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Given a real valued functional T on the space of bounded random variables, we 
investigate the problem of the existence of a conditional version of nonlinear means. 
We follow a seminal idea by Chisini (1929), defining a mean as the solution of a 
functional equation induced by T . We provide sufficient conditions which guarantee 
the existence of a (unique) solution of a system of infinitely many functional 
equations, which will provide the so-called Conditional Chisini mean. We apply 
our findings in characterizing the scalarization of conditional Risk Measures, an 
essential tool originally adopted by Detlefsen and Scandolo (2005) to deduce the 
robust dual representation.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In Probability Theory and Statistics the concept of mean as introduced by Chisini [2] can be expressed 
as follows: given a vector (x1, . . . , xn) ∈ Rn and a non-decreasing (with respect to component-wise order) 
function T : Rn → R the mean is the value m ∈ R which solves the functional equation

T (x1, x2, . . . , xn) = T (m,m . . . ,m).

Simple examples can be obtained by choosing strictly increasing G, F : R → R and

T (x1, x2, . . . , xn) = F

(
n∑

i=1
G(xi)

)
.

In this case the unique solution

m = G−1
(
G(x1) + . . . + G(xn)

n

)
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is independent from the choice of F and m is usually referred as Generalized Mean (see [11] for a review).
The notion of mean is crucial as soon as we extend the view of the problem to infinite dimensional spaces 

of random variables both in the classical linear case (e.g. the expected value which defines the L1 space of 
integrable random variables) and in the nonlinear case (see [6,7] among the others). For this reason it is 
natural to consider a measurable space (Ω, F) where Ω is the set of all possible events and F is a σ-algebra.
Let X be a vector space of measurable random variables f : Ω → R, such that for any A ∈ F the indicator 
function 1A belongs to X , and f1A ∈ X whenever f ∈ X .

Definition 1.1. Given a functional T : X → R the Chisini mean of f ∈ X will be given by m(f) ∈ R being 
solution of the functional equation

T (f) = T (m(f)1Ω).

In this paper we shall concentrate our analysis on the space of bounded F-measurable random variables. 
We work in a model independent framework, in that we do not assume the knowledge of a probability 
measure P on (Ω, F) a priori. Our aim is to provide sufficient conditions for the existence of the conditional 
Chisini mean. More precisely: given a functional T : X → R and a σ-algebra G ⊆ F , we look for a 
G-measurable bounded random variable g such that

T (g1A) = T (f1A) ∀A ∈ G. (1)

Under suitable assumptions on T the solution will be unique only up to irrelevant events for T (rigorously 
defined later) and the class of solutions will represent the conditional Chisini mean, which we will denote 
by m (f |G) (see Definition 3.1).

Equation (1) is a natural extension of the standard definition of conditional expectation. For a given 
probability space (Ω, F , P ) the simplest example of Chisini mean is obtained considering T as the Lebesgue 
integral of f ∈ X under P , namely T (f) := EP [f ] and in this trivial case m (f) coincides with EP [f ]. 
Moreover if G is a sub σ-algebra of F and EP [f |G] denotes the conditional expectation of f given G, any 
version g ∈ EP [f |G] solves the system of infinitely many equations (1) with T (f) = EP [f ].

One of the most celebrated results related to our research is the Nagumo-de Finetti-Kolmogorov Theorem 
([12,4,10]), which provides an integral characterization of generalized means on finitely supported distribu-
tions. In [1, Lemma 5.2] the Nagumo-de Finetti-Kolmogorov Theorem is extended to functionals defined on 
bounded random variables. In particular [1, Lemma 5.2] leads to an immediate solution to (1) for a large 
class of functionals T of the form m (f |G) = U−1EP [U(f)|G] for an increasing U : R → R. The proof of 
[1, Lemma 5.2] relies on restrictive assumptions like (Ω, F , P ) being a non atomic probability space and T
satisfying P -law invariance.1 Our analysis diverges significantly from the Nagumo-de Finetti-Kolmogorov 
integral representation as we shall drop completely the P -law invariancy of T and relax significantly the 
other assumptions (for example we shall not need an atomless measure space).

In the realm of Nonlinear Expectations, another significant example is the case of g-expectations 
(see [3] for a definition via (1) and [13] for an exhaustive review). Given a filtered probability space 
(Ω, F , {Ft}t∈[0,T ], P ), a g-expectation is loosely speaking a nonlinear functional which associates to a ran-
dom variable f the value of the solution of a Backward Stochastic Differential Equation (with driver g) at 
time t, i.e. ft = Et(f). If the solution of the BSDE exists unique then ft solves again the functional equation 
E0(f1A) = E0(ft1A) for any A ∈ Ft. Coquet and Peng [3] pursue an axiomatic approach to determine 
those families of functionals {Et}t∈[0,T ] which can be represented as g-expectations. Their results lead to a 
solution of the conditional Chisini mean problem depicted so far. Nevertheless, it is important to observe 

1 A functional T is P -law invariant if it depends only on the laws of random variables i.e. P(f ≤ z) = P(g ≤ z) for any z ∈ R
implies T (f) = T (g).
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that differently from [3] and all the related literature our framework does not require a Brownian underlying 
structure which is necessary to develop the theory of BSDEs, and for this reason we can replace technical 
hypotheses like the so-called Eμ-domination.

2. Notations and preliminaries

For any given σ-algebra G ⊆ F we denote by L(Ω, G) the space of G-measurable functions taking values in 
R, which will be always endowed with the Borel σ-algebra BR. We shall usually refer to elements f ∈ L(Ω, G)
as random variables and denote by L∞(Ω, G) its subspace collecting bounded elements i.e. f ∈ L(Ω, G) such 
that |f(ω)| ≤ k for every ω ∈ Ω and some k ≥ 0. On L(Ω, G) and L∞(Ω, G) we shall consider the usual 
pointwise order f ≤ g if and only if f(ω) ≤ g(ω) for every ω ∈ Ω. L∞(Ω, G) endowed with the sup norm 
‖ · ‖∞ becomes a Banach lattice, where ‖f‖∞ = supω∈Ω |f(ω)|. By 1A, A ∈ G we indicate the element of 
L∞(Ω, G) such that 1A(ω) = 1 if ω ∈ A and 0 otherwise. Finally we shall denote by S(G) the subspace of 
simple functions in L∞(Ω, G).

Whenever a probability P is given (Ω, F , P ) becomes a measure space and, as usual, we shall say that 
a probability P̃ is dominated by P (P̃ 	 P ) if P (A) = 0 implies P̃ (A) = 0 for any A ∈ F . Similarly a 
probability P̃ is equivalent to P (P̃ ∼ P ) if P 	 P̃ and P̃ 	 P . A property holds P almost surely (P -a.s.), 
if the set where it fails is measurable and has 0 probability.
For any given σ-algebra G ⊆ F we shall denote with L0(Ω, G, P ) the space of equivalence classes of G
measurable random variables that are P almost surely equal and by L∞(Ω, G, P ) the subspace of (P a.s.) 
bounded random variables. Formally any f ∈ L(Ω, G) will be a representative of the class X := [f ]P ∈
L0(Ω, G, P ). For X, Y ∈ L∞(Ω, F , P ) we write X ≤ Y P -a.s. for the usual a.s. ordering. Moreover, the 
essential (P a.s.) supremum of an arbitrary family of random variables {Xλ}λ∈Λ ⊆ L0(Ω, G, P ) will be 
simply denoted by essupP{Xλ | λ ∈ Λ}, and similarly for the essential infimum (see [9, Section A.5] for 
details).

We now state a simple result for the existence and uniqueness of Chisini means as in Definition 1.1. 
It is interesting to notice that existence and uniqueness depend only on the regularity properties of the 
restriction of the functional T on constant random variables.

Proposition 2.1. Assume that T : L∞(Ω, F) → R is such that T (− ‖f‖∞) ≤ T (f) ≤ T (‖f‖∞) and the 
function R � a �→ T (a1Ω) is continuous and strictly increasing. Then for any f ∈ L∞(Ω, F) there exists a 
unique m ∈ R such that T (f) = T (m1Ω).

Proof. Continuity of the restriction guarantees that the sets {a ∈ R | T (a1Ω) ≥ T (f)} and {a ∈ R |
T (a1Ω) ≤ T (f)} are closed. Moreover T (− ‖f‖∞) ≤ T (f) ≤ T (‖f‖∞) implies that the two sets are non 
empty. Finally monotonicity implies that their union is the real line R. Therefore their intersection is non 
empty and reduced to a singleton due to strict monotonicity of T on constant random variables. �
Definition 2.2. For a given T : L∞(Ω, F) → R and any σ-algebra G ⊆ F we introduce the class of irrelevant 
(or null) events in G for the functional T as

NG = {N ∈ G | T (g1 + g21N ) = T (g1) ∀g1, g2 ∈ L∞(Ω,G)}. (2)

We now list the key properties T might enjoy, which will play a central role in the achievement of our scope.

(G-Mo) T is G-monotone if, for all x, y ∈ R with x < y, all g ∈ L∞(Ω, G) and all A ∈ G \ NG , we have

T (x1A + g1Ω\A) < T (y1A + g1Ω\A);
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(G-QL) T is G-quasilinear if, given any g1, g2 ∈ L∞(Ω, G) and A ∈ G, T (g11A + ḡ1Ω\A) ≤ T (g21A + ḡ1Ω\A)
for some ḡ ∈ L∞(Ω, G) implies T (g11A + g1Ω\A) ≤ T (g21A + g1Ω\A) for all g ∈ L∞(Ω, G)2;

(G-PC) T is G-pointwise continuous if, for every norm bounded sequence {gn} ⊆ L∞(Ω, G) such that 
gn(ω) → g(ω) for all ω ∈ Ω, we have limn T (gn) = T (g).

For a fixed f ∈ L∞(Ω, F), we also introduce the following properties:

(G-PS) T is G- pasting at f if, given A1, A2 ∈ G with A1 ∩ A2 = ∅ and x1, x2 ∈ R satisfying T (f1Ai
) =

T (xi1Ai
) for i = 1, 2, then

T (f1A1 + f1A2) = T (x11A1 + x21A2).

(G-NB) T is G-norm bounded at f if T (− ‖f‖∞ 1A) ≤ T (f1A) ≤ T (‖f‖∞ 1A) for every A ∈ G.

In the previous definition we need to stress the dependence on the σ-algebra G, as the latter can range 
from G = {∅, Ω} to G = F . Notice moreover that (G-Mo), (G-QL) and (G-PC) are properties regarding only 
the restriction of T to L∞(Ω, G).

Remark 2.3 (From unconditional to conditional Chisini means). It is important to observe that the prop-
erties (G-Mo), (G-PC), (G-NB) collapse to the assumptions used in Proposition 2.1 as soon as G = {∅, Ω}. 
On the other hand it is no surprise that no counterparts of (G-QL) and (G-PS) appear in the statement of 
Proposition 2.1, as both properties are always trivially satisfied for G = {∅, Ω}.

Remark 2.4. The following pasting property can be checked from (G-QL): for gi, ̂gi ∈ L∞(Ω, G) and Ai ∈ G
for i = 1, . . . , N where the sets are mutually disjoint, we have

T (gi1Ai
) ≥ T (ĝi1Ai

) ∀ i ⇒ T

(∑
i

gi1Ai

)
≥ T

(∑
i

ĝi1Ai

)

Providing a definition of irrelevant events NG a priori of any property of the functional T is of primary 
importance to introduce the notion of (G-Mo) for T . As the characterizing condition for NG is somehow 
cumbersome and difficult to verify, we now state an equivalent, easier-to-handle formulation: if T satisfies 
(G-QL), T (0) = 0, and

g1, g2 ∈ L∞(Ω,G), g1(ω) ≤ g2(ω) ∀ω ∈ Ω =⇒ T (g1) ≤ T (g2), (3)

then for A ∈ G we have:

NG = {A ∈ G | T (x1A) = 0 for all x ∈ R} . (4)

The claim is Lemma A.8 in the appendix. Moreover, T (0) = 0, (G-Mo), (G-QL) and (G-PC) together imply 
(3) (see Lemma (A.10)).

2 As an immediate consequence, under (G-QL) alone, and given g1, g2 ∈ L∞(Ω, G), if we have T (g11A+ḡ1Ω\A) = T (g21A+ḡ1Ω\A)
for some ḡ ∈ L∞(Ω, G), then T (g11A + g1Ω\A) = T (g21A + g1Ω\A) for all g ∈ L∞(Ω, G): it is indeed enough to interchange the 
roles of g1, g2 in exploiting the assumption.
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3. Statement of the main result

For the rest of the paper we will always assume without loss of generality3 that T : L∞(Ω, F) → R

satisfies T (0) = 0.
We recall that we are interested to the following problem of finding sufficient conditions under which 
m (f |G) �= ∅ where m (f |G) is given by the following

Definition 3.1 (Conditional Chisini mean). Let (Ω, F) be a measurable space. Consider T : L∞(Ω, F) → R

and f ∈ L∞(Ω, F). We shall call conditional Chisini mean the set

m (f |G) := {g ∈ L∞(Ω,G) | T (f1A) = T (g1A) ∀A ∈ G} . (5)

The following theorem provides sufficient conditions for the existence of conditional Chisini means for a 
large class of functionals and a fixed σ-algebra G ⊂ F . We stress that (G-PS) is a reasonable requirement if 
we want to guarantee existence of conditional Chisini means, as it is necessary already for a sigma algebra 
G generated by two elements.

Theorem 3.2. Assume that for a σ-algebra G ⊂ F the functional T : L∞(Ω, F) → R satisfies the properties 
(G-Mo), (G-QL), and (G-PC). Then for any f ∈ L∞(Ω, F) for which (G-PS) and (G-NB) hold at f , there 
exists ĝ ∈ L∞(Ω, G) such that T (f1A) = T (ĝ1A) for all A ∈ G, i.e. ĝ ∈ m (f |G). Moreover, such a ĝ is 
essentially unique in that for any g̃ ∈ m (f |G), we have {ĝ �= g̃} ∈ NG.

Remark 3.3. It is possible to mimick the arguments in [3, Lemmas 3.3 to 3.6], to obtain similar properties 
in our framework, literally substituting “P -a.s.” with “outside a measurable set in NG”, and “P (A) > 0” 
with “A ∈ G \NG”. In this way, one guarantees monotonicity, tower property and homogeneity with respect 
to indicators of G-measurable events for the conditional Chisini mean.

4. Scalarization of conditional risk measures

The theory of Risk Measures is established in Mathematical Finance, intertwining Convex Analysis and 
Probability. A major branch of this theory is concerned with the risk assessment in dynamic frameworks, 
making extensive use of the notion of conditional Risk Measures which we here briefly recall (see [9, Chapter 
11] for a detailed overview).

Definition 4.1. A functional ρG : L∞(Ω, F , P ) → L∞(Ω, G, P ) is called conditional convex Risk Measure, if: 
(i) ρG(X) ≤ ρG(Y ) P -a.s. whenever Y ≤ X P -a.s.; (ii) ρG(X+c) = ρG(X) −c, P -a.s. for all c ∈ L∞(Ω, G, P ); 
(iii) for every X1, X2 ∈ L∞(Ω, F , P ), Λ ∈ L∞(Ω, G, P ), 0 ≤ Λ ≤ 1,

ρG(ΛX1 + (1 − Λ)X2) ≤ ΛρG(X1) + (1 − Λ)ρG(X2) P -a.s.

Notice that in the previous sections we used random variables as real valued measurable functions on 
(Ω, F). In this context a reference probability P is necessarily fixed a priori, hence as customary we will 
necessitate equivalence classes under P -a.s. equality. We will adopt the following notation: for any A ∈ F
we shall denote by 1A = [1A]P the equivalence class generated in L∞(Ω, F , P ) by the indicator function 
1A ∈ L∞(Ω, F).

Given a conditional convex Risk Measure ρG : L∞(Ω, F , P ) → L∞(Ω, G, P ), its scalarization, defined as 
the (non conditional) Risk Measure

3 In fact a translation of the functional by defining T̃ (·) = T (·) − T (0) does not affect the solution to (1).
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ρ0 : L∞(Ω,F ,P ) → R, ρ0(X) := EP [ρG(X)] , (6)

turns out to play a key role in the analysis of the dual representation of conditional Risk Measures (see e.g. 
[8, Theorem 1]). The main findings of this paper will allow us to characterize all the functionals ρ0 which 
can be represented as the scalarization of a conditional Risk Measure as in (6).

Theorem 4.2. Fix a probability space (Ω, F , P ). Let ρ0 : L∞(Ω, F , P ) → R be given, with ρ0(0) = 0. Suppose 
that

1. ρ0(X + Y ) = ρ0(X) − EP [Y ] for X ∈ L∞(Ω, F , P ), Y ∈ L∞(Ω, G, P );
2. for every X1, X2 ∈ L∞(Ω, F , P ), X1 ≤ X2 P -a.s. implies ρ0(X) ≥ ρ0(Y );
3. ρ0 satisfies (G-PS) at X for every X ∈ L∞(Ω, F , P )4;
4. for every N ≥ 1, for every 0 ≤ λ1, . . . , λN ≤ 1 and A1, . . . , AN ∈ G partition of Ω, setting Λ =∑N

j=1 λj1Aj
, we have for all X1, X2 ∈ L∞(Ω, F , P )

ρ0 (ΛX1 + (1 − Λ)X2) ≤
N∑
j=1

(
λjρ0(X11Aj

) + (1 − λj)ρ0(X21Aj
)
)
. (7)

Then there exists a conditional Risk Measure ρG : L∞(Ω, F , P ) → L∞(Ω, G, P ), with ρG(0) = 0 P -a.s., such 
that ρ0(X) = EP [ρG(X)] for every X ∈ L∞(Ω, F , P ).

Conversely: for every conditional convex Risk Measure the map ρ0 defined by (6) satisfies properties in item 
1 to item 4.

5. Proofs of Section 3

This section is devoted to the proof of the main results of this paper. Our research is inspired by the 
seminal paper [5] (see Appendix A.1) jointly with an approach proposed in [15] that will be adapted to 
our scope in the proof of the following Theorem 5.4. The overall argument will be involved and structured 
in several steps in the remainder of this section. Nevertheless, the solution to (1) for a finitely generated 
σ-algebra G is simple and independent from the aforementioned papers (see to this regard Proposition 5.19).

Assumption 5.1. (Ω, F) is a given measurable space. G ⊆ F is a sub σ-algebra. T : L∞(Ω, F) → R is a given 
functional such that it satisfies (G-Mo), (G-QL), (G-PC), and T (0) = 0.

Assumption 5.2. (Ω, F) is a given measurable space. G ⊆ F is a sub σ-algebra. T : L∞(Ω, F) → R is a given 
functional. T satisfies (G-PS) and (G-NB) at a fixed f ∈ L∞(Ω, F).

5.1. A representation result

Definition 5.3. For a given measurable space (Ω, F), a sub σ-algebra G ⊆ F and a functional T : L∞(Ω, F) →
R, we denote by Π(G) the class of finite partitions π of Ω obtained adopting G-measurable sets (i.e. π ⊆ G) 
such that for at least three distinct A1, A2, A3 ∈ π we have T (1Aj

) > 0, j = 1, 2, 3.

Theorem 5.4. Suppose Assumption 5.1 is satisfied and Π(G) �= ∅. Then there exists a functional V : G ×
L∞(Ω, G) → R, (A, g) �→ VA(g), such that:

4 Meaning that the well defined map f �→ ρ0([f ]), f ∈ L∞(Ω, F) satisfies the property at any f ∈ L∞(Ω, F).
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1. for every g ∈ L∞(Ω, G) the map A �→ VA(g) is a signed measure on (Ω, G) with VA(0) = 0 for every A ∈ G. 
Moreover A �→ VA(1Ω) =: P (A) is a probability measure on (Ω, G) such that NG = {A ∈ G | P (A) = 0};

2. for every g ∈ L∞(Ω, G), A ∈ G we have VA(g) = VA(g1A);
3. given g1, g2 ∈ L∞(Ω, G) and A ∈ G we have T (g11A) ≤ T (g21A) if and only if VA(g1) ≤ VA(g2);
4. for every A ∈ G the functional g �→ VA(g), defined on L∞(Ω, G), is (G-PC).

5.1.1. Proof of Theorem 5.4
The present Section 5.1.1 is entirely devoted to the proof of the previous theorem and therefore without 

further mention in the statements and proofs of the technical Lemmas, we shall always work under the 
hypotheses of Theorem 5.4, i.e. Assumption 5.1 holds true and Π(G) �= ∅.

Lemma 5.5. We have the following characterization

NG = {N ∈ G | T (1N ) = 0}. (8)

Proof. Lemma A.10 shows that condition (3) automatically holds true. If T (1A) = 0 but A ∈ G \ NG , we 
could consider x ∈ (0, 1) so that from (G-Mo), 0 = T (0) = T (01A) < T (x1A) < T (1A) = 0. �
Lemma 5.6. Fix π ∈ Π(G), let σ(π) be the σ-algebra generated by π and consider the vector space S(σ(π))
of σ(π)-measurable functions. There exist functions V π

A : S(σ(π)) → R, A ∈ π such that for f, g ∈ S(σ(π)):

T (g1) ≥ T (g2) if and only if
∑
A∈π

V π
A (g1) ≥

∑
A∈π

V π
A (g2); (9)

V π
A (g) = V π

A (g1A) for any A ∈ π and g ∈ S(σ(π)). (10)

Proof. For any π ∈ Π(G) let σ(π) be the σ-algebra generated by π. We consider the restriction of T to 
S(σ(π)). In particular, as any g ∈ S(σ(π)) can be represented in the form 

∑
A∈π xA1A the functional 

Tπ : S(σ(π)) → R will be defined as Tπ(
∑

A∈π xA1A) = T (
∑

A∈π xA1A). Tπ induces an order on Rd where 
d = |π| ≥ 3 is the cardinality of partition π, namely

(x1, . . . , xd) �π (y1, . . . , yd) if and only if Tπ
( d∑

i=1
xi1Ai

)
≥ Tπ

( d∑
i=1

yi1Ai

)
.

First we show that the sets {(x1, . . . , xd) ∈ Rd | (x1, . . . , xd) �π (y1, . . . , yd)}, {(x1, . . . , xd) ∈ Rd |
(y1, . . . , yd) �π (x1, . . . , xd)} are closed in Rd (for simplicity we can adopt the sup norm on Rd). Let 
{xn} ⊂ Rd be a sequence converging to x ∈ Rd then clearly hn =

∑d
i=1 x

n
i 1Ai

is ‖·‖∞ bounded in L∞(Ω, G)
and converges pointwise to h =

∑d
i=1 xi1Ai

(in particular it converges with respect to ‖·‖∞). Property 
(G-PC) guarantees that limTπ(hn) = lim T (hn) = T (h) = Tπ(h). (G-QL) implies that �π satisfies the Sure 
Thing Principle (see Definition A.4). Since we are assuming that at least three distinct elements in π do 
not belong to NG , more than two indexes are non-null for �π. We can apply Theorem A.6 guaranteeing the 
existence of V π

A : S(σ(π)) → R for any A ∈ π such that

(x1, . . . , xd) �π (y1, . . . , yd) if and only if
∑
A∈π

V π
A (g1) ≥

∑
A∈π

V π
A (g2), (11)

where g1 =
∑d

i=1 xi1Ai
, g2 =

∑d
i=1 yi1Ai

and

V π
Ai

(g1) := Ui(xi) where Ui is given by Theorem A.6.

As an immediate consequence of the definition of V π
A we deduce (9) and (10). �
i
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Remark 5.7. Let {V π
A }A∈π be the family obtained in Lemma 5.6. We observe that x �→ V π

A (x1A) is strictly 
increasing, continuous for any A ∈ π as a consequence of (G-Mo) and (G-PC). In fact if x < y and A ∈ π

is such that T (1A) > 0, then by (G-Mo) we have T (x1A) < T (y1A). If we had V π
A (x) ≥ V π

A (y), (9) would 
yield T (x1A) ≥ T (y1A), a contradiction. Continuity of VA is a direct consequence of the fact that the 
Ui, i = 1, . . . , N in Theorem A.6 are guaranteed to be continuous.

Remark 5.8. In Lemma 5.6, for a fixed partition π we found an alternative representation to T for the 
order �π, namely by 

∑
A∈π V

π
A . For the remainder of the proof it is important to ensure that such new 

representation is uniquely determined. Since Theorem A.6 provides uniqueness of the representation up 
to increasing affine transformations, we can choose {V π

A (·)}A∈π such that V π
A (0) = 0 for all A ∈ π and ∑

A∈π V
π
A (1) = 1.

We now take care of consistency over refinements. Fix two partitions π, π′ of Ω, where π′ is a refinement of 
π, i.e. any A ∈ π can be written as the union of some B ∈ j(A) ⊂ π′ where j(A) is the set {B ∈ π′ | B ⊆ A}.
If π′ ∈ Π(G), applying Lemma 5.6 for d′ = |π′| we can find V π′

B : S(σ(π′)) → R for any B ∈ π′ such that 
(9) and (10) hold true.

Lemma 5.9. Let π ∈ Π(G) be given, and let be π′ be a refinement of π such that A ∈ G for all A ∈ π′. Then 
π′ ∈ Π(G) and for any g ∈ S(σ(π)) and A ∈ π we have V π

A (g1A) =
∑

B∈j(A) V
π′

B (g1B).

Proof. First, we note that if T (1A) > 0, B1, . . . , BN ∈ G are mutually disjoint and satisfy A =
⋃N

n=1 Bn

(i.e. they are a measurable partition of A), then T (1Bn
) > 0 for at least one index n = 1, . . . , N , as an 

immediate consequence of Lemma A.9. We conclude that π′ ∈ Π(G).
We now make the following observation: consider for i = 1, . . . , d two families of functions gi : R → R

and fi : R → R such that

d∑
i=1

gi(xi) =
d∑

i=1
fi(xi) for all (x1, . . . , xd) ∈ Rd. (12)

Then gk(xk) − fk(xk) is constant for any k, since gk(xk) − fk(xk) =
∑d

i�=k fi(xi) −
∑

i�=j gi(xi) for arbitrary 
xi ∈ R, whose right hand side does not depend on xk. If in addition we impose g1(0) = f1(0) = . . . =
gn(0) = fn(0) = 0, then gi(y) = fi(y) for any i and y ∈ R. We choose π′ ∈ Π(G) which is a refinement of π
and an arbitrary g ∈ S(σ(π)). We aim at comparing 

∑
A∈π V

π
A (g) with 

∑
B∈π′ V π′

B (g). By Theorem A.6 we 
have that necessarily for g =

∑
A∈π xA1A∑

A∈π

V π
A (g1A) = a +

∑
B∈π′

cV π′

B (g1B),

where a, c ∈ R with c > 0.
Since from Remark 5.8 we have chosen 0 =

∑
A∈π V

π
A (0) =

∑
B∈π′ V π′

B (0) and 1 =
∑

A∈π V
π
A (1) =∑

B∈π′ V π′

B (1) then necessarily a = 0 and c = 1.
We conclude applying the initial observation to∑

B∈π′

V π′

B (g1B) =
∑
A∈π

∑
B∈j(A)

V π′

B (xA1B) =
∑
A∈π

V π
A (xA1A)

and obtaining therefore ∑
V π′

B (x1B) = V π
A (x1A) for all x ∈ R. �
B∈j(A)
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Notation 5.10. Notice that as a consequence of Lemma 5.9 we can omit the dependence on the partition 
π ∈ Π(G) when referring to the functional VA. We recall that we denote by S(G), the space of all G-
measurable simple functions.

Definition 5.11. For any g ∈ S(G) and A ∈ G we define

VA(g) =
∑
B∈π

VB∩A(xB), (13)

where π ∈ Π(G) is such that g =
∑

B∈π xB1B for suitable xB ∈ R, B ∈ π.

Lemma 5.12. The following hold for a fixed A ∈ G:

(i) Definition 5.11 is well posed;
(ii) VA(0) = 0, VΩ(1) = 1 and

VA(g) = VA(g1A) ∀g ∈ S(G); (14)

(iii) for g1, g2 ∈ S(G) such that g1(ω) ≤ g2(ω) ∀ω ∈ Ω we have VA(g1) ≤ VA(g2), and VA(g1) < VA(g2) if 
Ā = {g1 < g2} satisfies T (1Ā) > 0;

(iv) VA is T (·1A)-order preserving on S(G) (in the sense of Definition A.1).

Proof. To check item (i), notice that any simple function can be written in the form g =
∑

B∈π xB1B for 
some partition π ∈ Π(G) if Π(G) �= ∅, since as we showed in Lemma 5.9 refinements (into G-measurable sets) 
of partitions in Π(G) still belong to Π(G). In particular, it is not necessary to impose A /∈ NG for the well 
posedness of (13): indeed, if π ∈ Π(G), then π′ = {A ∩ B | B ∈ π} ∪ {(Ω \ A) ∩ B | B ∈ π} is a refinement 
of π satisfying π′ ⊆ G, thus π ∈ Π(G), (13) makes sense, and it does not depend on π from Lemma 5.6 and 
Lemma 5.9.

In item (ii), VA(0) = 0, VΩ(1) = 1 are choices (see Remark 5.8 together with the definition of VA(·) on 
simple functions in (13)), while (10) yields (14).

Item (iii) is a direct consequence of the fact that we can represent g1, g2 adopting a common partition 
π ∈ Π(G), i.e. g1 =

∑
B∈π xB1B and g2 =

∑
B∈π yB1B . Moreover we proved in Lemma 5.6 that any VB(x)

is strictly increasing in x if T (1B) > 0.
Finally we move to item (iv). By construction VA is T (·1A)-order preserving on S(G), since whenever 

g1, g2 ∈ S(G) are given, there exists a common π ∈ Π(G) such that A ∈ σ(π) and g1, g2 ∈ S(σ(π)). Also, by 
the definition (13) and item (ii), VA(g1) = VA(g11A) =

∑
B∈π VB∩A(g11A) =

∑
B∈π V

π
B (g11A) and the same 

holds for g21A. By definition of V π
B (·) (with B ∈ π) we have also that T (g11A) ≤ T (g21A) ⇔ Tπ(g11A) ≤

Tπ(g21A) ⇔
∑

B∈π V
π
B (g11A) ≤

∑
B∈π V

π
B (g21A) ⇔ VA(g1) ≤ VA(g2). �

We proceed by showing the following corollary which is an application of Lemma A.7 in the Appendix.

Corollary 5.13. For any A ∈ G the functional VA admits an extension to a T (·1A)-order preserving functional 
on L∞(Ω, G), still denoted by VA, which satisfies (G-PC), VA(g) = VA(g1A) for every g ∈ L∞(Ω, G).

Proof. By Lemma A.7 for any A ∈ G, VA extends to a functional VA : L∞(Ω, G) → R satisfying (G-PC). 
Given g ∈ L∞(Ω, G) and A ∈ G we can take a norm bounded sequence of simple functions gn ∈ S(G) such 
that gn ↓n g pointwise on Ω. Then by (14) we have VA(gn) = VA(gn1A). Since also gn1A ↓n g1A we conclude 
by (G-PC) that VA(g) = VA(g1A) for every g ∈ L∞(Ω, G). �
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Lemma 5.14. For every g ∈ L∞(Ω, G) and A ∈ G, the map B �→ μA
g (B) := VB∩A(g) defines a signed measure 

on G.

Proof. We fix A ∈ G throughout this proof. First we show that B �→ VB∩A(g) is finitely additive. For 
g ∈ S(G), we can write g =

∑
B∈π xB1B for some π ∈ Π(G) using Lemma 5.9: it is enough to refine 

σ(π) with an element of the nonempty set Π(G). Given {E0, . . . , EN} ⊂ G a partition of Ω, we also have 
g =

∑
B∈π

∑N
j=1 xB1B∩Ej

, and {B ∩ Ej , B ∈ π, j = 0, . . . , N} ∈ Π(G) again by Lemma 5.9, so that

μA
g (Ω) = VA(g) 
=

∑
B∈π

N∑
j=0

VA∩Ej∩B(xB) =
N∑
j=0

∑
B∈π

VA∩B∩Ej
(xB)

=
N∑
j=0

∑
B∈π

VA∩Ej∩B(g1B) 
=
N∑
j=0

VA∩Ej
(g) =

N∑
j=0

μA
g (Ej)

applying the definition in (13) in (�). Now, if E1, . . . , EN are disjoint and E0 = Ω \
⋃N

j=1 Ej we get that 
from the previous computation (applied twice)

μA
g (E0) + μA

g

⎛⎝ N⋃
j=1

Ej

⎞⎠ = μA
g (Ω) =

N∑
j=0

μA
g (Ej)

which yields finite additivity for simple g. Take now g ∈ L∞(Ω, G) and a norm bounded sequence of 
simple functions such that gn →n g pointwise on Ω. Then for {E1, . . . , EN} mutually disjoint and E =⋃N

j=1 Ej , applying (G-PC) obtained in Corollary 5.13 VA∩E(g) = limn VA∩E(gn) = limn

∑N
j=1 VA∩Ej

(gn) =∑N
j=1 VA∩Ej

(g) implying finite additivity of μA
g for every g ∈ L∞(Ω, G). Note also that μA

g (∅) := VA∩∅(g) =
VA∩∅(g1A∩∅) = VA∩∅(0) = 0 for every g ∈ L∞(Ω, G). Moreover

VA(g1B) = VA∩B(g) ∀ g ∈ L∞(Ω,G), A,B ∈ G (15)

just observing that VA(g1B) = VA∩B(g1B) + VA∩(Ω\B)(g1B) = VA∩B(g1B) + 0 = VA∩B(g1B) =
VA∩B(g1B1A∩B) = VA∩B(g1A∩B) = VA∩B(g). Take now a sequence of disjoint events (Ej)j ⊆ G. Noticing 
that g1⋃∞

j=1 Ej
= limN g1⋃N

j=1 Ej
we conclude that

μA
g

⎛⎝ ∞⋃
j=1

Ej

⎞⎠ = VA∩
⋃∞

j=1 Ej
(g) (15)= VA

(
g1⋃∞

j=1 Ej

)
(G-PC)= lim

N
VA

(
g1⋃N

j=1 Ej

)
= lim

N

N∑
j=1

VA(g1Ej
)

=
∞∑
j=1

VA(g1Ej
) (15)=

∞∑
j=1

VA∩Ej
(g) =

∞∑
j=1

μA
g (Ej) .

Notice that for every E ∈ G we have μA
−‖g‖∞

(E) ≤ μA
g (E) ≤ μA

‖g‖∞
(E) and both −μA

−‖g‖∞
(·) and μA

‖g‖∞
(·)

are (non negative) finite measures by the previous computations. Hence, the convergence of the series ∑∞
j=1 μ

A
g (En) is absolute. �

The following Lemma sums up our findings, to provide the concluding details in proving Theorem 5.4.

Lemma 5.15. Items 1 to 4 in Theorem 5.4 hold.
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Proof. We check this item-by-item. Here, (A, g) �→ VA(g) is the one we constructed through Lem-
mas 5.6-5.14. Items 2,3,4 are provided by Corollary 5.13. As to item 1: from Corollary 5.13, VA(0) = 0
will clearly hold for the extension, since 0 is a simple function. Lemma 5.14 guarantees that A �→ VA(g)
is a signed measure for every g ∈ L∞(Ω, G), noticing that VA(g) = VΩ∩A(g). Recall finally that under the 
assumptions of Theorem 5.4, the characterization (8) holds and A ∈ NG if and only if T (1A) = 0 = T (0). 
By Lemma A.10 we have T (1A) ≥ T (0), ∀A ∈ G, hence VA(1Ω) ≥ VA(0) = 0 for all A ∈ G by item 3 
proved above. Moreover, Lemma 5.12 item (ii) yields VΩ(1Ω) = 1. Thus, A �→ VA(1Ω) defines a probability 
measure. Since VA(·) is T (·1A)-order preserving (item 3 above), we have that

A ∈ NG ⇔ T (1A) = T (0) = 0 ⇔ P (A) = VA(1A) = VA(0) = 0. �
5.2. Proof of Theorem 3.2

Lemma 5.16. Under Assumption 5.1 and Assumption 5.2 we have

(i) for arbitrary finite collections of mutually disjoint sets A1, . . . , AN ∈ G and g1, . . . , gN ∈ L∞(Ω, G)
such that T (f1Ai

) = T (gi1Ai
) for i = 1, . . . , N ,

T

(
N∑

n=1
f1Ai

)
= T

(
N∑

n=1
gi1Ai

)
.

Consequently the same holds replacing in both equations the equality with inequality;
(ii) T (f1A + f1N ) = T (f1A) for every A ∈ G and N ∈ NG such that A ∩N = ∅.

Proof. Item (i) is proved by induction. For the case N = 2, take x1, x2 ∈ R with (T (f1Ai
) =)T (xi1Ai

) =
T (gi1Ai

). Such x1, x2 exist since x �→ T (x1A) is continuous (from (G-PC)) and T (− ‖f‖∞ 1A) ≤ T (f1A) ≤
T (‖f‖∞ 1A) by (G-NB). By (G-Mo) there exists xA ∈ [− ‖f‖∞ , ‖f‖∞] such that T (xA1A) = T (f1A). Using 
(G-PS) we conclude that T (f1A1 + f1A2) = T (x11A1 + x21A2). We now show that T (x11A1 + x21A2) =
T (g11A1 + g21A2): by (G-QL) we have T (x11A1 +x21A2) = T (x11A1 + g21A2) (from T (x21A2) = T (g21A2), 
taking A = A2, g = 0 and choosing g = x11A1) and T (x11A1 +g21A2) = T (g11A1 +g21A2) (from T (x11A1) =
T (g11A1 , taking A = A1, g = 0 and choosing g = g21A2). The induction step from N to N+1 goes as follows. 
First, consider xN,N+1 ∈ R with T (f1AN∪AN+1) = T (xN,N+11AN∪AN+1), whose existence is guaranteed as 
above. Then

T

(
N−1∑
n=1

f1Ai
+ f1AN∪AN+1

)
= T

(
N−1∑
n=1

gi1Ai
+ xN,N+11AN∪AN+1

)
.

Furthermore, it holds by the assumption on gN , gN+1, the definition of xN,N+1 and the initial step of the 
induction that

T (xN,N+11AN∪AN+1) = T (f1AN
+ f1AN+1)

=T (gN1AN
+ gN+11AN+1) = T (ĝ1A)

for ĝ = gN1AN
+ gN+11AN+1 and A = AN ∪ AN+1. Invoking Assumption (G-QL), for g =

∑N−1
n=1 gi1Ai

=(∑N−1
n=1 gi1Ai

)
1Ω\A we have

T

(
N−1∑

gi1Ai
+ xN,N+11AN∪AN+1

)
= T

(
N−1∑

gi1Ai
+ ĝ1A

)
= T

(
N∑

gi1Ai

)

n=1 n=1 n=1
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which completes the induction step recalling that the leftmost item equals T
(∑N

n=1 f1Ai

)
= T

(∑N−1
n=1 f1Ai

+ f1AN∪AN+1

)
.

We now prove the case with inequalities. In particular let A1, . . . , AN ∈ G be a finite collections of mutually 
disjoint sets and g1, . . . , gN ∈ L∞(Ω, G) such that T (f1Ai

) ≥ T (gi1Ai
) for i = 1, . . . , N . By (G-PC) 

and Lemma A.10 (in particular, since (3) holds), for every i = 1, . . . , N there exists εi ≥ 0 such that 
T (f1Ai

) = T ((gi + εi)1Ai
). By (G-PS) and Lemma A.10 we conclude

T

(
N∑

n=1
f1Ai

)
= T

(
N∑

n=1
(gi + εi)1Ai

)
≥ T

(
N∑

n=1
gi1Ai

)
.

We now come to item (ii). Take xA such that T (f1A) = T (xA1A) and observe that T (01N ) = 0 =
T (−‖f‖∞1N ) = T (‖f‖1N ) since ‖f‖ ∈ L∞(Ω, G) and N ∈ NG . Hence, using item (i) above, we get 
T (f1A + f1N ) = T (xA1A + 01N ) = T (xA1A) = T (f1A). �
Remark 5.17. Observe that under Assumption 5.1, for any sequence (An)n ⊆ G such that An ↓n ∅ we have 
T (f1An

) →n T (0): indeed, by (G-NB), we have T (− ‖f‖∞ 1An
) ≤ T (f1An

) ≤ T (‖f‖∞ 1An
) and therefore 

we can invoke (G-PC) as ± ‖f‖∞ ∈ L∞(Ω, G).

Lemma 5.18. Suppose that Assumption 5.1 is satisfied. Then if ĝ, ̃g ∈ m (f |G) we have {ĝ �= g̃} ∈ NG.

Proof. Suppose {ĝ > g̃} ∈ G \ NG , then by Lemma A.10 we would have T (f1{ĝ>g̃}) = T (ĝ1{ĝ>g̃}) >
T (g̃1{ĝ>g̃}) = T (f1{ĝ>g̃}), which yields a contradiction. A similar argument provides {ĝ < g̃} ∈ NG , so that 
{ĝ �= g̃} ∈ NG by Lemma A.9. �
Proposition 5.19. Suppose Assumption 5.1 and Assumption 5.2 are satisfied. Take a partition π of Ω with 
π ⊆ G. Then there exists a simple, σ(π)-measurable ĝ ∈ L∞(Ω, σ(π)) such that T (f1A) = T (ĝ1A) for any 
A ∈ G. Moreover, such a ĝ is essentially unique in that if g̃ ∈ L∞(Ω, G) satisfies the same properties, then 
{ĝ �= g̃} ∈ NG ∩ σ(π).

Proof. Observe that x �→ T (x1A) is continuous (from (G-PC)) and

T (−‖f‖∞ 1A) ≤ T (f1A) ≤ T (‖f‖∞ 1A)

by (G-NB). By (G-Mo), for every A ∈ π there exists xA ∈ [− ‖f‖∞ , ‖f‖∞] such that T (xA1A) = T (f1A). 
For the fixed partition π we set ĝ =

∑
A∈π xA1A ∈ L∞(Ω, σ(π)). We conclude by noticing that any B ∈ σ(π)

can be written as B = ∪j∈JAj where J is an opportune choice of indexes. Therefore Lemma 5.16 implies 
T (f1B) = T (g1B).
Essential uniqueness follows from Lemma 5.18 observing that all the requirements in Assumption 5.1 hold 
if in particular we replace G with σ(π) ⊆ G when the latter appears in Assumption 5.1 itself. Hence, 
Lemma 5.18 holds if we replace G with σ(π). �
Lemma 5.20. Theorem 3.2 holds in the case Π(G) = ∅.

Proof. The case Ω ∈ NG can be handled in a trivial way taking ĝ = 0 and noticing that ĝ ∈ m (f |G). 
We then assume Ω ∈ G \ NG . This in particular implies that for any partition π ⊆ G, at least one A ∈ π

satisfies A ∈ G \ NG (otherwise, Ω would be the finite union of irrelevant events, thus irrelevant itself by 
Lemma A.9). Notice that Π(G) = ∅ implies that for any partition π ⊆ G of Ω, at most two of its elements 
do not belong to NG . This leaves us with two alternatives (up to shuffling the elements of the partition): 
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(i) for some partition π = {A1, . . . , AN} of Ω, with π ⊆ G, we have T (1A1) > 0, T (1A2) > 0; (ii) for every 
partition π = {A1, . . . , AN} of Ω, with π ⊆ G, we have T (1A1) > 0, and T (1Aj

) = 0 for every j = 2, . . . , N .
First consider case (i). Take g ∈ m (f |σ(π)), the latter being nonempty by Proposition 5.19. Take B ∈ G, 

and take πB := {A ∩B | A ∈ π} ∪{A ∩(Ω \B) | A ∈ π} ⊆ G, which is again a partition of Ω. By Lemma A.10
and Π(G) = ∅ we must have that at exactly two elements of πB do not belong to NG , and that one belongs 
to {A1 ∩B, A1 ∩ (Ω \B)}, the other belongs to {A2 ∩B, A2 ∩ (Ω \B)}. Suppose that A1 ∩B ∈ G \NG . We 
have that T (g1A1) = T (f1A1) by construction, but also T (f1A1) = T (f1A1∩B +f1A1∩(Ω\B)) = T (f1A1∩B)
using Lemma 5.16 item (ii), since A1 ∩ (Ω \B) ∈ NG , and analogously also T (g1A1) = T (g1A1∩B), so that 
T (g1A1∩B) = T (f1A1∩B). If instead we had A1∩B ∈ NG , we would still get T (g1A1∩B) = T (f1A1∩B) much 
more easily. Similarly, we obtain T (g1A2∩B) = T (f1A2∩B), in both cases A2∩B ∈ G \NG and A2∩B ∈ NG . 
Now we apply (G-PS) and see that

T (g1B) = T (g1A1∩B + g1A2∩B + g1(Ω\(A1∪A2))∩B) (�)= T (g1A1∩B + g1A2∩B)
(G-PS)= T (f1A1∩B + f1A2∩B)
(��)= T (f1A1∩B + f1A2∩B + f1(Ω\(A1∪A2))∩B) = T (f1B),

where in (�), (��) we used the fact that (Ω \ (A1 ∪ A2)) ∩ B is the finite union of elements of NG (since 
πB /∈ Π(G)).

We now move to case (ii): Take π = {Ω} and apply Proposition 5.19, to get g ∈ m (f |σ(π)). Take now 
B ∈ G. We have that either B ∈ NG , in which case T (f1B) = T (g1B), or B ∈ G \ NG . Since we are in 
case (ii) we conclude in this case that Ω \ B ∈ NG . Thus, by (2), T (g1Ω) = T (g1Ω∩B) = T (g1B) and 
by Lemma 5.16 item (ii) T (f1Ω) = T (f1B). Finally, T (g1B) = T (f1B), and this works for any B ∈ G, 
concluding the proof. �
Remark 5.21. Suppose Π(G) �= ∅. By Theorem 5.4 item 1 there exists a probability measure P on G
describing exactly the null sets of T . Clearly, if Q �= P is another probability measure on G such that 
Q(A) = 0 ⇔ A ∈ NG , we must have P ∼ Q. Notice that the existence of more than one such measures is not 
excluded by Theorem 5.4. Lemma 5.18 shows that m (f |G) (if nonempty) is an equivalence class of L∞(Ω, G)
for P -a.s. equality, for any P probability measure on G satisfying P (A) = 0 ⇔ A ∈ NG . Equivalently, m (f |G)
is an equivalence class in L∞(Ω, G) for the equivalence relation g1 ∼ g2 ⇔ {g1 �= g2} ∈ NG . Observe that 
whenever g1 ∼ g2 we have T (g11A) = T (g21A) for every A ∈ G. This follows directly from the definition 
of NG given in (2). In particular then we also have VA(g1) = VA(g2) ∀A ∈ G (see Theorem 5.4 item 3). 
We conclude that for any A ∈ G we can actually induce a map (called again VA(·)) on the quotient space 
L∞(Ω, G)/ ∼. Notice that the set L∞(Ω, G)/ ∼ coincides with L∞(Ω, G, Q) for every probability measure 
Q on G such that for A ∈ G we have Q(A) = 0 ⇔ A ∈ NG , and more precisely for every g ∈ L∞(Ω, G) the 
equivalence classes of g under ∼ and under Q-a.s. equality are exactly the same.

In the remainder of the section we write with an abuse of notation VA(m (f |G)), meaning VA(g) for some 
g ∈ m (f |G).

Lemma 5.22. Suppose Assumption 5.1 is satisfied and Π(G) �= ∅. Fix A ∈ G. Take π, π′ ∈ Π(G) such that 
A ∈ σ(π) ∩ σ(π′). Then

VA(m (f |σ(π))) = VA(m (f |σ(π′))).

Proof. First, observe that by definition T (m (f |σ(π))1A) = T (f1A) = T (m (f |σ(π′))1A), see Proposi-
tion 5.19. Now, by Theorem 5.4 item 3 we conclude that the desired equality holds. �
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By Lemma 5.22 the following is well posed.

Definition 5.23. Suppose Assumption 5.1 is satisfied and Π(G) �= ∅. For every A ∈ G define VA[f ] :=
VA(m (f |σ(π))) for every π ∈ Π(G) such that A ∈ σ(π).

Proposition 5.24. Suppose Assumption 5.1 is satisfied and Π(G) �= ∅. Then A �→ VA[f ] defines a signed 
measure on G.

Proof. First we show finite additivity. Let {E1, . . . , EN} ⊆ G be a given partition of E ∈ G. Take E0 := Ω \E
and π = {E0, . . . , EN}. Up to further refinements suppose π ∈ Π(G) and Eh ∈ σ(π) for every h (this is 
possible by Lemma 5.9). Then E ∈ σ(π) and

VE [f ] = VE(m (f |σ(π))) Thm.5.4=
N∑
j=1

VEj
(m (f |σ(π))) .

Observe now that Ej ∈ σ(π) for every j = 1, . . . , N , so that VEj
(m (f |σ(π))) = VEj

[f ] by definition for 
every j = 1, . . . , N . We now show σ-additivity. Consider a sequence (En)n of disjoint sets in G, and set 
πN := {E1, . . . , EN , 

⋃
k≥N Ek} and π ∈ Π(G) (which is nonempty by assumption). Denote by π̂N a common 

refinement between π and πN . Then π̂N ∈ Π(G) (Lemma 5.9) and 
⋃

k≥N Ek ∈ σ(πN ) ⊂ σ(π̂N )). Now, using 
the definition of V·[f ] and (15):

V⋃
k≥N Ek

[f ] = V⋃
k≥N Ek

(m (f |σ(π̂N ))) = VΩ

(
m (f |σ(π̂N ))1⋃

k≥N Ek

)
.

If we prove that right hand side tends to zero as N increases, we are done. Suppose by contradiction that 
for some subsequence, relabelled with the same index N , we had

inf
N
|VΩ(m (f |σ(π̂N ))1⋃

k≥N Ek
)| > ε > 0 for some ε > 0.

This can only happen in two cases, the first being:

inf
N

VΩ(m (f |σ(π̂N ))1⋃
k≥N Ek

) > ε > 0.

By pointwise continuity of VA(·) (see Theorem 5.4 item 4) we have that there exists x ∈ R with 
0 = VA(0) < VΩ(x) < ε. Hence by Theorem 5.4 item 3 we have infN T (m (f |σ(π̂N ))1⋃

k≥N Ek
) ≥

T (x) > T (0). Also, we have by definition of m (f |σ(π̂N )) that T (m (f |σ(π̂N ))1⋃
k≥N Ek

) = T (f1⋃
k≥N Ek

), 
but then infN T (f1⋃

k≥N Ek
) ≥ T (x) > T (0) would contradict Remark 5.17. The second case is 

supN VΩ(m (f |σ(π̂N ))1⋃
k≥N Ek

) < −ε < 0, which can be handled similarly yielding again a contradic-
tion. �
Proposition 5.25. Suppose Assumption 5.1 is satisfied and Π(G) �= ∅. Fix g ∈ L∞(Ω, G) and A ∈ G. Then

T (f1A) ≤ T (g1A) ⇔ VA[f ] ≤ VA(g).

Proof. By Lemma 5.9, we can take π ∈ Π(G) with A ∈ σ(π). We see that T (f1A) ≤ T (g1A) ⇔
T (m (f |σ(π))1A) ≤ T (g1A), which follows from the definition of m (f |σ(π)) in Proposition 5.19, and 
T (m (f |σ(π))1A) ≤ T (g1A) ⇔ VA(m (f |σ(π))1A) ≤ VA(g1A) is a consequence of item 2 in Theorem 5.4. 
Additionally, VA(m (f |σ(π))1A) ≤ VA(g1A) ⇔ VA[f ] ≤ VA(g) follows from Definition 5.23. �
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Proposition 5.26. Suppose Assumption 5.1 is satisfied and Π(G) �= ∅. Let g ∈ L∞(Ω, G) be given. Suppose 
that for some B ∈ G we have T (f1B) > T (g1B). Then there exist ε > 0 and Ω0 ∈ G \ NG such that 
T (f1A) ≥ T ((g + ε1Ω0)1A) for every A ∈ G, A ⊆ Ω0.

Proof. We start observing that by (G-PC) we have T (f1B) > T ((g + ε)1B) for some ε > 0, which implies 
VA[f ] − VA (g + ε). Define now the signed measure μ as A �→ μ(A) := VA[f ] − VA (g + ε). Observe that 
μ(B) > 0 by Proposition 5.25. Take the Hahn Decomposition of μ (see [14, Theorem 6.14]), with Ω0 ∈ G
satisfying μ(A) ≥ 0 for every A ∈ G, A ⊆ Ω0 and μ(A) ≤ 0 for every A ∈ G, A ⊆ Ω \ Ω0. Observe 
that μ(Ω0) > 0, otherwise we would have μ(B) = μ(B ∩ (Ω \ Ω0)) ≤ 0 which is a contradiction with the 
previously established fact that μ(B) > 0. This implies Ω0 ∈ G \ NG : indeed, if this were not the case, 
T (f1Ω0) = 0 = T ((g + ε)1Ω0) by Lemma 5.16 item (ii) and definition of NG , which in turns gives by 
Proposition 5.25 μ(Ω0) = VΩ0 [f ] − VΩ0(g + ε) ≤ 0, a contradiction. �
Corollary 5.27. Suppose Assumption 5.1 and Assumption 5.2 are satisfied and Π(G) �= ∅. Suppose that 
g ∈ L∞(Ω, G) satisfies T (f1A) ≥ T (g1A) for every A ∈ G and the inequality is strict for some B ∈ G. Then 
there exists a set Ω0 ∈ G \ NG and ε > 0 such that T (f1A) ≥ T ((g + ε1Ω0)1A) for all A ∈ G.

Proof. Take ε > 0, Ω0 ∈ G \ NG as in Proposition 5.26. Take A ∈ G. We then have

(�) : T (f1A∩(Ω\Ω0)) ≥ T (g1A∩(Ω\Ω0)) = T ((g + ε1Ω0)1A∩(Ω\Ω0)) by assumption

(��) : T (f1A∩Ω0) ≥ T ((g + ε1Ω0)1A∩Ω0) by Proposition 5.26.

Now applying Lemma 5.16 we have

T (f1A) = T (f1A∩Ω0 + f1A∩(Ω\Ω0))

≥ T ((g + ε1Ω0)1A∩Ω0 + (g + ε1Ω0)1A∩(Ω\Ω0)) = T ((g + ε1Ω0)1A) �
We conclude this section with proof of the main result of the paper, namely Theorem 3.2.

Proof of Theorem 3.2. Since the case Π(G) = ∅ is already covered by Lemma 5.20, we consider now the 
case Π(G) �= ∅. Observe that Assumption 5.1 and Assumption 5.2 are satisfied, so that we can exploit all 
the tools we have previously developed. Recall that A �→ VA(1Ω) is a probability measure on G, call it P
(see Theorem 5.4 item 1). Observe that for g1, g2 ∈ L∞(Ω, G), g1 = g2 P -a.s. implies T (g1) = T (g2) (see 
Remark 5.21). We introduce the set

TG := {g ∈ L∞(Ω,G) | T (f1A) ≥ T (g1A) ∀A ∈ G}.

Observe that TG �= ∅ since − ‖f‖∞ ∈ TG . Furthermore, whenever g1, g2 ∈ TG and A ∈ G, also g11A+g21Ω\A ∈
TG : indeed G− measurability is easily seen, and for any B ∈ G we have by Lemma 5.16

T ((g11A + g21Ω\A)1B) = T (g11A∩B + g21(Ω\A)∩B)

≤ T (f1A∩B + f1(Ω\A)∩B) = T (f1B)

Hence, the set TG is upward directed meaning that whenever g1, g2 ∈ TS we get that the pointwise maximum 
g1 ∨ g2 belongs to TG (selecting A = {g1 ≥ g2}). Take now essupP{[g]P | g ∈ TG}, and ĝ a G-measurable 
representative for the equivalence class of the essential supremum. There exists a maximizing sequence 
(gn)n ⊆ TG since TG is upward directed, for which have gn ↑n ĝ P -a.s. (See [9, Section A.5]). We can actually 
assume that gn(ω) ↑n ĝ(ω) ∀ω ∈ Ω: by Remark 5.21 we can modify each gn on a set of probability zero, 
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setting it to be equal to ĝ itself there, without affecting the values of T (gn1A), A ∈ G. By (G-PC) we have 
T (ĝ1A) ≤ T (f1A) for all A ∈ G, since such an inequality is satisfied by (gn) for each n. It is not hard to see 
that − ‖f‖∞ ≤ ĝ ≤ ‖f‖∞ , P -a.s.: first observe that − ‖f‖∞ ∈ TG as previously observed, hence by definition 
ĝ ≥ − ‖f‖∞ , P -a.s. If moreover we had P ({ĝ(ω) > ‖f‖∞}) > 0, we would have that for n big enough 
VΩ(1En

)) = P (En) > 0 for and En := {gn > ‖f‖∞ + 1
n}. This in turns would give En /∈ NG (Theorem 5.4

item 1), and by (G-Mo) we would conclude T (gn1En
) ≥ T ((‖f‖∞ + 1

n )1En
) > T (‖f‖∞ 1En

) ≥ T (f1En
), 

contradicting gn ∈ TG . Hence we can assume that |ĝ(ω)| ≤ ‖f‖∞ , ∀ω ∈ Ω again modifying each gn on 
a set of probability zero, without affecting the values of T (gn1A), A ∈ G, by Remark 5.21. We conclude 
that ĝ ∈ TG . If we had that for some B ∈ G, T (f1B) > T (ĝ1B) we would have by Corollary 5.27 that 
T (f1A) ≥ T ((ĝ + ε1Ω0)1A)) , ∀A ∈ G for some ε > 0, Ω0 ∈ G with Ω0 ∈ G\NG , which implies ĝ+ε1Ω0 ∈ TG . 
Since Ω0 ∈ G \ NG we have P (Ω0) > 0, so that P ({ĝ + ε1Ω0 > ĝ}) > 0. This contradicts the maximality 
of ĝ as a representative of the essential supremum. Finally, the claimed essential uniqueness follows from 
Lemma 5.18. �
Appendix A

A.1. On Debreu’s representation

Definition A.1. Let X be a set, and let Ψ : X → R be given. A map Φ : X → R is Ψ-order preserving on X
if for any two functions f, g ∈ X we have: Φ(f) ≤ Φ(g) ⇔ Ψ(f) ≤ Ψ(g).

Lemma A.2. For a functional Φ : X → R the following are equivalent:

(i) Φ is Ψ-order preserving on X ;
(ii) for any two functions f, g ∈ X we have: Φ(f) < Φ(g) ⇔ Ψ(f) < Ψ(g).

Proof. (i)⇒(ii): For a Ψ-order preserving Φ, Φ(f) < Φ(g) but Ψ(f) = Ψ(g) implies Ψ(f) ≥ Ψ(g) and 
Φ(f) ≥ Φ(g), a contradiction, and Ψ(f) < Ψ(g) but Φ(f) = Φ(g) implies Φ(f) ≥ Φ(g), which in turns yields 
Ψ(f) ≥ Ψ(g), a contradiction.

(ii)⇒(i): if Ψ(f) = Ψ(g) and Φ(f) ≷ Φ(g) then by (ii) Ψ(f) ≷ Ψ(g), a contradiction, and if Φ(f) = Φ(g)
but Ψ(f) ≷ Ψ(g) then Φ(f) ≷ Φ(g), a contradiction. �

Let N = {1, ..., n} be a set of indexes and fix a subset I ⊂ N given by I = {i1 < i2 < . . . < ik}. Then the 
complementary indexes are given by Ic = {j1 < . . . < jn−k} and I ∪ IC = N . Given two vectors y ∈ Rk and 
z ∈ Rn−k we define the aggregated vector yIz ∈ Rn given by the vector formed by y and z conserving the 
order of the indexes I. More precisely if we call w = yIz then wih = yh for any h = 1, . . . , k and wjh = zh
for every h = 1, . . . , n − k.

Definition A.3. A given preorder � on Rn induces on Rk a preorder �I , within the arrangement I =
{i1, ..., ik} for k < n, by

(x1, ..., xk) �I (y1, ..., yk) ⇔ ∃z ∈ Rk : xIz � yIz.

Definition A.4. The preorder � on Rn satisfies the Sure Thing Principle if for any I ⊂ N , �I is independent 
of the choice of z. Namely if there exists z ∈ Rk such that xIz � yIz then xIz′ � yIz′ for any other z′ ∈ Rk.

Definition A.5. An index I = {i} is said to be irrelevant if for any x ∈ Rn−1 we have xIz ∼ xIz′ for any 
z, z′ ∈ R; otherwise it is said to be essential.
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The next result is the main theorem proved by Debreu in [5].

Theorem A.6. Let � be a complete preordering of Rn such that ∀y ∈ Rn the sets {x ∈ Rn : x � y} and 
{x ∈ Rn : y � x} are closed. If � satisfies the Sure Thing Principle and more than two indexes are essential, 
then there is a continuous utility function determined up to an increasing affine transformation,5 i.e. there 
is U : Rn → R order preserving and continuous such that

U(x) =
n∑

i=1
Ui(xi) ∀x = (x1, ..., xn) ∈ Rn, (A.1)

for Ui : R → R ∀i = 1, ..., n.

A.2. Auxiliary results

Lemma A.7. Let U : L∞(Ω, F) → R be given, such that U satisfies (G-PC) and

g1, g2 ∈ L∞(Ω,G), g1(ω) ≤ g2(ω) ∀ω ∈ Ω =⇒ U(g1) ≤ U(g2). (A.2)

Let Φ̂ : S(G) → R be U-order preserving on S(G), with x �→ Φ̂(x) continuous on R. Then Φ̂ extends to a 
(G-PC), U-order preserving functional on L∞(Ω, G).

Proof. Observe that since Φ̂ is U-order preserving on S(G), we have Φ̂(g1) ≤ Φ̂(g2) whenever we take 
g1, g2 ∈ S(G) with g1(ω) ≤ g2(ω) ∀ ω ∈ Ω. Define

Φ(g) := inf{Φ̂(s) | s ∈ S(G), s(ω) ≥ g(ω) ∀ω ∈ Ω}, g ∈ L∞(Ω,G).

Clearly Φ̂(‖g‖∞) ≥ Φ(g) ≥ Φ̂(−‖g‖∞), and the definition is consistent i.e. Φ(g) = Φ̂(g) for every g ∈ S(G). 
Φ is monotone as

g1, g2 ∈ L∞(Ω,G), g1(ω) ≤ g2(ω) ∀ω ∈ Ω =⇒ Φ(g1) ≤ Φ(g2). (A.3)

Moreover we have the following property: let {hn}n be a minimizing sequence for Φ(g) and {gn}n ⊂ S(G)
is such that gn ≥ f , and ‖gn − g‖∞ ≤ 1

n , then sn = hn ∧ gn is still simple for each n, ‖sn − f‖ ≤ 1
n →n 0, 

Φ(f) ≤ Φ̂(sn) ≤ Φ̂(hn) →n Φ(f) by monotonicity of Φ̂ on simple functions.
We now show that g �→ Φ(g) is (G-PC) on L∞(Ω, G). Take a norm bounded sequence {gn}n ⊆ L∞(Ω, G)

such that gn →n g pointwise. Suppose that Φ(gn) is not converging to Φ(g). Then up to taking a subsequence 
(relabelled again with n) we have 2ε ≤ infn|Φ(gn) − Φ(g)| for some ε > 0.

Observe, by what was argued at the beginning of this proof, that we can take sequences of simple functions 
sn, vn with, for all n big enough,

sn ≥ gn (i); vn ≥ g (ii);
‖sn − gn‖∞ ≤ 1

n (iii); ‖vn − g‖∞ ≤ 1
n (iv).

and

|Φ(sn) − Φ(gn)| = |Φ̂(sn) − Φ(gn)| ≤ 1
n (v);

|Φ(vn) − Φ(g)| = |Φ̂(vn) − Φ(g)| ≤ 1
n (vi).

5 For any other order preserving, continuous V : Rn → R such that V (x) = ∑N
i=1 Vi(xi) where Vi : R → R for i = 1, . . . , N , 

there exist real constants a > 0, b such that U(x) = aV (x) + b for every x ∈ RN .
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which yield the existence of N such that ε ≤ infn>N |Φ(sn) −Φ(vn)|. Now we have two alternatives: either (a) 
there is a subsequence (to be relabelled again with n) such that Φ̂(sn) = Φ(sn) ≥ ε +Φ(vn) = ε +Φ̂(vn) for 
all n, or (b) there is a subsequence (to be relabelled again with n) such that Φ̂(sn) = Φ(sn) ≤ −ε +Φ(vn) =
−ε + Φ̂(vn) for all n.

In case (a) observe that for n big enough we have by (v) and (vi) that

Φ̂(vn) ≤ ε
2 + Φ(g) (vii); Φ(gn) + ε

3 ≥ Φ̂(sn) (viii).

Then, since in case (a) it holds that Φ̂(sn) ≥ ε + Φ̂(vn) ≥ ε + Φ(g) (the last inequality coming from (ii) and 
the definition of Φ), we conclude ε3 + Φ(gn) ≥ Φ̂(sn) ≥ ε + Φ(g), so that

Φ(gn) ≥ 2ε
3 + Φ(g) (ix).

We infer that

sup
x∈R

Φ̂(x) ≥ Φ̂(sn)
(i)
≥ Φ(gn)

(ix)
≥ 2ε

3 + Φ(g)

>
ε

2 + Φ(g)
(vii)
≥ Φ̂(vn)

(ii)
≥ Φ(g) ≥ inf

x∈R
Φ̂(x).

Since x �→ Φ̂(x) is norm continuous on R and Φ̂(R) is connected, there exist x1, x2 ∈ R with

Φ̂(sn) ≥ Φ(gn) ≥ 2ε
3 + Φ(g) > Φ(x1) > Φ(x2) >

ε

2 + Φ(g) ≥ Φ̂(vn) ≥ Φ(g)

and in particular since Φ(x1) = Φ̂(x1), Φ(x2) = Φ̂(x2)

Φ̂(sn) > Φ̂(x1) > Φ̂(x2) > Φ̂(vn)

We see that we must have x1 > x2 by (A.3). Since for s1, s2 simple functions Φ̂(s1) < Φ̂(s2) if and only 
if U(s1) < U(s2) (see Lemma A.2) we conclude that U(sn) > U(x1) > U(x2) > U(vn). This is clearly a 
contradiction since U satisfies (G-PC) and we have vn →n g and sn →n g pointwise (the second convergence 
following from (iii), (iv)).

In case (b) for n big enough Φ̂(vn) ≤ ε
2 + Φ(g) and

inf
x∈R

Φ̂(x) < Φ̂(sn) ≤ −ε + Φ̂(vn) ≤ −ε

2 + Φ(g) < Φ(g) ≤ Φ̂(sn) < sup
x∈R

Φ̂(x).

Since Φ̂(R) is again connected for the same reason as in case (a), there exist x1, x2 ∈ R with

Φ̂(sn) ≤ −ε + Φ̂(vn) ≤ −ε

2 + Φ(g) < Φ(x1) < Φ(x2) < Φ(g) ≤ Φ̂(sn)

and x1 < x2 by (A.3). Using again Lemma A.2 we conclude that U(sn) < U(x1) < U(x2) < U(vn). This is 
clearly contradicts again (G-PC).

We finally show that Φ is U-order preserving on L∞(Ω, G). Let indeed g1, g2 ∈ L∞(Ω, G) be given. 
Then we can take sequences of simple functions g1

n ↑ g1 and g2
n ↓ g2. If U(g1) ≤ U(g2), by (A.2) we have 

U(g1
n) ≤ U(g1) ≤ U(g2) ≤ U(g2

n), thus U(g1
n) ≤ U(g2

n), and since Φ̂ is U-order preserving on S(G) we have 
Φ(g1

n) = Φ̂(g1
n) ≤ Φ(g2

n) = Φ(g2
n). Taking the limit the inequality is preserved and, recalling that Φ̂ is (G-

PC), we get Φ(g1) ≤ Φ(g2). If conversely Φ(g1) ≤ Φ(g2), by (A.3) we get Φ(g1
n) ≤ Φ(g1) ≤ Φ(g2) ≤ Φ(g2

n), 
thus Φ̂(g1

n) = Φ(g1
n) ≤ Φ(g2

n) = Φ̂(g2
n) and since Φ̂ is U-order preserving we get U(g1

n) ≤ U(g2
n) for all n. 

Passing to the limit and recalling that U is (G-PC) we conclude U(g1) ≤ U(g2). �
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Lemma A.8. Assume that T satisfies (G-QL), T (0) = 0, and the property in Eq. (3). Then property in Eq. 
(4) holds.

Proof. Clearly NG ⊆ {A ∈ G | T (x1A) = 0 for all x ∈ R} by taking g1 = 0 in Eq. (2), while for the converse 
start observing that given g1, g2 ∈ L∞(Ω, G), since for all ω ∈ Ω

g1(ω)1Ω\A(ω) − (‖g1‖∞ + ‖g2‖∞)1A(ω)

≤ g1(ω) + g2(ω)1A(ω)

≤ g1(ω)1Ω\A(ω) + (‖g1‖∞ + ‖g2‖∞)1A(ω),

then we have by Eq. (3) that

T (g11Ω\A − (‖g1‖∞ + ‖g2‖∞)1A

≤ T (g1 + g21A)

≤ T (g11Ω\A + (‖g1‖∞ + ‖g2‖∞)1A).

If A ∈ G satisfies T (x1A) = 0 = T (0) for all x ∈ R, by (G-QL) we get that T (g11Ω\A±(‖g1‖∞+‖g2‖∞)1A) =
T (g11Ω\A). We conclude showing that T (g11Ω\A) = T (g1) (which does not come automatically from (G-
QL)) yielding T (g1 + g21A) = T (g1) and, in turns, A ∈ NG as defined in Eq. (2). Observe indeed that, 
arguing as above, T (g11Ω\A−‖g1‖∞ 1A) ≤ T (g1) ≤ T (g11Ω\A−‖g1‖∞ 1A), the latter providing the desired 
equality via (G-QL). �
Lemma A.9 (Properties of irrelevant events). Suppose that T satisfies T (0) = 0 and (G-QL). Then:

(i). if A, B ∈ G, A ⊆ B and B ∈ NG then A ∈ NG;
(ii). whenever {An}n ⊆ NG is a finite collection of irrelevant events, their union is irrelevant as well (i.e. ⋃

n An ∈ NG).

If additionally T satisfies (G-PC), item (ii) holds also for countable collections

Proof. (i) follows observing that T (g1 + g21A) = T (g1 + g21A1B) = T (g1) using in the last equality 
that g21A ∈ L∞(Ω, G) and B ∈ NG . We check (ii) for the countable case {An}n∈N , since the finite one 
is simpler but similar. Without loss of generality we can assume the sets An of being pairwise disjoint, 
otherwise we might reduce to this setup taking suitable subsets (which will still belong to NG by (i)). For 
any g1, g2 ∈ L∞(Ω, G) we have for any g1, g2 ∈ L∞(Ω, G)

T (g1) = T (g1 + g21A1) = · · · = T

⎛⎝g1 + g2

N∑
j=1

1Aj

⎞⎠ = T
(
g1 + g21⋃N

j=1 Aj

)

by iteration of the defining property in Eq. (2). Thus 
⋃N

j=1 Aj ∈ NG . Taking the limit as N → ∞ and using 
(G-PC) we get analogously that 

⋃
n An ∈ NG (observe that the pointwise limit of g1 +g21⋃N

j=1 Aj
as N → ∞

is in fact g1 + g21⋃
n An

). �
Lemma A.10 (On monotonicity). Assume T : L∞(Ω, F) → R satisfies T (0) = 0, (G-Mo), (G-QL), and that 
the restriction of T on L∞(Ω, G) is ‖·‖∞ continuous (which is implied by (G-PC)). Then T is monotone 
on L∞(Ω, G), in that Eq. (3) holds. Moreover, the monotonicity is strict: if g1, g2 ∈ L∞(Ω, G) satisfy 
g1(ω) ≤ g2(ω) ∀ω ∈ Ω and {g1 < g2} ∈ G \ NG, then T (g1) < T (g2).
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Proof. Consider g1, g2 ∈ L∞(Ω, G), g1(ω) ≤ g2(ω) ∀ω ∈ Ω. We consider the set A = {g1 < g2} and 
Ω \A = {g1 = g2}. If A ∈ NG , T (g1) = T (g11A + g11Ω\A) = T (g11A + g21Ω\A) = T (g2).

We now suppose A ∈ G \ NG . We prove that T (g1) ≤ T (g2). For the moment, let us suppose that 
g1, g2 ∈ S(G) are simple functions, with g1(ω) ≤ g2(ω) for all ω ∈ Ω and {g1 < g2} ∈ G \ NG . We show 
that T (g1) ≤ T (g2). We can write g1 =

∑
A∈π x

1
A1A, g2 =

∑
A∈π x

2
A1A for a (common) partition π ⊆ G. 

Then {g1 < g2} =
⋃
{A ∈ π | x1

A < x2
A}. By Lemma A.9 we must have that at least one of the sets 

among the {A ∈ π | x1
A < x2

A} needs not belong to NG . Call π+ := {A ∈ π | A ∈ G \ NG , x1
A < x2

A} �= ∅, 
π= := {B ∈ π | B ∈ G \ NG , x1

B = x2
B}(�= ∅) and π0 := {B ∈ π | B ∈ NG}. Clearly π = π+ ∪ π= ∪ π0. To 

simplify the discussion, in the equations below in case either π= = ∅ or π0 = ∅ the corresponding summation 
is set to 0 by defult, so that it is simply ignored. Setting C̄ =

⋃
C∈π0 C, we see

T (g1) = T

( ∑
A∈π+

x1
A1A +

∑
B∈π=

x1
B1B +

∑
C∈π0

x1
C1C

)
(A.4)

< T

⎛⎝x2
A0

1A0 +
∑

A∈π+,A �=A0

x1
A1A +

∑
B∈π=

x1
B1B +

∑
C∈π0

x1
C1C

⎞⎠ (A.5)

< T

( ∑
A∈π+

x2
A1A +

∑
B∈π=

x1
B1B +

( ∑
C∈π0

x1
C1C

)
1C̄

)
(A.6)

= T

( ∑
A∈π+

x2
A1A +

∑
B∈π=

x2
B1B +

( ∑
C∈π0

x2
C1C

)
1C̄

)
(A.7)

= T

( ∑
A∈π+

x2
A1A +

∑
B∈π=

x2
B1B +

∑
C∈π0

x2
C1C

)
= T (g2).

where between (A.4) and (A.5) we selected A0 ∈ π+ and used (G-Mo), and the same procedure was iterated 
to get to (A.6). Between (A.6) and (A.7) we used the fact that x1

B = x2
B for every B ∈ π=, and C̄ ∈ NG . 

In particular T (g1) < T (g2). Suppose now g1, g2 ∈ L∞(Ω, G) are generic, as before. Consider sequences 
{gn1 }n∈N , {gn2 }n∈N such that gn1 ↑n g1, gn2 ↓n g2 with ‖gn1 − g1‖∞ ↓n 0, ‖gn2 − g2‖∞ ↓n 0. Observe that 
then by construction for every n ∈ N we have {g1 < g2} ⊆ {gn1 < gn2 }, so that {gn1 < gn2 } ∈ G \ NG
for every n ∈ N (if this were not the case, we would conclude that {g1 < g2} ∈ NG by Lemma A.9). 
By the previous argument we get T (gn1 ) < T (gn2 ) for all n ∈ N. Passing to the limit we get the desired 
inequality. As to strict monotonicity, observe that if {g1 < g2} ∈ G \ NG , we must have for some N ∈ N

that AN := {g1 + 1
N < g2} ∈ G \ NG (since {g1 < g2} =

⋃
N{g1 + 1

N < g2}, if all the terms in RHS were 
irrelevant, so would be LHS by Lemma A.9). Thus denoting supE h := supω∈E h(ω) and analogously for 
infE h

T (g1) = T (g11AN
+ g11Ω\AN

) ≤ T

(
sup
AN

(g1)1AN
+ g11Ω\AN

)
< T

((
sup
AN

(g1) + 1
N

)
1AN

+ g11Ω\AN

)
≤ T

(
inf
AN

(g2)1AN
+ g11Ω\AN

)
≤ T (g2)

where the strict inequality comes from (G-Mo), and all the other inequalities follow from Eq. (3) that was 
just proved above (observe that in particular infAN

(g2)1AN
+ g11Ω\AN

≤ g2 on Ω). �
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A.3. Proofs of Section 4

In this section we provide all the mathematical details of the announced Theorem 4.2. Indeed one must 
be careful when shifting from pointwise defined random variables in L∞(Ω, F) to equivalences classes in 
L∞(Ω, F , P ). In particular as anticipated in Section 2 we will use the following suggestive notation: capital 
letters stand for equivalence classes, and lower case letters stand for measurable functions. Typically for 
f ∈ L∞(Ω, F), g ∈ L∞(Ω, G) X ∈ L∞(Ω, F , P ) and Y ∈ L∞(Ω, G, P ) we will write f ∈ X, g ∈ Y meaning 
that X = [f ]P is the equivalence class of f , and Y = [g]P is the equivalence class of g. We recall that for 
any A ∈ F we shall denote by 1A the indicator function in L∞(Ω, F) and by 1A = [1A]P the equivalence 
class generated in L∞(Ω, F , P ).

Proof of Theorem 4.2. We start proving the reverse implication. Let ρG : L∞(Ω, F , P ) → L∞(Ω, G, P ) be a 
conditional convex Risk Measure with ρG(0) = 0 P -a.s. Then for every X ∈ L∞(Ω, F , P ), Y ∈ L∞(Ω, G, P )
we have ρ0(X + Y ) = EP [ρG(X + Y )] = ρ0(X) − EP [Y ]. For X1 ≤ X2 P -a.s. we immediately have 
EP [ρG(X1)] ≥ EP [ρG(X2)] P -a.s.
We recall that for any conditional convex Risk Measure null in 0 we have the pasting property ρG(X1)1A +
ρG(X2)1Ω\A = ρG(X11A + X21Ω\A) P -a.s. for any X1, X2 ∈ L∞(Ω, F , P ) and A ∈ G, which implies the 
property ρG(X)1A = ρG(X1A) whenever ρG(0) = 0 (see [8, Proposition 1] for further details). In particular, 
ρ0 automatically satisfies (G-PS).
Let N ≥ 1, 0 ≤ λ1, . . . , λN ≤ 1 and A1, . . . , AN ∈ G a partition of Ω. We have for all X1, X2 ∈ L∞(Ω, F , P )
and Λ =

∑N
j=1 λj1Aj

ρ0 (ΛX1 + (1 − Λ)X2) = EP [ρG(ΛX1 + (1 − Λ))X2]

≤ EP [ΛρG(X1) + (1 − Λ) ρG(X2)]

=
N∑
j=1

λjρ0(X11Aj
) +

N∑
j=1

(1 − λj)ρ0(X21Aj
),

where in the last equality we applied the property that ρG(X)1A = ρG(X1A) for any X ∈ L∞(Ω, F , P ) and 
A ∈ G.

We now show the direct implication. Let ρ0 : L∞(Ω, F , P ) → R satisfy ρ0(0) = 0 jointly with conditions 
in items 1 to 4 of Theorem 4.2. We define the new functional T : L∞(Ω, F) → R as the map

f �→ T (f) := ρ0(−[f ]P ).

The functional T inherits from ρ0 the following properties: T (0) = 0, and

f1, f2 ∈ L∞(Ω,F), f1(ω) ≤ f2(ω) ∀ω ∈ Ω =⇒ T (f1) ≤ T (f2),

T (f + g) = T (f) + EP [g] ∀ f ∈ L∞(Ω,F) g ∈ L∞(Ω,G).

T is also (G-QL) since it is linear of L∞(Ω, G, P ) (by ρ0(0) = 0 and the property in item 1 of Theorem 4.2). 
We see then (by (4) and the discussion leading to it)

NG = {A ∈ G | T (x1A) = 0 ∀x ∈ R} = {A ∈ G | P (A) = 0}.

Moreover T is (G-Mo): for x, y ∈ R with x < y, all g ∈ L∞(Ω, G), A ∈ G \ NG we have

T (x1A + g1Ω\A) = EP

[
x1A + g1Ω\A

]
< EP

[
y1A + g1Ω\A

]
= T (y1A + g1Ω\A).
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Property (G-PC) for T follows immediately from Dominated Convergence Theorem and T (g) = EP [g] for 
any g ∈ L∞(Ω, G).
Finally T is (G-PS) by assumption, and (G-NB) as for every A ∈ G, for f ∈ L∞(Ω, F), − ‖f‖∞ 1A ≤ f1A ≤
‖f‖∞ 1A. This implies by monotonicity above that T (− ‖f‖∞ 1A) ≤ T (f1A) ≤ T (‖f‖∞ 1A).

The functional T satisfies all the assumption of Theorem 3.2 and for any f ∈ L∞(Ω, F) we can guarantee 
the existence of the conditional Chisini mean m (f |G) such that for every g ∈ m (f |G) we have T (f1A) =
T (g1A) for all A ∈ G.

We now define ρG : L∞(Ω, F , P ) → L∞(Ω, G, P ) by

ρG(X) := −[g]P where g ∈ m (f |G) .

First we observe that ρG is well defined. On the one hand the definition does not depend on the choice of 
g as P (g = g̃) = 1 for all g, ̃g ∈ m (f |G). On the one hand for any f1, f2 ∈ L∞(Ω, F) such that P (f1 = f2)
we have m (f1|G) ≡ m (f2|G). Indeed, if by contradiction there existed g1 ∈ m (f1|G) and g2 ∈ m (f2|G) such 
that G \ NG � A = {g1 > g2} then T (f11A) = T (g11A) = EP [g11A] > EP [g21A] = T (g21A) = T (f21A). 
But T (f11A) = ρ0(−[f11A]P ) = ρ0(−[f21A]P ) = T (f21A), a contradiction. The case {g1 < g2} ∈ G \ NG
can be excluded in a similar way. On the other hand the definition does not depend on the choice of g as 
P (g = g̃) = 1 for all g, ̃g ∈ m (f |G): if this were the case, one could reach a contradiction in the same way 
as we just did above.

We conclude this first part of our proof by showing that ρG is a conditional convex Risk Measure. Before 
starting with the main properties we notice that

ρG(X1A) = ρG(X)1A P -a.s ∀X ∈ L∞(Ω,F ,P ), A ∈ G, (A.8)

which can be checked by direct verification. Let X1 ≤ X2 P -a.s. then we find X1 � f1 ≤ f2 ∈ X2 and 
g1 ∈ m (f1|G) , g2 ∈ m (f2|G) so that for all A ∈ G

EP [g11A] = T (f11A) = ρ0(−X11A) ≤ ρ0(−X21A) = T (f21A) = EP [g21A] .

This implies P (g1 ≤ g2) = 1 i.e. ρG(X1) ≥ ρG(X2) P -a.s. Let now X ∈ L∞(Ω, F , P ) and c ∈ L∞(Ω, G, P ). 
For any A ∈ G

EP [ρG(X + c)1A] = ρ0((X + c)1A) = ρ0(X1A) − EP [c1A] = EP [(ρG(X) − c)1A] ,

hence ρG(X + c) = ρG(X) − c P -a.s. Notice that this property, as usual when dealing with convex Risk 
Measures, yields Lipschitz continuity for ρG : if X1, X2 ∈ L∞(Ω, F , P ) are given, we have

ρG(X1) = ρG(X1 −X2 + X2) ≤ ρG(X2 − ‖X1 −X2‖∞) = ρG(X2) + ‖X1 −X2‖∞

and interchanging the roles of X1, X2 we get

‖ρG(X1) − ρG(X2)‖∞ ≤ ‖X1 −X2‖∞ .

Let X1, X2 ∈ L∞(Ω, F , P ) and Λ ∈ L∞(Ω, G, P ) with 0 ≤ Λ ≤ 1. We start assuming that Λ is simple, in 
that Λ =

∑N
j=1 λj1Aj

P -a.s. for 0 ≤ λ1, . . . , λN ≤ 1 and A1, . . . , AN ∈ G being a partition of Ω.
Suppose that for some ε > 0 we had P (Bε) > 0 where

Bε = {ρG(ΛX1 + (1 − Λ)X2) > ΛρG(X1) + (1 − Λ)ρG(X2) + ε} ∈ G.

Then
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ρ0(Λ(X11Bε
) + (1 − Λ)(X21Bε

)) = EP [ρG(Λ(X11Bε
) + (1 − Λ)(X21Bε

))]

= EP [ρG(Λ(X1) + (1 − Λ)(X2))1Bε
]

> EP [ΛρG(X1)1Bε
+ (1 − Λ)ρG(X2)1Bε

]

= EP [ΛρG(X11Bε
) + (1 − Λ)ρG(X21Bε

)]

= EP

⎡⎣ N∑
j=1

λj1Aj
ρG(X11Bε

) +
(
1 −

N∑
j=1

λj1Aj

)
ρG(X21Bε

)

⎤⎦
=

N∑
j=1

λjρ0(X11Bε
1Aj

) +
N∑
j=1

(
1 − λj

)
ρ0(X21Bε

1Aj
)

using (A.8) in the last step. This is a contradiction, since in (7) we can choose X1Bε
and Y 1Bε

. We conclude 
that

P ({ρG(ΛX1 + (1 − Λ)X2) ≤ ΛρG(X1) + (1 − Λ)ρG(X2) + ε}) = 1

for every ε > 0 which in turns implies

ρG(ΛX1 + (1 − Λ)X2) ≤ ΛρG(X1) + (1 − Λ)ρG(X2) P -a.s.

for every X1, X2 ∈ L∞(Ω, F , P ) and simple Λ ∈ L∞(Ω, G, P ) with 0 ≤ Λ ≤ 1 P -a.s. We can finally remove 
the requirement for Λ to be simple. Indeed we can find Λn ∈ L∞(Ω, G, P ), simple and with 0 ≤ Λn ≤ 1
P -a.s., satisfying ‖Λn − Λ‖∞ → 0. Then

‖ΛnX1 + (1 − Λn)X2 − (ΛX1 + (1 − Λ)X2)‖∞ → 0,

‖ΛnρG(X1) + (1 − Λn)ρG(X2) − (ΛρG(X1) + (1 − Λ)ρG(X2))‖∞ → 0.

By Lipschitz continuity of ρG

ρG((ΛnX1 + (1 − Λn)X2)) → ρG((ΛX1 + (1 − Λ)X2)) (A.9)

and since we have proved that for every n

ρG(ΛnX1 + (1 − Λn)X2) ≤ ΛnρG(X1) + (1 − Λn)ρG(X2) → ΛρG(X1) + (1 − Λ)ρG(X2)

by (A.9) we have the desired property. �
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