𝑉 ,𝐸 ), 𝜏, 𝐺), a transpilation 𝛿𝐼 is a solution when: w
1. 𝜆(⃖⃖⃖⃗𝛿𝐼 (𝜏)) ⊆ 𝑁𝐺.
2. ∀𝑖 ≥ 0 ∶ 𝜆(⃖⃖⃖⃖⃖⃖⃖⃖⃗𝛿𝐼[∶𝑖](𝜏)) ∈ 𝑉 ′

3. ∀𝑖 ≥ 0 ∶ (𝜆(⃖⃖⃖⃖⃖⃖⃖⃖⃗𝛿𝐼[∶𝑖](𝜏)), 𝜆(⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝛿𝐼[∶𝑖+1](𝜏))) ∈ 𝐸′

Theorem 1. The set of solutions for the search problem is a subset of the
solution for the same simplified search problem.

The proof trivially follows from the fact that a solution for the search
problem is always a solution for the simplified search problem. Notice
that, the vice versa is not necessarily true. From a practical perspective,
by enumerating solutions for the simplified search problem, we will
eventually reach a solution for the search problem. Next, we will show
that it is possible to build a metric space on the set 𝑉 ′ for a simplified
search problem. This enables the application of more advanced search
algorithms such as A*.

Definition 10 (Set Difference Distance). Let  be a universe set. And let
𝐴,𝐵 ⊆  . The function 𝑑𝑠𝑑𝑑 ∶ ( ) × ( ) → R (where  represents
the power set function) is defined as:

𝑑𝑠𝑑𝑑 (𝐴,𝐵) = |𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵| (2)

The set difference function (𝑑𝑠𝑑𝑑) is a proper distance function (Ho-
radam and Nyblom, 2014). It measures the degree to which the input
sets differ. For example, if 𝐴 = 𝐵 then 𝑑𝑠𝑑𝑑 (𝐴,𝐵) = 0. If 𝐴∩𝐵 = ∅, then
𝑑𝑠𝑑𝑑 (𝐴,𝐵) = |𝐴 ∪ 𝐵|.

Next, we will introduce a novel distance rooted on the set difference
distance function.

Definition 11 (Relative Set Difference Distance). Let  be a universe set
and 𝐴,𝐵, 𝑆 ⊆  . The function 𝑑𝑆𝑟𝑠𝑑𝑑 ∶ ( ) × ( ) → R

𝑑𝑆𝑟𝑠𝑑𝑑 (𝐴,𝐵) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑠𝑑𝑑 (𝐴,𝐵) if 𝐴 ⊈ 𝑆 ∧ 𝐵 ⊈ 𝑆,
𝑑𝑠𝑑𝑑 (𝑆,𝐵) if 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊈ 𝑆,
𝑑𝑠𝑑𝑑 (𝐴,𝑆) if 𝐴 ⊈ 𝑆 ∧ 𝐵 ⊆ 𝑆,
1∕2 if 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ 𝐴 ≠ 𝐵,
0 if 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ 𝐴 = 𝐵

(3)

𝑑𝑟𝑠𝑑𝑑 computes the distance between two sets relatively to a third
et 𝑆: the distance decreases as 𝐴 and 𝐵 get closer to 𝑆. Fig. 4 shows
he behavior of 𝑑𝑆𝑟𝑠𝑑𝑑 (𝐴,𝑆) wrt. to the set 𝑆. The distance between 𝐴
nd 𝑆 decreases when the set 𝐴 approaches to the set 𝑆. The distance
ollapses to the value 1∕2 when the set 𝐴 is a subset of 𝑆 but 𝐴 ≠ 𝑆. Any
umber ∈ (0, 1) would comply with the distance function definition: we
hoose 1∕2 because it is the central number in the range.

emma 1. 𝑑𝑆𝑟𝑠𝑑𝑑 is a distance function.

See Appendix for the formal proof. This lemma allows to induce a
etric space on the simplified search graph. In particular, 𝑑𝑆𝑟𝑠𝑑𝑑 can

e used to build a non-overestimating heuristic required to use the A*
earch algorithm.

heorem 2. Let 𝛤 = ∪𝐺∈𝛤𝑁𝐺 be the set of all nonterminals from
rammars in 𝛤 . Let 𝑆 ⊆ 𝛤 . Then the couple ((𝛤 ), 𝑑𝑆𝑟𝑠𝑑𝑑 ) is a metric
pace.

The proof trivially follows from Lemma 1. This theorem provides
simple way to build a non-overestimating heuristic required by the

earch algorithm A*. In particular, the use of A* renders the search for
olutions to the simplified search problem particularly fast compared
o directly solving the search problem.

efinition 12 (Heuristic). Let ℎ𝑆 ∶ (𝛤 ) → R be the positive map

𝑆 (𝐴) =

{

0 if 𝐴 ⊆ 𝑆
𝑑𝑆𝑟𝑠𝑑𝑑 (𝑆,𝐴) otherwise

(4)
here 𝐴,𝑆 ⊆ 𝛤 .
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Fig. 4. Distance function 𝑑𝑆
𝑟𝑠𝑑𝑑 graph. Each point (𝑥, 𝑦) represents a set of a ball with

center (𝑥, 𝑦) and radius 15. The solution set is a ball with center in (0,0) and radius 30.
As the set approaches the solution set, the distance decreases. When the set becomes
a subset of the solution set, the distance becomes 1

2
.

Theorem 3. ℎ𝑆 is an admissible heuristic, i.e., non-overestimating.

Proof. Let (𝑆′
𝛥,𝛤 , 𝜏, 𝐺) be a simplified search problem. Where, we search

for a transpilation starting from 𝜏 to a CST having nonterminals from
𝑁𝐺. Let 𝑆 = 𝑁𝐺. Let 𝜏∗ be a CST such that 𝜆(𝜏∗) ⊆ 𝑁𝐺. We need to
show that

ℎ𝑆 (𝜆(𝜏)) ≤ 𝑑𝑆𝑟𝑠𝑑𝑑 (𝜆(𝜏), 𝜆(𝜏
∗))

If 𝜆(𝜏) ⊆ 𝑆 then:

ℎ𝑆 (𝜆(𝜏)) = 0 ≤ 𝑑𝑆𝑟𝑠𝑑𝑑 (𝜆(𝜏), 𝜆(𝜏
∗))

As 𝑑𝑆𝑟𝑠𝑑𝑑 is a distance function, it cannot be negative. Otherwise,

ℎ𝑆 (𝜆(𝜏)) = 𝑑𝑆𝑟𝑠𝑑𝑑 (𝑆, 𝜆(𝜏)) (5)

= 𝑑𝑠𝑑𝑑 (𝑆, 𝜆(𝜏)) (6)

≤ 𝑑𝑠𝑑𝑑 (𝑆, 𝜆(𝜏)) (7)

= 𝑑𝑠𝑑𝑑 (𝜆(𝜏), 𝑆) (8)

= 𝑑𝑆𝑟𝑠𝑑𝑑 (𝜆(𝜏), 𝜆(𝜏
∗)) □ (9)

All equations follow from either the definition of function 𝑑𝑆𝑟𝑠𝑑𝑑
(Definition 11), or from the definition of the distance function. This
theorem shows that it is possible to apply A* to the simplified search
problem. For each solution found by A*, we check whether it is also
a solution for the original search problem. We stop the search if it is
a solution. Otherwise, we continue searching. Algorithm 1 shows the
pseudocode for the transpilation. Algorithm 1 is a modified version of
the A* algorithm. Notice that, both the search graph and the simplified
search graph are never explicitly built. The search graph is explored
starting from 𝜏 on the fly by applying deltas from 𝛥.

From the perspective of a ★piler user seeking to transpile language
𝐴 to language 𝐵, the process involves several key steps. The user needs
to have a grammar for the target language, a set of deltas capable of
translating programs from language 𝐴 to language 𝐵 (these deltas can
be developed or reused), and a starting CST representing a program
from 𝐴 (possibly obtained by means of parsing). At this point, ★piler
takes over, automatically searching for a chain of deltas to transform
the starting CST into a CST compliant with the target grammar. It
is worth noting that the developed deltas can find utility in novel
scenarios requiring transpilation of μ-languages used in languages 𝐴
5

and 𝐵. v
Algorithm 1 A* adapted for the searching a transpilation
Require: 𝛥 set of delta functions
Require: 𝜏 input CST
Require: 𝐺 target grammar

𝐶 ← {}
𝑂 ← {𝜏}
𝑔 ← map with default value + inf
𝑔(𝜏) ← 0
𝑓 ← map with default value + inf
𝑓 (𝜆(𝜏)) ← ℎ𝑁𝐺

(𝜆(𝜏))
while 𝑂 ≠ ∅ do

𝐶 ← 𝑜 ∈ 𝑂 with lowest 𝑓 value
if 𝐶 ⊆ 𝑁𝐺 ∧ 𝑐 ∈ 𝐺 then return 𝑐
end if
remove 𝑐 from 𝑂.
for all 𝛿 ∈ 𝛥 do

score ← 𝑔(𝜆(𝛿(𝐶))) + 𝑑𝑁𝐺
𝑟𝑠𝑑𝑑 (𝜆(𝐶), 𝜆(𝛿(𝐶)))

if score ≤ 𝜆(𝛿(𝐶)) then
𝑔(𝜆(𝛿(𝐶))) ← score
𝑓 (𝜆(𝛿(𝐶))) ← score + ℎ𝑁𝐺

(𝜆(𝛿(𝐶)))
if 𝜆(𝛿(𝐶)) ∉ 𝑂 then

𝑂.𝑎𝑑𝑑(𝜆(𝛿(𝐶)))
end if

end if
end for

end while

Fig. 5. The system presents three available languages. There are 4 deltas to translate
S programs to S++ programs—denoted as 𝛥𝑆→𝑆++. There are 9 deltas to translate
++ programs to S programs—denoted as 𝛥𝑆++→𝑆 . There are 20 deltas to translate
# programs to S++ programs—denoted as 𝛥𝑆#→𝑆++.

. Languages

We designed three languages to demonstrate the ★piler: S, S++, and
#. The three languages mimic C, C++, and C# respectively. Table 1
ummarizes the list of language features for each language. We refer to
as a sink language as it can be compiled with tools external (LLVM)

o ★piler as shown with the dashed arrow in Fig. 5.

language. The language S mimics a subset of C. It accounts for expres-
ions, function definitions, and declarations, while loop, if-then, and
truct definitions. It supports native types: double, int64, int32, int8,
oid. For the S language, we also developed a compiler to LLVM (Lat-
ner and Adve, 2004) intermediate representation. S among the de-
eloped languages is the only one that can be compiled directly to
LVM. To be executed, other languages (S++ and S#) need to provide
ither deltas to translate towards another sink language or a direct
nterpreter/compiler. For example, the following snippet shows the
ubble sort algorithm written by using the S language. In S, the left-
and expressions of an assignment are pointers to memory locations
here the evaluation of the right-hand expression will be stored. The
emory location is accessed by using the & and &[⋅] operators for

ariables and arrays respectively.
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Table 1
List of language features for S, S++, S# languages. All languages share a set of common features defined in the Common entry. The other entries describe
the additions wrt. the common features. Notice that even if different languages share the same language feature there may be either syntactic or subtle
semantic differences. For example, S++ and S# new language features in principle are the same but have different implementations.
Language Feature

Common

native types: long, int, char, double, float
literals: string, array, rationals, naturals
import from
arithmetic operators: +, -, *, /, %
logical operators: ==, !=, >=, <=, <, >
other operators: cast to, size of, indexing, enclosed expression, function call
statements: if-then, while loop, return, return void, skip, statement expression, assignement, auto assignement, declaration assignement.

S

native types: pointers
struct definition
function definition
global assignement declaration
expressions: dereference, reference to

S++

native types: pointers
class definition: fields, constructor, destructor, methods
function definition
global assignement declaration
expressions: new, indexing, dereference, reference to

S#

class definition: fields, constructor, methods
garbage collector
expressions: new, indexing, method call
statements: for loop
T
S
F

def int64 sort(int64* array, int64 len) does
int64 i = 0;
while i < len do

int64 j = i;
while j < len do

if array[i] > array[j] do
int64 tmp = array[i];
array&[i] = array[j];
array&[j] = tmp;

done
&j = j + 1;

done
&i = i + 1;

done
return 0;

done

S++ language. The language S++ mimics a subset of C++. It adds
support for classes in the S language. As for S, the left-hand expressions
in assignments are pointers to memory locations where the evaluation
of the right-hand expressions is stored. For classes, the memory location
of fields is accessed using the &. operator. The start method of classes
is the constructor of the class. For example, the following snippet shows
the definition of an S++ class managing a pair of int64.

class Pair with
def int64 a;
def int64 b;
def Pair* start(Pair* this, int64 a, int64 b) does

this&.a = a;
this&.b = b;
return this;

done
end

S# language. The language S# mimics a subset of C#. Compared to the
S++ language, it removes pointers, it adds a garbage collector that can
be explicitly called, and the overall syntax is simplified. Functions are
defined by using the fun keyword, and function types are defined in
advance. The __init__ method of each class represents its construc-
tor. For example, the following snippet shows an S# class managing a
single int64. Further, S# adds support for bounded for-loops iterating
over a run-time determined number of iterations.

class Integer {

var int64 value;

__ __
6

fun (Integer -> Integer) init (this) {
return this;
}

fun (Integer, int64 -> Integer) set(this, value) {
this.value = value;
return this;

}

fun (Integer -> Integer) get(this) {
return this.value;

}

}

ranslations. We developed deltas necessary to transpile S# to S++,
++ to S, and S to S++ to test ★piler performance and capabilities.
ig. 5 schematize the possible translations. We developed 33 deltas to

perform these translations. The group of deltas to translate S# to S++
is made of 20 deltas, and it is denoted with 𝛥𝑆#→𝑆++. The group of
deltas to translate S++ to S is made of 9 deltas, and it is denoted with
𝛥𝑆++→𝑆 . The group of deltas to translate S to S++ is made of 4 deltas,
and it is denoted with 𝛥𝑆→𝑆++. To execute S# programs, it is necessary
to translate the program to S++ and then to S which can be executed
in the quality of a sink language using the ad hoc LLVM compiler. The
number of deltas necessary to perform a translation depends on the
differences, in terms of language features, between the source and the
target languages. For example, S and S++ are fairly similar languages
(S++ only adds the classes language feature over S) requiring only a
few deltas. On the other hand, S# introduces several language features
over S requiring several deltas to get a translation from S to S#.
However, note that there are no constraints on the number of deltas,
the whole S# to S translation could be performed just with a single
deltas. However, a single delta is less likely to be reusable for different
languages the best granularity for a delta would consist in translating
a single language feature.

5. Running example

Let us consider a simple translation example. The following S#
program shows a Point class with an addition operation between two
points. This class may be part of a bigger library, and we are interested

in rendering the same class available to S++ developers.
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Fig. 6. Graphs generated from the exploration of possible translation from a start S# program to the equivalent S++ program. The top row shows the full graph induced using
deltas from 𝛥𝑆#→𝑆++. The bottom row shows the graph induced using a larger set of deltas 𝛥𝑆#→𝑆++ ∪ 𝛥𝑆++→𝑆 . Nodes are colored in black. Edges to already explored nodes are
colored in light gray. Red colored nodes and edges show the explored paths of different algorithms. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 7. S# to S++ for-loop delta effect.

class Fors(Transformer):
def ssharplang_for(self, nodes):
return [
Tree(Token(’RULE’, ’spplang_stmt_expr’), [
Tree(Token(’RULE’, ’spplang_auto_assignement’), [...]),
Token(’DONE’, ’done’)]),

Tree(Token(’RULE’, ’spplang_while’), [
Token(’WHILE’, ’while’),
...,
Token(’DO’, ’do’),
Tree(Token(’RULE’, ’spplang_block’), [...]),
Token(’DONE’, ’done’)])

]

Listing 1: S# to S++ for-loop implementation.

class Point {
var double x;
var double y;

fun (Point,double,double->Point) __init__(this, x, y) {
this.x = x;
this.y = y;
return this;

}
fun (Point,Point->Point) add(this, other) {
this.x = this.x + other.x;
this.y = this.y + other.y;
return this;

}
}

Delta examples. The translation starts from the CST representing the
Point class. We developed several deltas translating different kinds of
7

S# sub-trees into S++ sub-trees. For example, we developed a delta
that translates S# style for-loops into S++ while loops (Fig. 7). The
delta introduces an unused identifier __i123__ used to iterate over
the while. At the end of each iteration, the original variable name i is
reassigned to the value of __i123__ to simulate the for-loop. Listing
shows a portion of the delta implementation using a Lark Transformer.4
An application of this delta replaces all sub-trees representing the S#
for-loop and attaches the corresponding while loop in S++. Similarly,
we implemented the delta that deals with S# style assignments. Since
in S++, the left-hand expression of an assignment needs to be a memory
location, we need to translate the field access operator (dot) into the
operator that returns memory locations (reference dot). Therefore, the
snippet this.x = x; becomes this&.x = x; . Another delta deals with
the function definition sub-tree, and it rearranges the types to fit the
S++ function definition style. The snippet

fun (Point,Point->Point)add(this,other){...}

becomes

def Point* add(Point* this, Point* other)does . . . done.

We are left with the CST representing the transpilation (provided that
the CST respects the S++ grammar (Barthwal and Norrish, 2009))
when all the S# language features have been exhausted. The following
snippet shows the full translation.

class Point with
def double x;
def double y;

def Point* start(Point* this, double x, double y) does
this&.x = x;
this&.y = y;
return this;

done
def Point* add(Point* this, Point* other) does

4 https://lark-parser.readthedocs.io/en/latest/visitors.html#lark.visitors.
Transformer

https://lark-parser.readthedocs.io/en/latest/visitors.html#lark.visitors.Transformer
https://lark-parser.readthedocs.io/en/latest/visitors.html#lark.visitors.Transformer
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Fig. 8. Test times and node visited for each test in the S#→ S++ translation task.
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this&.x = this.x + other.x;
this&.y = this.y + other.y;
return this;

done
end

Induced graph. A delta application may depend on the application of
previous deltas. For example, if we were to transpile the same Point
class into the S language, we would need to transpile S# language
features to the respective intermediate S++ language feature, as we
did not develop any delta from S# to S (see Fig. 5). Of course, the
path of deltas to perform the translation may not be known beforehand.
Therefore, we need a search step to find the proper transpilation. As
mentioned earlier, the application of deltas induces a graph on which
we search for a solution. Consider Fig. 6, sub-figures from 6(a) to 6(d)
shows the graph induced for translating the S# class Point into the
++ class Point using only the group 𝛥𝑆#→𝑆++. Fig. 6(a) shows, in red,
he shortest path from the root node to a solution. Fig. 6(b) shows, in
ed, the nodes explored by the A* algorithm. Fig. 6(c) shows, in red, the
odes explored using a BFS algorithm. Fig. 6(d) shows, edges and nodes
olored according to the distance from the solution wrt. the distance
unction 𝑑𝑆𝑟𝑠𝑑𝑑 . All these graphs, in light gray, show which edges connect

node to another explored node. Most noticeably, the A* algorithm
xplores a fraction of the nodes explored by the BFS algorithm. Now,
et us consider Figs. 6(e) and 6(f). These figures show the induced
raph when using 𝛥𝑆#→𝑆++∪𝛥𝑆++→𝑆 . Most noticeably, the A* algorithm
xplores a number of nodes that is roughly the same as the previous
ase. Instead, the BFS algorithm explores a larger set of nodes, thus
equiring more time.

. Evaluation

In this section, we will evaluate the compilation of several programs
ith respect to a BFS and A* searches.

etup. The evaluation is performed on a PC with 32 GB of available
8

emory and processor Intel Core i7-10700K. t
Data. We develop 12 tests for the S#→ S++ translation task, 16 tests
or the S++→ S translation task, and 92 tests for the S→ S++ transla-
ion task. The number of tests for translate S→ S++ is higher as we
eused the test for the LLVM compiler. Each test is run for 5 times
for a total of 620 runs). All tests are manually handcrafted to span
ll language features of the respective languages.

esults S# to S++. This translation task usually induces a large graph
ith thousands of nodes, as the number of deltas usable for the transla-

ion is 20. The main results are highlighted in Fig. 8. Fig. 8(a) shows the
ranspilation times for all the 16 tests of the S#→ S++ translation task.
he time axis is displayed on a logarithmic scale. Using the A* search
lgorithm, to execute all the tests requires less than 1 s. On average, the
ompletion time of all tests is 0.16 s. Instead, the tests (to translate S#
o S++) may require several minutes to complete, ranging from 1 s to
20min when using BFS. On average, the completion time is 158.52 s.
Fig. 8(b) shows the number of nodes visited for each test. On average,
A* visits 68 nodes (ranging from 33 to 106) and BFS visits 12,265
odes (ranging from 375 to 48,117). Thanks to the discussed heuristic
n Section 3, A* is capable of exploring far fewer nodes compared to
FS, resulting in small translation times.

esults S++ to S. This translation task induces a far smaller graph
with hundreds of nodes, as the number of deltas usable for translation
is only 9. The main results are highlighted in Fig. 9. Fig. 9(a) shows
the transpilation times for all 12 tests of the S++→ S translation task.
The time axis is displayed with a linear scale. Using the A* search
algorithm, the average completion time is 0.09 s, ranging from 1ms to
0.3 s. Instead, using BFS, the tests run for 0.29 s on average, ranging
from 1ms to 1.29s. Fig. 9(b) shows the number of nodes visited for
each test. On average, A* visits 16 nodes (ranging from 4 to 39) and
BFS visits 34 nodes (ranging from 4 to 127). Again, the A* algorithm
hows noticeable improvement over the BFS algorithm.

esults S to S++. This translation task induces a very small graph with
ess than 10 nodes, as the number of deltas usable for translation is
nly 4. The main results are highlighted in Fig. 10. Fig. 10(a) shows
he transpilation times for all the 92 tests of the S→ S++ translation

ask. The time axis is displayed with a linear scale. Using the A*
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search algorithm, the average completion time is 0.966 ms. Using the
BFS algorithm, the average completion time is 8.156 ms. Fig. 10(b)
shows the number of nodes visited for each test. On average, the
A* algorithm visits 2.60 nodes, ranging from 2 to 7 nodes. Instead,
the BFS algorithm visits 2.63 nodes on average, ranging from 2 to 8
nodes. In this scenario, the A* algorithm does not lead to meaningful
improvements. Instead, due to the higher initialization costs, it leads to
slightly lower performance.

7. Discussion

Compilation times. We can now answer to:

RQ1. Can★piler be used to transpile languages in a timely matter?

When using search algorithms without a heuristic (such as BFS),
the compilation times render the ★piler impractical. However, when
using A* with the proposed heuristic ℎ𝑆 , the compilation times improve
drastically. In our experiments, all tests require less than 1 second to
complete the transpilation. Section 6 suggests that ★piler could be
applied in more complex scenarios without becoming impractical due
to compilation times.

The transpilation time is heavily influenced by the size of the
search graph and the number of nodes that must be traversed to reach
a solution. In general, the smaller the search graph, the less time
transpilation is expected to require, irrespective of the search algorithm
employed. The most impactful way to keep the search graph small is
by limiting the number of deltas (|𝛥|). When using BFS, having a small
number of deltas is crucial to achieve transpilation times on the order
of seconds. Meanwhile, in all our experiments, the designed heuristic
successfully guided A*’s search in the right direction, ensuring small
transpilation times regardless of the search graph’s dimensions.

Libraries migration. Often, developed libraries are specific for the lan-
guage in which they are developed. Reusing these pieces of software
becomes extremely difficult when different languages and different
VMs are involved. However, by performing a translation, the same
software developed in S++ can be reused with the S language. For
example, we developed a small class managing strings in S++. The
class uses stdio5 directives to efficiently compute string operations.

5 https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdio.h.
tml
9

i

By translating the S++ class also S developers can access a higher-
level API to handle strings. However, in the general case, migration
through transpilation requires a fair amount of carefulness. For exam-
ple, in Python class methods with specific names (such as __init__ or
__getitem__) can have a specific behavior. Instead, these names add
no special meaning for Java or C++. Therefore, if a Java method named
__getitem__ were to be transpiled in Python, another name would
have to be generated, and generating a meaningful new name may
be difficult. However, when using the ★piler framework developers
can define the deltas that most fit the developer needs case by case.
For example, a developer may choose to use a delta that generates
a new method name randomly, or he could use a delta that prompts
for the new name when one is needed. Developers could use deltas
that generate new method names using a deep learning architecture
as Bertolotti and Cazzola (2023b,a) and Alon et al. (2019). Another dif-
ficult example is the Python eval and exec which allows to executes
strings containing Python code. Since these strings cannot be inferred
at compile time, when transpiling from Python to Java, the target
language will need the ability (natively or with an external library)
to execute Python strings. These cases can be handled in the ★piler
framework by writing a delta that translates the exec in a library call
that can execute Python code strings. This is just to mention a couple
of all the possible tricky language feature-dependent translations.

We can now answer to:

RQ2. Can ★piler be used to migrate a library from a language to
another?

The ★piler allows for translation of libraries from a source language
o a target language. However, when speaking of real-world language,
evelopers are likely to incur in difficult-to-handle scenarios. Some in-
tances may have multiple ways to be handled, and others may require
large amount of work. Developers using ★piler can handle multiple

hoices using a different set of deltas to perform a transpilation. Also,
sing ★piler, developers have the choice to develop only a core set of
eltas that handle core language features instead of dealing with all
he possible language features. In this scenario, ★piler will perform
ranslations using only the available deltas, meaning that in some cases

t will not reach a solution.

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdio.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdio.h.html
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Fig. 10. Test times and node visited for each test in the S++→ S translation task.
Reusing compiler tests. Compiler tests are one of the most valuable
assets to verify the correctness of compilers. The research community
has developed several tools to efficiently generate test suites for several
compilers (Chen et al., 2021; Sun et al., 2016). However, generated
suites are specific to the target language. Using the proposed frame-
work, a test suite can be translated and reused to test new languages. A
single suite may be capable of testing different languages. For example,
in our demonstration experiment, test programs developed for S++
and S# are also used to test the S language. Also, many of the S test
programs are translated to S++ to test the language.

Reusing compiler components. Introducing new features in existing lan-
guages can be difficult (Nystrom et al., 2003). Instead, with ★piler the
language developer needs only to add a syntactic construct and develop
10
a delta performing the translation of the new feature. For example, in
our demonstration experiment, we introduced the for loop language
feature in the S# language then we added a delta function to translate
the S# for loop to the S++ while loop. The same translation can be
reused in other languages that implement the S# style for loop. For
example, if we were to introduce S# style for loop to S++, we would
need to only add the syntactic construct to the language and the system
will automatically take care of the application of the respective delta
to reach a translation.

Heuristic. The proposed heuristic ℎ𝑆 is effective in exploiting the lan-
guage features inside a syntax tree to guide a translation system.
However, there are cases when this heuristic is of little help. Recall that,
the heuristic starts to lower when, during search, the current syntax tree
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shares language features with the solution set. Otherwise, the value of
the heuristic does not shrink. For example, consider Fig. 4, on the edges
of the graph the distance to the solution remains the same, thus not
guiding the search towards the solution. In these cases, applying A* is
equivalent to applying a BFS search. This means that A* cannot help on
those cases that require a chain of deltas that does not get close to the
solution set early in the search. However, it is still possible to guide the
search, but it will require extra knowledge. For example, if we know
that translation needs to go through a certain set of language features
𝑆′, we can craft another heuristic to guide the specific case:

𝑆,𝑆′ (𝐴) =

{

(0, 0) if 𝐴 ⊆ 𝑆
(𝑑𝑆𝑟𝑠𝑑𝑑 (𝑆,𝐴), 𝑑

𝑆′

𝑟𝑠𝑑𝑑 (𝑆
′, 𝐴)) otherwise

(10)

Among nodes that have the same distance to the solution set S, it
romotes those that are close to the intermediate set 𝑆′. Of course, the

heuristic can be extended with several intermediate sets to guide even
delta paths that are expected to be extremely long.

Deltas development. Deltas are functions developed in isolation from
each other. This yields a system that can reuse already developed com-
ponents easily. Yet during searches, deltas can interact with each other
unexpectedly as unforeseen situations appear. Further, the correctness
of a delta is, in many cases, impractical to verify. Thus, the development
of delta should also include extensive unit and integration tests to
identify potential issues and bugs.

Deltas debugging. Consider a transpilation path 𝛿 that ends in an error
(or an unexpected result). Most likely, this is due to a bug in one of
the deltas used in 𝛿. Yet, tracking the error is difficult, as it could have
occurred at any point in the chain. Moreover, if we consider that these
functions may be working on a very large CST, pinpointing the bug may
be extremely difficult and time-consuming. Therefore, if deltas are not
properly organized, it may result in a brittle system. Works such as Shi
et al. (2020) could also be used to mitigate these issues.

Deltas as compilers. We discussed a system that searches among a
dataset of deltas for a path to a correct transpilation. However, devel-
opers may design deltas so that a specific application chain works for
every input program, i.e., a compiler.

urther properties on deltas. In this work, we assumed that deltas pre-
erve the semantics of the translated programs. However, one could
esign deltas to satisfy other properties (e.g., security properties (Abate
t al., 2019)). The requirement that such properties would need to
atisfy is compositionally (i.e., the composition of deltas satisfy the
esired property must satisfy the same property). This consideration
ay also open up also possible variation of the current framework, that

iven deltas satisfying different properties, try to find a compilation
ath that maximizes the number of satisfied properties.

ifferent programming paradigms. Developing a transpiler becomes in-
creasingly challenging when dealing with different programming
paradigms. Unfortunately, we do not anticipate that ★piler would
significantly reduce the inherent complexity of such tasks. However,
★piler can be a valuable tool for enhancing reusability. As long as a
‘bridge’ of deltas exists for transpiling between different paradigms,
developers can direct their attention to transpiling between similar
paradigms. The ★piler will automatically compose deltas to bridge
across paradigm shifts without requiring explicit specification.

You can choose your transpilation. Recall that the language S++ denotes
the constructor method using the identifier start. If we were to
translate the S# class that already contained a method named start,
we would run quickly into a dilemma. We cannot transpile the S#
start method as is, because it would be regarded as a constructor
in the target language. Yet, changing its signature may be a problem
as the S++ API would change. These cases may or may not require an
ad hoc treatment. To solve these cases, you can choose to use the delta
that handles methods with the name start or not. This feature does
make for customizable transpilers that can handle a variety of cases
depending on the developer’s needs.
11
Partial transpilers. Transpiling a program in one language into another
is not always possible. For example, transpiling a program written in
a Turing complete language into a non-Turing complete language is
not always possible. However, some programs may still be transpilable.
Consider a program that performs only assignments and basic opera-
tions without relying on loops. Such a program can be transpiled into
a non-Turing complete language (as long as it supports assignments). In
these cases, the system will use only the deltas to translate assignments.
If an unlimited loop is present in the source program, the transpilation
will fail, as there will be no delta available to translate the loop into
the target language.

We can now answer to:

RQ3 What are the strengths and weaknesses the ★piler frame-
work?

★piler framework presents a different way to develop compilers and
ranspilers. The reuse of libraries, compiler tests, and deltas themselves
re the main compelling advantages of ★piler. Moreover, ★piler is

a flexible framework, that can work with any subset of the deltas
necessary to translate all programs from a source language to a target
one. On the other hand, the development of deltas is the main challenge
of the framework. As mentioned before, deltas can be difficult to debug
as they may interact with each other in unpredicted ways.

7.1. Threats to validity

External validity. In this work, we assert that the ★piler framework
represents a valid alternative for developing programming languages.
However, it is important to note that the framework has only been
tested with small programming languages and small programs. To
validate our claims, we would need to scale up both the languages and
tests to ensure its applicability in all practical scenarios.

Internal validity. As we observed, using A* in comparison to BFS results
in acceptable transpilation times. However, the compilation/transpi-
lation time within the ★piler framework depends on various factors,
including computer hardware and the topology of the search graph. To
substantiate our claims, we conducted numerous tests on languages (S,
S++, and S#) that encompass a reasonable variety of features, all of
which were performed on the same hardware.

Construct validity. In our efforts of answering RQ1, we aimed to mea-
sure the timeliness of ★piler. In order to do so, we gauged the execution
times. However, these measurements can be subject to a variety of
perturbations difficult to control. To mitigate these issues, we pro-
vide measurements from an average of 5 runs for each test. Fur-
thermore, we introduce a hardware-independent metric, the number
of explored nodes, which is independent of hardware and software
perturbations.

8. Related works

Language workbenches. While we rarely discuss language workbenches,
the proposed system can be regarded as a language workbench. One
language workbench that we already mentioned is Neverlang (Vacchi
and Cazzola, 2015). Another language workbench risen in popularity is
Spoofax (Wachsmuth et al., 2014; Kats et al., 2010). Spoofax uses the
Stratego to define the language semantics as a chain of transformations.
A different approach is taken by CBS (Churchill et al., 2015; Mosses,
2019b,a). CBS is based on the concept of funcons, a semantic unit that
can be reused. The PlanCompS (van Binsbergen et al., 2016) projects
aim to collect a variety of funcons to cover all the language developers
needs. Instead, MPS (Völter and Pech, 2012; Pech et al., 2013) is a
non-textual language workbench in which the AST is directly written

without the aid of a parser. Another example of a language workbench
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is MontiCore (Grönninger et al., 2008; Krahn et al., 2010; Rumpe et al.,
2021). MontiCore uses a specific domain-specific language to define
a grammar. Instead, the semantics are implemented in Java through
visitors. The Truffle framework (Wimmer and Würthinger, 2012) uses
tree transformation to optimize code during runtime. Usually, language
workbenches offer an infrastructure to develop compilers and language
tools using syntactic and semantic rules. For example, the Neverlang
language workbench offers a development infrastructure to develop
languages using semantic rules that run on the Java virtual machine.
Instead, the ★piler does not define semantic rules explicitly but it
defines a translation between semantically equivalent CSTs. In com-
parison to other language workbenches, ★piler offers the advantage of
allowing the definition of programming languages based on previously
implemented ones with minimal or no glue code. This is made possible
as ★piler transpilations are automatically searched without requiring
the explicit definition of the transpilation path. Furthermore, ★piler
enables the automatic definition of transpilations to all reachable lan-
guages in the search graph. However, it is important to note that
★piler is not currently as mature as other more established language
workbenches and lacks the support or development environments that
make these workbenches desirable.

Transpilers. Transpilers are software that aims to translate one pro-
gram written in one language into a different one. For example, Se-
qualsK (Schultes, 2021) is a bidirectional transpiler between Swift and
Kotlin. SequalsK aims to bridge the development of Android and IOS
applications. Ling et al. (2022) have developed a C to Rust source-
to-source transpiler with the purpose of migrating old source code.
Also, a partial Python to Rust transpiler is proposed by Lunnikivi
et al. (2020). They have shown a 12x performance improvement in
the transpiled code. These transpilers are only concerned with a single
source language and a single target language (one-to-one). Instead,
the ★piler framework offers a homogeneous approach to developing
many-to-many transpilers. ROSE (Quinlan, 2000; Quinlan and Liao,
2011) is a compiler infrastructure with an intermediate representation
that supports a variety of languages, such as C, C++, and Java. ROSE
infrastructure uses tree transformation to apply optimizations on the
intermediate representation. EpsilonFlock (Rose et al., 2010, 2014) is a
tool developed using the Epsilon platform (Kolovos, 2008) to perform a
rule-based meta-model transpilation. Instead, of using an intermediate
representation to which all languages need to be transpiled, the ★piler
ramework allows a level of flexibility that permits the development
f both one-to-one transpilers and one-to-many transpilers. Moreover,
elta developed for any transpiler can always be reused for different
cenarios. Nanopass (Sarkar et al., 2004) utilizes transpilation units,
eferred to as ‘passes’ instead of ‘deltas,’ to define comprehensive tran-
pilers and compilers. While it provides a more sophisticated definition
f passes, Nanopass lacks the search step introduced by ★piler. A sig-

nificantly distinct approach to compiler design can be seen in program
synthesis, as demonstrated in Bhatia et al. (2023). Although promising,
program synthesis is currently mainly applied to code fragments rather
than full programs, in order to keep the search space manageable.

Multi-language systems. Folliot et al. (1998) describe a multi-language
system—called VVM. VVM is a virtual machine running VMlets that
can execute the bytecode of their language. Self (Wolczko et al., 1999)
is a minimal programming language that is optimized during runtime.
Self has been used to implement languages such as Java and Smalltalk
without relying on custom VMs. VMs usually run a single intermediate
language. However, they can be effective at unifying the ecosystem of
the languages that compile towards a VM (successful examples are Java
and Scala programming languages). Instead, the ★piler framework
can be effective also at unifying the ecosystem of languages that are
developed to run on different VMs. Moreover, the ★piler framework
can decouple a language from its VM. It can allow to run the same
language on different VMs.
12
9. Conclusion

In this work, we designed a system to build transpilers. The system
uses a collection of user-provided CST transformation—called deltas—
to search for a desired transpilation. Deltas are small transpilation
functions that can be reused across different transpilations or during
the same transpilation. The system induces a graph generated by the
recursive application of deltas. The system searches for a transpilation
to the desired target language in the induced graph. Provided that
deltas are all correct if the system terminates, it reaches a correct
transpilation. The transpilation search can be informed with a heuristic
to reach a solution in a timely fashion compared to a BFS search. We
prove that such a heuristic exists, and it is admissible. Finally, we
compare the search algorithm BFS and A* on a benchmark of more than
100 cases. We show that the A* algorithm, equipped with the discussed
heuristic, performs extremely better compared to the alternative. You
can find the code for the ★piler alongside the experiment data at:
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ppendix. Metric space proof

Let  be the universe set. Let  ⊆ ( ). Let 𝑆 ∈  . We will show
hat ( , 𝑑𝑆𝑟𝑠𝑑𝑑 ) is a proper metric space. To do so, we need to show
hat 𝑑𝑆𝑟𝑠𝑑𝑑 is a distance function. Let us use 𝑑(⋅, ⋅) instead of 𝑑𝑆𝑟𝑠𝑑𝑑 and 𝑑

instead of 𝑑𝑠𝑑𝑑 .

1. 𝐴 ∈  ⟹ 𝑑(𝐴,𝐴) = 0.
2. 𝐴,𝐵 ∈  ∧ 𝐴 ≠ 𝐵 ⟹ 𝑑(𝐴,𝐵) > 0.
3. 𝐴,𝐵 ∈  ⟹ 𝑑(𝐴,𝐵) = 𝑑(𝐵,𝐴).
4. 𝐴,𝐵, 𝐶 ∈  ⟹ 𝑑(𝐴,𝐶) ≤ 𝑑(𝐴,𝐵) + 𝑑(𝐵,𝐶).

The first three properties immediately follow from the definition of
𝑑. The last property (triangle inequality) will be proved by exhaustively
checking all cases.

Case 𝐴 = 𝐵 = 𝐶:

𝐴,𝐵, 𝐶 ⊆ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟

0

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟

0

+ 𝑑(𝐵,𝐶)
⏟⏟⏟

0

𝐴,𝐵, 𝐶 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟
𝑑(𝐴,𝐶)

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟
𝑑(𝐴,𝐵)

+ 𝑑(𝐵,𝐶)
⏟⏟⏟
𝑑(𝐵,𝐶)

Case 𝐴 = 𝐵 ≠ 𝐶:

𝑑(𝐴,𝐶) ≤ 𝑑(𝐴,𝐵)
⏟⏟⏟

+𝑑(𝐵,𝐶)
0

https://doi.org/10.5281/zenodo.8284131
https://doi.org/10.5281/zenodo.8284131
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⏟

𝐵

𝐶

𝐴

Case 𝐴 ≠ 𝐵 = 𝐶:

𝑑(𝐴,𝐶) ≤ 𝑑(𝐴,𝐵) + 𝑑(𝐵,𝐶)
⏟⏟⏟

0

Case 𝐴 = 𝐶 ≠ 𝐵:

𝑑(𝐴,𝐶)
⏟⏟
0

≤ 𝑑(𝐴,𝐵) + 𝑑(𝐵,𝐶)

Case 𝐴 ≠ 𝐶 ≠ 𝐵:

𝐴,𝐵, 𝐶 ⊆ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟

1∕2

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟

1∕2

+ 𝑑(𝐵,𝐶)
⏟⏟⏟

1∕2

𝐴 ⊆ 𝑆 ∧ 𝐵,𝐶 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟
𝑑(𝑆,𝐶)

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟
𝑑(𝑆,𝐵)

+ 𝑑(𝐵,𝐶)
⏟⏟⏟
𝑑(𝐵,𝐶)

⊆ 𝑆 ∧ 𝐴,𝐶 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟
𝑑(𝐴,𝐶)

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟
𝑑(𝐴,𝑆)

+ 𝑑(𝐵,𝐶)
⏟⏟⏟
𝑑(𝑆,𝐶)

⊆ 𝑆 ∧ 𝐴,𝐵 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟
𝑑(𝐴,𝑆)

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟
𝑑(𝐴,𝐵)

+ 𝑑(𝐵,𝐶)
⏟⏟⏟
𝑑(𝐵,𝑆)

𝐴,𝐵 ⊆ 𝑆 ∧ 𝐶 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟
𝑑(𝑆,𝐶)

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟

1∕2

+ 𝑑(𝐵,𝐶)
⏟⏟⏟
𝑑(𝑆,𝐶)

, 𝐶 ⊆ 𝑆 ∧ 𝐵 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟

1∕2

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟
𝑑(𝑆,𝐵)

+ 𝑑(𝐵,𝐶)
⏟⏟⏟
𝑑(𝐵,𝑆)

𝐵,𝐶 ⊆ 𝑆 ∧ 𝐴 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟
𝑑(𝐴,𝑆)

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟
𝑑(𝐴,𝑆)

+ 𝑑(𝐵,𝐶)
⏟⏟⏟

1∕2

𝐴,𝐵, 𝐶 ⊈ 𝑆 ∶ 𝑑(𝐴,𝐶)
⏟⏟⏟
𝑑(𝐴,𝐶)

≤ 𝑑(𝐴,𝐵)
⏟⏟⏟
𝑑(𝐴,𝐵)

+ 𝑑(𝐵,𝐶)
⏟⏟⏟
𝑑(𝐵,𝐶)

This concludes the proof. 𝑑(⋅, ⋅) is a distance function. Thus, ( , 𝑑)
is a metric space.
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