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Abstract
In this paper, we study conformal solitons for the mean curvature flow in hyperbolic space
H

n+1. Working in the upper half-space model, we focus on horo-expanders, which relate to
the conformal field−∂0.We classify cylindrical and rotationally symmetric examples, finding
appropriate analogues of grim-reaper cylinders, bowl and winglike solitons. Moreover, we
address the Plateau and the Dirichlet problems at infinity. For the latter, we provide the sharp
boundary convexity condition to guarantee its solvability and address the case of non-compact
boundaries contained between two parallel hyperplanes of ∂∞H

n+1.We conclude by proving
rigidity results for bowl and grim-reaper cylinders.
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1 Introduction

Let M and N be complete connected Riemannian manifolds and f : M → N an isometric
immersion. A mean curvature flow (MCF for short) issuing from f is a smooth map F :
M×[0, T ) → N such that each Ft : M → N , Ft (·) = F(· , t), is an immersion and satisfies
the evolution equation {

∂Ft
∂t

= H(Ft ),

F0 = f ,
(1.1)

where H(Ft ) is the unnormalized mean curvature vector field of Ft . If M is compact, then
(1.1) admits a smooth and unique (up to reparametrizations) solution, see for example [6, 29,
50]. Although most of the literature regards theMCF in Euclidean space, there are significant
applications of the MCF in other ambient manifolds, see [50] for an overview.

In this paper, we will consider a special class of solutions to the MCF. Let X be a smooth
vector field on a Riemannian manifold N and Φ : D ⊂ N ×R → N its associated flow with
maximal domain D . A solution F : M × (0, T ) → N to the MCF is said to move along X
if there exists an immersion f : M → N , a reparametrization s : (0, T ) → R of the flow
lines of X and a 1-parameter family of diffeomorphisms η : M × (0, T ) → M such that

F(x, t) = Φ
(
f (η(x, t)), s(t)

)
, (x, t) ∈ M × (0, T ). (1.2)

While the definition is meaningful for arbitrary X , we focus on conformal vector fields since
in this case theMCF “preserves” the shape of the evolved submanifold. AMCFmoving along
a conformal field X is said to be a self-similar solutionwith respect to X . Self-similar solutions
serve as comparison solutions to investigate the formation of singularities. Differentiating
(1.2) with respect to t and estimating at 0, we obtain the equation

H = s′(0)X⊥,

where {·}⊥ is the orthogonal projection on the normal bundle of f . This motivates the fol-
lowing definition:

Definition 1.1 An isometric immersion f : M → N satisfying the elliptic equation

H = cX⊥, (1.3)

where c ∈ R, is called a soliton with respect to X with soliton constant c. If X is a gradient
field (resp. a conformal field or a parallel field ), then f is named a gradient (resp. a conformal
or a translating ) soliton.

Remark 1.2 Let us make some comments regarding solitons in general ambient spaces:

(1) The case where X is conformal and closed was considered in [1, 5, 17, 51]. A soliton with
respect to X with constant c is a soliton with respect to cX with constant 1. However, in
what follows, it will be more convenient to specify X from the very beginning and keep
c as a parameter.

(2) The fact that f solves (1.3) may not imply that the MCF issuing from f moves along
X . This is the case, however, when X is a Killing field, since X generates a 1-parameter
group of isometries, [31, 32]. Nevertheless, the study of (possibly non-Killing) gradient
solitons in more general ambient spaces can also be justified from the parabolic point of
view, as shown by Yamamoto [56]. The starting point is the investigation of the MCF
in a Ricci flow background; see [40, 41]. More precisely, let {gt } a smooth 1-parameter
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family of Riemannian metrics on N and Ft : M → N a smooth 1-parameter family of
immersions for t ∈ [0, T ).We say that {(gt , Ft )} is a solution to theRicci-mean curvature
flow if the following system is satisfied⎧⎪⎨

⎪⎩
∂gt
∂t

= −2Ric(gt ),

∂Ft
∂t

= H(Ft ),
(1.4)

whereH(Ft ) denotes the mean curvature vector field of Ft : M → (N , gt ). One interest-
ing case is that of a MCF in a gradient shrinking Ricci soliton (N , g, u). In this situation,
g and u satisfy

Ric(g)+ Hessg(u)− (1/2) g = 0

and thus gt = (T − t)Φ∗
t g, where Φt : N → N , t ∈ (0, T ) is the flow of the vector

field

V = ∇u
T − t

.

Yamamoto [56] proved the following results:

• Let (N , g, u) be a shrinking gradient Ricci soliton and let f : M → N be a soliton
satisfying

H( f ) = −(∇u)⊥.

Then, F : M × [0, T ) → N given by F = Φ−1
t ◦ f forms, up to tangential

reparametrizations, a solution to the Ricci-mean curvature flow (1.4); see [56, Propo-
sition 4.3].

• Let (N , g, u) be a compact shrinking gradient Ricci soliton, M a compact manifold
and let F : M × [0, T ) → N , T < ∞, be a Ricci-mean curvature flow defined by
(1.4). Suppose that the second fundamental forms A(Ft ) of Ft satisfy

max
M

|A(Ft )| < C√
T − t

,

where C is a positive constant. For any increasing sequence {s j } of numbers tending
to infinity and any sequence of points {x j } in M , the family of the rescaled pointed
immersions Gsj : (M, x j ) → N given by Gsj = Φt j ◦ Ft j , where t j is defined by
s j = − log(T − t j ), subconverges in the Cheeger-Gromov sense to an immersion
f∞ : M∞ → N of a complete Riemannian manifold satisfying the equation

H( f∞) = −(∇u)⊥;
for more details we refer to [56, Theorem 1.5].

Remark 1.3 When X is a gradient field, a further motivation for studying solutions to (1.3) is
the tight relation to the theory of minimal submanifolds; see for example [14–16, 28, 30–35,
51].

(1) Isometric immersions f : Mk → (Nn+1, g) satisfying the soliton equation

H = (∇u)⊥, (1.5)
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for u ∈ C∞(N ) are precisely the stationary points of the weighted volume functional

� ⊂ M �→
∫

�

eu( f )dx,

where dx is the induced Riemannianmeasure onM . Consequently, solitons are particular
examples of u-minimal submanifolds. By considering the conformally related metric
gI(k) = e2u/k g and endowing M with the induced metric h(k) = f ∗gI(k), eudx is
the Riemannian volume measure of h(k) and thus f solves (1.5) if and only if f :
(M, h(k)) → (N , gI(k)) is minimal. The metric gI(k) is called the Ilmanen metric.

(2) According to a result of Smoczyk [51], there exists a 1–1 correspondence between gra-
dient conformal solitons in N and minimal submanifolds in a suitable warped product
constructed out of N . Smoczyk proved that if f : M → (N , g) is a soliton with respect
to a conformal gradient field∇u, then its associated submanifold M̄ = R×M is minimal
in N̄ = R× N equipped with the warped metric ḡ(s,x) = e2u(x)ds2 + gx . Moreover, he
proved that a submanifold M in N converges to a conformal soliton under the MCF if
and only if its associated submanifold M̄ converges to a minimal submanifold under a
rescaled MCF in N̄ .

In the present paper, we will investigate conformal solitons in the hyperbolic space

H
n+1 = {(x0, x1, . . . , xn) ∈ R

n+1 : x0 > 0
}
, gH = x−2

0

∑n

i=0
dx2i . (1.6)

The class of conformal vector fields of Hn+1 is particularly rich. Thus, we shall restrict
ourselves to solitons with respect to −∂0, i.e., solutions to

H = −∂⊥0 = (∇x−1
0 )⊥. (1.7)

Such solitons correspond to “limit self-expanders” which we call horo-expanders. Horo-
expanders share many similarities with translators in Euclidean space. One may suspect
that the analogy is a trivial consequence of the fact that the model (1.6) is conformal to
the Euclidean upper half-space. However, a direct computation shows that a k-dimensional
soliton in H

n+1 with respect to −∂0 is a soliton in the Euclidean half-space R+ × R
n with

respect to (−x−1
0 − kx−2

0 )∂0, which is not conformal. Hence, a duality between conformal
solitons in H

n+1 and translators in R
n+1 is hardly obtainable via simple transformations.

In view of Remark 1.3(1), we can regard a k-dimensional soliton with respect to −∂0 as
minimal submanifold of (Hn+1, gI(k)), where

gI(k) = e
2

kx0 gH . (1.8)

This allows us to relate the existence of a soliton with prescribed boundary contained in
the boundary at infinity ∂∞H

n+1 to the existence of minimal submanifolds in Riemannian
manifolds. It turns out that in codimension one, both the Plateau and the Dirichlet problem
at infinity are solvable, the latter under the additional condition that the boundary is mean
convex. However, a distinction shall be made between boundary points of ∂∞H

n+1: in the
upper half-space model (1.6) the boundary at infinity can be represented as the union of

∂ ′∞H
n+1 = {x0 = 0} and p∞ = ∂∞H

n+1\∂ ′∞H
n+1,

which behave quite differently for the Ilmanen metric. Hereafter, the space ∂ ′∞H
n+1 will be

given the Euclidean metric and metric quantities (balls, hyperplanes, neighborhoods, etc..)
will be considered with respect to it.
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We can also represent the hyperbolic space via the Poincaré model

H
n+1 = {x ∈ R

n+1 : ‖x‖2 < 1}, gH = 4(1− ‖x‖2)−1
n+1∑
i=1

dx2i .

In this model, ∂∞H
n+1 is the n-dimensional unit sphere Sn . Moreover, if W ⊂ H

n+1, then

∂∞W
.= W ∩ S

n,

where W denotes closure of W in the Euclidean topology.
Regarding Plateau’s problem, we show its solvability for hypersurfaces. The higher codi-

mensional case remains as an open problem; see Sect. 4. Before stating our result, let us
recall some standard notations from geometric measure theory: given a closet subsetW with
locally finite perimeter in a smooth manifold N , we denote by [W ] its associated rectifiable
current. If M is a rectifiable current we denote by spt M its support and by ∂M its boundary;
for more details, we refer to [49].

Theorem A [Plateau’s problem] Let � ⊂ ∂ ′∞H
n+1 be the boundary of a relatively com-

pact subset A ⊂ ∂ ′∞H
n+1 with A = int(A). Then, there exists a closed set W of local

finite perimeter in H
n+1 with ∂∞W = A such that M = ∂[W ] is a conformal soliton for

−∂0 on the complement of a closed set S of Hausdorff dimension dimH (S) ≤ n − 7, and
that ∂∞ spt(M) = �. Furthermore, when n < 7, then M is a properly embedded smooth
hypersurface of Hn+1.

We next focus on hypersurfaces which are graphs of the form

�(u) = {(u(x); x) ∈ H
n+1 = R

+ × R
n : x ∈ � ⊂ R

n},
where u ∈ C∞(�). Given 0 ≤ φ ∈ C(∂�), it turns out that �(u) is a soliton with respect to
−∂0 with boundary �(φ) if and only if u satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
div

(
Du√

1+ |Du|2
)
= − 1+ nu

u2
√
1+ |Du|2 on �,

u > 0 on �,

u = φ on ∂�,

(1.9)

where D, div, | · | are the gradient, divergence and norm in the Euclideanmetric. In particular,
for φ ≡ 0, we obtain a complete graphical soliton whose boundary at infinity is ∂�. The
right-hand side of (1.9) becomes undefined as u = 0, which calls for some care. However, we
will see that the terms u and |Du| contribute in opposite directions to the size of u. We show
the following result, which parallels the seminal one by Jenkins & Serrin [36] for minimal
graphs:

Theorem B [Dirichlet’s problem] Let � ⊂ ∂ ′∞H
n+1 be an open, connected subset with

C3-smooth boundary ∂�. Assume that � is contained between two parallel hyperplanes of
∂ ′∞H

n+1, and denote by H∂� the Euclidean mean curvature of ∂� in the direction pointing
toward �.

(1) If H∂� ≥ 0 on ∂�, then for each continuous bounded function φ : ∂� → [0,∞) there
exists a function u : � → [0,∞) such that:

(a) u > 0 on � and the graph �(u) ⊂ H
n+1 is a conformal soliton with respect to −∂0.

(b) u ∈ C∞(�) ∩ C(�) ∩ L∞(�) and u ≡ φ on ∂�.
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(2) If � is bounded and H∂�(y) < 0 for some y ∈ ∂�, then there exists a continuous
boundary value function φ : ∂� → (0,∞) such that no u : � → [0,∞) satisfying the
properties in (1) does exist.

Remark 1.4 Let us make some comments about the conclusions of Theorem B.

(1) If � is bounded, then u realizing (a), (b) is unique, by a direct application of the com-
parison theorem. It would be interesting to investigate the uniqueness problem for �

unbounded.
(2) Similar (non-degenerate) Dirichlet problems were considered for prescribed mean cur-

vature graphs in warped product manifolds; see for example [3, 9–11, 19, 21–23, 36, 47].
Among them, the only applicable result to (1.9) is [11, Theorem 1.1], which guarantees
the solvability of⎧⎪⎨

⎪⎩
div

(
Du√

1+ |Du|2
)
= f (u)√

1+ |Du|2 on a smooth � ⊂ R
n,

u = φ on ∂�,

(1.10)

for C2,α-smooth positive φ provided that f ∈ C1(R) and H∂� satisfy:

(n − 1)κ
.= supR| f | < ∞ and H∂� ≥ (n − 1)κ. (1.11)

However, application to (1.9) would force a lower bound on H∂� that diverges as
min∂� φ → 0.

(3) Serrin discussed in [47,Chapter IV, pages 477–478] the solvability and the non-solvability
of the Dirichlet problem for equations of the form

div

(
Du√

1+ |Du|2
)
= �

(1+ |Du|2)θ and div

(
Du√

1+ |Du|2
)
= Cu

(1+ |Du|2)θ ,

(1.12)

where �, C and θ are constants and C > 0. Note that, for � = 1 and θ = 1/2, the
equation (1.12) describes a translating graphical soliton of the MCF in the Euclidean
space. Both equations (1.12) appear in an old paper of Bernstein [7]. As a matter of fact,
Bernstein studied the 2-dimensional case and showed that the corresponding Dirichlet
problems are solvable for arbitrary analytic boundary data in an arbitrary strictly convex
analytic domain only for special values of θ . The problem that we treat in (1.9) does not
fall in the class of equations defined in (1.12).

(4) Jenkins and Serrin [36] constructed data (∂�, φ) for which the Dirichlet problem for the
minimal surface equation in the Euclidean space is not solvable. In their work, ∂� has
negative mean curvature at a given point and the oscillation of φ can be made arbitrarily
small. However, this is not the case for the boundary data we provide in Theorem B(2),
whose oscillation shall be at least a fixed amount. From the proof of Theorem B(2), we
may suspect the impossibility to produce boundary data with arbitrarily small oscillation
for which (1.9) is not solvable.

(5) As a direct application of the maximum principle, we can show that there are no solutions
to

div

(
Du√

1+ |Du|2
)
+ 1+ nu

u2
√
1+ |Du|2 = 0 on the entireRn .
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Another goal of our paper is to construct and classify complete codimension one solitons
with symmetries. Despite their own interest, such solitons serve as important barriers and
will be used in the proofs of Theorems A and B. Up to rotation, all examples are generated
by special curves γ : I → R

+×R, γ (t) = (x0(t), x1(t)), in the x0x1-plane. The first family
to be considered is that of cylindrical solitons:

M = {(x0, x1, . . . , xn) ∈ H
n+1 : (x0, x1) ∈ γ (I )

}
. (1.13)

We shall prove that the only such examples are the grim-reaper cylinders, described by
the following:

Theorem C [Grim-reaper cylinders] If M is a complete soliton for −∂0 of the type (1.13),
then it has the following properties:

(1) ∂∞M is a pair of parallel hyperplanes π1 ∪ π2 in ∂ ′Hn+1.
(2) M is contained between the two totally geodesic hyperplanes �1 and �2 of Hn+1 with

∂ ′∞�1 = π1 and ∂ ′∞�2 = π2.
(3) M is symmetric with respect to the reflection sending�1 to�2, and invariant with respect

to translations fixing �1 and �2.
(4) M is (Euclidean) convex with respect to the direction −∂0.

We name M a grim-reaper cylinder. Denote by h = max x0(M), and let G h be the grim-
reaper cylinder isometric to M which is symmetric with respect to the hyperplane {x1 = 0}.
Then, the family {G h}h∈R+ foliatesHn+1. In particular, given a pair of parallel hyperplanes
π1, π2 ⊂ ∂ ′∞H

n+1, the grim-reaper cylinder with ∂∞M = π1 ∪ π2 exists and is unique.

Another way to construct complete conformal solitons is by rotating γ around the x0-axis.
From this procedure, we obtain the hyperbolic winglike and bowl solitons, similar to those
existing in Euclidean space; see for more details [13] and [43]. We here report a simplified,
slightly informal statement of our main existence and uniqueness result. For the precise one,
including further properties of γ , we refer the reader to Lemma 3.6 and Theorem 3.8.

Theorem D [Rotationally symmetric solitons] There are exactly two families of curves γ

giving rise to a complete, smooth rotationally symmetric conformal soliton with respect to
−∂0. They are depicted in Fig.1, and named γB and γW . We call a bowl soliton the one
obtained by rotating γB, and a winglike soliton that obtained by rotating γW . The following
holds:

(1) γB is a strictly concave graph over a domain (0, hB) of the x0-axis, and meets the x1
and x0 axes orthogonally.

(2) γW is a bigraph over a domain (0, hW ) of the x0-axis, and does not touch the x0-axis.
The upper graph (the one from q1 to p1) is strictly concave, while the lower graph is the
union of a strictly convex branch with a unique minimum (from p1 to p2) and a strictly
concave branch (from p2 to q2). Moreover, γW meets the x1-axis orthogonally at two
distinct points (q1 �= q2).

It turns out that bowl solitons foliate H
n+1, see Lemma 3.9. As a direct consequence,

we deduce the following uniqueness property which may be viewed as an analogue of [43,
Theorem A].

Theorem E [Uniqueness of the bowl soliton] For any Euclidean ball BR ⊂ ∂ ′∞H
n+1, there

exists a bowl soliton M with ∂∞M = ∂BR, and it is the unique properly immersed soliton
with respect to −∂0 with boundary at infinity ∂BR.
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Fig. 1 Curves generating the
bowl and winglike solitons

x1

x0

hB

hW

q1q2

p1

p2
γWγB

Regarding the uniqueness of grim-reaper cylinders, the problem is more subtle. Quite
differently from the Euclidean case, hyperbolic grim-reaper cylinders foliate the hyperbolic
space, which is quite helpful. Nevertheless, getting uniqueness under the only assumption
that ∂∞M is a pair of parallel hyperplanes of ∂ ′∞H

n+1 seems difficult. Our last result is that
M is a grim-reaper cylinder provided that the height x0 is bounded and that M is graphical in
a small region {x0 < τ }, see Definition 1.5. A similar result was proved in [26, 42] for MCF
translators in Euclidean space under the stronger assumption that they are C1-asymptotic
outside a cylinder to a grim-reaper cylinder. In our setting, we will use a calibration argument
to get rid of the C1-bound.

Definition 1.5 A properly embedded hypersurface M ⊂ H
n+1 is said to satisfy the GR-

property (see Fig. 2 ) if the following conditions are satisfied:

(1) ∂ ′∞M = π1 ∪ π2, where π1 and π2 are parallel hyperplanes of ∂ ′∞H
n+1.

(2) The x0-component of M is bounded.
(3) There exist τ > 0, a pair of (Euclidean) hyperplanesH j ⊂ H

n+1 and a pair of functions
ϕ j : Hτ

j = H j ∩ {x0 < τ } → R, j ∈ {1, 2}, such that:
(a) ∂ ′∞H j = π j .
(b) The wings W j = {x + ϕ j (x)ν j : x ∈ Hτ

j } are contained in M , where ν j is a fixed
(Euclidean) unit normal to Hj .

(c) M ∩ {x0 < τ } is the portion of W1 ∪W2 inside {x0 < τ }.

Observe that condition (a) in Definition 1.5 implies that

∀ y ∈ π j , lim
x→y

ϕ j (x) = 0.

However, a priori the limit may not be uniform in y, an assumption which was required in
[26, 42].

Theorem F [Uniqueness of the hyperbolic grim-reaper cylinder] Let M ⊂ H
n+1 be a prop-

erly embedded conformal soliton with respect to −∂0 satisfying the GR-property. Then M
coincides with a grim-reaper cylinder.
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Fig. 2 GR-property

The structure of the paper is as follows. Section2 we set up the notation and derive basic
properties for conformal solitons in the hyperbolic space. In Sect. 3, we examine symmetric
horo-expanders and prove Theorems C, D and E. Section4 is devoted to the Plateau problem
at infinity, while in Sect. 5 we consider the Dirichlet problem at infinity and prove Theorem
B. Finally, in Sect. 6, we prove Theorem F.

2 Preliminaries

In this section we fix the notation and review some basic formulas.

2.1 Generalities about soliton solutions

A vector field X in an n-dimensional Riemannian manifold (N , g) is called conformal if the
Lie derivative of g in direction X satisfies

LX g = 2ψ g for some ψ ∈ C∞(N ).

Taking traces, ψ = divgX/n. By relating the Lie derivative to the Levi-Civita connection ∇,
a conformal vector field is characterized by the identity

g(∇Y X , Z)+ g(∇Z X , Y ) = 2

n

(
divgX

)
g(Y , Z)

for Y , Z ∈ X(N ). If the field X is conformal and divergence free, it is called Killing. If the
vector field X satisfies

∇Y X = 1

n

(
divgX

)
Y ,
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namely, the dual form X� is closed, then X is called closed conformal. It is a well-known
fact that a Riemannian manifold possessing a non-trivial closed conformal vector field is
locally isometric to a warped product with a 1-dimensional factor; see for instance [44, page
721]. The hyperbolic space possesses various conformal vector fields X and the study of the
corresponding solitons is interesting. Let us see some explicit examples here:

Example 2.1 Denotewith gS, gR, gH theRiemannianmetrics of the n-dimensional unit sphere
S
n , the Euclidean space Rn and of the hyperbolic space Hn .

(1) Consider for the hyperbolic space the model Hn+1\{0} = R
+ × S

n equipped with the
metric dr2 + sinh2(r) gS. Then the vector field X = sinh(r)∂r is conformal. We call
solitons for cX expanders if c > 0, and shrinkers if c < 0. Also, rotation vector fields in
the Sn factor extend to Killing fields and give rise to solitons that we call rotators.

(2) Consider for the hyperbolic space the model Hn+1 = R×R
n endowed with the warped

metric dr2 + e2r gR. Then, the vector field X = er∂r is conformal. The change of
coordinates x0 = e−r gives rise to an isometry with the upper half-space model sending
X to the field −∂0. Solitons with respect to cX are called horo-expanders if c > 0 and
horo-shrinkers if c < 0.

(3) Consider for the hyperbolic space the modelHn+1 = R×H
n equipped with the Rieman-

nian metric dr2 + cosh2(r) gH. Then X = cosh(r)∂r is conformal. Given that cosh(r) is
even, we restrict to c > 0. A soliton with respect to cX shrinkswhere r < 0 and expands
where r > 0.

(4) Consider for the hyperbolic space the model H
n+1 = R × H

n with the metric
cosh2(ρ)ds2 + gH, with ρ is the distance in H

n to a fixed point. Then, the vector field
X = ∂s is Killing. In the upper half-space model, it corresponds to the position vector
field

X =
n∑
j=0

x j∂ j .

(5) Consider for the hyperbolic space themodelHn+1 = R×H
n with themetric e2ρds2+gH,

with ρ a Busemann function inHn . The vector field X = ∂s is Killing. In the upper half-
space model, it corresponds to the vector field ∂ j , for j ∈ {1, . . . , n}.

2.2 Conformal solitons and the Ilmanenmetric

Suppose that M and N are connected manifolds with dimensions k and n + 1, respectively,
with k ≤ n. Let h1 and h2 be metrics on N which are conformally related:

h2 = λ2h1 for some 0 < λ ∈ C∞(N ).

Assume that f : M → N is an immersion and denote by g j = f ∗h j the corresponding
induced metrics. Then, the second fundamental forms A j of f j = f : (M, g j ) → (N , h j )

are related by

A2(X , Y ) = A1(X , Y )− g1(X , Y )
(∇1 log λ

)⊥
, (2.1)

for any X , Y ∈ X(M). Here,∇1 stands for the Levi-Civita connection of h1 and {·}⊥ denotes
the orthogonal projection with respect to h1 on the normal bundle of f1. Taking traces, we
see that the corresponding mean curvature vectors H1 and H2 are related by

H2 = λ−2{H1 − k(∇1 log λ)⊥
}
. (2.2)
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As immediate consequence of the above formulas we obtain the following:

Lemma 2.2 Let M ⊂ (Hn+1, gH) be a k-dimensional soliton of the MCF with respect to
−∂0. Then, the following hold:

(1) M is a minimal submanifold of the Ilmanen space (Hn+1, gI(k)) given in (1.8).
(2) M is a soliton of the Euclidean half-space R+ × R

n with respect to the field (−x−1
0 −

kx−2
0 )∂0, which is not conformal.

3 Symmetric conformal solitons

In this section, we examine special conformal solitons and will prove Theorems C, D and E.

3.1 The convex hull property

Recall that a k-dimensional conformal soliton in H
n+1 with respect to −∂0 can be regarded

as a minimal submanifold when Hn+1 is equipped with the Ilmanen metric

gI(k) = e
2

kx0 gH .

Hence, solitons are real analytic submanifolds. According to the strong maximum principle,
two different conformal solitons cannot “touch” each other at an interior or boundary point;
see [25].

Lemma 3.1 Let S ⊂ (Hn+1, gH) be a (Euclidean) spherical cap centered at a point of
∂ ′∞H

n+1 and 2 ≤ k ≤ n a natural number. Then, S ⊂ (Hn+1, gI(k)) is strictly convex with
respect to the upward pointing normal direction. Moreover, there is no k-dimensional soliton
with respect to −∂0 touching S from above.

Proof If ν is a unit normal vector field along S ⊂ (Hn+1, gH), then ν̃ = λ−1ν is a unit
normal along S ⊂ (Hn+1, gI(k)). Denoting with IIgH the scalar second fundamental form of
S ⊂ (Hn+1, gH) in the direction of ν, and with IIgI that of S ⊂ (Hn+1, gI(k)) in the direction
of ν̃, from (2.1) it follows that

IIgI = e
1

kx0

{
IIgH − ν

(
1

kx0

)
gH

}
. (3.1)

Let us choose as ν the upward pointing unit normal along S. Since S is a totally geodesic
hypersurface of (Hn+1, gH), from the last identity we obtain that

IIgI =
e

1
kx0

k
gH(ν, ∂0) gH > 0.

Hence S is convex when the ambient space is equipped with the Ilmanen metric. The last
claim of the lemma follows by the strong maximum principle of Jorge & Tomi [37]. ��

Now we show that, similarly to minimal submanifolds, solitons satisfy the convex hull
property.

Lemma 3.2 Let M ⊂ H
n+1 be a k-dimensional, connected and properly immersed soliton

with respect to−∂0. Then, ∂ ′∞M �= ∅ and M is contained in the cylinderR+× conv(∂ ′∞M),
where conv is the (Euclidean) convex hull in ∂ ′∞H

n+1.
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Fig. 3 Contact with spherical cap

Proof Observe at first that ∂ ′∞M �= ∅ since otherwise we can touch M from below by a
spherical cap S, something which contradicts Lemma 3.1; see Fig. 3a.

Assume now that conv(∂ ′∞M) �≡ ∂ ′∞H
n+1, because otherwise we have nothing to prove.

Fix a hyperplane π ⊂ ∂ ′∞H
n+1 not intersecting ∂ ′∞M , and let � ⊂ H

n+1 be the totally
geodesic hyperplane with ∂ ′∞� = π . Denote with Uπ the open half of Hn+1 such that

∂Uπ = � and ∂ ′∞Uπ ∩ ∂ ′∞M = ∅.
By the properness of M , we can pick a sufficiently small spherical barrier S ⊂ Uπ centered
at a point of ∂ ′∞Uπ and lying outside of M . Due to Lemma 3.1, we can slide S toward �

without intersecting M , until its boundary at infinity touches π at a point q . Denote by p
the center of S and consider the family of spherical barriers {Sλ} of radius λ > 0, passing
through q and centered in the half-line emanating from q in the direction of p. The family
foliates U and, again by Lemma 3.1, M does not intersect any spherical cap Sλ; see Fig. 3b.
Hence, M ⊂ H

n+1\Uπ . The conclusion follows by the arbitrariness of π . ��

3.2 Graphical solitons

Let us consider solitons of the form

�(u) = {(u(x); x) ∈ H
n+1 = R

+ × R
n : x ∈ � ⊂ R

n},
where u ∈ C∞(�).

Lemma 3.3 The graph �(u) ⊂ H
n+1 is a soliton with respect to−∂0, if and only if it satisfies

the equation

div

(
Du√

1+ |Du|2
)
= −nu − 1

u2
√
1+ |Du|2 , (SE)

where div is theEuclidean divergence, D denotes theEuclidean gradient and |·| theEuclidean
norm. In particular, �(u) has nowhere zero mean curvature.

Proof The graph is the image of ψ : � → H
n+1 given by

ψ(x) = (u(x); x),
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for each point x ∈ �. As usual, denote by gH the metric of Hn+1 and by ∇ its Levi-Civita
connection. The components of the induced metric g on the graph in the basis {∂ j } are

gi j = uiu j + δi j

u2
, (3.2)

where i, j ∈ {1, . . . , n}. Moreover, the components gi j of the inverse of g are given by

gi j = u2
(

δi j − uiu j

1+ |Du|2
)

, (3.3)

where

ui = δi j u j and Du = u j∂ j .

The unit normal ν along the graph is

ν = u ∂0 − uDu√
1+ |Du|2 =

u ∂0 − uu j∂ j√
1+ |Du|2 . (3.4)

Making use of the Koszul formula and (3.4), the components of the second fundamental form
are

bi j = gH
(∇ψi ψ j , ν

) = gH(ψi j , ν)+ u−1〈ψi , ψ j 〉 gH(∂0, ν) = uui j + δi j + uiu j

u2
√
1+ |Du|2

for each i, j ∈ {1, . . . , n},where 〈·, ·〉 stands for the Euclidean standard inner product. Using
(3.2) and raising one index by means of the graph metric, the shape operator satisfies

bkj = gki bi j = 1√
1+ |Du|2

[
u

(
ukj −

ukui ui j
1+ |Du|2

)
+ δkj

]
. (3.5)

From (3.5), the unnormalized scalar mean curvature is

H = gi j bi j = u div

(
Du√

1+ |Du|2
)
+ n√

1+ |Du|2 . (3.6)

One the other hand, �(u) is a soliton with respect to X = −∂0 if and only if

H = − gH(∂0, ν) = −1

u
√
1+ |Du|2 . (3.7)

Combining (3.6) with (3.7) we obtain the desired result. ��

3.3 Sub- and supersolutions

Let us describe here special sub- and supersolutions
to the quasilinear differential equation (SE) that we will use often in the rest of the paper.

Definition 3.4 Let � be a domain of the Euclidean space R
n . A C2-smooth function u :

� → (0,∞) is called subsolution (resp. supersolution) to (SE) if it satisfies

div

(
Du√

1+ |Du|2
)
≥ −nu − 1

u2
√
1+ |Du|2

(
resp. ≤ ).

In this case we say that the graph of f is a subsolution (resp. supersolution) to (SE).
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Remark 3.5 Euclidean half-spheres in H
n+1 whose centers are at ∂ ′∞H

n+1 and Euclidean
half-hyperplanes whose boundaries are at ∂ ′∞H

n+1 are subsolutions to the equation (SE). If
u is a solution to (SE) and ε > 0, then u + ε is a supersolution and u − ε is a subsolution to
(SE).

3.4 Proof of Theorem C

We examine here complete solitons of the form Γ × R
n−1 ⊂ H

n+1, where Γ is a curve in
the x0x1-plane. In regions where Γ can be represented as the image of

γ (t) = (u(t), t)

for some function u, equation (SE) becomes:

u′′

1+ (u′)2
= −nu − 1

u2
. (3.8)

Notice that u is strictly concave. Hence, up to possibly one point (the maximum of u, if any),
Γ can also be rewritten as the union of graphs of the type

γ (z) = (z, φ(z))

for some functions φ. In this case, (3.8) rewrites as

φzz

1+ φ2
z
= nz + 1

z2
φz . (3.9)

By (3.9), if γ ′ is parallel to ∂0 at some point (z0, φ0) then the unique solution is γ (z) = (z, φ0)

and the corresponding soliton is a vertical hyperplane. Let us treat now the case where γ ′ is
nowhere parallel to ∂0. In this case, γ can be globally written as a graph of the type (u(t), t).
In particular, the derivative φz does not change sign on each maximal interval where γ can
be written in the form (z, φ(z)). Since φc

.= φ + c and φ∗ = −φ still solve (3.9), without
loss of generality we can consider a maximal interval where

γ (z) = (z, φ(z))

and φz < 0. Equation (3.9) guarantees that φ is concave therein, so the interval of definition
of z is of the form (0, h). Rewrite (3.9) as

d

dz

∫ ∞

−φz

dt

t(1+ t2)
= −n

z
− 1

z2
,

and note that the integral can be explicitly computed. Integrating on [z, b] leads to

log
√
1+ φz(b)−2 − log

√
1+ φz(z)−2 = −n log

(
b

z

)
+ 1

b
− 1

z
.

If h = ∞, letting b → ∞ and recalling that φz is negative and decreasing we easily
get a contradiction. Hence, h < ∞, and by concavity and maximality of h we shall have
φz(h−) = −∞. Letting b → h we get

log
√
1+ φz(z)−2 = n log

(
h

z

)
+ 1

z
− 1

h
.
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In particular,φz(0+) = 0, i.e., γ meets the x1-axis orthogonally. Extractingφz and integrating
once more on [z, b], we get

φ(z)− φ(b) =
∫ b

z

{(
h

t

)2n

e
2
t − 2

h − 1

}− 1
2

dt .

We deduce that φ(h) is finite, and up to translation we can assume that φ(h) = 0. Writing
γ as a graph of type (u(t), t), noting that u∗(t) .= u(−t) still solves (3.8) and u′(0) = 0, we
get that u is even and u(t) = φ−1(t) for t > 0 has the behavior described in Theorem C.
Letting b → h we obtain

φ(z) =
∫ h

z

{(
h

t

)2n

e
2
t − 2

h − 1

}− 1
2

dt = h
∫ 1

z/h

{
s−2ne

2−2s
hs − 1

}− 1
2
ds. (3.10)

Hence, for h varying in R
+, the functions φ in (3.10) provide a foliation of {x1 > 0}. This

concludes the proof of Theorem C. �

3.5 Rotationally symmetric solitons

We deal now with solitons for −∂0 which are rotationally symmetric with respect to the
x0-axis. Consider a curve γ (t) = (x0(t), x1(t)) in the x0x1-plane, defined for t ∈ I ⊂ R and
contained in the set {(x0, x1) ∈ R

2 : x0 > 0, x1 > 0}, and let us rotate it around the x0 axis.
Locally, γ can be written either as a graph of a function u over the x1-axis or as a graph of a
function φ over the x0-axis. Let us describe the corresponding soliton equations for u and φ.

Case 1:The curve γ is written as a graph of the form ρ �→ (u(ρ), ρ) defined on an interval
(r1, r2). In this case, the obtained hypersurface is a graph over the annulus

A = {(x1, . . . , xn) ∈ ∂ ′∞H
n+1 : r1 < |x | = (x21 + · · · + x2n )

1/2 < r2
}
,

and it can be parametrized by the embedding Ru : A → R
+ × R

n given by

Ru(x1, . . . , xn) = (u(|x |); x1, . . . , xn).
Then, Ru is a conformal soliton with respect to −∂0 if and only if u solves

u′′

1+ (u′)2
+ n − 1

ρ
u′ = −1+ nu

u2
, ρ = |x | ∈ (r1, r2). (3.11)

Case 2: The curve γ is written as a graph of the form z → (z, φ(z)) defined on an interval
(z1, z2). In this case the hypersurface can be parametrized as a graph over the cylinder
R
+×S

n−1 ⊂ R
+×R

m . To state the equation forφ, we first locally identifyHn+1 = R
+×R

n

with R
+ × R

+ × S
n−1 via the local diffeomorphism

(x0; x1, . . . , xn) → (z, ρ, ω) =
(
x0;
√
x21 + · · · + x2n ;

(x1, . . . , xn)√
x21 + · · · + x2n

)
.

The hyperbolic metric in the new coordinate system has the form

gH = z−2(dz2 + dρ2 + ρ2 gS
)
,

where gS is the standard metric of Sn−1. We can parametrize the hypersurface via the map
Cφ : (z1, z2)× S

n−1 → R
+ × R

+ × S
n−1 given by Cφ(z, ω) = (z, φ(z), ω). Then Cφ is a
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soliton if and only if

zφ′′

1+ (φ′)2
− 1+ nz

z
φ′ − (n − 1)z

φ
= 0, z ∈ (z1, z2), (3.12)

where we use φ′ instead of φz for notational convenience.
In the next lemma, we examine the qualitative behavior of solutions to (3.12).

Lemma 3.6 Let z0 ∈ (z1, z2) with φ(z0) > 0. The following facts hold:

(1) (Concave branch) If φ′(z0) < 0 and φ′′(z0) ≤ 0, then φ can be extended to the interval
[0, z0]. Moreover, φ′ < 0, φ′′ < 0 on (0, z0) and

φ(z) = φ(0)− n − 1

3φ(0)
z3 + o(z3) as z → 0.

(2) (Convex branch) If either φ′(z0) ≥ 0 or φ′′(z0) > 0, then there exists an interval
[λ0, h) ⊂ (0,∞) containing z0 where φ can be defined, is positive and satisfies

(i) : φ′′ > 0 on (λ0, h), φ′(λ0) < 0 and φ′′(λ0) = 0.
(i i) : lim

z→h
φ(z) ∈ R

+ and lim
z→h

φ′(z) = ∞.

In particular, φ has a unique minimum on (λ0, h).

Proof (1) Let (z1, z0] be the maximal interval on the left of z0 where φ is defined. By (3.12),
if φ′(z) = 0 for some z ∈ (z1, z0) then φ′′(z) > 0. Hence, from φ′(z0) < 0 we deduce that
φ′ < 0 on (z1, z0]. We claim that φ′′ ≤ 0 on (z1, z0]. This fact is true since otherwise, from
φ′′(z0) ≤ 0 we deduce that there exist an interval (a, b] ⊂ (z1, z0] such that φ′′ > 0 on (a, b)
and φ′′(b) = 0. Then, from (3.12) we have

−φ′(a)

(
n + 1

a

)
≤ (n − 1)

a

φ(a)
and − φ′(b)

(
n + 1

b

)
= (n − 1)

b

φ(b)
.

Now from 0 < φ(b) < φ(a), we obtain that 0 > φ′(a) > φ′(b), contradicting that φ′′ > 0
on (a, b). To show the strict inequality φ′′ < 0 on (z1, z0], observe that any point z ∈ (z1, z0]
for which φ′′(z) = 0 must be a local maximum for ϕ′′, hence a point for which ϕ′′′(z) = 0.
Differentiating (3.12), and evaluating at z, we have

0 = zφ′′′(z)+ φ′′(z)
1+ (φ′(z))2

− 2zφ′(z)(φ′′(z))2

(1+ (φ′(z))2)2
− 1+ nz

z
φ′′(z)

+ φ′(z)
z2

− (n − 1)

φ(z)
+ (n − 1)zφ′(z)

φ2(z)

= φ′(z)
z2

− (n − 1)

φ(z)
+ (n − 1)zφ′(z)

φ2(z)
< 0,

which gives a contradiction. From φ′ < 0 and φ′′ < 0, we deduce that the limit limz→z1 φ′(z)
exists and is finite. If z1 > 0, then the functionφ can be extended beyond z1, which contradicts
the maximality of the interval. Hence, z1 = 0 and so φ has a C1-extension up to z = 0. By
using spherical barriers and the strong maximum principle, we deduce that limz→0 φ′ = 0.
To find the asymptotic behavior of φ, consider the function

F(z) = z−nφ′(z)√
1+ (φ′(z))2

, (3.13)
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defined in a neighborhood (0, a]. Differentiating and using (3.12), we deduce that

F ′ − F

z2
= n − 1

znφ
√
1+ (φ′)2

,

that is,

(
Fe
∫ a
z r−2dr

)′ = (n − 1)e
∫ a
z r−2dr

znφ
√
1+ (φ′)2

.

Integrating on [z, a], we get

F(a)− F(z)e−
1
a+ 1

z =
∫ a

z

(n − 1)e− 1
a+ 1

r

rnφ(r)
√
1+ φ′(r)2

dr , (3.14)

or, equivalently,

F(z) = F(a)e
1
a− 1

z − e−
1
z

∫ a

z

(n − 1)e
1
r

rnφ(r)
√
1+ φ′(r)2

dr .

Computing the asymptotic behavior of the right hand side as z → 0 and using the facts

lim
z→0

φ(z) = φ(0) > 0, lim
z→0

φ′(z) = 0 and F(z) ∼ z−nφ′(z)

we infer

φ′(z) = −n − 1

φ(0)
z2 + o(z2), as z → 0.

By integration we obtain the desired asymptotic behavior of φ close to z = 0.
(2) Notice that if φ′(z0) ≥ 0 then (3.12) implies φ′′(z0) > 0. Let (λ0, h) be the maximal

interval containing z0 where φ′′ > 0. By convexity, the limits of φ and φ′ as z tends to h
exist and

lim
z→h

φ(z) = φh ∈ [0,∞] and lim
z→h

φ′(z) = φ′h ∈ (−∞,∞]. (3.15)

Claim 1: It is not possible that h, φ′h are finite and φh > 0.
Proof of the claim. Indeed, if this is possible thenφ can be extended beyond h and therefore,

by the maximality of h, φ′′(h) = 0. Equation (3.12) then gives φ′(h) < 0 and by part (1),
the function φ would be a concave branch before h, which is a contradiction. �

Observe that φ′′ > 0 implies that φ′ does not change sign in some interval (λ, h).
Claim 2: φ attains a minimum on (λ0, h) and the minimum is unique.
Proof of the claim. Uniqueness is immediate from φ′′ > 0. Because of the convexity, for

the existence we only have to exclude the possibility that |φ′| > 0 on (λ0, h).

(a) First, we rule out the possibility that φ′ < 0 on (λ0, h). Suppose to the contrary that
this case occurs. If h = ∞, then the convexity and the positivity of φ imply that
limz→∞ φ′(z) = 0. From (3.12) we deduce that the existence of a positive constant
C such that φ′′(z) > C for large values of z. Integrating, φ′(z) → ∞, a contradic-
tion. Assume now that h < ∞ and the limit φh in (3.15) vanishes. By convexity, fixing
λ ∈ (λ0, h) there exists a constant C > 0 such that φ(z) ≤ C(h − z), on [λ, h). From
(3.12) and the fact thatφ′ is bounded on [λ, h), it follows that there exist positive constants
C1 and C2 such that

φ′′ ≥ C1

h − z
− C2 on [λ, h).
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Integrating on [λ, z] we get

φ′(z)− φ′(λ) ≥ −C1 log

(
h − z

h − λ

)
− C2(z − λ) →∞ as z → h,

contradicting φ′(z) < 0. Consequently, h is finite and φh ∈ R
+. From (3.15) and φ′ < 0

we deduce that φ′h is finite as well. By Claim 1, this leads to a contradiction.
(b) We also rule out the possibility that φ′ > 0 on (λ0, h). Arguing again by contradiction, let

us suppose that this happens. We may represent the graph of φ on (λ0, h) as the graph of
a function u over the x1-axis defined on an interval (r1, r2) ⊂ (0,∞), where r1 = φ(λ+0 )

and r2 = φ(h−). Consider � : (r1, r2) → R given by

�(ρ) = u′(ρ)ρn−1√
1+ (u′(ρ))2

. (3.16)

From (3.11) we deduce that

�′(ρ) = − (1+ nu(ρ))ρn−1

u2(ρ)
√
1+ (u′(ρ))2

< 0 for r ∈ (r1, r2).

Hence � is strictly decreasing. Since u is increasing, � is positive on (r1, r2). If r1 = 0,
then letting ρ → 0, we get that �(0+) = 0 which contradicts the aforementioned
properties of �. Consequently r1 > 0. Moreover, λ0 must be positive. Indeed, otherwise
φ is defined, convex and increasing on (0, h). Consider the functional F given by (3.13)
on the interval (0, a] ⊂ (0, h). From the properties of φ, it follows that φ′ is bounded on
(0, a]. Hence,

lim
z→0

∫ a

z

(n − 1)e− 1
a+ 1

r

rnφ(r)
√
1+ (φ′(r))2

dr = ∞.

From (3.14) we now deduce that

lim
z→0

F(z)e−
1
a+ 1

z = −∞.

Consequently F < 0 in a neighborhood of z = 0. Since F and φ′ have the same sign, this
leads to a contradiction. Thus, λ0 must be positive. Because φ(λ0) > 0 and φ′(λ0) ≥ 0,
we can extend the solution below λ0. The minimality of λ0 implies that φ′′(λ0) = 0 and
from (3.12) we obtain that φ′(λ0) < 0, contradiction. �

Claim 3: λ0 > 0 and (i) holds.
Proof of the claim. Suppose that this is not true. Recalling that φ′′ > 0 on (λ0, h), one of

the following holds:

(a) λ0 = 0;
(b) λ0 > 0 and limz→λ0 φ(z) = ∞;
(c) λ0 > 0 and limz→λ0 φ(z) < ∞ and limz→λ0 φ′(z) = −∞.

Cases (a) and (b) are excluded by considering the soliton M obtained by rotating the graph
of φ and sliding-enlarging a small spherical barrier below M up to a touching point. As for
(c), writing the graph in terms of the parametrization ρ → (u(ρ), ρ), we get that u can be
extended near φ(λ0)with zero derivative and nonnegative second derivative. This contradicts
(3.11) and concludes the proof of the claim. �

Claim 4: h is finite and (i i) holds.

123



Annals of Global Analysis and Geometry            (2024) 65:19 Page 19 of 41    19 

Proof of the claim. By Claim 2, φ′ and φ′′ are positive in an interval (λ, h). Then, we
represent the graph of φ therein as a graph of the form ρ �→ (u(ρ), ρ) satisfying u′ > 0 and
u′′ < 0 for ρ ∈ (r1, r2), where r2 = φ(h−). First we show that r2 < ∞. Suppose that this is
not the case and denote by u∞ the limit of u as ρ tends to ∞. If u∞ is finite, then u′ → 0
as ρ → ∞ and there exists a sequence {ρ j } j∈N tending to infinity such that u′′(ρ j ) → 0.
Evaluating (3.11) at ρ j and passing to the limit we easily get a contradiction. If u∞ = ∞,
consider� given in (3.16) for ρ ∈ (r1,∞). Fixing ρ0 > 1, from the monotonicity of� there
exists a constant C > 0 such that

u′(ρ)√
1+ (u′(ρ))2

≤ Cρ1−n for all ρ ≥ ρ0,

from where we deduce that

u′(ρ) ≤ Cρ1−n√
1− C2ρ2−2n

.

If n ≥ 3, then by integration we get that u∞ < ∞, contradiction. If n = 2, integration gives

u′(ρ) ≤ C1ρ
−1 and u(ρ) ≤ C1 log ρ for some constant C1 > 0.

Inserting into (3.11), we conclude that there exists a constant C2 > 0 such that

u′′ ≤ − C2

log ρ
for large enough ρ.

By integrating we see that u′(ρ) → −∞ as ρ → ∞, which gives a contradiction. Hence,
r2 < ∞, which implies that h is finite by the concavity of u. Moreover, u′ → � ≥ 0 as
ρ → r2, whence u can be extended beyond r2. From (3.11) we get u′′(r2) < 0. If � > 0, then
rephrasing the curve in terms of φ, it follows that φ can be extended beyond h to a convex
function, contradicting the maximality of h. Thus, � = 0 and (i i) follows. �

This completes the proof of the lemma. ��
Lemma 3.7 Let u1 and u2 be solutions to (3.11) on an interval (r1, r2). Then, either u1 ≡ u2
or u1 − u2 does not have a nonnegative local maximum on (r1, r2).

Proof Assume to the contrary that u1 − u2 attains a local maximum c0 ≥ 0 at a point r0.
Then, u1 ≤ u2 + c0 near r0 with equality attained at the point r0. From c0 ≥ 0, it follows
that u2 + c0 is a supersolution to (3.11) and this contradicts the strong maximum principle.

��
Now we are ready to prove the main theorem characterizing all rotationally symmetric

solitons.

Theorem 3.8 There are exactly two families of complete solitons with respect to −∂0 which
are rotationally symmetric around the x0-axis. They are properly embedded and, denoting
with

γ ⊂ {(x0, x1) ∈ R
2 : x0 > 0, x1 ≥ 0}

the rotated curve, one of the following cases occurs:

(1) (Winglike catenoids) Suppose that (x0 ◦ γ )′(t0) = 0 at some interior point t0 and let
γ (t0) = (h, R), R > 0. Then the curve γ can be written as the bi-graph over the x0 axis
of φ1, φ2 : (0, h] → (0,∞) satisfying the following properties:
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(a) It holdsφ1 < φ2 on (0, h) andφ1(h) = φ2(h) = R. Furthermore,φ1(0+) < φ2(0+),
namely, γ cannot have the same end-points;

(b) the graph of φ2 is a concave branch on (0, h);
(c) there exists λ0 ∈ (0, h) such that φ1 is the union of a concave branch on (0, λ0) and

a convex branch on (λ0, h);

(2) (Bowl solitons) If x0 ◦ γ does not have interior stationary points, then γ is the graph of
φ : (0, h] → [0,∞) satisfying the following properties:

(a) The graph of φ is a concave branch on (0, h);
(b) it holds φ(h) = 0, φ′(h−) = ∞.

Proof (1) Writing γ near (h, R) as a graph of the form ρ → (u(ρ), ρ), the equation (3.11)
and u′(R) = 0 gives u′′ < 0 near R. In particular, u is decreasing after R and increasing
before. Hence, by Lemma 3.6, for ρ > R the graph of u extends to a concave branch of
the form z → (z, φ2(z)) for φ2 : (0, h) → R

+, while for ρ < R it extends to a convex
branch of a function φ1 : (λ0, h) → R

+. At the point (λ0, φ1(λ0)) we can apply Lemma 3.6
again to deduce that φ1 extends to a concave branch on (0, λ0). Set c = min φ1. It remains
to prove that φ1 < φ2 on (0, h) and φ1(0+) < φ2(0+). Arguing by contradiction, if any of
the properties fails then, according to what we already proved, there exists R1 ∈ (c, φ2(0+)]
such that the curve γ can be written as a bigraph of functions ui : (c, R1) → R

+ over
the x1-axis satisfying u1 > u2 on (c, R1), u1 − u2 → 0 as ρ → c and as ρ → R1. This
contradicts Lemma 3.7.

(2) If x0 ◦γ has no stationary points, then γ can be globally written as a graph of the form
z → (z, φ(z)). By Lemma 3.6, the graph of φ is the concave branch defined in a maximal
domain (0, h). Representing γ as a graph of the form ρ → (u(ρ), ρ), concavity implies that
u′(0+) exists and is non-positive. If this value is negative, then by inspecting (3.11) for small
enough ρ we arrive at a contradiction. Hence, u′(0+) = 0. It remains to prove that a curve
of type (2) actually exists. This is addressed in the next lemma. ��

Lemma 3.9 Fix R ≥ 0. For h > 0, the solution uh to the following problem exists and is
unique:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′

1+ (u′)2
+ n − 1

ρ
u′ = −1+ nu

u2
for ρ > R,

u(R+) = h,

u′(R+) = 0.

(3.17)

Moreover, uh is concave and strictly decreasing. Let [R, r2(h)) be the maximal interval
where uh is defined. Then, for h ∈ R

+ the graphs of {uh} foliate the region {ρ > R}, and
r2 : (0,∞) → (R,∞) is a strictly increasing bijection.

Proof Uniqueness for uh is a consequence of Lemma 3.7 and the strong maximum principle
(or the Hopf Lemma, if R > 0) for the solitons Mh obtained by rotating the graphs {x0 =
uh(|x |)} around the x0-axis. Note that, if R = 0, Mh isC1 near the origin and gI(n)-minimal,
hence it is smooth therein. Existence for (3.17) is standard if R > 0. By adapting the proof of
Lemma 3.6, one easily sees that uh is strictly decreasing for R > 0 and concave for ρ > R.
To prove existence for R = 0 one may proceed by adapting the techniques in [8, Chapter 5,
Theorem 5.10]. However, we give a geometric and simpler proof which exploits the results
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we showed so far. Consider a decreasing sequence εi ↓ 0, and for each i let ui solve⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′i
1+ (u′i )2

+ n − 1

ρ
u′i = −1+ nui

u2i
,

ui (εi ) = h,

u′i (εi ) = 0,

on its maximal interval [εi , Ri ). Since

u′′i (εi ) = −(1+ nh)h−2 < 0,

from Lemma 3.6 we get that the graph of ui is a concave branch in (εi , Ri ) and in particular
Ri is finite. We claim that Ri is bounded from below away from zero. Suppose to the contrary
that, along a subsequence, Ri → 0. According to Lemma 3.6, the graph of ui is part of a
winglike catenoid Mi of height h. Take a grim-reaper cylinder Gs of height s > h and passing
through (s, 0, . . . , 0). Then, for fixed Ri small enough, Mi lies below Gs . Reducing s up to
a first touching point with Mi we reach a contradiction. Let now 0 < R∗ = inf Ri . By
(3.11) and since each ui is decreasing, the sequence {ui } has uniformly boundedC2-norm on
any fixed compact set of (0, R∗). Therefore, up to a subsequence, ui → u in C2

loc((0, R
∗)),

where u solves (3.11) on (0, R∗). Since each ui is decreasing and concave, u is concave,
non-increasing and u(0+) = h. As a matter of fact, u′ < 0 by (3.11) and so u is a concave
branch. In particular, by the first part of the proof of Theorem 3.8(2), u′(0+) = 0.

We next address the properties of uh for varying h.

(i) First we show that r2 is strictly increasing and that {uh} is increasing in h. Suppose to the
contrary that for h1 > h2 we have r2(h1) ≤ r2(h2). Then, c

.= max(u1−u2) is positive
and attained at some r ∈ [R, r2(h1)). Consider the functions v j : Br2(h1)\BR → R

obtained by rotating uh j along the x0-axis, and notice that u1 is a soliton for−∂0 while
v2 + c is a supersolution for (1.9), equivalently, it is mean convex for gI(n) in the
downward direction. The interior strong maximum principle (if r > R or r = R = 0)
or the boundary maximum principle (if r = R > 0) in [25] imply v1 ≡ v2+ c wherever
both are defined, contradiction. The very same reasoning also proves that {uh} is an
increasing family in h.

(ii) Fix h0 > 0 and suppose to the contrary that r∗ = inf{r2(h) : h > h0} > r2(h0) =
r0. Then a spherical barrier S with radius (r∗ − r0)/2 centered at the point (0, (r∗ +
r0)/2, 0, . . . , 0) fits between the sequence of solitons {Mh} that are generated by the
sequence {uh} for h > h0 and uh0 . Consider now the sequence {uh = uh |[R,r0)} for
h > h0. Observe that {uh} uniformly converges to uh0 as h tends to h0. Hence, for h1
sufficiently close to h0 and ρ1 sufficiently close to r0, we have that

uh1(ρ1) <
r∗ − r0

2
.

Hence Mh1 intersects S, contradiction. This proves that r2 is continuous.
(iii) We show that r2(h) →∞ as h →∞. By contradiction, if r2(h) ≤ � for some � ∈ R

+
and all h > 0, consider a grim-reaper cylinder G of width 4� and symmetric with respect
to {x1 = 0}, and fix h < supG x0. Let M be the hypersurface obtained by rotating uh
with respect to the x0-axis. Then, by construction and since u′h(R+) = 0, we can find a
grim-reaper cylinder G ′ in the foliation determined by G that touches M from above at
some interior point p, contradiction.

(iv) To show that the graphs of uh foliate {ρ > R}, let ρ0 > R and by (iii), let h0 satisfy
r2(h0) = ρ0. It is enough to prove that the map η : h ∈ (h0,∞) �→ uh(ρ0) ∈ (0,∞) is
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a continuous bijection. First, by (i) η is injective and strictly monotone. Next, if h j →
h > h0 then {uh j } has uniformly bounded C0 (hence, C2) norm on any fixed compact
of (0, ρ0]. Up to a subsequence and by the uniqueness of solutions to (3.17), uh j → uh
in C2

loc((0, ρ0]), thus η is continuous. Whence η((h0,∞)) is an interval. By concavity
and (iii), η(h) →∞ as h →∞. On the other hand, if δ = inf η((h0,∞)) > 0, then for
h j ↓ h0 wewould have uh j (ρ0) > δ for each j . Letρ1 < ρ0 be such that uh0(ρ1) < δ/2.
From uh j (ρ1) → uh0(ρ1), for j large wewould have uh j (ρ1) < uh j (ρ0), contradiction.

This completes the proof of the lemma. ��
As an immediate consequence of Theorem 3.8 and Lemma 3.9, we are ready for the:

3.6 Proof of theorem E

Hereafter, all spheres and balls we use are meant to be centered at the center of BR . By
Theorem 3.8, there exists a unique graphical rotationally symmetric bowl solitonBR having
as boundary at infinity ∂BR . Suppose now that M is a properly immersed soliton with
respect to −∂0 such that ∂ ′∞M = ∂BR . We take two bowl solitons Br1 and Br2 , with
∂ ′∞Br j = ∂Br j ⊂ ∂ ′∞H

n+1 and lying above and below M , respectively. Shrinking Br2 and
enlarging Br1 , by the maximum principle we deduce that the soliton M must coincide with
BR .

4 The Plateau problem at infinity

In this section we will show the existence of solitons M ⊂ H
n+1 with respect to −∂0 that

have prescribed asymptotic boundary values on ∂∞H
n+1.

4.1 Plateau’s problem at infinity

Consider an embedded (k−1)-dimensional (topological) submanifold� ⊂ ∂∞H
n+1, where

2 ≤ k ≤ n. Our aim is to find a k-dimensional conformal soliton M with respect to the
direction −∂0 whose boundary at infinity satisfies ∂∞M = �. Viewing solitons as minimal
submanifoldswith respect to the Ilmanenmetric, our problemcan be rephrased as the classical
Plateau’s problem at infinity for area minimizing submanifolds. Thanks to various works, the
solvability theory for Plateau’s problem is well understood on Cartan–Hadamard manifolds,
that is, on complete, simply connected manifolds N with non-positive sectional curvature;
see, for example, [2–4, 9, 10, 12, 53].

It is known that every Cartan–Hadamard manifold N can be compactified by adding a
sphere at infinity ∂∞N ; see for details [24]. Given a compact (k−1)-dimensional submanifold
� ⊂ ∂∞N , Plateau’s problem at infinity askswhether exists a k-dimensional areaminimizing
submanifoldM ⊂ N such that ∂∞M = �. It is well-known that Plateau’s problem is solvable
if ∂∞N satisfies certain convexity conditions. Let us recall here a convenient one proposed
by Ripoll & Telichevesky in [46].

Definition 4.1 [SC condition] A Cartan–Hadamard manifold N satisfies the strict convexity
condition (SC condition for short ) at a point x ∈ ∂∞N if, for each relatively open subset
W ⊂ ∂∞N containing x , there exists aC2-open subset� ⊂ N such that x ∈ int(∂∞�) ⊂ W
and N\� has convex boundary in the inward pointing direction. We say that N satisfies the
SC condition if this holds at every x ∈ ∂∞N .
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For a reason to be explained below, Theorem A is restricted to hypersurfaces. In this case,
building on a previous result of Lang [39], Castéras, Holopainen & Ripoll [12, Theorem 1.6]
obtained the following.

Theorem 4.2 Let Nn+1, n ≥ 2, be a Cartan–Hadamard manifold satisfying the SC condition
and let � ∈ ∂∞N satisfy � = ∂A for some open subset A ⊂ ∂∞N with A = int(A). Then,
there exists a closed set W ⊂ N of locally finite perimeter in N such that M

.= ∂[W ] is a
locally rectifiable, minimizing n-current in N, ∂∞W = A and ∂∞sptM = �.

Remark 4.3 An n-dimensional area minimizing n-rectifiable currentM in a smooth complete
manifold Nn+1 is a smooth, embedded manifold on the complement of a singular set of
Hausdorff dimension at most n − 7. In particular, if n < 7, then the singular set is empty,
while if n = 7 it consists of isolated points. In higher codimensions, the singular set has
Hausdorff dimension at most n − 2; for more details see [20, Section 3, Theorems 3.3, 3.4
and 3.5].

4.2 Geometry of the Ilmanenmetric

Let us examine here the geometry of the Ilmanen metric in more detail. As a matter of fact,
we will compute its curvatures and geodesics.

Lemma 4.4 The Riemannian manifold N = (Hn+1, gI(n)) is Cartan–Hadamard, and its
sectional curvatures satisfy:

(1) secgI (∂i ∧ ∂0) = −e
− 2

nx0 2+n
nx0

,

(2) secgI (∂i ∧ ∂ j ) = −e
− 2

nx0 1+nx0
n ,

(3) secgI ((sin θ ∂0 + cos θ ∂i ) ∧ ∂ j ) = sin2 θ secgI (∂0 ∧ ∂ j )+ cos2 θ secgI (∂i ∧ ∂ j ),

for any i, j ∈ {1, . . . , n} and θ ∈ (0, 2π).

Proof Completeness immediately follows from gI(n) > gH, and the fact that (Hn+1, gH) is
complete. Direct computations gives the sectional curvatures in (1), (2) and (3). Eventually,
let π ⊂ TpH

n+1 be a fixed 2-plane. If π ⊂ ∂⊥0 , then up to a rotation, π is generated by
∂i ∧ ∂ j and (2) gives secgI (π) ≤ 0. Otherwise, let e1 be a unit vector generating π ∩ ∂⊥0 ,
which up to rotation we can assume to be ∂1. Complete e1 to an orthonormal basis {e1, e2}
of π . Again up to rotation, we have that e2 = sin θ∂0 + cos θ∂2, for some θ ∈ (0, 2π). Item
(3) gives now secgI (π) ≤ 0. ��

Let γ : (−ε, ε) → H
n+1 be a geodesic with respect to the Ilmanen metric gI(n). Observe

that isometries of the hyperbolic space which preserves the direction−∂0 are also isometries
of the Ilmanen metric. Because of this fact, it suffices to examine only geodesics in the
x0x1-plane. Let us suppose that the geodesic has the form γ = (x0, x1). By straightforward
computations we see that γ is a geodesic if the functions x0 and x1 satisfy

x ′′0 −
1+ nx0
nx20

(
(x ′0)2 − (x ′1)2

) = 0 and x ′′1 − 2
1+ nx0
nx20

x ′0x ′1 = 0.

Following the same methods as in Sect. 3, we can show the following:

Lemma 4.5 Let γ : R → (Hn+1, gI(n)) be a geodesic lying in the x0x1-plane. Then, either
γ is a vertical line or:
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Fig. 4 The cone Cone(o, A)

(1) There exist tn ∈ R such that max x0 = x0(tn), and γ is symmetric with respect to the
line x1 = tn in the x0x1-plane;

(2) γ is concave, when regarded as a curve lying the Euclidean space;
(3) The two ends of γ approach ∂ ′∞H

n+1 orthogonally.

4.3 Proof of theorem A

According to Lemma 4.4, the Ilmanen space N = (Hn+1, gI(n)) is a Cartan–Hadamard
manifold. Regarding the SC condition, if x ∈ ∂ ′∞H

n+1 one can consider a spherical barrier
S, which by Lemma 3.1 is convex with respect to the upward pointing normal direction. The
SC condition therefore holds at any point x ∈ ∂ ′∞H

n+1 by choosing as � the half-ball below
S. However, at the point p∞, the SC condition may fail and for this reason we have to slightly
complement the strategy in [12, 39], which we now recall. Fix an origin o ∈ N and consider
the cone Cone(o, A) generated by geodesics issuing from o to points in A. Moreover, denote
by Br (o) the geodesic ball in N of radius r centered at o. For each i ∈ N, consider the set

Ti = ∂Bi (o) ∩ Cone(o, A)

with orientation pointing outside of Bi (o) and denote by [Ti ] its associated n-rectifiable
current. Note that the boundary ∂[Ti ] is supported in Cone(o, �). Meanwhile, according
to Lemma 4.5, the geodesics in N either are vertical lines or behave like grim-reaper type
curves. Since A is relatively compact in ∂ ′∞H

n+1, we can therefore take a large enough bowl
solitonB such that Cone(o, A) (in particular, T i ) lies in the open subgraph ofB, which we
call U . According to a result of Lang [39], for each i ∈ N, there exists a set Wi ⊂ Bi (o)
of finite perimeter such that Mi

.= ∂[Wi ] − [Ti ], is area minimizing in Bi (o). Notice that
∂Mi = −∂[Ti ] is supported in U . Moreover, since Bi (o) is strictly convex, by the strong
maximum principle of White [55] we deduce that

spt Mi ∩ ∂Bi (o) = spt ∂Mi , i ∈ N.
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We claim now that sptMi ⊂ U . Suppose to the contrary that this is not true and consider
the foliation ofHn+1 determined byB (Fig. 4). Then, we could find a large bowl solitonB′
lying above B and touching spt Mi from above at some point p /∈ spt ∂Mi . Let U ′ be the
open set below B′, and consider the manifold with boundary

N ′ = U ′ ∩ Bi (o).

Let v(M ′
i ) be the stationary integral varifold obtained, by forgetting orientations, from the

connected component of Mi whose support contains p; see [49, Section 27]. The strong
maximum principle of White [55, Theorem 4], guarantees that spt v(M ′

i ) ∩ N ′ contains a
connected component ofB′ ∩ Bi (o). In particular, spt ∂M ′

i contains a piece ofB
′ ∩ ∂Bi (o).

This however contradicts ∂M ′
i ⊂ spt ∂Mi ⊂ U . Having observed that each Wi is contained

inU and is therefore separated from p∞, the rest of the argument follows verbatim as in [12,
39]. �

Remark 4.6 A similar argument (see [12, Theorem 1.5]) would allow to solve Plateau’s
problem for k-dimensional submanifolds provided that the point p∞ can be separated from
each ∂[Ti ] by a k-convex barrier. We have been unable to produce such objects, e.g., by
rotating special curves around the x0-axis. It might be possible that such barriers do not exist.

5 The Dirichlet problem at infinity

In this section, we investigate the Dirichlet problem (1.9). Set for simplicity

f (u) = −1+ nu

u2
and W (u) =

√
1+ |Du|2

and consider the operator Q given by

Q[u] = div

(
Du

W (u)

)
− f (u)

W (u)
,

acting on positive C2-functions on �.

5.1 Proof of theorem B. Part (1) - existence

We shall first solve the problem for data that do not meet the boundary at infinity of the
hyperbolic space, and then we will exploit Perron’s method to establish the existence of
solutions to the Dirichlet problem at infinity.

We distinguish three cases:
Case A: Assume at first that ∂� is compact, φ is positive on ∂� and C3-smooth. To

solve the problem use the continuity method. Since the operatorQ is quasilinear, the method
will be applicable once we provide global a priori C1-estimates on a solution u of (1.9);
see for example [27, Chapter 11] or [47, page 417]. Height and gradient estimates will
be proved by constructing suitable subsolutions and supersolutions for (1.9) and applying
classical comparison theorems, for which we refer to [45, Theorem 2.1.3 & 2.1.4]. Notice
that comparison holds because f defined above is increasing.

Claim 1 (Height estimate): There exist positive constants B1 and B2 which only depend
on φ and � such that B1 ≤ u ≤ B2.

Proof of the claim. Observe at first that the constant u1 = B1 = min∂� φ is a subsolution
to (1.9), namely Q[u1] ≥ 0. By the comparison principle, a solution u to (1.9) satisfies
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u1 ≤ u. Consider now a bowl soliton B lying above the graph of φ on ∂�. Then, if B is
generated by the graph of u2, by the comparison principle we get u ≤ u2. The claim follows.

�
Claim 2(Boundary gradient estimate): There exists a constant B3 which only depends on

φ and � such that sup∂� |Du| ≤ B3.

Proof of the claim. Let ν be the inward pointing Euclidean unit normal on ∂�, and fix a
tubular neighborhood

�ρ = {x ∈ � : dist(x, ∂�) < ρ}
around ∂� for which the Fermi chart [0, ρ)×∂� → �ρ given by (r , y) �→ y+rν(y) is well
defined and smooth. Define φ̂ on �ρ by φ̂(r , y) = φ(y). The goal is to find l ∈ (0, ρ) and an
increasing C2-smooth function ψ : [0, l) → [0,∞) with bounded gradient and satisfying

ψ(0) = 0 and |u(r , y)− φ(y)| ≤ ψ(r) for all (r , y) ∈ �l .

To achieve this goal we seek for l ∈ (0, ρ) and ψ such thatQ[ψ + ˆφ] ≤0 ≤ Q[−ψ + φ̂] on
�l . Set v = ψ + φ̂. Then, by a straightforward computation we get that

Q[v] = 1

W (v)

[
�v − D2v

(
Dv

W (v)
,

Dv

W (v)

)
− f (v)

]

= 1

W (v)

[
ψ ′′ + ψ ′�r +�φ̂ − ψ ′′ 〈Dr , Dv〉2

W 2(v)
− ψ ′D2r

(
Dv

W (v)
,

Dv

W (v)

)

−D2φ̂(
Dv

W (v)
,

Dv

W (v)
)− f (v)

]
, (5.1)

where here � is the Euclidean Laplacian. Let us examine each term of (5.1) carefully:

• Because f is increasing and negative, we deduce that

0 < − f (t) ≤ Cφ
.= − f (B1) for each t ≥ inf∂�φ > 0. (5.2)

• Since φ is assumed to be smooth, there exists a constant C1 such that

1+ ‖Dφ̂|2∞ + ‖D2φ̂|2∞ ≤ C1 on �ρ. (5.3)

• Using Gauss’ Lemma we see that

Dv = ψ ′Dr + D ˆφ and 〈Dφ̂, Dr〉 = 0. (5.4)

• Because Y = Dv/W (v) is of length at most 1, there exists a constant C2 such that

〈Dr ,Y〉 = ψ ′W−1(v) and
∣∣�φ̂| + ∣∣D2φ̂(Y,Y)

∣∣ ≤ C2. (5.5)

• Since Dr belongs to the kernel of D2r , we have that∣∣D2r(Y,Y)
∣∣ = W−2(v)

∣∣D2r(Dφ̂, Dφ̂)
∣∣ ≤ C1‖D2r‖∞ .= C3. (5.6)

• Since H∂� ≥ 0, the Laplacian comparison theorem implies

�r ≤ − H∂�

1− r H∂�

≤ 0 on �ρ. (5.7)

Taking into account (5.2), (5.3), (5.4), (5.5), (5.6), (5.7), inequality (5.1) can be estimated by

W 3(v)Q[v] ≤ W 2(v)ψ ′′ − ψ ′′(ψ ′)2 + C3ψ
′ + CW 2(v), (5.8)
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where C = C2 + Cφ. Consider now ψ to be a function of the form ψ(r) = μ log(1+ kr),
where μ > 0 and k > 0 are constants to be chosen later. Then,

ψ(0) = 0, ψ ′(r) = μk

1+ kr
and ψ ′′(r) = − (ψ ′)2

μ
.

For this choice of ψ , inequality (5.8) becomes

W 3(v)Q[v] ≤ − (ψ ′)2

μ

(
1+ |Dφ̂|2)+ C3ψ

′ + CW (v)2. (5.9)

From (5.3) and (5.4), we have

W 2(v) = W 2(ψ + φ̂) = 1+ |Dφ̂|2 + (ψ ′)2 ≤ C1 + (ψ ′)2.

Hence,

W 3(v)Q[v] ≤ − (ψ ′)2

μ
+ C3ψ

′ + C(C1 + (ψ ′)2) ≤
(
− 1

μ
+ C

)
(ψ ′)2 + C3ψ

′ + CC1.

(5.10)

By height estimates, u ≤ B2 on �. Define

μ = B2

log(1+√
k)

,

and observe that μ → 0 as k →∞. Choose k > ρ−2 sufficiently large and set l1 = k−1/2.
Then, from (5.10) we deduce that Q[v] < 0 on �l1 . Since

v(0, y) = φ(y) = u(0, y) and v(l1, y) > B2 ≥ u(l1, y) for each y ∈ ∂�,

from the comparison principle, it follows that u ≤ v = ψ +φ on �l1 . To prove the existence
of l2 ∈ (0, ρ) such that u ≥ −ψ + φ on �l2 , we may proceed with the same technique as
above andmaking use the fact that− f (t) ≥ − f (B2) for t ∈ [B1, B2].Alternatively, observe
that since f ≤ 0 a standard lower barrier w for the minimal surface equation on �ρ also
satisfies Q[w] ≥ 0 on {w > 0}. Take l = min{l1, l2} and let us restrict ourselves in �l . For
each y ∈ ∂�, we have that∣∣∣∣∂u∂ν

(y)

∣∣∣∣ = lim
r→0

|u(r , y)− u(0, y)|
r

≤ lim
r→0

ψ(r)

r
= μk.

Let now X is a unit tangent vector field along ∂�. Since

u|∂� ≡ φ|∂�,

the derivative of u in the direction X obeys∣∣〈Du, X〉∣∣ ≤ sup
∂�

|Dφ|.

Combining all these we complete the proof of the claim. �
Claim 3 (Interior gradient estimate): There exists a constant B4 which depends only on

φ and � such that sup� |Du| ≤ B4.

Proof of the claim: From Lemma 3.3, the unit normal ν and the mean curvature of the
soliton M are given by

ν = u ∂0 − uDu√
1+ |Du|2 and H = −1

u
√
1+ |Du|2 < 0.
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Let us compute the Laplacian of H with respect to the induced metric g, following the same
lines as in [43, Lemma 2.1]. For simplicity, let us denote the metrics of Hn+1 and M by the
same letter g. As usual let us denote by ∇ the Levi-Civita connection of Hn+1 and by ∇ the
Levi-Civita connection of the induced metric on M . Let {e1, . . . , en} be a local orthonormal
tangent frame, which is normal at a fixed point p ∈ M , and denote by bi j the coefficients of
the second fundamental form II of M with respect to ν. Differentiating with respect to ei , we
get that

ei H = −ei gH(∂0, ν) = − gH(∇ei ∂0, ν)− gH(∂0,∇ei ν), i ∈ {1, . . . , n}.
From the Koszul formula, we have that at p it holds

∇ei ∂0 = −u−1ei , i ∈ {1, . . . , n}.
Consequently,

ei H = − gH(∂�0 ,∇ei ν) = II(∂�0 , ei ), i ∈ {1, . . . , n}.
Differentiating once more, using the Codazzi-Mainardi equation, and then estimating at
p ∈ M , we obtain

�gH = ei ei H = ei
(
bi j gH(∂0, e j )

) = bi ji gH(∂0, e j )+ bi j gH(∇ei ∂0, e j )+ bi j gH(∂0,∇ei e j )

= gH(∂�0 , bii j e j )− u−1bi j δi j + bi j bi j gH(∂0, ν)

= gH(∂�0 ,∇H)− u−1H − H |II|2,

where�g is the Laplacian with respect to the induced metric g of the soliton. Since−H > 0,
according to the maximum principle, we obtain that sup� H = max∂� H . Thus, there exists
y0 ∈ ∂� such that

−1

u(x)
√
1+ |Du|2(x) ≤

−1

u(y0)
√
1+ |Du|2(y0)

for each x ∈ �.

Hence,

|Du|2(x) ≤ u2(y0)

u2(x)

(
1+ |Du|2(y0)

)
− 1 for each x ∈ �.

Combining with the estimates we showed in Claims 1 and 2, we deduce the desired estimate
on the gradient of u. This completes the proof of the claim. �

CaseB:Assume that� hasC3-smooth compactmean convex boundary ∂�. Furthermore,
assume that φ : ∂� → (0,∞) is continuous. Choose a decreasing sequence {φ j } and
an increasing sequence {θ j } of positive smooth functions uniformly converging to φ. For
each j ∈ N denote by u j , v j the solutions given by Case A for boundary data φ j and θ j ,
respectively. By the comparison maximum principle, the sequence {u j } is decreasing, {v j }
is increasing and v j ≤ ul for each j, l ∈ N. Moreover, by the height estimates obtained in
Case A, there exist positive constants B1, B2 such that

B1 ≤ v j ≤ ul ≤ B2 for all j, l ∈ N.

According to a result of Simon [48, Corollary 1, p. 257], the sequences {u j } and {v j } have
uniformly bounded gradients on compact subsets K ⊂ �. Then local C1,α-estimates follow
by Ladyzhenskaya & Ural’tseva [38], and Schauder estimates imply that the sequences {u j }
and {v j } are bounded on C2,α(K ); for more details see also [27, Section 11.3, Chapter 13
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and Theorem 13.6]. Passing to the limit, using the same idea as in Lemma 3.7, we deduce
that u j ↓ u and v j ↑ u locally in C2,α to a unique solution u to Q[u] = 0 which satisfies
u ≡ φ on ∂�.

Case C:We conclude the proof by considering the case where�, not necessarily compact
but satisfying H∂� ≥ 0, is contained between two parallel hyperplanes of ∂ ′∞H

n+1. We
employ Perron’s method, the main novelty being the treatment of boundary barriers to force
u = φ on ∂�. Recall at first that a function v is said to satisfyQ[v] ≥ 0 in the viscosity sense
if, for each x ∈ � and each C2-smooth test function ϕ touching v from above at the point x
(i.e., ϕ ≥ v near x and ϕ(x) = v(x)) it holds Q[ϕ] ≥ 0; see for details [18]. Consider now
a large grim-reaper cylinder G such that the graph of φ over ∂� lies in the region below G .
Without loss of generality, we may denote the graph function generating G with the same
name. Define Perron’s class

F =
⎧⎨
⎩v ∈ C(�) :

0 < v ≤ G on �,

Q[v] ≥ 0 on � in the viscosity sense,
0 ≤ v ≤ φ on ∂�.

⎫⎬
⎭ .

Claim 4: The set F is non-empty.
Proof of the claim: For each x ∈ � we can consider the maximal spherical barrier Sx

centered at x whose boundary at infinity is contained in �. The spherical barrier can be
expressed as the graph of a function sx : Bx → R which solves Q[sx ] ≥ 0 in the interior of
its domain of definition Bx . Note that sx is zero on ∂Bx and sx < G on Bx by comparison.
Extend sx as being zero on�\Bx and define s : � → R by s = supx∈� sx . Then, 0 < s ≤ G
on� and moreover s is locally Lipschitz. By elementary properties of viscosity solutions, we
deduce thatQ[s] ≥ 0 on the entire�. Since� is contained between two parallel hyperplanes,
the radius of Sx is uniformly bounded from above by some R > 0. Hence, for each x ∈ �,
by considering a nearest point x0 ∈ ∂� to x and a spherical cap of radius R and center
x0 + Rν(x0) we deduce

sy(x) ≤ R

√
1− R − dist(x, ∂�)

R
∀ y ∈ �.

Consequently, s ∈ C(�) and s ≡ 0 on ∂�. This shows that F �= ∅. �
Define now Perron’s envelope

u(x) = sup {v(x) : v ∈ F } . (5.11)

Then, u is lower-semicontinuous on �, 0 < u ≤ G on � and 0 ≤ u ≤ φ on ∂�.
Claim 5: The function u defined in (5.11) belongs to C∞(�) and Q[u] = 0 on �.
Proof of the claim: Fix x ∈ � and a sequence {v j } ⊂ F with v j (x) → u(x). Up to

replacing v j with max{v1, . . . , v j } ∈ F , we can assume that v j (x) ↑ u(x). Pick a small ball
B ⊂ � centered at x , and for each j ∈ N solve{Q[v′j ] = 0 on B,

v′j = v j on ∂B.

The existence of the unique v′j ∈ C2(B) ∩ C(B) follows by Case B above. From the com-

parison principle we deduce that v j ≤ v′j ≤ G on B, for each j ∈ N; see [18].1

1 Comparison in this case holds trivially: if maxB (v j − v′j ) = c > 0, the function v′j + c would touch from

above v j at some interior point x0. However,Q[v′j + c] < 0, contradicting the fact that v j is a subsolution at
x0.
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Define the replacement ṽ j of v j to be the function

ṽ j =
{

v′j on B,

v j on �\B.

Then, ṽ j still belongs to F and ṽ j (x) → u(x). Local gradient estimates [48, Corollary 1]
and higher elliptic regularity imply ṽ j → v ≤ u locally smoothly on B, where v is a function
with v(x) = u(x). We claim that u ≡ v on B. Assume to the contrary that u(p) > v(p) for
some p ∈ B, let w ∈ F such that w(p) > v(p) and consider w j = max{ṽ j , w}. Let w̃ j

be the replacement of w j on B. Again elliptic estimates guarantee that w̃ j → w̃ ≤ G on B
locally smoothly. By construction, w̃ ≥ v on B, with strict inequality at p but with equality
at x , contradicting the maximum principle. �

Claim 6: The function u defined in (5.11) is continuous up to the boundary ∂� and u ≡ φ

on ∂�.
Proof of the claim: Fix a point x0 ∈ ∂�, choose a positive ε > 0 and a large ball Br0

centered at some fixed origin for which x0 ∈ Br0−2. To simplify the notation, let us denote
here the intersection of ∂� with a ball Br of radius r by ∂�r , that is ∂�r = ∂� ∩ Br .
Parametrize now a neighborhood of ∂�r0 by the smooth Fermi chart [0, ρ) × ∂�r0 → �

given by

(r , y) �→ y + rν(y),

where ν the unit normal to the boundary ∂� pointing toward�. Let B ≥ ‖G ‖∞ and consider
functions φ1, φ2 ∈ C3(∂�) satisfying the following properties:

(i1) 0 ≤ φ2 ≤ φ and ε + φ ≤ φ1 ≤ G , on ∂�,

(i2) |φ j − φ| ≤ 2ε, on ∂�r0−2,

(i3) φ2 = 0 and φ1 = G , on ∂� ∩ (∂ ′∞H
n+1\Br0−1).

By the construction of boundary gradient estimates in Case 1, there exists ρ0 < ρ (depending
on ε) andC2-smooth functions v1 and v2 onU = [0, ρ0]×∂�r0 with the following properties:

• Q[v1] ≤ 0 on U , Q[v2] ≥ 0 on {v2 > 0}.
• It holds

v1(ρ0, y) = B, v1(0, y) = φ1(y), ∂rv1(r , y) > 0, for each (r , y) ∈ U ,

and

v1(r , y) ≥ G (r , y), for each (r , y) ∈ [0, ρ0)× (∂�r0\∂�r0−1).

• It holds

v2(ρ0, y) < 0, v2(0, y) = φ2 and ∂rv2(r , y) < 0, for each (r , y) ∈ U .

Therefore,

v2(r , y) < 0 on (0, ρ0)× (∂�r0\∂�r0−1).

Pick now a smooth function η : ∂�r0 → [0, ρ0] satisfying
η(y) = ρ0 for y ∈ ∂�r0−1 and η(y) = 0 for y ∈ ∂�r0 ∩ ∂Br0 ,

and consider the region

Ũ = {(r , y) ∈ U : 0 ≤ r < η(y)} ⊂ U .
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Then, by construction,

v2 < 0 < G ≤ v1 on ∂Ũ\∂�.

By the comparison principle, we have that v ≤ v1 on Ũ for each v ∈ F . Thus, u ≤ v1 on Ũ
and

lim sup
x→x0

u(x) ≤ lim sup
x→x0

v1(x) = φ1(x0) ≤ φ(x0)+ 2ε.

On the other hand, by construction we have that {v2 > 0} ⊂ Ũ . Therefore, the function v

given by

v =
{
max{v2, s} on Ũ ,

s elsewhere on �,

is well defined on the entire � and v ∈ F . Inequality u ≥ v implies

lim inf
x→x0

u(x) ≥ lim
x→x0

v(x) = lim
x→x0

v2(x) = φ2(x0) > φ(x0)− 2ε.

The continuity of u at x0 follows by letting ε → 0. �
This conclude the proof of Theorem B(1). �

5.2 Proof of Theorem B. Part (2) - non-existence

Suppose that there exists a point y ∈ ∂� with H∂�(y) < 0, and let u ∈ C∞(�) ∩ C(�) be
a positive solution to Q[u] = 0 on �. Our approach follows [47], and we split the argument
into three steps. The main difference with [47] is Lemma 5.2 below: as observed in Remark
1.4(3), its use to construct a boundary data φ for which the Dirichlet problems is not solvable
forces a lower bound on the oscillation of φ.

To achieve our goal, we need to compare u with appropriate supersolutions to (SE). Recall
that a function r defined on an open subset of � is called a distance function if it is smooth
and |Dr | ≡ 1. We start with the following:

Lemma 5.1 Let r be a distance function defined on an open subsetU ⊂ R
n andω : (0,∞) →

R a smooth function. Then, v = ω(r) : U → R is a supersolution of (SE), if there exists a
continuous function h defined on (0, r) such that

ω′ < 0,
ω′′

ω′[1+ (ω′)2] + h ≥ 0 and �r − f (v)

ω′(r)
≥ h(r) ≥ 0 on U . (5.12)

Proof Consider the orthonormal frame {e1 = Dr; e2, . . . , en}. By a straightforward compu-
tation, we deduce that√

1+ (ω′(r))2 Q[v] = ω′′(r)
1+ (ω′(r))2

+ ω′(r)�r − f (v) ≤ ω′′(r)
1+ (ω′(r))2

+ h(r)ω′(r),

from where the statement follows. ��
Lemma 5.2 For each positive number ε > 0, there exist positive constants a0 =
a0(ε, diam(�), n) and c = c(diam(�), n) such that

sup�\Ba(y)u ≤ ε + sup∂�\Ba(y)u − c f (sup∂�\Ba(y)u)

for all a < a0.
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Proof Let a be a positive number. To simplify the notation let us set

d = 2 diam(�), Ua = �\Ba(y), Va = ∂�\Ba(y) and u∗a = supVa u.

Denote by r the distance function r(x) = |x − y| and let v : Ua → R be the function given
by

v = ω(r)+ u∗a,

where ω is C2-smooth on (a, d] and continuous on [a, d]. Furthermore, we require for ω

that

ω ≥ 0, ω(d) = 0, ω′ <
2d

n − 1
f (u∗a) < 0 and ω′(a+) = −∞. (5.13)

From the monotonicity of f and Lemma 5.1, we easily see that

�r − f (v)

ω′(r)
≥ n − 1

r
− f (u∗a)

ω′(r)
≥ n − 1

r
− n − 1

2d
≥ n − 1

2r
> 0.

Therefore, Q[v] ≤ 0 provided that

ω′′

ω′[1+ (ω′)2] +
n − 1

2r
≥ 0. (5.14)

We first find a solution ω̃ to (5.14) with the equality sign. To achieve this goal, consider the
strictly decreasing diffeomorphism F : (0,∞) → (0,∞) given by

F(s) =
∫ ∞

s

dτ

τ(1+ τ 2)
= log

√
1+ s−2. (5.15)

By a direct computation we see that

(
F(−ω̃′)

)′ = − ω̃′′

ω̃′[1+ (ω̃′)2] =
n − 1

2r
.

Integrating on [a, r ] and using the fact ω̃′(a+) = −∞, we get

−ω̃′(r) = F−1
(
n − 1

2
log
( r
a

))
.

Another integration on [r , d] gives

ω̃(r) =
∫ d

r
F−1

(
n − 1

2
log

(
t

a

))
dt . (5.16)

Since F−1(t) ! t−1/2 as t → 0, it follows that ω̃′ is integrable in a neighborhood of a. Also,
explicit computation gives ω̃(a) → 0 as a → 0. We can therefore choose a0 = a0(ε, d, n)

small enough so that ω̃(a) < ε for each a < a0. Summarizing, ω̃ given in (5.16) solves
(5.14). Choose now the function

ω(r) = ω̃(r)− 2d

n − 1
f (u∗a)(d − r).

Observe that ω satisfies both (5.14) and (5.13). Hence, v = ω(r)+ u∗a is a supersolution to
(SE). We claim that u ≤ v on the closure of Ua . Indeed, assume by contradiction that u − v

has a positive maximum at some point x0. By the strong maximum principle, x0 is not an
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interior point, and thus x0 ∈ ∂Ba(y) by the construction of v. However, along the segment �
given by

�(t) = x0 + t Dr(x0)

it holds

(u ◦ �− v ◦ �)′(t) = 〈Du, Dr〉(�(t))− ω′(a + t) →∞ as t → 0+,

contradiction. From the inequality u ≤ v on Ua we deduce

u(x) ≤ u∗a + ω̃(a)− 2d2

n − 1
f (u∗a) < u∗a + ε − 2d2

n − 1
f (u∗a) for all a < a0,

concluding the proof of the lemma. ��
Lemma 5.3 For each ε > 0, there exists a positive constant a0 = a0(�, ε) such that

sup�∩Ba(y)u ≤ ε + sup�∩∂Ba(y)u (5.17)

for all a < a0.

Proof Define r(x) = dist(x, ∂�), and choose a0 small enough to guarantee that r is smooth
on � ∩ Ba0(y). Since �r(y) = −H∂�(y), by continuity there exist a0, θ > 0 such that

�r ≥ 2θ on � ∩ Ba(y).

Fix a < a0, choose δ ∈ (0, a) and set

u∗∗a = sup�∩∂Ba(y)u, k = θ−1sup�| f (u)|.
Consider now the function v : � ∩ Ba(y) → R given by

v = u∗∗a + ω(r),

where ω is aC2-smooth function on (δ, a] and continuous on [δ, a]. Furthermore, we require
ω to satisfy

ω > 0 on [δ, a], ω′ ≤ −k on (δ, a] and ω′(δ+) = −∞. (5.18)

Observe that

�r − f (v)

ω′(r)
≥ 2θ − sup� | f (u)|

k
≥ θ on � ∩ Ba(y).

By Lemma 5.1, we deduce that Q[v] ≤ 0 provided

ω′′

ω′[1+ (ω′)2] + θ = 0

and the conditions (5.18) are satisfied. Consider the decreasing diffeomorphism F :
(0,∞) → (0,∞) given in (5.15) to rewrite the last ODE in the form

(F(−ω′))′ = θ.

Integrating on (δ, r) and using that ω′(δ+) = −∞ we get

−ω′(r) = F−1 (θ(r − δ)) ≥ F−1(θa0) ≥ k,
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where the last inequality holds if a0 is small enough. Moreover, the last requirement in (5.18)
is also satisfied. Integrating again and using the asymptotic behavior of F−1, the function ω′
is integrable in a neighborhood of δ and thus

ω(r) =
∫ a0

r
F−1(θ(t − δ))dt ∈ C([δ, a]) ∩ C2((δ, a]).

Consequently, all of the required assumptions on ω are satisfied. Making use of the compar-
ison maximum principle as in the previous lemma, we obtain u ≤ v on � ∩ Ba(y)\Bδ(y).
Therefore,

u ≤ u∗∗a + ω(δ) = u∗∗a +
∫ a0

δ

F−1(θ(t − δ))dt .

Changing variables from s to t − δ in the last integral, letting δ → 0 and using the monotone
convergence theorem, we get

u ≤ u∗∗a +
∫ a0

0
F−1(θs)ds on � ∩ Ba(y)\{y}.

The integral on the right hand side is finite. By continuity, the same inequality also holds at the
point y. Therefore, choosing a0 sufficiently small, the estimate (5.17) holds. This concludes
the proof of the lemma. ��

We are now ready to complete the proof of Theorem B(2). Recall that we are dealing
with a domain � with smooth boundary ∂�, which at a point y has strictly negative mean
curvature. Fix ε > 0 and let a0 > 0 small enough so that both Lemmas 5.2 and 5.3 hold for
a < a0. This means that any positive solution u ∈ C∞(�) ∩ C(�) of (SE) must satisfy the
estimate

u(y) ≤ ε + sup�∩∂Ba(y)u ≤ 2ε + sup∂�\Ba(y)u − c f (sup∂�\Ba(y)u) (5.19)

for each a < a0. On the other hand, choose an arbitrary positive constant c0 > 0 and a
positive boundary datum φ ∈ C∞(∂�) satisfying

φ ≡ c0 > 0 on ∂�\Ba(y) and φ(y) > 2ε + c0 − c f (c0).

Then, from (5.19) it follows that u(y) < φ(y). Consequently, theDirichlet problemQ[u] = 0
with prescribed u ≡ φ on ∂� does not admit any solution u ∈ C∞(�) ∩ C(�). �

6 Uniqueness of the grim-reaper cylinder

In this section, we prove Theorem F. We begin with the following observation:

Lemma 6.1 Let M ⊂ H
n+1 be a properly immersed soliton with respect to −∂0 such that

∂ ′∞M = π1∪π2, where π1 andπ2 are parallel hyperplanes in ∂ ′∞H
n+1. Then M is contained

in the open regionU bounded by the parallel hyperplanes�1,�2 ⊂ H
n+1 that meet ∂ ′∞H

n+1

orthogonally and satisfy ∂ ′∞�1 = π1, ∂ ′∞�2 = π2, and by the half-cylinder C with ∂ ′∞C =
π1 ∪ π2.

Proof By Proposition 3.2, M is contained in the slab between �1 and �2. Again from the
strong maximum principle M cannot touch �1 ∩ �2. Next, consider a spherical barrier S
centered at a point q∞ ∈ ∂ ′∞H

m+1 equidistant, with respect to the Euclidean metric, from
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π1 and π2, and choose its radius to be small enough to satisfy S ∩M = ∅. By increasing the
radius, the strong maximum principle ensures that M lies above the half-sphere centered at
q∞ and tangent to �1 ∪�2. The conclusion follows since C is the envelope of such barriers
for varying q∞. ��

6.1 Compactness and amaximum principle for varifolds

Let us set recall some important facts that we will need in the sequel.

Definition 6.2 Let {Mi }i∈N be a sequence of properly embedded hypersurfaces in a Rieman-
nian manifold (N , g). We say that {Mi }i∈N has uniformly bounded area on compact subsets
of N if

lim sup
i→∞

|Mi ∩ K |g < ∞

for any compact subset K of N .

The following well-known theorem in geometric measure theory holds; see, for example,
[49, Theorem 42.7].

Theorem 6.3 Let {Mi } be a sequence of minimal hypersurfaces in � ⊂ R
n+1, where � is

an open subset equipped not necessarily with the canonical metric, whose area is locally
bounded. Then, a subsequence of {Mi } converges weakly to a stationary integral varifold
M∞.

Let us denote by

Z = {p ∈ � : lim sup
i→∞

|Mi ∩ Br (p)|g = ∞ for every r > 0
}
,

the set where the area blows up. Clearly Z is a closed set. It will be useful to have conditions
that will imply that the set Z is empty. In this direction, White [54, Theorems 2.6 and 7.3]
shows that under some natural conditions the set Z satisfies the same maximum principle as
properly embedded minimal hypersurfaces without boundary.

Theorem 6.4 Let (N , g) be a smooth Riemannian (n+ 1)-manifold and {Mi }i∈N a sequence
of properly embedded minimal hypersurfaces without boundary in (N , g). Suppose that the
area blow up set Z of {Mi }i∈N is contained in a closed (n + 1)-dimensional region P ⊂ N
with smooth, connected boundary ∂P such that g

(
H, ξ

) ≥ 0, at every point of ∂P, where
H is the mean curvature vector of ∂P and ξ is the unit normal to the hypersurface ∂P that
points into P. If the set Z contains any point of ∂P, then it contains all of ∂P.

Remark 6.5 The above theorem is a sub-case of amore general result. In fact the strong barrier
principle holds for sequences of properly embedded hypersurfaces (possiblywith boundaries)
of Riemannianmanifoldswhich are not necessarilyminimal but they have uniformly bounded
mean curvature. For more details, we refer to [54].

In the proof of Theorem F, we will need the following strong maximum principle which
is due to Solomon and White [52].

Theorem 6.6 Let (Nn+1, g) be a Riemannian manifold with connected non-empty boundary
∂N and that Nn+1 is mean convex, that is, that g(H, ξ) ≥ 0 on ∂N where H is the mean
curvature vector of ∂N and where ξ is the unit inward pointing normal of ∂N. Let V be
an n-dimensional stationary varifold in Nn+1. If sptV contains a point of ∂N, then it must
contain all ∂N.
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6.2 The hyperbolic dynamic lemma

Let M ⊂ H
n+1 be a conformal soliton with respect to −∂0 satisfying the GR-property.

Without loss of generality we can choose coordinates so that π1 and π2 are, respectively,
given by the equations

{x0 = 0, x1 = a} and {x0 = 0, x1 = −a},
where a is a positive constant. Recall that the soliton property is preserved if we act
on M via isometries of the hyperbolic space which fix the vector −∂0. Therefore, if
v = (0, 0, v2, . . . , vm) is a vector of Hn+1, then the hypersurface

M + v = (x0, x1, x2 + v2, . . . , xm + vm)

is again a soliton in Hn+1 satisfying the GR-property.

Lemma 6.7 Let M ⊂ H
n+1 be a properly embedded soliton with respect to −∂0 satisfying

the GR-property. Suppose that {vi }i∈N ⊂ span{∂2, . . . , ∂m} is a sequence of vectors and
let Mi = M + vi . Then, after passing to a subsequence, {Mi }i∈N weakly converges to a
connected stationary integral varifold M∞ with ∂∞M∞ = ∂∞M.

Proof First, by Lemma 6.1 we know that M lies in the region U . Let τ > 0 be the constant
guaranteed by the GR-property, set

Uτ = U ∩ {τ < x0 < supMx0},
and denote with Z the blow-up set of {Mi }. We split the proof in four steps.
Step 1: We show that the sequence {Mi }i∈N has locally bounded area with respect to the
Ilmanen metric outside Uτ . Due to the GR-property,

M\Uτ =
(W1 ∪W2

) ∩ {x0 < τ },
where the wing W j is the image of the graph of the function ϕ j : Hτ

j → R, j ∈ {1, 2}. To
simplify notation, for fixed j we let

W = W j , ϕ = ϕ j and H = H j .

Let ν be a Euclidean unit normal to H. Then,

ν = cos θ∂1 + sin θ∂0,

where θ ∈ (−π/2, π/2). Notice that since W ⊂ U , there exists C > 0 such that

|ϕ(p)| < C for each p ∈ Hτ . (6.1)

Let us introduce the coordinates

y0 = cos θx1 + sin θx0, y1 = − sin θx1 + cos θx0, yk = xk for k ≥ 2.

Thus, y = (y1, . . . , ym) are coordinates on H. Choose an Euclidean ball B ⊂ Hτ , consider
the box Q = [−C,C] × B in coordinates (y0; y) and let

K = Q ∩ U;
see Fig. 5. By construction, K is compact subset with piecewise smooth boundary in H

n+1,
and W ∩ K is the image of the graph of the function ϕ over the entire B. We claim that the
gI(n)-area of {Mi }i∈N on K is uniformly bounded. Since for varying B,C the sets K cover
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Fig. 5 The subset K

the region U ∩ {x0 < τ }, we deduce that the sequence {Mi } has locally bounded area outside
Uτ . We use a calibration method.

Write for convenience

gI(n) = λ2 gR, with λ(y0; y) = x−1
0 (y0; y)e

1
nx0(y0;y) ,

and notice that the unit normals ξ and ξI alongW with respect to the Euclidean and Ilmanen
metric (say, pointing toward increasing y0) are related by

ξI(q) = λ−1(q)ξ(q), for each q = (ϕ(y); y) ∈ W.

Extend ξ on K to be constant along the y0-direction and accordingly extend ξI on K by

ξI(y0; y) = λ−1(y0; y)ξ(y0; y), for each (y0; y) ∈ K .

We compute

divgIξI = divgRξI + n gR(D log λ, ξI)

= λ−1
(
divgRξ + (n − 1) gR(D log λ, ξ)

)
.

(6.2)

Let p = (y0; y) ∈ K , and let q = (ϕ(y); y). Since W is gI(n)-minimal and |ξI|gI = 1 by
construction on the entire K , we have

divgIξI(q) = 0, divgRξ(p) = divgRξ(q).

Evaluating (6.2) at p and q and using the last two identities, we get

divgIξI(p) =
n − 1

λ(p)

(
gR
(
Dp log λ, ξ(p)

)− gR
(
Dq log λ, ξ(q)

))
.

Since minK x0 > 0, the function log λ is bounded in C1(K , gR). So there exists a constant
CK such that

|divgIξI| ≤ CK on K .

Let K ′ be the region of K where y0 < ϕ(y). By the divergence theorem,

CK |K |gI ≥
∫
K ′

divgIξIdxgI = |W ∩ K |gI +
∫

∂K ′∩∂K
gI(ξI, η)dσgI ≥ |W ∩ K |gI − |∂K |gI .
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Therefore,

|W ∩ K |gI ≤ |∂K |gI + CK |K |gI
is uniformly bounded, as claimed.
Step 2: From Step 1,Z ⊂ Uτ . Choose a spherical barrierB not intersecting Uτ , and increase
its radius up to touching Z. Theorem 6.4 would imply that B ⊂ Z, a contradiction. Thus,
Z = ∅.
Step 3:FromSteps 1&2, the sequence {Mi } has locally bounded gI(n)-area.Hence, Theorem
6.3 guarantees the weak subconvergence of {Mi } to a stationary integral varifold M∞.
Step 4:By theGR-property, ∂ ′∞Mi = ∂ ′∞M for each i ∈ N. Every point p ∈ ∂ ′∞H

m+1\∂ ′∞M
can be separated to M , hence to each Mi , by a small spherical barrier. Thus, ∂ ′∞M∞ ⊂ ∂ ′∞M .
On the other hand, on each Euclidean ball B centered at p ∈ ∂ ′∞M the GR-property and the
almost monotonicity formula for gI(n)-stationary varifolds guarantee a uniform lower bound
for the gI(n)-area of Mi ∩ B. Therefore, p belongs to sptM∞.

This completes the proof. ��

6.3 Proof of Theorem F

By Lemma 6.1 and since x0 is bounded on M , we have that

M ⊂ U ∩ {x0 ≤ sup x0}.
Pick a grim-reaper cylinder Gh of height h whose symmetry axis is parallel to the hyperplanes
�1, �2, and (Euclidean) equidistant to them. For h small enough, Gh ∩ M = ∅. We claim
that we can increase h up to a limit value h∗ in such a way that Gh ∩M = ∅, for each h < h∗,
and

∂ ′∞Gh∗ = π1 ∪ π2.

Suppose that this is not the case. Then, necessarily,

(i) distgI (Gh∗ , M) = 0,
(i i) ∂ ′∞Gh∗ is contained in the open slab betweenπ1 andπ2.

By (i) there exists a sequence {pi }i∈N ⊂ M such that dist(pi ,Gh∗) → 0. Denote by pki
the xk-component of pi and define vi = (0, 0, p2i , . . . , p

m
i ). Since M is contained in U and

because of (i i), it follows that there exists τ0 > 0 such that p0i > τ0 for each i ∈ N. Therefore,
up to a subsequence, pi−vi converges to a point p� ∈ Gh∗ . Applying the hyperbolic dynamic
Lemma 6.7 to Mi = M + vi , we obtain a limiting gI(n)-stationary varifold M∞ with

∂ ′∞M∞ = π1 ∪ π2.

By construction p� ∈ M∞ and M∞ lies above Gh∗ . By Theorem 6.6 we get that Gh∗ ⊂ M∞,
contradicting condition (i i). To conclude, pick a large grim-reaper cylinder Gs with the same
axis as Gh∗ and containing U ∩{x0 ≤ sup x0}. Decreasing s and following the same argument
as before, we can show that

Gs ∩ M = ∅,
for each s > h∗. Hence M ≡ Gh∗ and this completes the proof. ��
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