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Background: Growing evidence supports a bidirectional association between
diabetes and depression; promising but limited and conflicting data from
human studies support the intriguing possibility that antidiabetic agents may be
used to relieve effectively depressive symptoms in diabetic patients. We
investigated the potential antidepressant effects of antidiabetic drugs in a high-
scale population data from the twomost important pharmacovigilance databases,
i.e., the FDA Adverse Event Reporting System (FAERS) and the VigiBase.

Material and methods: From the two primary cohorts of patients treated with
antidepressants retrieved from FDA Adverse Event Reporting System and VigiBase
we identified cases (depressed patients experiencing therapy failure) and non-
cases (depressed patients experiencing any other adverse event). We then
calculated the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR),
Empirical Bayes Geometric Mean (EBGM), and Empirical Bayes Regression-
Adjusted Mean (ERAM) for cases versus non-cases in relation with the
concurrent exposure to at least one of the following antidiabetic agent: A10BA
Biguanides; A10BB Sulfonylureas; A10BG Thiazolidinediones; A10BH DPP4-
inhibitors; A10BJ GLP-1 analogues; A10BK SGLT2 inhibitors (i.e., those agents
for which preliminary evidence from literature supports our pharmacological
hypothesis).

Results: For GLP-1 analogues, all the disproportionality scores showed values <1,
i.e., statistically significant, in both analyses [from the FAERS: ROR confidence
interval of 0.546 (0.450–0.662); PRR (p-value) of 0.596 (0.000); EBGM (CI) of
0.488 (0.407–0.582); ERAM (CI) of 0.480 (0.398–0.569) and VigiBase: ROR (CI) of
0.717 (0.559–0.921); PRR (p-value) of 0.745 (0.033); EBGM (CI) of 0.586
(0.464–0.733); ERAM of (CI): 0.515 (0.403–0.639)]. Alongside GLP-1 analogues,
DPP-4 Inhibitors and Sulfonylureas showed the greatest potential protective
effect. With regard to specific antidiabetic agents, liraglutide and gliclazide
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were associated with a statistically significant decrease in all disproportionality
scores, in both analyses.

Conclusion: The findings of this study provide encouraging results, albeit
preliminary, supporting the need for further clinical research for investigating
repurposing of antidiabetic drugs for neuropsychiatric disorders.

KEYWORDS

diabetes, pharmacovigilance, depression, antidiabetic agents, drug repurposing, real-
world data, FAERS, VigiBase

1 Introduction

Depression, estimated by the World Health Organization
(WHO) as the single largest contributor to global disability, is a
major challenge for the national health systems. Its co-occurrence
with Type 2 Diabetes (T2D) is twice as frequent as might be
predicted by chance alone and results in a reduced quality of life
and elevated impairment of individuals’ daily functioning (Holt
et al., 2014).

A growing number of evidence supports a bidirectional
association between diabetes and depression as a result of
complex interactions involving brain events and systemic
responses (Golden et al., 2008; Laake et al., 2014; Martins et al.,
2022). The role of the inflammatory cascade in the induction of
metabolic syndrome, oxidative stress and central diseases promoted
studies on the identification of novel pharmacological targets for a
combined treatment (Lamb and Goldstein, 2008; Chan et al., 2019).
The central activation of AMPK, a key enzyme regulating both
energy management and psychopathology, which is also supported
by some antidiabetic drugs, has been suggested as a useful strategy to
relieve both depressive and diabetic symptoms (Pozzi et al., 2019).

Evidence from experimental studies has also reported that
traditional anti-hyperglycaemic agents, such as insulin, glyburide,
metformin, pioglitazone, vildagliptin, and liraglutide reduce
depression-like behaviour in either absence or presence of
diabetes (AlHussain et al., 2020; Essmat et al., 2020).

Promising yet still limited clinical evidence from human studies
is also available: a recent metanalysis of 9 studies found that
GLP1 receptor agonists can relieve depressive symptoms in adult
patients affected by T2D (Pozzi et al., 2019) and another study shows
that thiazolidinediones might be associated to pharmacologically
relevant antidepressant actions (Moulton et al., 2018). However,
these concepts still need to be expanded (Odaira et al., 2019).

Antidiabetic agents including metformin, thiazolidinediones
GLP-1 agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors are
known to cross the blood brain barrier and thus exert both
peripheral and central actions. The antidepressant activity of
these drugs may be mediated by reducing the blood glucose level,
ameliorating the central oxidative stress and inflammation,
regulating the hypothalamic–pituitary–adrenal axis, stimulating
neuronal growth and protecting from apoptosis through the
protein Gs-Protein Kinase A-mediated activation of AMPK
(Essmat et al., 2020). The underlying mechanism of action has
not been fully elucidated yet.

Spontaneous reporting systems such as the FDA Adverse Event
Reporting System (FAERS) and VigiBase represent valuable sources
to obtain real-world data on the safety/effectiveness profile of

specific drugs, in order to compare therapeutic options, gain
insights on potential mechanisms of adverse drug reaction (ADR)
and (more recently) investigate promising new beneficial effects of
drugs, thus contributing to drug repositioning (Cohen et al., 2017;
Carnovale et al., 2018; 2019b; 2019a; Mazhar et al., 2019). Due to the
insufficient therapeutic response of patients to the available
antidepressant medications, drug repositioning may become the
most promising strategy to support new indication uses.

Here we report on the antidepressant effect of antidiabetic
agents in a high-scale population data from the two largest
spontaneous reporting system databases, i.e., the FAERS and
VigiBase, thus providing new insights in support of their
potential drug repurposing in the field of neuropsychiatric disorders.

2 Materials and methods

2.1 Data source and extraction

This study was designed as a nested case/non-case study. We
used the Empirica Signal software (Oracle Health Sciences, Austin,
TX) to query the two largest and most comprehensive spontaneous
reporting system public databases: the FDA FAERS database (from
1967 up until the end of 2021) and the WHO VigiBase database
(from 1968 until the end of September 2021).

Both data sources contain information related to post-marketing
safety surveillance reports in the form of Individual Case Safety
Reports (ICSRs) submitted by healthcare professionals, consumers,
and other sources. Adverse events (AEs) are coded in these two
pharmacovigilance databases using the Medical Dictionary for
Regulatory Activities (MedDRA®) Preferred Terms (PTs)
(Fescharek et al., 2004). Each ICSR provides administrative
information (country, type of report, qualification of the
reporter), patient demographics (sex, age, weight), AEs
characteristics (seriousness, date of onset, outcome), details about
suspect drug therapy (drug name, exposure start and stop dates, time
to onset, dose, route, indication, de-challenge and re-challenge) and
information concerning any drug administered at the time of AE but
not held responsible for its occurrence by the reporter, referred to as
concomitant medication. However, the level of completeness of
information varies from case to case (Sakaeda et al., 2013).

Both databases were prepared for data mining, for example by
combining initial and follow-up reports into a single case and
eliminating obvious duplicate cases using an automated process
provided by Oracle.

A primary cohort of ICSRs was defined as all reports mentioning
at least one antidepressant drug (ATC Level 3 code N06A
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“Antidepressants”) as “suspect drug” (either primary or secondary)
for any type of AE. Reports containing antidepressants as
“concomitant medication” only were not included in the primary
cohort.

Within this primary cohort, cases were defined as depressed
patients experiencing therapy failure and non-cases as patients
experiencing any other AEs. Therapy failure was defined as
ICSRs mentioning either the MedDRA narrow SMQ Depression
and suicide/self-injury or the narrow SMQ Lack of efficacy
(MedDRA version 24.0). (MedDRA-Support Documentation,
2022).

2.2 Statistical analysis

By using the Oracle Empirica Signal software (Oracle Health
Sciences, Austin, TX), we calculated disproportionality statistics
produced by four signal detection methodologies, to assess the
occurrence of therapy failure (cases) in depressed patients, in
association with the exposure to at least one antidiabetic drug,
defined as the following ATC Level 4 codes: A10BA Biguanides;
A10BB Sulfonylureas; A10BG Thiazolidinediones; A10BH DPP4-
inhibitors; A10BJ GLP-1 analogues; A10BK SGLT2 inhibitors (i.e.,
those agents for which preliminary evidence from literature supports
our pharmacological hypothesis).

Three of these disproportionality scores, based on 2 ×
2 disproportionality analysis, are well-established and currently
used worldwide by several organisations for routine safety
surveillance, i.e:

i) The Reporting Odds Ratio (ROR), defined as the ratio of the
odds of the occurrence of therapy failure with antidiabetic drugs
versus the occurrence of therapy failure without antidiabetic
agents (van Manen et al., 2007);

ii) The Proportional Reporting Ratio (PRR), comparing the
frequency of occurrence of therapy failure in reports
referring to antidiabetic agents with the frequency of
occurrence of reports of therapy failure in reports that do
not mention antidiabetic agents. (van Manen et al., 2007).

iii) The Empirical Bayesian Geometric Mean (EBGM) calculated
using the Multi-item Gamma Poisson Shrinker (MGPS)
Algorithm, using Bayesian shrinkage to improve the
reliability of the disproportionality score (DuMouchel, 1999).
We generated both the point estimates (EBGM) and their
associated 90% confidence intervals labelled EB05–EB95.

Moreover, we used a more advanced regression-based
methodology designed to produce disproportionality statistics
with adjusted background rates; it can control masking and more
extensive confounding effects by fitting separate Bayesian logistic
regression models to each target AE and by automatically selecting
predictors to be included in each regression model:

iv) The Regression-enhanced Empirical Bayesian Geometric Mean
(ERAM) calculated using the Regression-Adjusted Gamma
Poisson Shrinker (RGPS) Algorithm (DuMouchel and Harpaz,
2012). We generated the point estimates (ERAM) and their
associated 90% confidentiality intervals labelled ER05–ER95.

With the aim to investigate the antidepressant effects of
antidiabetic drugs, disproportionality signals were considered
clinically meaningful if.

i) The upper limit of the 90% confidence interval (CI) of the ROR
for cases (ROR95) is less than one;

ii) The PRR score is less than one and the corresponding p-value is
less than 0.05;

iii) The upper limit of the 90% confidence interval of the EBGM for
cases (EB95) is less than one;

iv) The upper limit of the 90% confidence interval of the ERAM for
cases (ER95) is less than one.

3 Results

During the time periods described in the methods, we selected
two primary cohorts of ICSRs mentioning antidepressants as
“suspect drug” (either primary or secondary) for any AEs
reported in the FAERS and VigiBase, which contain 545,311 and
647,308 ICSRs, respectively. Within these primary cohorts we
selected 121,368 ICSRs from FAERS and 85,267 from VigiBase as
cases associated with “therapy failure”; the numbers of non-cases for
FAERS and VigiBase were 423,943 and 562,041, respectively.
Figure 1 shows the flow diagram of data extraction from the two
data sources.

Demographical characteristics and type of therapy of
depressed patients experiencing therapy failure (cases) and
other adverse events (non-cases) from FAERS and VigiBase are
detailed in Tables 1, 2. For cases, the most involved age groups
reported in the FAERS and VigiBase were 18–44 and 45–74,
respectively. In both analyses, >62% of cases reported
antidepressants as the only suspected drugs and no other drugs.
For non-cases, the percentage ranged from 41.4% (FAERS) to
80.2% (VigiBase).

Supplementary Tables S1, S2 list the number of medications
reported as suspect (either primary or secondary suspect) drugs,
grouping by ATC Level 2, for cases and non-cases, in the FAERS and
Vigibase.

In both cohorts of depressed patients (cases and non-cases),
more than 58% of individuals were female.

Of depressed subjects experiencing therapy failure, 1,946 and
649 were concomitantly exposed to only one antidiabetic drug, in
the FAERS and VigiBase, respectively; in both cohorts, less than 1%
was treated with more than one antidiabetic drug and less than 1%
was concomitantly exposed to insulin.

Four disproportionality scores (ROR, PRR, EBGM, ERAM) were
used to investigate the potential antidepressant effect of antidiabetic
drugs. Table 3 shows values for therapy failure in depressed patients
exposed to various antidiabetic drug classes.

Among all the drug classes of interest, GLP-1 analogues, DPP-4
Inhibitors and Sulfonylureas showed the greatest potential protective
effects. Specifically, all signal detection methodologies and
disproportionality statistics investigating the GLP-1 analogues agreed
on its potential antidepressant effect and showed values <1, i.e.,
statistically significant [from the FAERS: ROR (CI) of 0.546
(0.450–0.662); PRR (p-value) of 0.596 (0.000); EBGM (CI) of 0.488
(0.407–0.582); ERAM (CI) of 0.480 (0.398–0.569) and VigiBase: ROR
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FIGURE 1
Flow-diagram of data extraction from VigiBase and FAERS.

TABLE 1 Demographical characteristics and therapy of depressed patients (ATC Code N06A) experiencing therapy failure (cases) and/or other adverse events (non-
cases) from the FAERS.

FAERS

Age Group N° (%) * Cases (Therapy Failure) (n=121,368) Non-cases (Other AEs) (n=423,943) P value

Age Group years N° (%) Age Group years N° (%)

00 - 01 86 (0.07) 00 - 01 6,125 (1.44)

02 - 11 928 (0.77) 02 - 11 4,112 (0.97)

12 - 17 2,891 (2.38) 12 - 17 5,445 (1.28) <0.00001

18 - 44 37,047 (30.52) 18 - 44 110,981 (26.18)

45 - 74 34,548 (28.47) 45 - 74 113,167 (26.69)

≥75 3,267 (2.69) ≥75 25,191 (5.94)

Unknown 42,601 (35.10) Unknown 158,922 (37.49)

Gender N° Females (%) * 71,807 (59.16%) 247,489 (58.38%) <0.00001

Antidiabetic Agents N° (%) *

None 118,585 (97.71%) 409,393 (97.58%)

Only one 1,946 (1.60%) 6,995 (1.67%) <0.00001
More than one 837 (0.72%) 3,156 (0.75%)

Concomitant insulin, N° (%) *

Yes 1,085 (0.89%) 5,539 (1.31%) <0.00001

*χ2-test.
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(CI) of 0.717 (0.559–0.921); PRR (p-value) of 0.745 (0.033); EBGM (CI)
of 0.586 (0.464–0.733); ERAM of (CI): 0.515 (0.403–0.639)].

On the other hand, only disproportionality signals in FAERS were
considered statistically meaningful for DPP-4 Inhibitors [ROR (CI) of
0.761 (0.674–0.860); PRR (p-value) of 0.796 (0.000); EBGM (CI) of 0.687

(0.614–0.767); ERAM (CI) of 0.676 (0.602–0.753)] and Sulfonylureas
[ROR (CI) of 0.831 (0.776–0.890); PRR (p-value) of 0.858 (0.000);
EBGM (CI) of 0.935 (0.878–0.995); ERAM (CI) of 0.858 (0.805–0.912)].

Biguanides, SGLT2 Inhibitors and Thiazolidinediones showed
the smallest protective effect. For biguanides we found statistically

TABLE 2 Demographical characteristics and therapy of depressed patients (ATC Code N06A) 601 experiencing therapy failure (cases) and/or other adverse events
(non-cases) from the VigiBase.

VigiBase

Age Group N° (%) * Cases (Therapy Failure) (n=85,267) Non-cases (Other AEs) (n=562,041) P value

Age Group years N° (%) Age Group years N° (%)

00 - 01 28 (0.04) 00 - 01 4,178 (0.75) <0.00001

02 - 11 455 (0.53) 02 - 11 3,240 (0.58)

12 - 17 3,172 (3.72) 12 - 17 9,915 (1.76)

18 - 44 24,407 (28.62) 18 - 44 152,746 (28.42)

45 - 74 26,302 (30.84) 45 - 74 180,889 (32.19)

≥75 2,490 (2.92) ≥75 43,277 (7.70)

Unknown 28,413 (33.32) Unknown 160,796 (28.61)

Gender N° Females (%) * 51,682 (60.61%) 351,353 (62.51%) <0.00001

Antidiabetic Agents N° (%) *

None 84,405 (98.97%) 559,159 (99.48%)

Only one 649 (0.76%) 1,994 (0.35%) <0.00001
More than one 228 (0.27%) 903 (0.16%)

Concomitant insulin, N° (%) *

Yes 192 (0.23%) 784 (0.14%) <0.00001

*χ2-test.

TABLE 3 Disproportionality scores for therapy failure in depressed patients (cases) exposed to antidiabetic drug classes.

Data source Antidiabetic drug class ROR (ROR05-ROR95) PRR (p-value) EBGM (EB05-EB95) ERAM (ER05-ER95)

FAERS Biguanides 1.085 (1.038–1.135) 1.068 (0.003) 0.919 (0.884–0.956) 0.856 (0.823–0.890)

Sulfonylureas 0.831 (0.776–0.890) 0.858 (0.000) 0.935 (0.878–0.995) 0.858 (0.805–0.912)

Thiazolidinediones 0.925 (0.810–1.056) 0.938 (0.353) 0.919 (0.815–1.034) 0.818 (0.723–0.918)

DPP4 Inhibitors 0.761 (0.674–0.860) 0.796 (0.000) 0.687 (0.614–0.767) 0.676 (0.602–0.753)

GLP1 Analogues 0.546 (0.450–0.662) 0.596 (0.000) 0.488 (0.407–0.582) 0.480 (0.398–0.569)

SGLT2 Inhibitors 0.901 (0.702–1.158) 0.918 (0.543) 0.716 (0.571–0.890) 0.715 (0.564–0.881)

Data Source Drug Class ROR (ROR05-ROR95) PRR (p-value) EBGM (EB05-EB95) ERAM (ER05-ER95)

VigiBase Biguanides 1.411 (1.341–1.485) 1.339 (0.000) 1.163 (1.110–1.217) 0.822 (0.784–0.860)

Sulfonylureas 0.830 (0.764–0.902) 0.849 (0.000) 1.010 (0.934–1.092) 0.838 (0.773–0.904)

Thiazolidinediones 1.376 (1.184–1.600) 1.311 (0.001) 1.176 (1.025–1.344) 0.926 (0.804–1.055)

DPP4 Inhibitors 0.900 (0.764–1.060) 0.912 (0.312) 0.840 (0.720–0.974) 0.765 (0.653–0.884)

GLP1 Analogues 0.717 (0.559–0.921) 0.745 (0.033) 0.586 (0.464–0.733) 0.515 (0.403–0.639)

SGLT2 Inhibitors 1.401 (1.027–1.911) 1.331 (0.092) 0.994 (0.755–1.289) 0.918 (0.685–1.179)

aDisproportionality signals considered clinically meaningful in terms of potential protective effect of antidiabetic drugs are reported in bold.
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TABLE 4 Disproportionality scores for therapy failure in depressed patients (cases) for each antidiabetic drug, from the FAERS and VigiBase analyses.

Drug ATC code FAERS (Total cohort: 545,311 depressed subjects) VigiBase (Total cohort: 647,308 depressed subjects)

ROR (ROR05-
ROR95)

PRR
(p-value)

EBGM (EB05-
EB95)

ERAM (ER05-
ER95)

ROR (ROR05-
ROR95)

PRR
(p-value)

EBGM (EB05-
EB95)

ERAM (ER05-
ER95)

Canagliflozin SGLT2-inhibitors 1.268 (0.826–1.945) 1.208 (0.439) 0.952 (0.662–1.335) 0.894 (0.605–1.229) 2.797 (1.655–4.726) 2.262 (0.002) 1.466 (0.977–2.131) 1.169 (0.746–1.670)

Chlorpropamide Sulfonylureas 0.253 (0.119–0.539) 0.294 (0.002) 0.819 (0.441–1.416) 0.767 (0.382–1.260) 0.092 (0.017–0.480) 0.104 (0.005) 0.888 (0.393–1.784) 0.715 (0.247–1.380)

Dapagliflozin SGLT2-inhibitors 0.543 (0.304–0.971) 0.593 (0.106) 0.565 (0.343–0.888) 0.573 (0.331–0.870) 0.791 (0.389–1.610) 0.813 (0.729) 0.714 (0.410–1.175) 0.659 (0.345–1.055)

Dulaglutide GLP-1 analogues 0.373 (0.217–0.641) 0.422 (0.003) 0.375 (0.232–0.580) 0.382 (0.226–0.571) 0.722 (0.391–1.333) 0.750 (0.476) 0.668 (0.403–1.053) 0.629 (0.354–0.969)

Empagliflozin SGLT2-inhibitors 0.911 (0.595–1.395) 0.926 (0.815) 0.721 (0.496–1.018) 0.723 (0.485–1.001 1.279 (0.777–2.106) 1.234 (0.517) 0.966 (0.636–1.419) 0.945 (0.593–1.363)

Exenatide GLP-1 analogues 0.791 (0.571–1.096) 0.823 (0.274) 0.711 (0.529–0.938) 0.649 (0.475–0.845) 1.106 (0.770–1.590) 1.091 (0.731) 0.864 (0.626–1.169) 0.722 (0.510–0.964)

Gliclazide Sulfonylureas 0.527 (0.443–0.628) 0.578 (0.000) 0.556 (0.471–0.653) 0.552 (0.465–0.645) 0.310 (0.238–0.405) 0.341 (0.000) 0.439 (0.340–0.559) 0.438 (0.334–0.553)

Glimepiride Sulfonylureas 0.937 (0.808–1.087) 0.948 (0.500) 0.918 (0.802–1.047) 0.853 (0.742–0.970) 0.984 (0.833-1–162) 0.986 (0.912) 0.969 (0.830–1.126) 0.851 (0.726–0.985)

Glipizide Sulfonylureas 1.123 (0.987–1.277) 1.098 (0.149) 1.186 (1.057–1.327) 1.043 (0.927–1.164) 1.502 (1.304–1.728) 1.409 (0.000) 1.431 (1.260–1.619) 1.087 (0.954–1.228)

Gliquidone Sulfonylureas 0.440 (0.078–2.472) 0.491 (0.677) 0.864 (0.352–1.844) 0.806 (0.275–1.563) 0.942 (0.162–5.466) 0.949 (0.641) 1.185 (0.527–2.375) 1.026 (0.355–1.980)

Linagliptin Dpp-4 Inhibitors 0.669 (0.446–1.003) 0.713 (0.125) 0.651 (0.452–0.913) 0.654 (0.443–0.900) 0.642 (0.382–1.079) 0.673 (0.199) 0.720 (0.460–1.084) 0.645 (0.390–0.951)

Liraglutide GLP-1 analogues 0.580 (0.438–0.768) 0.629 (0.002) 0.534 (0.411–0.683) 0.529 (0.403–0.670) 0.519 (0.343–0.785) 0.554 (0.011) 0.472 (0.324–0.668) 0.414 (0.275–0.577)

Lixisenatide GLP-1 analogues 0.629 (0.108–3.651) 0.675 (0.986) 0.871 (0.355–1.858) 0.883 (0.302–1.712) 2.197 (0.329–14.683) 1.898 (0.968) 1.160 (0.516–2.326) 1.089 (0.377–2.102)

Metformin Biguanides 1.107 (1.057–1.159) 1.085 (0.000) 0.933 (0.896–0.972) 0.866 (0.831–0.901) 1.420 (1.349–1.494) 1.345 (0.000) 1.166 (1.113–1.220) 1.200 (1.145–1.255)

Pioglitazone Thiazolidinediones 1.030 (0.869–1.220) 1.024 (0.816) 0.934 (0.802–1.084) 0.821 (0.701–0.948) 1.382 (1.138–1.678) 1.316 (0.007) 1.121 (0.940–1.328) 0.883 (0.736–1.042)

Rosiglitazone Thiazolidinediones 0.909 (0.717–1.152) 0.924 (0.553) 0.923 (0.744–1.134) 0.815 (0.651–0.993) 1.378 (1.070–1.775) 1,313 (0.045) 1.187 (0.946–1.475) 0.895 (0.705–1.104)

Saxagliptin Dpp-4 Inhibitors 0.372 (0.185–0.749) 0.421 (0.023) 0.485 (0.271–0.815) 0.488 (0.254–0.782) 0.638 (0.316–1.289) 0.670 (0.378) 0.706 (0.405–1.161) 0.643 (0.336–1.029)

Semaglutide GLP-1 analogues 0.267 (0.114–0.622) 0.309 (0.009) 0.349 (0.178–0.626) 0.330 (0.155–0.558) - - - -

Sitagliptin Dpp-4 Inhibitors 0.968 (0.830–1.130) 0.974 (0.767) 0.840 (0.730–0.962) 0.809 (0.701–0.924) 1.119 (0.929–1.347) 1.102 (0.348) 0.991 (0.836–1.169) 0.863 (0.723–1.014)

Tolazamide Sulfonylureas 0.315 (0.057–1.726) 0.360 (0.396) 0.986 (0.403–2.103) 0.877 (0.300–1.701) 0.824 (0.144–4.717) 0.844 (0.757) 1.239 (0.551–2.484) 1.073 (0.371–2.071)

Troglitazone Thiazolidinediones 0.318 (0.159–0.638) 0.364 (0.006) 0.808 (0.452–1.357) 0.717 (0.374–1.151) 0.507 (0.189–1.359) 0.542 (0.354) 1.087 (0.555–1.962) 0.985 (0.432–1.721)

Vildagliptin Dpp-4 Inhibitors 0.304 (0.152–0.608) 0.349 (0.004) 0.421 (0.235–0.707) 0.458 (0.239–0.734) 0.449 (0.224–0.900) 0.485 (0.073) 0.631 (0.362–1.038) 0.676 (0.354–1.082)

aDisproportionality signals considered clinically meaningful in terms of potential protective effect of antidiabetic drugs are reported in bold.
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significant scores only for ERAM in both analyses [FAERS: ERAM
(CI) of 0.856 (0.823–0.890); VigiBase: ERAM (CI) of 0.822
(0.784–0.860)]. Similar findings were found for SGLT2 Inhibitors:
only the EBGM values were significant in both analyses [FAERS:
EBGM (CI) of 0.716 (0.571–0.890)]; VigiBase: EBGM (CI) of 0.994
(0.755–1.289)]. For thiazolidinediones only ERAM from FAERS was
statistically significant: ERAM (CI) of 0.818 (0.723–0.918).

In Table 4, detailed disproportionality scores for each antidiabetic
drug from both FAERS andVigiBase are reported.With regard to some
selected antidiabetic agents, liraglutide and gliclazide were associated in
both analyses to a statistically significant decrease in all
disproportionality scores. More in detail, in the FAERS analysis, for
liraglutide we found the following scores: ROR (CI) of 0.580
(0.438–0.768); PRR (p-value) of 0.629 (0.002); EBGM (CI) of 0.534
(0.411–0.683); ERAM (CI) of 0.529 (0.403–0.670)]; consistent results
were found for gliclazide: ROR (CI) of 0.527 (0.443–0.628); PRR
(p-value) of 0.578 (0.000); EBGM (CI) of 0.556 (0.471–0.653);
ERAM (CI) of 0.552 (0.465–0.645)]. Findings from VigiBase,
considering a larger cohort of patients, supported the previous
results; for liraglutide we found: ROR (CI) of 0.519 (0.343–0.785);
PRR (p-value) of 0.554 (0.011); EBGM (CI) of 0.472 (0.324–0.668);
ERAM (CI) of 0.414 (0.275–0.577); for gliclazide we found: ROR (CI) of
0.310 (0.238–0.405); PRR (p-value) of 0.341 (0.000); EBGM (CI) of
0.439 (0.340–0.559); ERAM (CI) of 0.438 (0.334–0.553). Supplemental
material provides disproportionality scores for cases and non-cases
exposed to antidiabetic drug classes grouping by ATC code level 4
(including details for each antidiabetic drug), in the FAERS
(Supplementary Table S3) and VigiBase (Supplementary Table S4).

4 Discussion

Studies on glucose-lowering agents may have a positive
influence on the symptoms of depression, although the evidence
from animal and human studies is scarce and conflicting (Monnier
et al., 2006; Ceriello et al., 2013; Fiorentino et al., 2013).

This is the first study aimed at evaluating the potential
antidepressant effect of antidiabetic agents in a high-scale
population data (we included two cohorts of 121,368 and
85,267 depressed patients experiencing therapy failure) from the
two largest spontaneous reporting system databases, i.e., the FAERS
and VigiBase, thus providing new insights for improving the
knowledge on this topic and supporting the need for further
research on antidiabetic drug repurposing in the field of
neuropsychiatric disorders.

It is well-known that pharmacovigilance databases were
originally intended to track frequent adverse events; however,
when a sufficient amount of data is available, they can also be
used to indirectly track the beneficial outcomes through monitoring
reductions of related adverse event frequencies (Cohen et al., 2017).

From this perspective, reported adverse drug events may serve as
useful indicators to predict new opportunities for drug
repositioning, making spontaneous reporting system databases
valuable data sources for driving further research in the discover
of new and effective uses of drugs (Pushpakom et al., 2019).

Overall, the investigated antidiabetic drug classes showed a
beneficial effect to depressed patients, albeit with a high
heterogeneity in terms of statistically significant decrease in

disproportionality scores, thus suggesting that some specific
pharmacological agents may exert a more prominent beneficial effect.

In our study, GLP-1 analogues showed the greatest potential
protective effect in the cohort of depressed patients experiencing
therapy failure that we analysed. Of importance, all signal-detection
methodologies and disproportionality statistics we used to
investigate the antidepressant effect of GLP-1 analogues showed
values statistically significant (<1) in both pharmacovigilance
databases (Table 3), with a ROR ranging from 0.546
(0.450–0.662) to 0.717 (0.559–0.921), in the FAERS and VigiBase,
respectively. ROR is the most used disproportionality score
worldwide for routine safety surveillance.

However, more recently, many Authors applied this approach to
the FAERS andVigiBase to identify candidates for drug repositioning in
a variety of clinical research areas (e.g., psychiatry, neurology,
cardiology), by searching for an inverse signal, postulating that drugs
that demonstrated an under-reporting of AEs of interest could be
protective against these AEs (Wang et al., 2016; Horinouchi et al., 2018;
Hosomi et al., 2018; Chrétien et al., 2021).

To test our hypothesis, we have expanded this approach further
by also providing also other well-established scores based on 2 ×
2 disproportionality analysis (PRR and EBGM), and a more
advanced regression-based methodology designed to produce
disproportionality statistics with adjusted background rates: it can
control for masking and more extensive confounding effects by
fitting separate Bayesian logistic regression models to each target AE
and by automatically selecting predictors to be included in each
regression model, i.e., ERAM (DuMouchel and Harpaz, 2012).

In both pharmacovigilance databases, ERAM values suggest
GLP-1 analogues may exert a clinical meaningful protective
effect, as demonstrated by significant reductions of depression-
like symptom frequencies in patients with depression and
diabetes [point estimates: 0.480 (0.398–0.569) in FAERS and
0.515 (0.403–0.639), in VigiBase].

When focusing on specific drugs, liraglutide was associated with a
statistically significant decrease in all disproportionality scores. Data
from the FAERS-based study [ROR (CI) of 0.580 (0.438–0.768); PRR
(p-value) of 0.629 (0.002); EBGM (CI) of 0.534 (0.411–0.683); ERAM
(CI) of 0.529 (0.403–0.670)], support the hypothesis that this
antidiabetic agent might exert beneficial effects to depressed patients.
Interestingly, when investigating the potential protective effect of
liraglutide in a larger cohort of patients, findings from VigiBase
strongly supported the previous results [ROR (CI) of 0.519
(0.343–0.785); PRR (p-value) of 0.554 (0.011); EBGM (CI) of 0.472
(0.324–0.668); ERAM (CI) of 0.414 (0.275–0.577)].

In line with our findings, clinical and preclinical studies, albeit
very scant, support these encouraging results.

Clinical trials have demonstrated improvements in anhaedonia
in patients treated with liraglutide (Mansur et al., 2017). The
administration of this drug in diabetic mice has demonstrated
neuroprotective (Porter et al., 2012; Li et al., 2015; Gumuslu
et al., 2016), anxiolytic and anti-depressant effects in a Type
1 Diabetes (T1D) rat model. The drug was also found to increase
neurogenesis in the mouse brain (Hunter and Hölscher, 2012) and
to enhance effects on synaptic plasticity (McClean et al., 2010).

It has been postulated that, incretins might exert
neuropsychiatric effects given the presence of GLP-1 receptors in
the central nervous system; stimulation of GLP-1 receptors has
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shown effects on mitochondrial functions, neuroinflammation,
synaptic plasticity, learning and memory, serotonin turnover,
serotonin-receptor expression in the amygdala and central
dopamine levels, in multiple experimental models of both
neurological diseases and depression (athauda and Foltynie, 2016;
Athauda and Foltynie, 2016; Kim et al., 2020; van Bloemendaal et al.,
2014).

Our study shows that also DPP-4 Inhibitors show potential anti-
depressant activity, as supported by all significant values of the
disproportionality scores from the FAERS; however, when
expanding analysis in a larger cohort of patients (i.e., in
VigiBase), only EBGM and ERAM scores were of meaningful
clinical relevance, suggesting an important but less prominent
antidepressant effect compared to GLP-1 analogues. Within this
latter drug class, saxagliptin and vildagliptin showed a significant
reductions of depression-like symptom frequencies in patients with
depression and diabetes, in all analyses we carried out in the FAERS
(i.e., values from all disproportionality scores are significant) (see
Table 4), adding preliminary and encouraging evidence (but less
promising than those reported for GLP-1 analogues) to the very
limited existing body of knowledge on the potential use of DPP-4
Inhibitors as an adjuvant in the treatment of depression. Recent data
show that sitagliptin has mild anti-depressant effect in a depression
model (Kamble et al., 2016). and a better antidepressant activity than
imipramine (Saritha and Chandrashekar, 2018). However, a recent
randomised controlled trial (RCT) did not detect evidence of
superiority of sitagliptin over placebo for depressive symptoms in
44 patients with T2D, possibly due to the small sample size and
limited treatment duration (Moulton et al., 2021). To address the
issue further, an on-going randomised double-blind trial including
80 adult outpatients with major depression is evaluating the
antidepressant effects of vildagliptin 50 mg versus escitalopram
20 mg (ClinicalTrial.gov, 2022).

In line with the overall picture regarding DPP-4 Inhibitors,
sulfonylureas showed a similar potential: All values of the
disproportionality scores from the FAERS and 3 out of 4 from
VigiBase were of significant importance. These preliminary results
may serve as indicators for supporting further research to better
investigate their beneficial effects to depressed patients as the
currently available evidence is scant and relatively conflicting. A
recent experimental study showed that the glyburide exerts an effect
on modulating depressive like-behaviour together with insulin
resistance via an NLRP3-inflammasome inhibition (Su et al.,
2017). Indeed, NLRP3 may be involved in the pathophysiology of
depression (Alcocer-Gómez et al., 2014; 2016), supporting its role as
promising therapeutic target for depression.

A population-based cohort study found that sulfonylureas in
combination with metformin decrease the risk of affective disorders
in T2D patients (Wahlqvist et al., 2012). In contrast, high doses of
sulfonylureas were associated with higher risk of depression in a
recent population-based cohort and nested case-control study
(Wium-Andersen et al., 2022).

We found that biguanides, SGLT2 inhibitors and
thiazolidinediones are associated to antidepressant beneficial
effects, albeit the entity of this effect is not statistically significant
for all disproportionality scores, neither in the FAERS nor in
VigiBase.

Among the above-mentioned drug classes, metformin is one of
the most investigated antidiabetic drugs as potential adjuvant
therapy in depressed patients. Empirical insights showed that it
ameliorates stress-induced depression-like behaviours through the
enhancement of BDNF expression via AMPK/CREB-mediated
histone acetylation (Fang et al., 2020) and it has been shown to
elicit marked anti-inflammatory, antioxidant, and neuroprotective
activities and to improve memory and learning functions in rats
(Pintana et al., 2012; Shivavedi et al., 2017).

Recently, in a case–control study, metformin was a protective
factor against depression in elderly diabetic patients, as suggested by
the adjusted OR of 0.567 (95% CI: 0.323–0.997; p < 0.05) (Chen
et al., 2019). In older men with T2D and high frailty risk, metformin
was associated with a 15.6% decrease in depression (Wang et al.,
2017). In our FAERS analysis, among biguanides, metformin was
associated with the lowest occurrence of depression-like symptoms
compared to non-users of this medication, as confirmed by the two
statistically significant disproportionality scores EBGM [0.933
(0.896–0.972)] and ERAM [0.866 (0.831–0.901)], based on
Bayesian statistical methods and regression-based methodology,
respectively.

As a consequence of the high heterogeneity of previous studies
in terms of methodological approaches, it is not possible to directly
compare data from different scores; however, our findings support
all these previous encouraging results. On the other hand, it is worth
mentioning that a recent meta-analysis of clinical trials failed to find
an effect of metformin on depression risk, while suggesting a
potential role of pioglitazone (Moulton et al., 2018).

Among SGLT2 inhibitors, dapagliflozin was the drug associated
with the lowest occurrence of depression-like symptoms compared
to non-users of this drug, as confirmed by three statistically
significant disproportionality scores ROR [0.543 (0.304–0.971)],
EBGM [0.565 (0.343–0.888)] and ERAM [0.573 (0.331–0.870)],
from our FAERS analysis. To date, positive but very limited
evidence both on their potential neuroprotective effect and the
likely underlying mechanism was available for SGLT2 inhibitors
(Şahin et al., 2020). Studies have highlighted their antioxidant, anti-
inflammatory, and antiapoptotic mechanisms, regardless of their
glycaemic control benefits (Shaikh et al., 2016; Sa-Nguanmoo et al.,
2017; El-Sahar et al., 2020; Esterline et al., 2020;Wiciński et al., 2020;
Muhammad et al., 2021). Dapaglifozin attenuated depressive-like
behaviour of male rats in the forced swim test and was also found to
be comparable to imipramine in the treatment of mild-to-moderate
depression (Cam et al., 2019). In humans, these drugs improved the
quality of life of people with diabetes (maybe due to the weight loss
observed in the enrolled patients); however, no change in terms of
Pittsburgh Sleep Quality, and Beck Anxiety Inventory scores was
found.

4.1 Strengths and limitations

This is the first study aimed at providing a comprehensive
overview of the potential beneficial antidepressant effect of
antidiabetic agents in a high-scale population data from the two
largest spontaneous reporting system databases, i.e., FAERS and
VigiBase.
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Pharmacovigilance databases are commonly used to track
frequent adverse events; however, with a sufficient amount of
data, they may also be used to investigate the beneficial outcomes
through monitoring reductions in frequency of the related adverse
events (Cohen et al., 2017).

The spontaneously reported adverse drug events may serve as
useful indicators to predict new opportunities for drug repositioning,
making spontaneous reporting system databases valuable data sources
for driving clinical research (Pushpakom et al., 2019).

Growing number of evidence supports this innovative approach
based on the use of pharmacovigilance databases, especially FAERS
and VigiBase, to investigate promising new beneficial effects of
drugs in real-world clinical practice, in a variety of clinical
settings (e.g., psychiatry, neurology, cardiology) (Wang et al.,
2016; Cohen et al., 2017; Carnovale et al., 2018; 2019b; 2019a;
Horinouchi et al., 2018; Hosomi et al., 2018; Mazhar et al., 2019;
Chrétien et al., 2021).

Furthermore, as real-world data (RWD), including spontaneously
reported adverse events, refer to a large amount of clinical data
collected during the patient’s daily life, they can address intrinsic
limitations of traditional clinical trials, such as highly selected
populations, strict inclusion/exclusion criteria, small sample sizes,
short follow-up periods, with consequent lack of external validity.

Indeed, RWD are often used to focus on special populations who
are usually excluded from RCTs, such as patients receiving
polytherapy, children, pregnant women, and elderly people (Trifirò
et al., 2019); RWD are hence gaining increasing attention in the whole
drug life-cycle process, including regulatory decision-making. In our
study, the large set of data (we included two cohorts of 121,368 and
85,267 depressed patients experiencing therapy failure, from FAERS
and VigiBase, respectively) provided sufficient statistical power for the
analysis to generate hypotheses for unknown potential uses.

On the other hand, it is well known that the use of pharmacovigilance
databases has some intrinsic limitations: reportingmight be influenced by
factors such as notoriety bias, selection bias and under-reporting and
there is no certainty that the reported event was causally related due to the
suspect drug. Moreover, as these data sources are designed to report
adverse events, unintentional beneficial effects of the drug therapy could
not be recorded. Pharmacovigilance data cannot be eventually used to
calculate the incidence rates of events. In view of the above-mentioned
limitations of pharmacovigilance databases, it is worth mentioning that
RCTs are non-etheless the gold standard in evidence-based medicine for
demonstrating drug efficacy (Compher, 2010) and new clinical studies
specifically designed at investigating the role of antidiabetics in depressed
patients are needed.

5 Conclusion

All the antidiabetic drug classes investigated in our
pharmacoepidemiological study showed a potential beneficial
effect to depressed patients (in terms of a decreased occurrence
of therapy failure/depression-related symptoms), with a high
heterogeneity in terms of statistically significant
disproportionality scores. This comprehensive overview suggests
that some specific pharmacological agents, in particular, GLP-1
analogues might exert a more prominent beneficial and clinically
meaningful effects. Due to the insufficient therapeutic response of

patients to the available antidepressant medications, repositioning of
antidiabetic drugs might become a valuable new approach to
improve drug treatment in depression. In view of the nature of
this study, the result of this research is not an ultimate conclusion,
but a suggestion for further clinical research. Gold-standard RCTs
are warranted to confirm these encouraging results, albeit
preliminary, and properly characterize the topic.
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