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Abstract
Spectral densities encode the relevant information characterizing the system–environment
interaction in an open-quantum system problem. Such information is key to determining the
system’s dynamics. In this work, we leverage the potential of machine learning techniques to
reconstruct the features of the environment. Specifically, we show that the time evolution of a
system observable can be used by an artificial neural network to infer the main features of the
spectral density. In particular, for relevant examples of spin-boson models, we can classify with
high accuracy the Ohmicity parameter of the environment as either Ohmic, sub-Ohmic or
super-Ohmic, thereby distinguishing between different forms of dissipation.

1. Introduction

Recent progress in the field of quantum technologies has advanced our capabilities to control quantum
systems and exploit their non-classical properties. Yet, this task presents significant challenges. Quantum
systems are inherently open, as they inevitably interact with their surrounding environment [1, 2]. They are
thus susceptible to gain and losses, as well as to the genuine quantum phenomenon of decoherence [3–5],
which disrupts the phase coherence of superposition states, posing a major obstacle in preserving quantum
states [6, 7]. If we are to effectively devise strategies for mitigating adverse environmental influences on a
system, it is crucial to have a comprehensive understanding of the effects that need to be addressed when
facing open quantum dynamics. This, in turn, requires a full characterization of the mechanism governing
the system–environment interaction.

To address such challenge, here we tackle the problem of characterizing environmental effects on an open
quantum system harnessing recent advances in the field of Machine Learning (ML). The latter has opened up
new data-driven approaches, which have shown their effectiveness in various applications in the field of
quantum technologies [8]. Among those, some are very close to the spirit of this work. ML-based
methodologies have been applied to quantum tomography [9–11], quantum channel discrimination [12],
simulation of open quantum systems [13–16], as well as quantum control [17–19]. References [20, 21]
reported the deployment of deep-learning methods to the inference of photon correlation functions and
phonon blockade effects based on homodyne-detection schemes.

We focus on the typical open quantum system scenario, where we are able to effectively describe and
control the reduced system, as opposed to the infinitely many uncontrollable environmental degrees of
freedom which are responsible for dissipation and decoherence. In this setting, we focus on the interaction of
a given system with an external environment in terms of the Spectral Density (SD), which, by encoding full
information about the system–environment coupling, allows us to determine the two-time correlation
function of the environment. Having full knowledge of this quantity allows us to predict the temporal
behavior of an open quantum system without a full microscopic description of the environment.

The SD for a given system–environment interaction, however, is rarely directly available and challenging
to calculate from first principles. The form of a SD is at best phenomenologically inferred through empirical
data gathered from experimental observations, and at worst guessed using ad hoc assumptions, which might
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result in significant discrepancies between the predicted and actual dynamics of the system [22]. In this work,
we consider the case of a quantum system interacting with a bosonic thermal bath. Depending on the nature
of the system-bath interaction, the system dynamics can manifest as either pure dephasing or amplitude
damping [23–25]. The particular choice of the SD in this setting is responsible for possible memory effects.
On one hand, we can encounter a scenario where the information is monotonically flowing from the system
to the bath, i.e. the usual scenario characterizing quantumMarkovian processes [26, 27]. On the other hand,
some functional forms of the SD are suitable to model a physical situation in which the system, dynamically
interacting with its environment, can partially retrieve the information that was previously lost—these
processes are dubbed as non-Markovian instead [28, 29].

Prior works have studied the use of ML for noise characterization in open quantum systems. Various
methods have been explored, such as studying the noise in qubit systems using two-pulse echo decay
curves [30], and random pulse sequences that are applied to the qubit [31]. Additionally, other studies have
focused on constructing the power spectral density for ensembles of carbon impurities around a nitrogen
vacancy centre in diamond [32], and inferring the environment affecting superconducting qubits [33].

In this work, we show that an artificial Neural Network (NN) can be used to classify the SD characterizing
the dynamics of a system, based on its features. Previous research has examined the classification of aspects of
noise in open quantum systems. For instance, in [34] ML techniques were used to discern between
Markovian and non-Markovian noise. More pertinent to the matter at hand, aspects of the problem of
distinguishing between Ohmic, sub-Ohmic and super-Ohmic SDs have already been studied: in [35], a
scenario where a probe qubit is used to access a second inaccessible one is proposed to infer the Ohmicity
class by using NNs and leveraging the special features of quantum synchronization. In [36], a different use of
NNs was put forward as tomographic data at just two instants of time were used, rather than a time-series
approach. In contrast, this work takes a simpler approach by utilizing the time evolution of a system
observable for classification without the need for a probe system or tomographically complete information.
We focus on the case of a general Spin-Boson (SB) model to show that, even when the environment cannot
be exactly traced out to infer the reduced dynamics of a system, a NN can classify the SD with high accuracy.
Furthermore, we discuss the limitations imposed by the fluctuation of the parameters in the SD, the number
of sampled points in the time signals, and measurement sampling noise. Our study emphasizes the potential
of ML techniques to characterize environments with arbitrary SDs.

The remainder of this paper is structured as follows: in section 2 we provide an introduction to the
general setting under consideration, as well as the ML approach utilized. Specifically, we examine an
arbitrary system that is interacting with a bosonic environment and we give some background on the ML
model used, namely, NNs. Next, in section 3 we detail the physical models that are considered. We investigate
two SB models: in the first case, we are able to exactly derive the pure dephasing dynamics starting from the
full system-bath unitary evolution; in the second case, we work in the weak coupling limit to approximately
derive the reduced dynamics of the system. In both cases, the dynamics can feature non-Markovian effects,
depending on the SD we select. In section 4 we discuss the architecture of the NNs, along with a detailed
discussion of the results of training and testing for each model. Finally, we give our conclusive remarks and
discuss our future outlook in section 5.

2. General setting andmethods

Let us consider the general setting of an arbitrary system interacting with an environment which is
comprised of infinitely many bosonic modes, as shown in figure 1. This scenario reproduces the ubiquitous
Caldeira–Leggett model, which describes the motion of a quantum particle undergoing a Brownian
motion [37, 38]. The full (time-independent) Hamiltonian reads as

Ĥ= ĤS + ĤB + ĤI, (1)

where ĤS and ĤB are the Hamiltonian operators of the system and the environment, respectively. The
system–environment interaction term ĤI is expressed in the form

ĤI = X̂⊗ B̂, (2)

where X̂ is a generic system operator, while B̂ is an operator of the bath. We take the latter as

B̂=
∑
k

(
gkb̂
†
k + g∗k b̂k

)
, (3)

2
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Figure 1. Sketch of a generic open quantum system S interacting with a bosonic environment composed of infinitely many
harmonic oscillators labelled by the integer n. Each oscillator has frequency ωn and is coupled to the system at a rate gn.

where the coefficient gk accounts for the interaction strength between the kth mode of frequency ωk, while b̂
†
k

and b̂k are the creation and annihilation operators associated with it. The coupling coefficients enter in the
formal definition of the SD, i.e. J(ω) =

∑
k |gk|2δ (ω−ωk), the latter encoding all the information about the

system–environment interaction. Since we are interested in the typical irreversible open system scenario, we
will assume that the distribution of modes forms a continuum, so that the system dynamics does not display
recurrences [1, 39, 40]. In this limit, the SD appears in the expression for the correlation function of a
bosonic bath, defined as αβ(t)≡ ⟨B̂(t)B̂(0)⟩B, where B̂(t) is the bath operator in the interaction picture with
respect to the free Hamiltonian Ĥ0 = ĤS + ĤB. In appendix A, we show that if the environment is in a
thermal Gibbs state, the correlation function can also be expressed as

αβ (t)≡ ν (t)+ iµ(t) , (4)

where

[
ν (t)
µ(t)

]
=

∞̂

0

J(ω)

[
cos(ωt)coth

(
βω
2

)
− sin(ωt)

]
dω , (5)

with β = 1/T. Note that hereafter we will work in units such that h̄= 1 and kB = 1. The two functions ν(t)
and µ(t) are also referred to as noise and dissipation kernels, respectively: the latter is independent of the
temperature of the environment. The effective dynamics of the system, governed by a master equation,
crucially depends on the correlation function αβ(t), which represents the fingerprint of the environment.
The function αβ(t) is ultimately determined by the shape of the SD, which essentially contains all of the
information about the environment needed to solve the dynamics of the system, and, thus, obtain the time
evolution of any of its observables. The expectation value of a generic system observable at time t is indeed
given by

⟨Ô(t)⟩ ≡ TrSB
(
Ôe−i Ĥt ρ̂0SB e

i Ĥt
)
, (6)

where Ĥ is the system–environment Hamiltonian of equation (1), while the global initial state is factorized as
ρ̂0SB = ρ̂0 ⊗ ρ̂B, with ρ̂0 and ρ̂B being the initial system and environmental states, respectively. We assume the

environment to be given by a large bosonic thermal reservoir, i.e. ρ̂B = e−βĤB/ZB, where ZB ≡ trB(e−βĤB) is
the reservoir partition function. Under these hypotheses, it can be shown that the only environmental
quantity entering in the expression of ⟨Ô(t)⟩ is the SD J(ω).

Here we focus on special classes of SDs, which can be expressed as [38, 41]

J(ω) = ηω1−s
c ωsf(ω,ωc) , (7)

3
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Figure 2. Schematic of the setup: given the time evolution of an observable, denoted as ⟨Ôi (t)⟩, we compute the corresponding
Fourier coefficients {Xk}. Then, with the aim of determining which class of spectral density is most compatible with the observed
dynamics, we input the real and imaginary parts of the coefficients to a Neural Network. The outputs of the three artificial
neurons in the output layer are the probabilities that the input belongs to each of the classes.

where s> 0 is known as Ohmicity parameter, and η > 0 is the coupling strength between the system and the
environment. The constant ωc is the cut-off frequency, while f(ω,ωc) is the cut-off function, which ensures
that J(ω)→ 0 in the limit of large frequencies, i.e. ω →∞. In what follows we consider the exponential
cutoff, namely f(ω,ωc) = e−ω/ωc . Depending on the value of s, we model different system–environment
couplings, corresponding to various physical scenarios [38, 41, 42]. SDs with s= 1 (i.e. linear in the
frequency ω) are called Ohmic, while those for which s> 1 (s< 1) are known as super-Ohmic (sub-Ohmic).

In this work, we will use the tools provided by ML to classify the SD characterizing the
system–environment interaction. Specifically, we use an artificial NN that comprises many artificial
neurons—essentially a computational unit—arranged in a series of layers, as in figure 2 [8, 43]. Given a set of
inputs {xi}, each neuron computes the weighted sum

z=
∑
i

wi xi + b , (8)

with weights wi and a bias term b. A non-linear activation function f is then applied to the result z, yielding
the output of the neuron y= f(z). The activation function used in this work is the standard sigmoid
function, i.e. f(z) = 1/(1+ e−z). The aforementioned weights and biases are free parameters to be optimized.
In addition, the outputs from each layer are input to the next layer. In this way, the input data propagates
through the network, so that outputs from later layers become increasingly complex functions of the data.
The first layer receives the input data and passes it to the subsequent layer, without performing any
computation, while the final layer computes the final output of the network. Accordingly, we refer to these
layers as the input layer and the output layer, respectively. The layers between the input and output layers are
known as hidden layers. Note that we opt for the aforementioned architecture due to its success in
accomplishing the intended objective, without necessitating the use of a more complex architecture, such as a
recurrent neural network [43].

For the purpose of classifying the SD using ML techniques, let us suppose we have the time evolution of a
family of system observables ⟨Ôj(t)⟩ (for a set of indices j) as input. These time signals can be gathered as

4
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outcomes of an experiment carried out in a laboratory, or, as in our case, they can be generated by solving the
system dynamics (either exactly or approximately).

As each signal is a time series, we Fourier-decompose the signal. To this end, we compute the Fourier
coefficients as

Xj
k =

N−1∑
n=0

⟨Ôj (tn)⟩e−2π i kn/N , (9)

where N is the total number of time-steps and ⟨Ôj(tn)⟩ denotes the nth sampled point. We can reconstruct

the original signal by inverting equation (9), where, Xj
k ∈ C, and the sum runs over all the sampled points in

the time series, and k ∈ [0,N− 1]. We split each coefficient Xj
k into its real and imaginary parts and train the

network using the Fourier coefficients rather than the time series ⟨Ôj(t)⟩ directly. Using the resulting dataset,
we address the ternary classification problem of distinguishing between three different families (i.e. classes) of
SDs according to their value of the Ohmicity parameter [cf equation (7)]. In our case, the output layer of the
NN has three artificial neurons which compute weighted sums zj and apply the softmax activation function
[44], defined as

f
(
zj
)
=

ezj∑Nc

j=1 e
zj
, (10)

where Nc is the number of classes (in our case Nc = 3). It follows that the outputs of the network are the
predicted probabilities that the input belongs to a particular class. As is common for classification problems,
we use the categorical cross-entropy as a loss function. Given a dataset containing Nt trajectories, let yij
represent the true probability that the ith trajectory belongs to the jth class and let ŷij denote the predicted
probability of the same. Then the categorical cross-entropy is defined as [45]

L(ŷ,y) =− 1

Nt

Nt∑
i=1

Nc∑
j=1

yij log
(
ŷij
)
. (11)

The task of training the network reduces to an optimization problem where the aim is to find the set of
parameters that minimizes the loss function. A schematic view of the setup is shown in figure 2.

3. Generation of the dataset: spin-bosonmodels

Given the general framework outlined in section 2, we now identify the systems to scrutinize. We focus on
the dynamics of a Spin-Boson (SB) model consisting of a two-level system interacting with a bosonic bath.
Therefore, in equation (1), we choose

ĤS =
ω0

2
σ̂z , ĤB =

∑
k

ωkb̂
†
k b̂k (12)

with σ̂z being the z Pauli operator. The choice of the system–environment coupling Hamiltonian ĤI leads to
different physical scenarios, in general requiring different techniques to solve the dynamics. In section 3.1, we
introduce an exactly solvable SB model, where the full system–environment unitary dynamics can be
accessed, and the system dynamics is obtained by tracing out the environmental degrees of freedom. In
section 3.2 we then choose a different form of coupling, which requires further approximations to effectively
trace out the environment.

In both cases, the reduced dynamics of the system is governed by a master equation of the form

˙̂ρ= Ltρ̂ , (13)

where Lt is the Liouvillian (super)-operator accounting for both the unitary and non-unitary dynamics, and
ρ̂ is the reduced density operator. Given the initial state of the system ρ̂(0) = ρ̂0, equation (13) can be
formally solved yielding ρ̂= ρ̂(t) = eLttρ̂0 at any time t. It is thus immediate to obtain the expectation value

of a generic observable Ô, i.e. ⟨Ô(t)⟩ ≡ trS
(
Ôρ̂(t)

)
. Since we are considering a SB model, a natural choice of

the observable would be given by the Pauli operators, i.e. (Ô1, Ô2, Ô3) = (σ̂x, σ̂y, σ̂z) or a combination thereof.

5



Mach. Learn.: Sci. Technol. 5 (2024) 015043 J Barr et al

3.1. Pure dephasing
Let us consider the case in which X̂= σ̂z in equation (2). Owing to this choice, the interaction Hamiltonian
commutes with the system Hamiltonian and the populations of the reduced density matrix are left invariant
by the dynamics. In this case, we can access the full unitary evolution, and exactly trace out the
environmental degrees of freedom, thus yielding an analytical solution for the reduced dynamics [1, 46, 47].
In appendix B, we explicitly solve the dynamics under the standard assumption of an initially uncorrelated
system–environment state, where we assume the environment to be in a thermal Gibbs state. Working in the
interaction picture, the evolved reduced density matrix at time t can be written in the σ̂z basis {|0⟩, |1⟩} as

ρ̂(t) =

(
ρ000 ρ001e

−Γ(t)

ρ0∗01 e
−Γ(t) 1− ρ000

)
, (14)

with the decoherence function

Γ(t) = 4

ˆ ∞
0

dωJ(ω)coth

(
βω

2

)
1− cos(ωt)

ω2
. (15)

From equation (14) we can easily deduce that the interaction with the environment induces pure dephasing
in the σ̂z basis, with no dissipation (as deduced by comparing equation (15) with equation (5)). Moreover, it
is worth emphasizing that there might be choices of the SD leading to negative values of Γ(t). In such
intervals of time, the system re-coheres as a result of (non-Markovian) memory effects of the dynamics [48].

3.2. Amplitude damping
Alternatively, we can turn to a set-up beyond pure dephasing, just by choosing X̂=−σ̂x/2 in the interaction
Hamiltonian of equation (2). Unlike the case discussed in section 3.1, the Hamiltonian does not exhibit any
explicit symmetry, therefore we are not able to provide an exact solution for the dynamics. We can
nevertheless effectively solve the dynamics, provided that we rely on further assumptions. Starting from an
initial uncorrelated state, we can derive a master equation in the weak coupling regime, where we are still
able to obtain non-Markovian effects. As outlined in the appendix C, we can derive a second-order
approximated master equation that is local in time [1, 49, 50] and can be written in terms of dynamical

equations for the components of the Bloch vector ⟨σ⃗(t)⟩=
(
⟨σ̂x(t)⟩,⟨σ̂y(t)⟩,⟨σ̂z(t)⟩

)T
, with ⟨σ̂i ⟩= trS(σ̂i ρ̂).

These equations can be cast in the form

d⟨σ⃗ (t)⟩
dt

= A(t)⟨σ⃗ (t)⟩+ b⃗(t) (16)

with b⃗(t) = (0, 0, bz(t))
T and bz(t) =

´ t
0 dsµ(s) sin(ω0s). We have also introduced the matrix

A(t) =

 0 −ω0 0
ω0 + ayx (t) azz (t) 0

0 0 azz (t)

 (17)

with the time-dependent entries

ayx (t) =

ˆ t

0
dsν (s) sin(ω0s) , (18)

azz (t) =−
ˆ t

0
dsν (s)cos(ω0s) . (19)

The noise and dissipation kernels ν(t) and µ(t) are defined in equation (5).

4. Analysis and results

In this section, we present the results of our numerical experiments. We consider a two-level system, whose
open dynamics depends on the choice of the coupling between the system and the bosonic environment, as
discussed in section 3. For a given initial state, we generate a set of curves reproducing the time evolution of
the expectation value of a system observable, i.e. ⟨Ô(t)⟩. Each signal is sampled at N= 400 successive and
equally spaced points over a certain time interval [tmin, tmax], to ensure a sufficient resolution of the dynamics.
As discussed in section 2, instead of directly using the time series, we input the 2N real and imaginary parts
of the Fourier coefficients Xk. For this reason, we build the input layer with 2N input neurons. The NN for
each model consists of the input layer followed by 2 hidden layers where the first hidden layer comprises 250

6
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neurons, and the second comprises 80 neurons. The output layer, instead, is made of 3 neurons, which
matches the number of classes (Ohmic, sub-Ohmic, super-Ohmic). The choice of network architecture was
iteratively refined, adding layers and neurons until the network achieved a high accuracy without overfitting.
The code employed for data generation, the datasets, and the code utilized for subsequent analysis are
available in the following GitHub respository [51].

In order to evaluate the performance of the NN, we use the classification accuracy which is defined as the
percentage of trajectories that are classified correctly. We generate a training dataset containing NTrain

trajectories which is used to train the model, a validation dataset containing NValid trajectories which is used
to assess the performance during training, and a test dataset containing NTest trajectories which is used to
assess the final accuracy of the network. We optimize the NNs using whole batch gradient descent and the
Adam optimizer with a learning rate of 1× 10−4.

4.1. Pure dephasing
We consider the evolution of the pure dephasing model introduced in section 3.1. We solve the system
dynamics choosing the initial state ρ̂0 = |+⟩⟨+|, with |+⟩= (|0⟩+ |1⟩)/

√
2, while—without loss of

generality—we keep the thermal bath at zero temperature, i.e. β →∞. With this choice, we obtain the
expectation value ⟨σ̂x(t)⟩ within the time interval t ∈ [0,10]. It is worth noting that alternative choices for the
initial state and the observable can be made, however, it should be recognized that, within the context of the
pure dephasing model, the time evolution of ⟨σ̂z(t)⟩ will always be trivial. Moreover, should the initial state
possess coherences equal to zero, the time evolution of the density matrix, and by extension any observables,
will be trivial as well. As input to the NN we use the real and imaginary components of the Fourier
coefficients obtained using equation (9). We generate a training, validation, and test set of size
NTrain/2= NValid = NTest = 2400. The number of trajectories in the Ohmic, sub-Ohmic and super-Ohmic
classes are equal in all datasets.

We assess the performance of the NN in two scenarios: the first being where ωc and η are fixed, and the
second being where they vary. In the first scenario, we consider the case where η= 0.25, ωc = 0.5, while the
only parameter that varies is s. At first, we want to test how the model performs when the classes are easy to
differentiate. To that end, we consider trajectories with s ∈ (0,0.5] if the SD is sub-Ohmic and s ∈ [1.5,4] if it
is super-Ohmic. If the SD is Ohmic then s= 1. In figure 3(a) a subset of trajectories from the resulting
training set are plotted where the green curves correspond to sub-Ohmic dissipation, while the yellow and
blue curves are trajectories characterized by Ohmic and super-Ohmic dissipation, respectively. Given the
substantial separation in the permissible values for s across the different classes, we expect that the
performance of the NN will be high. In figure 3(a), it is evident that the classes are easily distinguishable due
to distinct characteristics exhibited by each of them. Specifically, the super-Ohmic curves exhibit the steepest
initial descent. In addition, while the sub-Ohmic and Ohmic curves show a comparable initial rate of
descent, their oscillatory patterns differ. Oscillations are exhibited by all three classes, but the amplitude of
oscillation for the sub-Ohmic curves appears to reduce more rapidly than that of the Ohmic or super-Ohmic
curves as time grows. Confirming our expectation, the accuracy of the network evaluated on both the
training and the test set reaches 100% after≈80 training iterations.

We then make the task a bit more difficult for the network by allowing s ∈ (0,1) for the sub-Ohmic
dissipation and s ∈ (1,4] for the super-Ohmic dissipation. We anticipate that the task will be more difficult in
this scenario due to the reduced separation in the allowed values for s across the classes. This is reflected in
the resulting training trajectories, a subset of which are plotted in figure 3(b), where we observe that the
super-Ohmic curves maintain a more pronounced initial descent relative to the Ohmic and sub-Ohmic
curves. However, there are instances where the oscillation amplitudes between the classes are similar. The
final training accuracy of the network in this case reaches 99.31% after around 5000 training iterations, while
the final test accuracy reaches 99.50%.

Next, to challenge the NN further, we consider the second scenario where we let η and ωc vary: the idea is
to assess the performance as we increase the upper bounds of the intervals from which they are sampled. We
let s ∈ (0,1) for the sub-Ohmic spectral densities and s ∈ (1,4] for the super-Ohmic spectral densities.
Initially, we set both η and ωc equal to 0.25, then we let them vary into the interval [0.25,0.45]. We increase
the upper bound in increments of 0.2 until the interval becomes [0.25,2.05]. Figure 3(c) shows some
example trajectories from the training set for η = ωc = 0.25, while figure 3(d) shows some for
η,ωc ∈ [0.25,2.05]. From figure 3(c), we can observe that the scenario closely resembles that depicted in
figure 3(b). In particular, the initial decay rates of the super-Ohmic curves are larger than those
corresponding to the Ohmic or sub-Ohmic curves. However, the oscillation amplitudes across the three
classes are comparable in some cases. In figure 3(d), it is evident that there is considerable overlap both in the
initial decay rates and the amplitudes of oscillation between the three classes, indicating that the differences
between the behaviors of the classes are less pronounced and that the classification task will be significantly
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Figure 3. Pure dephasing model: some of the curves from the datasets used to train the NN. Each curve represents the time
evolution of the observable ⟨σ̂x(t)⟩ for the initial state ρ̂0 = |+⟩⟨+|, with β →∞. The curves shown in panels (a) and (b) are
generated by choosing η= 0.25 and ωc = 0.5. In panel (a) we have taken s ∈ (0,0.5] (s ∈ [1.5,4]) if the SD is sub-Ohmic
(super-Ohmic). The curves in panels (b)–(d) are generated by choosing s ∈ (0,1) (s ∈ (1,4]) if the SD is sub-Ohmic
(super-Ohmic). In panel (c) we have taken η = ωc = 0.25, whereas η,ωc ∈ [0.25,2.05] in panel (d). The green curves in each
panel correspond to sub-Ohmic dissipation while the yellow and blue correspond to Ohmic and super-Ohmic dissipation,
respectively.

Figure 4. Pure dephasing model: the classification accuracy against the length of the interval from which η and ωc are sampled.

more difficult. The classification results after 2× 104 training iterations are shown in figure 4 where the blue
curve is the accuracy evaluated on the training set and the green curve is the accuracy evaluated on the test
set. As expected, we can see that the accuracy decreases as we consider larger intervals η and ωc. This is
indeed the case, as taking larger intervals essentially increases the amount of noise in the dataset. It is worth
noting that the accuracy may improve with larger datasets or more training iterations.

4.1.1. Measurement sampling noise
The accurate measurement and classification of experimental expectation values are inherently impacted by
various sources of noise. One of the predominant ones is sampling noise, which arises due to the finite
number of measurement samples that one can realistically acquire experimentally. In this section, we analyze
the impact that sampling noise has on the NN, with the aim of providing a deeper insight into the
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Figure 5. Pure dephasing model: the training and test accuracy of the NN in relation to the standard deviation σ of the artificial
noise. Panels (a), (b) show results for datasets with η= 0.25 and ωc = 0.5. In panel (a) we have s ∈ (0,0.5] for sub-Ohmic SDs
and s ∈ [1.5,4] for super-Ohmic SDs. The datasets in panels (b)–(d) are characterized by s ∈ (0,1) for sub-Ohmic SDs and
s ∈ (1,4] for super-Ohmic SDs. In panel (c) the parameters are set as η = ωc = 0.25, whereas in panel (d) we have
η,ωc ∈ [0.25,2.05]. The blue dashed lines represent the training accuracy, while the green solid lines show the test accuracy.

performance of the model under realistic conditions. In our approach, we artificially introduce noise into the
trajectories by adding a random value to each time point. Such value is drawn from a normal distribution
with zero mean and a given standard deviation, σ.

We assess how the performance of the NN varies with σ in the same two scenarios as before: firstly, we
hold both η= 0.25 and ωc = 0.5 constant. For the dataset with clear separation in the allowed values of s
among classes [s ∈ (0,0.5) for a sub-Ohmic SD; s ∈ [1.5,4] for a super-Ohmic one], the results after 103

training iterations are shown in figure 5(a). The training accuracy remains consistently close to 100% for all
of the considered σ values. This suggests that the NN can learn from the training data well, regardless of the
magnitude of the noise that is introduced. However, the test accuracy decreases from 99.58% for σ= 0.1 to
61.33% for σ= 1, thus indicating that the capacity of the model to generalize to unseen data diminishes as
the noise intensity increases.

For the dataset with η= 0.25, ωc = 0.5 and s ∈ (0,1)—for a sub-Ohmic SD—and s ∈ (1,4]—for a
super-Ohmic one—the results after 103 training iterations are shown in figure 5(b). Mirroring the trends
observed for the preceding dataset, the training accuracy remains notably high and close to 100% for the
range of σ examined. On the other hand, the test accuracy starts at 96.17% for σ= 0.01 and decreases to
84.21% for σ= 0.19. Therefore, relative to the previously examined case, the NNs performance with this
dataset exhibits a heightened susceptibility to noise.

We now redirect our attention to the case where η and ωc vary. To begin with, we analyze the dataset
corresponding to the shortest interval length in figure 4 [where s ∈ (0,1) if the SD is sub-Ohmic and
s ∈ (1,4] if it is super-Ohmic] with η = ωc = 0.25. The results of this analysis after 104 training iterations,
shown in figure 5(c), closely resemble those in figure 5(b), albeit with a noticeable decrease in performance.
The training accuracy remains at 100% while the test accuracy starts at 95.08% for σ= 0.01 and decreases to
83.63% for σ= 0.1. Lastly, we turn our attention to the dataset corresponding to the longest interval length
in figure 4. The results after 2× 104 training iterations are shown in figure 5(d). While the conditions for s
are consistent with those defined for the shortest interval length, η and ωc vary into the interval [0.25,2.05].
The training accuracy for this dataset starts at 94.33% for σ= 0.001 and exhibits minor fluctuations across
the considered σ range but remains quite close to 100%. Meanwhile, the test accuracy begins at 86.67% for
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Figure 6. Amplitude damping model: some example curves from the training set. Each curve represents the time evolution of the
observable ⟨σ̂x(t)⟩ for the initial state ρ̂0 = |+⟩⟨+|, where β= 0.1, η ∈ (0,0.2], ωc ∈ [0.1,2]. We choose s ∈ (1,2] if the spectral
density is super-Ohmic, and s ∈ [0.3,1) if the spectral density is sub-Ohmic. The green curves correspond to sub-Ohmic
dissipation while the yellow and blue correspond to Ohmic and super-Ohmic dissipation, respectively.

σ= 0.001 and drops to 64.63% at σ= 0.01. This dataset exhibits the greatest sensitivity to noise, leading to
the lowest performance metrics. Moreover, the results emphasize the fact that despite the NNs ability to learn
from training data, increasing noise levels hamper its generalization to previously unseen data.

4.2. Amplitude damping
We shall now analyze the amplitude damping model detailed in section 3.2. We choose the initial state
ρ̂0 = |+⟩⟨+|, the bare frequency of the oscillator ω0 = 1, while we keep the environmental inverse
temperature β= 0.1. We subsequently solve for the dynamics of the system and determine the expectation
value ⟨σ̂x(t)⟩ within the time interval t ∈ [0,10]. As for the previous model, we use the real and imaginary
components of the Fourier coefficients obtained through equation (9) as input to the NN. We let η ∈ (0,0.2],
ωc ∈ [0.1,2]. In addition, we take s ∈ (1,2] [s ∈ [0.3,1)] if the SD is super-Ohmic [sub-Ohmic] and s= 1 if
the SD is Ohmic. We generate a training, validation, and test set such that NTrain = 1500, and
NValid = NTest = 300. In all datasets, the Ohmic, sub-Ohmic and super-Ohmic classes have an equal number
of trajectories. Figure 6 shows some of the curves from the resulting training set where, as before, the green
curves represent sub-Ohmic dissipation while the yellow and blue curves correspond to trajectories
characterized by Ohmic and super-Ohmic dissipation, respectively. The final training accuracy of the
network in this case reaches 97.93% after 104 training iterations while the test accuracy is significantly lower
and reaches 93.00%.

Firstly, we would like to assess the number of time-points required to attain a high level of accuracy. It
should be noted that it is generally advisable to avoid having highly correlated features in a dataset, whose
linear dependence implies that the value of one can be derived from that of the other [44]. Hence, mutually
correlated features convey redundant information to the model since each feature provides little or no
additional information beyond what the other features already capture. Including all of the features will not
improve the ability of the model to discriminate, but will increase the complexity of the algorithm, thus
increasing the computational cost.

To this end, we introduce the Pearson correlation coefficient, which is a statistical measure of linear
correlation between two variables [52, 53]. It ranges from a value of−1, indicating perfect anti-correlations,
to 1, when the variables are perfectly correlated. A value of 0 indicates that there is no linear relationship
between the two variables. Let ⟨σ̂x⟩in denote the nth time-point of the ith trajectory in a given dataset. Then
the Pearson correlation coefficient between the nth andmth time-points, denoted as Cnm, is given by the
formula

Cnm ≡
∑N

i=1∆⟨σ̂x⟩in ∆⟨σ̂x⟩im√∑N
i=1 (∆⟨σ̂x⟩in)

2
√∑N

i=1 (∆⟨σ̂x⟩im)
2
, (20)

where∆⟨σ̂x⟩ij ≡ ⟨σ̂x⟩ij −⟨σ̂x⟩j, with ⟨σx⟩n the average value of the nth time step, and N the total number of
trajectories in the dataset. We calculate the Pearson correlation coefficient between each time step in our
training set and generate a correlation matrix, C, whose entries quantify the correlation between time-points.
The resulting correlation heatmap, a graphical representation of the correlation matrix, is shown in figure 7.
From the heatmap, it can be observed that there is a high degree of correlation between adjacent and
near-adjacent time points.
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Figure 7. Amplitude damping model: The correlation heatmap for the entries Cij of the correlation matrix C, where Cij is the
Pearson Correlation coefficient between the ith and jth time-point in the training set [cf equation (20)].

To address this issue, a common approach is to perform feature selection, identifying a subset of features
that are the most informative and non-redundant. Retaining only one of two correlated features may
expedite the learning process, without compromising the accuracy of the model. While we ideally want to
avoid correlation between the features in a dataset, it is preferable to retain features which are correlated with
the dependent variable [54]. Correlations make it possible to use the value of one variable to predict the
value of another, meaning that features which are correlated with the output are predictive of the output.

Note that the Pearson correlation coefficient is only suitable for measuring the correlation between two
continuous variables. As, in our case, the dependent variable consists of discrete labels, we can instead
determine the degree of correlation between a feature and the dependent variable by examining whether the
variance of the feature can be explained by the dependent variable. To do this, we group the feature into
classes based on the discrete labels, compute the variance of each class, and calculate the difference between
the mean of the resulting variances and the overall variance of the feature. If the mean of the class variances is
significantly lower than the overall variance, this suggests that the feature and the dependent variable are
correlated.

A possible strategy for performing feature selection and identifying the most salient features for learning
is thus to sort the entries in the correlation matrix into descending order. Then, starting from the highest
correlation, one can remove the contributing feature that exhibits the lowest correlation with the dependent
variable. Using the above strategy, we can obtain a ranking of the features based on their importance and
determine the order in which to remove features if we are to maintain a high classification accuracy. In this
scenario, given that the time intervals between points may not be uniformly distributed, it becomes necessary
to compute the Fourier coefficients using the non-uniform discrete Fourier transform [55]

Xk =
N−1∑
n=0

⟨σ̂x (tn)⟩e−2π i kpn , (21)

where pn are the non-uniform time points suitably scaled to fall between 0 and 1, while ⟨σ̂x(tn)⟩ denotes the
nth sampled point in a given trajectory. As for the discrete Fourier transform, k is the frequency which is an
integer number between 0 and N − 1. Note that if pn = n/N, then this equation reduces to the discrete
Fourier transform shown in equation (9).

We compare the results obtained using the proposed feature selection algorithm with the results obtained
by selecting time points uniformly, i.e. choosing time points that are evenly spaced throughout the datasets.
For example, we might select the first in every 5 points or the first in every 100. Figure 8 shows a plot of the
test accuracy against the number of selected time points for the two different selection methods. The blue
curve show the results obtained using uniform sampling, while the green curve shows the results obtained
using the proposed feature selection algorithm. Firstly, the plot shows that the test accuracy remains
consistently high until the number of time points is reduced to approximately 20. Beyond this point, a sharp
decline in the accuracy is observed, as shown in the inset of figure 8. Analysis of the plot indicates that the
performance of the two time point selection methods is comparable across different ranges of selected time
points. Specifically, when we take a number of time points between≈250 and≈400, there is little difference
between the accuracy obtained using uniform sampling and the feature selection algorithm. However, in the
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Figure 8. Amplitude damping model: the test accuracy of the NN against the number of time points when the time points are
selected uniformly or using the proposed feature selection method described in the main text.

Figure 9. Amplitude damping model: The training and test accuracy of the NN against the standard deviation, σ, of the artificial
noise.

range of approximately 40 to 250 time points, the feature selection algorithm shows slightly better results
compared to uniform sampling. Lastly, taking less than≈40 points, the test accuracy fluctuates, but we can
conclude that the performance of both methods is similar.

For the sake of completeness, we also explored various other methods for feature selection. For instance,
after grouping each feature according to the discrete labels, we used one-way-analysis-of-variance (ANOVA)
to determine if there were statistically significant differences between the three groups [56]. We also
considered the ratio of the mean of the variances of the groups and the overall variance, as opposed to the
difference. Lastly, we attempted to assess the importance of each feature using principal component analysis.
Specifically, we examined the degree to which each feature contributed to the principal components, as a
large contribution to the principal components suggests that a feature is important in explaining the overall
variability of the data [57]. We observed that none of the aforementioned methods outperformed the
correlation based feature selection algorithm employed in figure 8.

4.2.1. Measurement sampling noise
In this section, similar to the analysis conducted for the pure dephasing model, we assess how the NN
performs when subject to realistic conditions. Due to the presence of noise sources such as sampling noise,
experimentally obtained expectation values are seldom completely accurate, as it is only feasible to collect a
finite number of measurement samples experimentally. Given this, we aim to investigate how the
performance of the NN is affected by these realistic challenges. To this end, we simulate the impact of
sampling noise by incorporating artificial noise into the trajectories. We use the entire trajectory, consisting
of 400 time points, add a random value drawn from a normal distribution with zero mean and a standard
deviation σ to each point, and then assess the performance of the NN as σ increases.

The results of our analysis, after 104 training iterations are shown in figure 9, where the blue dashed line
represents the accuracy evaluated on the training set, and the green solid line corresponds to the accuracy
evaluated on the test set. We observe that the training accuracy remains consistently high, at around 100%. In
contrast, the test accuracy starts off at 90.95% when σ= 0.001 and experiences a decline, dropping to 69.05%
as the value of σ increases to 0.01. Consequently, our observations are consistent with those obtained for the
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pure dephasing model. The model is able to effectively learn from the training data, and maintain a high
training accuracy, regardless of the noise levels. However, its capacity to generalize to new, unseen data
deteriorates.

5. Conclusions

We have shown that, in a standard open system scenario, a NN can perform SD-classification with high
accuracy. First, we have considered an exactly solvable, pure-dephasing model, and assessed the performance
of the NN as a classifier, highlighting the limiting role played by the fluctuations of the SD parameters. We
have then considered a SB model that, under a number of reasonable approximations, results in a master
equation accounting for energy losses and decoherence. We observed that, despite the approximations being
invoked, the NN can perform the SD-classification task with high accuracy. Furthermore, we thoroughly
discussed the interplay between high accuracy in the classification task and the number of sampled points for
the system observable. Lastly, we investigated how the NN’s performance for both models withstands the
challenge of measurement sampling noise, thus providing insights into its robustness under realistic
conditions.

The methodology introduced in this paper, as well as the case studies analyzed therein, highlight the
capability of ML techniques to characterize environments with arbitrary SDs, thus embodying a reliable tool
for environment characterization and the provision of useful information for control and process diagnosis.
This paves the way to, and leaves great hopes for, the full characterization of an unknown SD through, for
instance, regression of the parameters rather than classification. We also stress that the method put forward
here does not rely critically on how the information on the dynamics is specifically acquired. In this sense, we
expect the method to maintain effectiveness even when considering classes of SDs leading to long-lived
correlations that, in turn, would hinder the direct derivation of master equations in Lindblad-like form. In
such cases, one should rely on more sophisticated simulation techniques—such as Hierarchical equation Of
Motion (HEOM) [58, 59], Time-Evolving Matrix Product Operators (TEMPO) [60], or Time-Evolving
Density with Orthogonal Polynomials Algorithm (TEDOPA) [61–63], just to name a few. The combinations
of one of these methods with the ML will help achieving the successful characterization and control of the
environment affecting a given open system.
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Appendix A. The correlation function of a Bosonic bath

Here we explicitly derive the correlation function for an arbitrary quantum system that is interacting with an
environment which is made up of infinitely many independent harmonic oscillators, i.e. equations (4)
and (5) of the main text. Given an interaction Hamiltonian in the form of equation (2) and the bath operator
B̂ given by equation (3), we can compute the correlation function which is defined as

αβ (t) = ⟨B̂(t) B̂(0)⟩B = trB
(
B̂(t) B̂(0) ρ̂B

)
. (A1)

We now move to the interaction picture via the relation B̂(t) = eitĤB B̂e−itĤB , where ĤB =
∑

kωkb̂
†
k b̂k is the

Hamiltonian of a set of independent harmonic oscillators. Therefore, we have

B̂(t) =
∑
k

(
gkb̂
†
ke

iωkt + g∗k b̂ke
−iωkt

)
, (A2)
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B̂(0) =
∑
k

(
gkb̂
†
k + g∗k b̂k

)
. (A3)

Thus, the expression for the correlation function reads

⟨B̂(t) B̂(0)⟩B =
∑
k

|gk|2
(
⟨b̂†k b̂k⟩B e

iωkt + ⟨b̂kb̂†k⟩B e
−iωkt

)
, (A4)

where we have utilized the fact that ⟨b̂kb̂l⟩B = ⟨b̂†k b̂
†
l ⟩B = 0 and that ⟨b̂kb̂†l ⟩B and ⟨b̂†k b̂l⟩B are non-zero if and

only if k= l. If we further assume that the environment is thermal equilibrium at a temperature T, then ρ̂B is
represented by a thermal Gibbs state of the form

ρ̂B =
e−βĤB

ZB
, (A5)

where ZB is the reservoir partition function. As a result, we find that the quantity ⟨b̂†k b̂k⟩B = Nk = (eβωk

−1)−1 is the mean occupation number of the kth mode of the environment. Finally, assuming that the bath
modes form a continuum, we obtain the following expression for the correlation function:

αβ (t) =

ˆ ∞
0

dω J(ω)

[
coth

(
βω

2

)
cos(ωt)−i sin(ωt)

]
(A6)

which can be recast in the form of equations (4) and (5).

Appendix B. SBmodel (pure dephasing)

We now derive the equations governing the dynamics of the system described in section 3.1. We work in the
interaction picture and begin by deriving an expression for the unitary evolution operator Û(t) which acts on
the composite system. Let us first notice that the two-time commutator of the interaction Hamiltonian is
non-zero, i.e. [

ĤI (t) ,ĤI (t
′)
]
=−2i 1S ⊗

∑
k

|gk|2 sin(ωk (t− t ′)) , (B1)

where 1S is the identity operator acting on the system only. The latter is useful to evaluate the time evolution
operators as

Û(t) = T← exp

[
−i

ˆ t

0
ĤI (τ) dτ

]
, (B2)

where T← denotes the time ordering operator. Following the ideas in [64] (see also [65]), we can formally
discretize the integral in the exponent of the unitary evolution operator and denoteHn =−i ĤI(ndt), where
dt= t/N. Taking the limit as N→∞ we obtain

Û(t) = T← lim
dt→0

exp

[
N∑

n=1

Hn dt

]
. (B3)

We use a generalization of the Baker–Campbell–Hausdorff formula to calculate the exponential

e
∑N

n=1Hn =

(
N∏

n=1

eHn

)(∏
n<m

e−
1
2 [Hn,Hm]

)
, (B4)

which holds since the second order commutators vanish. The unitary evolution operator becomes

Ũ(t) = lim
dt→0

∏
n<m

e−
1
2 [Hn,Hm](dt)

2∏
n

eHndt , (B5)

where we have noticed that the commutator in the first exponent is just a complex number, so we may omit
the time ordering operator. Recombining the exponentials of the operators we find

Ũ(t) = lim
dt→0

e−
1
2

∑
n<m[Hn,Hm](dt)

2

e
∑

nHndt = e
1
2

´ t
0 dt1
´ t1
0 dt2[ĤI(t2),ĤI(t1)]e−i

´ t
0 ĤI(τ)dτ , (B6)
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where the first exponent—as a consequence of equation (B1)—only applies a global phase to the qubit. As a
result, the dynamics of the system are solely governed by the operator

e−i
´ t
0 ĤI(τ)dτ = eσ̂z⊗

∑
k(αk(t)b̂

†
k−α

∗
k (t)b̂k) ≡ eσ̂z⊗Â(t) , (B7)

with αk(t) = gk
(
1− eiωkt

)
/ωk. It is convenient to rewrite this operator in the form:

eσ̂z⊗Â(t) = I⊗
∞∑
n=0

Â(t)2n

2n!
+ σ̂z ⊗

∞∑
n=1

Â(t)2n+1

(2n+ 1)!
(B8)

= I⊗ cosh
(
Â(t)

)
+ σ̂z ⊗ sinh

(
Â(t)

)
. (B9)

The matrix elements of the reduced density matrix are determined by explicitly tracing out the
environmental degrees of freedom, i.e.

ρ̂ij (t) = ⟨i| trB
{
Û(t) ρ̂0 ⊗ ρ̂BÛ

† (t)
}
|j⟩ . (B10)

It follows that the coherences of the reduced density matrix evolve as

ρ̂01 (t) = ρ̂001

⟨
e2Â(t)

⟩
, (B11)

with ρ̂10(t) = ρ̂∗01(t). Resorting to the identity ⟨eÂ⟩= e⟨Â⟩
2/2, where the operator Â is a linear combination of

creation and annihilation operators [66], we find that

⟨e2Â(t)⟩= e−2
∑

k |αk(t)|2⟨bkb†k +b†k bk⟩ = e−2
∑

k |αk(t)|2(2Nk+1) . (B12)

Finally, substituting the expressions for αk and the mean occupation number of the kth mode of the
environment, Nk, we obtain

⟨e2Â(t)⟩= e−Γ(t) , (B13)

where we have assumed the bath modes form a continuum. The function Γ(t) is the decoherence function
given in equation (15) of the main text.

Appendix C. SBmodel (amplitude damping)

Here, we derive the equations governing the dynamics of the system described in section 3.2. The
second-order generator of the TCL master equation leads to the following equation for the reduced density
matrix in the interaction picture ˜̂ρ [1, 2]:

d ˜̂ρ

dt
=−
ˆ t

0
ds trB

[
ĤI (t) ,

[
ĤI (s) , ˜̂ρ⊗ ρ̂B

]]
, (C1)

where ˜̂ρ and ĤI(t) =−σ̂x(t)⊗ B̂(t)/2 are expressed in the interaction picture with respect to the free
Hamiltonian HS. The form of the bath operator B̂(t) is given by equation (A2). By explicitly performing the
calculations, changing the integration variable as s→ t− s, and moving to the Schrödinger picture, we are
able to rewrite such master equation as

dρ̂

dt
=−i

[
ĤS, ρ̂

]
− 1

4

ˆ t

0
ds (ν (s) [σ̂x, [σ̂x (−s) , ρ̂]] + iη (s) [σ̂x,{σ̂x (−s) , ρ̂}]) , (C2)

where ν(s) and η(s) are respectively the real and imaginary parts of the correlation function given in
equation (5) of the main text. The corresponding dynamical equations for the components of the Bloch
vector ⟨σj(t)⟩= trS

[
σjρ(t)

]
read

d⟨σ̂x (t)⟩
dt

=−ω0⟨σ̂y (t)⟩ , (C3)

d⟨σ̂y (t)⟩
dt

=
(
ω0 + ayx (t)

)
⟨σ̂x (t)⟩+ ayy (t)⟨σ̂y (t)⟩ , (C4)

d⟨σ̂z (t)⟩
dt

= azz (t)⟨σ̂z (t)⟩+ bz (t) , (C5)

where the time-dependent coefficients are defined in the main text [cf equations (18) and (19)]. This set of
coupled differential equations can be recast in the matrix form of equations (16) and (17).
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