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Simple Summary: The secretome of adipose-derived stem cells (ADSCs) holds significant promise
for oral and maxillofacial medicine due to its rich composition of growth factors, cytokines, and
other soluble or vesicle-embedded bioactive mediators that promote tissue regeneration and im-
munomodulation. Potential applications include enhancing wound healing, reducing inflammation,
and stimulating the regeneration of hard and soft tissues. This could lead to improved outcomes
in procedures such as bone grafting, soft tissue reconstruction, and the treatment of oral and facial
defects. By harnessing the regenerative properties of ADSC secretome, clinicians may be able to
achieve more effective tissue repair, ultimately benefiting patient recovery and quality of life.

Abstract: The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodula-
tory and regenerative properties, yet its potential in maxillofacial medicine remains largely under-
explored. This review takes a composition-driven approach, beginning with a list of chemokines,
cytokines, receptors, and inflammatory and growth factors quantified in the ADSC secretome to infer
its potential applications in this medical field. First, a review of the literature confirmed the presence
of 107 bioactive factors in the secretome of ADSCs or other types of mesenchymal stem cells. This
list was then analyzed using the Search Tool for Retrieval of Interacting Genes/Proteins (STRING)
software, revealing 844 enriched biological processes. From these, key processes were categorized into
three major clinical application areas: immunoregulation (73 factors), bone regeneration (13 factors),
and wound healing and soft tissue regeneration (27 factors), with several factors relevant to more
than one area. The most relevant molecules were discussed in the context of existing literature to
explore their therapeutic potential based on available evidence. Among these, TGFB1, IL10, and
CSF2 have been shown to modulate immune and inflammatory responses, while OPG, IL6, HGF, and
TIMP1 contribute to bone regeneration and tissue repair. Although the ADSC secretome holds great
promise in oral and maxillofacial medicine, further research is needed to optimize its application and
validate its clinical efficacy.

Keywords: adipose-derived stem cells; secretome; immunomodulation; regeneration; wound healing;
maxillofacial medicine

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent stromal cells that have gained sig-
nificant attention in regenerative medicine due to their ability to modulate the immune
system and orchestrate tissue regeneration through paracrine signaling, cell-cell contact,
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and differentiation [1,2]. Among the different harvesting sources, adipose tissue is con-
sidered particularly convenient thanks to its abundance, easy accessibility with minor
discomfort at the donor site, and higher yield of MSCs compared to other tissues, such as
bone marrow [3]. Moreover, it represents a common waste tissue from procedures such
as aesthetic surgery (e.g., liposuction, buccal fat removal) and bariatric surgery follow-
ups. In the last 5 years, 102 clinical trials have investigated the therapeutic potential of
adipose-derived stem cells (ADSCs) against a variety of clinical conditions, encompassing
arthritis and cartilage defects (n = 21), COVID-19 and respiratory diseases (n = 19), central
nervous system disorders (n = 15), and diabetes-related conditions (n = 6). The full list
of clinical trials is provided in Supplementary S1. Notably, most of these trials focus on
orthopedic conditions, while none are related to oral and maxillofacial medicine. This
is unexpected, since the clinical needs in these medical fields share several similarities,
particularly in the areas of bone regeneration, trauma management, and control of surgi-
cal infections. Moreover, lipofilling and fat grafting, which benefit from the presence of
ADSCs, are widely used techniques in maxillofacial surgery. While these common clinical
procedures—such as Lipogems®, Cell-Assisted Lipotransfer, and Microfat and Nanofat
injections—typically rely on cell transplantation, a groundbreaking study by Gnecchi et al.,
in 2006 was the first to demonstrate that the regenerative potential of MSCs is primarily
driven by their paracrine effects rather than direct cell engraftment [4]. This finding shifted
the focus of scientific research toward exploring the secretome as a promising alternative
to traditional cell therapy. The MSC secretome comprises biologically functional factors
of various types—such as cytokines, chemokines, growth factors, miRNAs, and bioactive
lipids—released by the cells either in soluble form or encapsulated within extracellular
vesicles (EVs). These factors have demonstrated therapeutic benefits comparable to cell
transplantation while presenting fewer associated drawbacks. Despite well-documented
safety across diverse clinical applications [5], MSC-based cell therapy still faces important
challenges. Key obstacles include the heterogeneity of MSC populations, which can impact
therapeutic efficacy, low engraftment rates requiring substantial cell expansion prior to
administration, the risk of immunogenic side effects, and the time- and cost-intensive
manufacturing and handling processes [6]. The advantages of a secretome-based, cell-free
approach include lower manufacturing costs, easier storage, and the ability to cross bio-
logical barriers [7]. Over the last two decades, a growing body of preclinical evidence has
supported the potential of the MSC secretome as an alternative to cell therapy in various
medical fields [8], including immune and inflammatory diseases [9,10] and neurological
conditions [11]. To obtain cell secretome, cells are cultured under specific conditions, and
the conditioned medium containing the secreted factors is collected and processed for
further analysis or application. The manufacturing process significantly influences the com-
position of the secretome, as numerous variables can affect both the quantity and quality
of the secreted factors. These variables include donor-related features, harvesting source
(e.g., adipose tissue, bone marrow, dental pulp), cell isolation technique, cell passage and
confluence at the time of secretome production, medium composition, and any physical
or biochemical conditioning. Indeed, all these parameters affect the secretory profile of
cytokines, growth factors, miRNAs and EVs, which are crucial for the therapeutic efficacy
of secretome in regenerative medicine. The starting point for this review is a list of factors
previously quantified in the secretome of fully confluent ADSCs cultured for three days
under serum-starvation (absence of Fetal Bovine Serum, FBS) [12]. This setting was chosen
because adipose tissue is an accessible and convenient source of MSCs, and secretome
production from ADSCs has been standardized and extensively characterized over the
past decade [13–16]. First, the presence of the identified factors in the ADSC and/or MSC
secretome was validated through a review of published studies. Then, factors were re-
analyzed for the therapeutic potential in oral and maxillofacial medicine, a field where the
application of ADSCs and their derivatives remains largely unexplored. Finally, the most
promising effectors involved in the processes of immunomodulation, and regeneration of
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bone and soft tissue were selected and discussed in the context of the existing literature to
explore their potentiality based on available evidence.

2. Composition of ADSC Secretome: Focus on Chemokines, Cytokines, Receptors, and
Inflammatory and Growth Factors

The complete list of factors considered in this study (Supplementary S2) was quantified
in ADSC secretome samples analyzed by protein array, as extensively described in [12].
After removing duplicates (genes encoding for multiple isoforms), a total of 107 gene
IDs corresponding to the quantified proteins were identified. Initially, each factor was
cross-referenced with published studies to verify its recurrent identification in the ADSC
secretome, or more broadly in MSC one, to validate the reliability of the initial list before
proceeding with further analysis (Table 1).

Table 1. Validation of the presence of the 107 factors in the secretome of ADSCs and other MSCs under
different experimental conditions by comparison with the literature. Abbreviations: AF-MSCs =
Amniotic Fluid MSCs; AM-MSCs = Amniotic Membrane MSCs; BM-MSCs = Bone Marrow MSCs; G-
MSCs = Gingival MSCs; PL-MSC = Placental MSCs; UC-MSCs = Umbilical Cord MSCs; EIA = Enzyme
Immunoassay; ELISA = Enzyme-Linked Immunosorbent Assay; LC-MS = Liquid Chromatography-
Mass Spectrometry; LC-MS/MS = Liquid Chromatography–tandem Mass Spectrometry; WB =
Western Blot.

Reference MSC Type/s and Culture
Conditions Technique Common Identified Factors

Riis et al., 2016
[17]

ADSCs
24 h

Serum- and albumin-free
medium

Normoxia or hypoxia (1% O2)

LC-MS/MS ALCAM, AXL, CSF1, IGFBP3, IGFBP4, IGFBP6,
MIF, PLAUR, SERPINE1, TIMP1, TIMP2

Ritter et al., 2019
[18]

ADSCs
72 h

Normoxia
ELISA IL6, IL8, TNF

Bhang et al., 2014
[19]

ADSCs
48 h

Serum-free medium
Normoxia

+/− 3D culture configuration

ELISA CXCL12, HGF, VEGFA

Ragni et al., 2020
[20]

ADSCs
48 h

Serum-free medium
Normoxia

+/− inflammatory priming

ELISA

ANG, AXL, CCL13, CCL2, CCL3, CCL4, CCL5,
CCL7, CD14, CSF1, CTSS, CXCL10, CXCL12,

CXCL16, CXCL5, CXCL8, CXCL9, DKK1, EGFR,
ENG, FAS, FGF7, FST, GDF15, HGF, ICAM1,
IFNG, IGFBP3, IGFBP4, IGFBP6, IL15, IL23A,
IL2RA, IL2RB, IL6, IL6ST, MIF, OPG, PLAUR,
SERPINE1, SIGLEC5, SPP1, TGFB1, TIMP1,

TIMP2, TNFRSF1A, TNFRSF1B, TYRO3, VEGFA

Crisostomo et al.,
2008
[21]

BM-MSCs
24 h

Normoxia or hypoxia (1% O2)
+/− inflammatory priming

ELISA HGF, VEGFA

Chang et al., 2013
[22]

BM-MSCs
24 h

Serum-free medium
Normoxia or hypoxia (0.5%

O2)

ELISA HGF, VEGFA
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Table 1. Cont.

Reference MSC Type/s and Culture
Conditions Technique Common Identified Factors

Ryan et al., 2007
[23]

BM-MSCs
24 h

Normoxia
EIA HGF, IL10, TGFB1

Hodge et al., 2023
[24]

ADSCs
48 h

Serum-free medium
Normoxia

+/− 3D culture configuration

Proteomic
microarray

ANG, CCL2, CCL3, CSF2, CXCL16, CXCL8,
ENG, FGF7, HGF, IGFBP1, IGFBP2, IGFBP3,

NRG1, PDGFA, PDGFB, PF4, SERPINE1, TGFB1,
TIMP1, VEGFA

Barone et al., 2023
[25]

ADSCs
48–72 h

Serum-free medium
Normoxia or hypoxia (2% O2)
+/− 3D culture configuration

Cytokine array

AXL, CCL16, CCL3, CCL4, CSF3, CXCL11,
CXCL5, CXCL8, EGFR, FAS, HGF, ICAM1,

ICAM3, IGFBP3, IGFBP6, IL11, IL12A, IL12B,
IL17A, IL1R1, IL2RA, IL6R, IL6ST, MIF, PLAUR,

TIMP1, TIMP2, TNFRSF10C, TNFRSF11B,
TNFRSF1A, TNFRSF1B, TYRO3, VEGFA

Hermann et al., 2023
[26]

ADSCs
24 h

Serum-free medium
Normoxia

ELISA CCL2, CCL5, CSF1, EGFR, HGF, VEGFA

Linero et al., 2014
[27]

ADSCs
24 h

Serum-free medium
Hypoxia (2% O2)

Antibody array ANG, CCL2, CCL5, CCL7, IL6, PDGFB, TGFB1,
VEGFA

Blaber et al., 2012
[28]

ADSCs
72 h

Normoxia

Multiplex
immunoassays

CCL2, CCL3, CCL4, CCL5, CCL11, CSF2, CSF3,
CXCL10, IFNG, IL1, IL10, IL12, IL13, IL15, IL17,
IL1RN, IL2, IL4, IL5, IL6, IL7, IL8, IL9, PDGFB,

TNF, VEGFA

Luo et al., 2014
[29]

AF-MSCs
Normoxia ELISA IFNG, IL10, IL2, IL4, TGFB1

Liu et al., 2014
[30]

UC-MSCs
48 h

Normoxia
ELISA IL6, TGFB1, VEGFA

Tögel et al., 2007
[31]

BM-MSCs
24 h

Serum-free medium
Normoxia

ELISA HGF, VEGFA

Hwang et al., 2009
[32]

BM-MSCs, PL-MSCs and
UC-MSCs

72–96 h
Normoxia

Cytokine array CCL2, CXCL12, CXCL8, ICAM1, IL6, MIF,
SERPINE1

Peshkova et al., 2023
[33]

ADSCs, BM-MSCs, G-MSCs,
PL-MSCs and UC-MSCs

72 h
Normoxia

+/− 3D culture configuration

Luminex

CCL2, CCL24, CCL3, CCL4, CCL5, CCL7, CSF2,
CSF3, CXCL10, FLT3LG, IFNG, IL10, IL12A,

IL12B, IL13, IL15, IL17A, IL1A, IL1B, IL1RA, IL2,
IL3, IL4, IL5, IL6, IL7, IL8, IL9, PDGF, TGF, TNF,

VEGFA
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Table 1. Cont.

Reference MSC Type/s and Culture
Conditions Technique Common Identified Factors

Ragni et al., 2020
[34]

ADSCs
48 h

Serum-free medium
Normoxia

Inflammatory priming

ELISA

AGER, ALCAM, ANG, AXL, CCL1, CCL11,
CCL13, CCL15, CCL16, CCL18, CCL2, CCL20,

CCL24, CCL26, CCL3, CCL4, CCL5, CCL7,
CD14, CSF1, CSF2, CSF3, CTSS, CXCL10,

CXCL11, CXCL12, CXCL12, CXCL13, CXCL16,
CXCL5, CXCL6, CXCL8, CXCL9, DKK1, EDA2R,
EGFR, ENG, FAS, FGF7, FLT3LG, FST, GDF15,
HGF, ICAM1, ICAM2, ICAM3, IFNG, IFNL2,

IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP6, IL10,
IL11, IL12A, IL12B, IL13, IL15, IL16, IL17A,

IL17B, IL17RA, IL1RN, IL2, IL21R, IL23A, IL2RA,
IL2RB, IL4, IL5, IL6, IL6R, IL6ST, IL7, IL9, MICA,

MICB, MIF, NBL1, NRG1, PDGFA, PDGFB,
PDGFRB, PF4, PLAUR, PPBP, SCARB2, SELE,
SERPINE1, SIGLEC5, SPP1, TGFB1, TGFB1,

TIMP1, TIMP2, TNF, TNF, TNFRSF10C,
TNFRSF11B, TNFRSF14, TNFRSF1A, TNFRSF1B,

TNFRSF21, TYRO3, VEGFA, XCL1

Calligaris et al., 2024
[35]

AM-MSCs
48 h

Serum-free medium
Hypoxia (1% O2)

+/− inflammatory priming

LC-MS

ALCAM, AXL, CCL2, CCL7, CSF1, CXCL5,
CXCL6, CXCL8, DKK1, EGFR, ENG, FGF7, FST,
GDF15, HGF, ICAM1, IGFBP3, IGFBP4, IGFBP6,
IL11, IL6, IL6ST, MIF, NBL1, PDGFRB, PLAUR,

SCARB2, SERPINE1, TGFB1, TIMP1, TIMP2,
VEGFA

Uwazie et al., 2023
[36]

BM-MSCs
48 h

Normoxia
Inflammatory priming

Luminex

CCL11, CCL2, CCL3, CCL4, CCL5, CXCL10,
CXCL8, CXCL9, FST, GSF2, GSF3, HGF, IFNG,
IL10, IL12A, IL12B, IL13, IL15, IL17A, IL1RN,
IL2, IL4, IL5, IL6, IL7, LYVE1, PDGFB, TNF,

VEGF

Usategui-Martín
et al., 2020

[37]

BM-MSCs
72 h

Normoxia
+/− co-culture

Protein microarray

ALCAM, ANG, AXL, CCL1, CCL10, CCL11,
CCL13, CCL15, CCL16, CCL18, CCL2, CCL24,

CCL26, CCL3, CCL4, CCL5, CCL7, CD14, CSF2,
CSF3, CTSS, CXCL11, CXCL12, CXCL13,

CXCL16, CXCL5, CXCL6, CXCL8, CXCL9,
DKK1, EDA2R, EGFR, ENG, ERBB3, FAS, FGF7,

FST, GDF15, HGF, ICAM1, ICAM2, ICAM3,
IFNG, IFNL2, IGFBP1, IGFBP2, IGFBP3, IGFBP4,

IGFBP6, IL10, IL11, IL12A, IL12B, IL13, IL15,
IL16, IL17A, IL17B, IL17RA, IL1RN, IL2, IL23A,

IL2RA, IL2RB, IL4, IL5, IL6, IL6R, IL7, IL9,
LYVE1, MICA, MICB, MIF, NBL1, NRG1,

PDGFA, PDGFB, PDGFRB, PF4, PLAUR, PPBP,
RAGE, SCARB2, SELE, SERPINE1, SIGLEC5,

SPP1, TGFB1, TIMP1, TIMP2, TNF, TNFRSF10C,
TNFRSF11B, TNFRSF14, TNFRSF1A, TNFRSF1B,

TNFRSF21, TYRO3, VEGFA, XCL1

The list was then submitted to the Search Tool for Retrieval of Interacting Genes/Proteins
(STRING) software (https://string-db.org/) to analyze protein–protein interactions and
identify enriched biological processes (Figure 1a, Supplementary S3).

https://string-db.org/
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Figure 1. (a) Overview of the protein−protein interaction network of the 107 factors quantified in the
ADSC secretome, generated using STRING software (version 12.0) with the interaction score threshold
set to 0.900 for the highest confidence level. (b) Histogram showing the fold enrichment and false
discovery rate (FDR) for seven selected pathways within the enriched biological processes highlighted by
STRING analysis (Supplementary S3). Fold enrichment was calculated as follows: (number of observed
proteins/number of proteins in the list)/(background gene count/number of protein-coding genes).

STRING analysis identified 844 enriched biological processes associated with the 107 in-
put factors (Supplementary S3). Of these, seven were manually selected for their potential
relevance to oral and maxillofacial medicine: immune response (GO:0006955), inflammatory
response (GO:0006954), regulation of osteoblast differentiation (GO:0045667), regulation of os-
teoclast differentiation (GO:0045670), wound healing (GO:0042060), regeneration (GO:0031099),
and regulation of epithelial cell proliferation (GO:0050678) (Figure 1b). These processes can
be grouped into three primary application areas: (i) immunomodulation (GO:0006955 and
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GO:0006954), (ii) bone regeneration (GO:0045667 and GO:0045670), and (iii) wound healing
and soft tissue regeneration (GO:0042060, GO:0031099, and GO:0050678) (Figure 2).

The following paragraphs will provide an overview of the factors present in the ADSC
secretome that drive these effects, along with the clinical needs they may address in the field
of oral and maxillofacial medicine. In each category, the discussion will also cover the role of
specific microRNAs (miRNAs). These small, non-coding RNA molecules were first discovered
by Prof. Victor Ambros and Prof. Gary Ruvkun [38], whose groundbreaking work earned
them the Nobel Prize in Physiology or Medicine in 2024. miRNAs are key regulators of gene
expression, and their presence in the ADSC secretome may significantly contribute to the
hypothesized biological effects.
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Figure 2. Venn diagram showing the unique and shared factors across the three major fields of ADSC
secretome application in oral and maxillofacial medicine: immunomodulation, bone regeneration,
wound healing, and soft tissue regeneration.

3. Immunomodulation

Biological products with immunomodulatory effects hold great potential in oral and
maxillofacial medicine, addressing clinical needs such as periodontitis, stomatitis, temporo-
mandibular joint osteoarthritis, and other inflammatory conditions. It is well-established
that the MSC secretome exhibits key immunomodulatory properties [39]. In the presence
of infection, it can enhance the antimicrobial response [40], while in inflammatory diseases
characterized by immune overactivation, it can help suppress inflammation [10]. This dual
capability, stemming from the wide array of immunomodulatory factors it contains, may
be particularly advantageous in treating oral cavity diseases, where microbial infections
and chronic inflammation often coexist. STRING analysis identified 73 factors linked to
immune and inflammatory response (Figure 3), each influencing key immune effectors,
including macrophages, neutrophils, and lymphocytes.

Macrophages are crucial players in the immune response and tissue healing, and
they can be categorized into two main types based on their activation stimuli: M1 (clas-
sically activated) and M2 (alternatively activated) macrophages. Upon activation, M1
macrophages enhance antigen presentation, promote complement-mediated phagocyto-
sis, and release pro-inflammatory cytokines and chemokines, facilitating the clearance
of pathogens and initiating an immune response. Among the pro-inflammatory signals
able to activate M1 macrophages, ADSC secretome contains Colony-Stimulating Factor
2 (CSF2), Tumor Necrosis Factor α (TNF), and Interferon γ (IFNG) [41], suggesting its
role in promoting the initial stages of inflammation and microbial defense. IFNG plays
a pivotal role in the early activation of macrophages. Upon binding to its receptor, it
activates JAK1/2-mediated phosphorylation of STAT1, leading to the expression of pro-
inflammatory genes. Additionally, IFNG signaling inhibits the STAT3 and STAT6 pathways,
which are typically associated with M2 macrophage polarization, thereby reinforcing the
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M1 phenotype [42]. To sustain and amplify the M1 response, TNF and CSF2 are essen-
tial. TNF acts both as a ligand and as an autocrine signal, being produced in response to
its own receptor activation, further promoting pro-inflammatory pathways. CSF2, upon
binding to its receptor, triggers JAK2-dependent phosphorylation of STAT5, enhancing
the production of inflammatory cytokines [43]. While M1 macrophages drive inflamma-
tion, M2 macrophages are involved in immune regulation, tissue remodeling, and wound
healing. They can be further divided into three subtypes: M2a and M2b, which promote
the Th2-mediated immune response, and M2c, which contributes to immune suppression
and tissue regeneration. The ADSC secretome contains several cytokines that activate
M2 macrophages, including the interleukins IL4, IL10, and IL13, Transforming Growth
Factor β1 (TGFB1), and Colony-Stimulating Factor 1 (CSF1). These factors are crucial for
M2 macrophage polarization and play a key role in facilitating tissue repair and resolving
inflammation [44]. Specifically, IL4, IL13, and CSF1 promote M2a polarization through the
JAK-STAT3/6 pathways, which facilitate cell growth and tissue repair. In contrast, TGFB1
signaling drives M2c polarization, a phenotype that plays a key role in the clearance of
dead cells during the resolution phase of inflammation [45,46]. Neutrophils are short-lived
yet essential cells of the innate immune system, acting as the body’s first line of defense
against microbial infections. They contribute to microbial resistance primarily through
phagocytosis, degranulation, and the release of bioactive mediators, including cytokines
and reactive oxygen species. The protecting and activating effects of the MSC secretome on
neutrophils have been recently demonstrated [47], highlighting the antimicrobial potential
of this cell-free product. Key components in the ADSC secretome that enhance neutrophil
function include TNF, Colony-Stimulating Factor 3 (CSF3), IFNG, Chemokine (C-X-C motif)
Ligand 8 (CXCL8), and IL6 [47]. In detail, CSF3 and IL6 play crucial roles in neutrophil
production during severe inflammatory conditions. They reduce the expression of CXCL12
and its receptor CXCR4, promoting the release of neutrophils from the bone marrow into
the bloodstream and sustaining their proliferation through the JAK/STAT3 pathway [48].
TNF, IFNG, and CXCL8 facilitate neutrophil adhesion to the endothelial surface and pro-
mote diapedesis—the process by which neutrophils exit the bloodstream and migrate
into target tissues. Once in the tissue, neutrophils engage in degranulation and NETosis,
a defense mechanism where neutrophils release extracellular traps (NETs) composed of
nucleic filaments that capture pathogens [48]. In addition to macrophages and neutrophils,
the ADSC secretome plays a pivotal role in regulating lymphocytes, particularly T cells.
Indeed, it contains numerous factors that influence T cell biology, including their activation,
polarization, and apoptosis. Components such as hepatocyte growth factor (HGF), TGFB1,
IL6, and IL10 help modulate the immune response by suppressing excessive inflammation
and promoting immune balance [49–51]. These molecules often work in concert with other
factors to produce varying outcomes. For example, TGFB1 and IL6, along with IL1 and IL23,
drive differentiation toward helper T cells, which are crucial for neutrophil mobilization.
In contrast, when TGFB1 combines with IL2 at the thymic level, it promotes the regulatory
T pathway, supporting immune suppression. Additionally, IL6 and IL21 work together to
foster long-term humoral immunity by promoting the differentiation of follicular helper T
cells [52]. IL10 provides positive feedback by promoting the expansion of IL10-secreting
regulatory T cells, which are critical for immune regulation in conditions like autoimmu-
nity, chronic inflammation, and transplantation [53]. The ADSC secretome also contains a
variety of miRNAs that play key roles in immunoregulatory and anti-inflammatory path-
ways [20]. In the context of temporomandibular joint osteoarthritis, the downregulation of
miR-204 has been linked to an inflammatory phenotype [54], highlighting the therapeutic
potential of the ADSC secretome as a source of this miRNA. Additionally, miR-146a has
demonstrated anti-inflammatory and pro-osteogenic effects in experimental models of
Staphylococcus aureus.-induced osteomyelitis, suggesting another promising therapeutic
approach [55]. Similarly, miR-1260b has been shown to reduce alveolar bone loss associated
with osteolytic inflammation in periodontitis [56]. Overall, given its rich composition and
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proven immunomodulatory effects, the ADSC secretome holds significant potential as a
therapeutic option in maxillofacial treatments.
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4. Bone Regeneration

Bone is a dynamic tissue that undergoes constant remodeling through the processes of
resorption by osteoclasts and formation by osteoblasts. This turnover allows bones to adapt
to stress, repair damage, and maintain their structural integrity. In maxillofacial medicine,
effective bone regeneration is essential in cases of trauma, congenital defects, and following
surgical procedures like implantology or tumor resection. The reconstruction of functional
and aesthetic aspects affecting the head district is paramount for patient quality of life. Cur-
rent strategies to achieve bone regeneration include traditional grafting techniques [57] and
innovative tissue engineering approaches utilizing biomaterials, scaffolds, and MSCs [58].
In this context, using ADSC secretome in conjunction with biomaterials could offer a practi-
cal alternative to cell-based approaches. Two key biological pathways directly related to
bone regeneration, identified through STRING analysis, are the regulation of osteoblast
and osteoclast differentiation, which encompass a total of 13 associated factors (Figure 4).
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Among these factors, Osteoprotegerin (OPG), also known as Tumor Necrosis Factor
Receptor Superfamily Member 11B (TNFRSF11B), plays a vital role in maintaining bone
homeostasis. As a key component of the RANKL/RANK/OPG system, it regulates bone
regeneration by controlling osteoclast maturation and bone remodeling. It functions as a
decoy receptor for RANKL and TRAIL, preventing their interaction with RANK receptors
and thus inhibiting osteoclast-driven bone resorption. Mutations in the TNFRSF11B gene
are linked to various conditions, including juvenile Paget’s disease [59], temporomandibu-
lar joint ankylosis [60], and alveolar bone loss associated with periodontal disease [61].
In these conditions, reduced OPG activity disrupts the balance between bone formation
and resorption, leading to implant failure and peri-implant bone loss. Additionally, higher
RANKL levels and lower OPG levels are associated with more severe periodontal disease,
resulting in increased bone resorption [62]. Colony-Stimulating Factor 1 (CSF1) is another
key component of the RANKL/RANK/OPG system. The CSF1/CSF1R signaling pathway
promotes RANK expression, aiding in osteoclast formation and supporting the proliferation,
survival, and differentiation of monocytes into osteoclasts [63]. CSF1 also plays a crucial
role in conditions like osteoradionecrosis and osteomyelitis by recruiting macrophages and
osteoclasts, both essential for bone healing and remodeling [64]. TNF is a pro-inflammatory
cytokine that has a complex effect on bone regeneration, depending on its concentration
and duration of exposure. During the bone healing and remodeling phase, TNF promotes
osteoclast proliferation by increasing the production of the CSF1 receptor, aiding in bone
regeneration [65]. At low concentrations (0.01–0.1 ng/mL), TNF enhances the expression of
osteogenic transcription factors and bone marker genes through the induction of MAPK
cascade, while at higher concentrations (10–100 ng/mL), it inhibits these processes via NF-
κB pathway [66]. Hepatocyte Growth Factor (HGF) plays a crucial role in healing maxillofa-
cial fractures by promoting the proliferation and differentiation of osteoblasts. By binding
to the c-Met receptor, HGF activates the PI3K/Akt signaling pathway, which supports bone
regeneration [67]. Additionally, HGF enhances fibroblast regenerative activity, initiating
a signaling cascade in the early stages of wound healing that activates key pro-healing
processes [68]. Additionally, HGF stimulates angiogenesis, ensuring an adequate supply
of nutrients and oxygen to the healing bone, thereby accelerating the repair process [69].
In addition to their role as immune mediators, interleukins also influence bone regener-
ation. The IL23/IL17 axis contributes to T cell-mediated osteoclastogenesis by driving
the proliferation of IL17-secreting T cell subsets in a positive feedback loop, while IL4
and IL13 share signaling pathways that inhibit bone resorption through STAT6-mediated
OPG production [70]. In detail, IL4 suppresses osteoclast activity through multiple mecha-
nisms: it directly inhibits their differentiation, lowers RANKL expression, increases OPG
expression by osteoblasts, and reduces the number of inflammatory cells. Together, these
actions reduce bone resorption, as observed in conditions like temporomandibular joint
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disorders [71–73]. In cases of maxillofacial fractures or bone diseases like osteomyelitis, IL4
may support healing by reducing inflammation and preventing excessive bone loss [74].
Recent studies have emphasized the role of miRNAs as key mediators in maxillofacial bone
regeneration and remodeling [75]. Among those identified in the ADSC secretome, miR-21
is positively linked to bone matrix deposition and osteogenesis [76], while miR-29 inhibits
bone resorption by modulating the RANKL/RANK/OPG system [20,77]. Together, all
these factors interact within complex signaling networks that are crucial for effective bone
regeneration, underscoring the potential of ADSC as a therapeutic strategy in this field.

5. Wound Healing and Soft Tissue Regeneration

Wound healing and soft tissue regeneration are critical objectives in maxillofacial
medicine due to the complex anatomy and vital functions of this region. These processes
are essential not only for restoring functional integrity but also for maintaining the aesthet-
ics of the orofacial area, which can be compromised by surgical procedures (e.g., dental
implantology or periodontal surgery), trauma, or disease. Such conditions can impair key
functions like speech and eating, ultimately diminishing the patient’s quality of life. Further-
more, promoting optimal healing can minimize scarring, enhance tissue integration, and
reduce the risk of complications such as infections and implant failures. Wound healing and
soft tissue regeneration involve a precisely regulated, spatiotemporally defined interplay
of biological processes consisting of four overlapping stages: hemostasis, inflammation,
cell proliferation (e.g., fibroblasts and keratinocytes), and extracellular matrix remodeling.
Tissue engineering has emerged as a promising strategy to enhance these processes in
the oral and maxillofacial areas. Innovative biomaterials and scaffolds such as hydrogels,
nanofibers, films, and foam sponges are being explored for their biocompatibility and
ability to promote soft tissue regeneration [78–80]. These materials are often combined
with growth factors or stem cells to enhance their effectiveness. Recently, also cell-free
approaches have been evaluated [81]. As tissue engineering efforts focus on innovative
biomaterials like hydrogels, nanofibers, and foams, the incorporation of mesenchymal cell
secretome offers a potent, cell-free approach to enhance tissue repair. In particular, ADSC
secretome, by providing key bioactive molecules involved in tissue repair, can significantly
enhance the biocompatibility and regenerative potential of scaffolds, complementing the
effects traditionally achieved through direct use of stem cells. Of the 27 factors identified
through STRING analysis (Figure 5), several play pivotal roles in the regenerative process
of the orofacial district, as demonstrated in the literature.

Tissue inhibitors of metalloproteinases 1 (TIMP1) play a key role in regulating matrix
metalloproteinase (MMP) activity, which is essential for extracellular matrix remodeling
during wound healing. Like other members of the TIMP family, TIMP1 inhibits several
MMPs with low selectivity by forming 1:1 non-covalent complexes. It is expressed by ep-
ithelial cells and fibroblasts near the wound edges, and its expression is closely associated
with the healing process [82]. Transforming Growth Factor β1 (TGFB1) affects wound
healing, being upregulated in response to acute injury. It promotes re-epithelialization,
stimulates fibroblast proliferation, enhances collagen synthesis, and facilitates tissue re-
modeling through the activation of the SMAD2/3 pathway [83,84]. In vitro, it has been
demonstrated that treatment with TGFB1 facilitates the commitment of primary human
gingival fibroblasts to a myofibroblastic phenotype, a pivotal step occurring during tis-
sue regeneration [85]. Neuregulin 1 (NRG1) promotes the proliferation and migration of
keratinocytes and fibroblasts. Recently, similar effects were observed in vitro in human pri-
mary periodontal ligament stem cells, where NRG1 treatment also induces differentiation
toward osteogenic and angiogenic lineages by combining with ERBB receptors and activat-
ing the corresponding signal transduction pathways [86]. Platelet-derived growth factor
subunit B (PDGFB) is expressed during the early stages of gingival wound healing [87], and
it enhances the proliferation of human gingival fibroblasts, overall promoting periodontal
tissue regeneration [88]. Angiogenin (ANG) is a secreted protein that plays a key role in
angiogenesis, a critical process for oral tissue repair and regeneration [89]. The application
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of recombinant human ANG, primarily in gel form, is currently being investigated with
promising results as a tool to enhance wound healing in various models, including palate
wounds, where it seems to promote epithelialization and reduce inflammation [89]. CXC
motif chemokine 12 (CXCL12) acts as a chemoattractant for MSCs, guiding their recruit-
ment to the injury site, where they orchestrate oral tissue regeneration [90,91]. Beyond
these protein factors, various miRNAs are also involved in the processes of wound healing
and soft tissue regeneration. Among them, miR-21 and miR-31 promote the migration
and proliferation of fibroblasts and keratinocytes [92,93], while miR-29 influences matrix
remodeling [94]. Additionally, miR-146 and miR-155 play crucial roles in the inflammatory
phase of wound healing [95]. Notably, all these miRNAs have been identified in the secre-
tome of both naïve and Interferon γ-primed ADSCs cultured under starving conditions
(Supplementary Table S3 of [20]). Overall, the presence of these bioactive factors of different
natures highlights the potential of ADSC secretome, alone or in combination with novel
materials, as a biological tool able to improve wound healing outcomes and boost soft
tissue regeneration in oral and maxillofacial medicine.

6. Preclinical Evidence of the Therapeutic Effects of MSC Secretome on
Maxillofacial Conditions

The secretome from ADSCs and other MSC types has been extensively tested in
preclinical models of maxillofacial disorders, including Temporomandibular Joint (TMJ),
Osteoarthritis (OA), stomatitis, and periodontal disease. Recent studies have demonstrated
that MSC secretome can improve various outcomes in TMJ OA models, such as enhancing
morphological, histological, and molecular markers, reducing pain, promoting matrix
synthesis, and modulating immune responses. These findings were highlighted in a
systematic review by Jiang et al., [96]. Below are examples of the therapeutic effects
described. The BM-MSC secretome has been shown to reduce inflammation and promote
cartilage regeneration in a rabbit model of TMJ OA [97]. Similarly, in a murine model,
the secretome from dental pulp MSCs reduced inflammation in both the cartilage and
temporal muscle, also enhancing cartilage regeneration [98]. Notably, the ADSC secretome
can be combined with other therapeutic approaches. El-Qashty et al., demonstrated that
co-administration with low-level laser therapy restored joint structure, including normal
cartilage and disc thickness, and significantly suppressed inflammation in a rat model of
TMJ arthritis [99]. Moreover, the therapeutic potential of MSC secretome can be enhanced
through cell priming. Liu et al., demonstrated that priming ADSCs with inflammatory
cues (i.e., TNFα and IFNγ) amplified its therapeutic effects in a rabbit model of TMJ
condylar osteochondral defects [100]. In a rat model of TMJ OA, the secretome from
preconditioned dental pulp MSCs not only reduced inflammation but also promoted
extracellular matrix production, supported subchondral bone repair, and mitigated joint
degeneration [101]. Beyond TMJ disorders, the therapeutic potential of MSC secretome has
also been explored in preclinical models of other oral cavity conditions, such as stomatitis
and periodontitis. The immunomodulatory properties of MSCs have been studied in
a large animal model of immune-mediated oral mucosal inflammation, feline chronic
gingivostomatitis [102,103]. This condition resembles recurrent aphthous stomatitis in
humans and shares features with other immune-mediated oral diseases, such as oral
lichen planus, pemphigus, and pemphigoid. In this model, MSC treatment led to lasting
improvement or complete remission in nearly 60% of treated animals. Given that the
therapeutic effects of MSCs can be replicated by administering their secretome, this cell-free
product should be considered a promising treatment option for such diseases. Periodontitis
is a common dental condition characterized by inflammation of the tissues surrounding the
teeth, often leading to the destruction of supporting structures and eventual tooth loss. Its
multifactorial origin is primarily driven by bacterial biofilm on tooth surfaces, with disease
progression largely influenced by the host immune response. Several studies have explored
the effects of MSC secretome in periodontitis models, focusing mainly on the regeneration of
the periodontal tissue [104–107] and bone [108]. Given the immunomodulatory properties
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of ADSC secretome, future research should also investigate its potential to modulate
inflammation and control infection in periodontitis. Finally, the use of MSC secretome for
reconstructing large craniofacial bone defects is strongly supported by numerous studies
examining its therapeutic effects on calvarial bone defects (e.g., [109–111]).
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7. Potential Clinical Applications in Maxillofacial Surgery

In light of these premises, the secretome shows significant clinical promise in max-
illofacial surgery due to its bioactive components, including cytokines, growth factors,
miRNAs, and EVs. These factors can enhance wound healing, bone regeneration, and
immunomodulation, which are essential in oral and maxillofacial procedures. Potential
applications include

- TMJ OA and joint disorders: The immunomodulatory properties of the secretome may
aid in treating TMJ OA and other inflammatory joint disorders by reducing pain and
inflammation and promoting cartilage repair. Intra-articular injections could improve
outcomes for patients with chronic TMJ conditions.

- Bone regeneration: In dental implants and jaw reconstructions, the secretome can
enhance bone regeneration. When used alongside bone graft materials, it may expedite
osteogenesis and improve bone integration.

- Soft tissue reconstruction: The wound-healing agents in the secretome support soft
tissue repair, which is beneficial for trauma or post-surgical recovery.

- Periodontal disease: The anti-inflammatory and antibacterial properties of the secre-
tome could complement periodontal therapy, helping to reduce bacterial load and
inflammation in infected gingival tissues.

- Postoperative pain and inflammation management: By modulating local inflammation
and immune response, the ADSC secretome could be formulated into injectable or
topical treatments to manage pain and swelling after maxillofacial surgery, potentially
reducing dependence on conventional analgesics and anti-inflammatories.

- Fibrosis modulation: Since ADSCs possess the unique ability to modulate fibro-
sis [112–114], a secretome-based, cell-free alternative could be particularly beneficial
for managing restricted mouth opening in patients with post-traumatic or post-surgical
scarring, as well as in individuals with scleroderma.

8. Challenges and Future Perspectives

ADSC secretome has demonstrated significant promise in regenerative medicine, of-
fering therapeutic potential comparable to cell therapies but with lower associated costs
and easier handling and storage [115]. Cell-free therapeutics, such as EV-based prod-
ucts (e.g., ExoFlo™ and EV-Pure™), must undergo rigorous testing and comply with
region-specific regulations. In the United States, the Food and Drug Administration (FDA)
requires an Investigational New Drug (IND) application and a Biologics License Applica-
tion (BLA) before commercialization, along with adherence to Good Manufacturing Practice
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(GMP) production protocols (https://www.fda.gov/drugs/how-drugs-are-developed-
and-approved/types-applications (accessed on 11 October 2024)). In contrast, the Eu-
ropean Medicines Agency (EMA) classifies cell-free therapeutics under the category of
Advanced Therapy Medicinal Products (ATMPs). ATMPs must also comply with GMP
standards, and depending on the application, some products may require a certificate of
conformity to ensure they meet the European Medical Device Regulation (MDR) require-
ments (https://www.ema.europa.eu/en/human-regulatory-overview/advanced-therapy-
medicinal-products-overview (accessed on 11/10/2024)). The variability in secretome
composition—driven by factors such as cell source, culture conditions, the introduction of
chemical or physical cues, cell passage, and post-collection variables—highlights the need
for state-of-the-art, standardized protocols to ensure consistency and efficacy [116]. Quality
control measures should include comprehensive characterization of the various compo-
nents, such as proteins, miRNAs, and lipids, to ensure reproducibility and therapeutic
potency. Regulatory guidelines must also address the manufacturing processes, including
GMP compliance, and clarify the mechanism of action to establish safety and efficacy pro-
files for clinical use [117]. Standardized protocols and rigorous quality control can facilitate
the regulatory approval and the clinical translation of secretome-based biotherapeutics.

9. Conclusions

In conclusion, this review highlights the significant potential of the ADSC secre-
tome, characterized by its diverse composition of chemokines, cytokines, receptors, and
inflammatory and growth factors, in advancing the management of several oral and max-
illofacial conditions. The potent immunomodulatory properties, along with the ability to
promote both bone and soft tissue regeneration, underscore its potential as an innovative
biotherapeutic tool in this field. Harnessing the multifaceted capabilities of the ADSC
secretome could lead to more effective and comprehensive treatments for complex clini-
cal scenarios, providing novel solutions to medical challenges and ultimately enhancing
patient outcomes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology13121016/s1, Supplementary S1: List of clinical trials
retrieved from a search conducted on 21 August 2024, on the ClinicalTrials.gov website using the
keyword ‘adipose mesenchymal cells,’ with the filter ‘interventional’ for study type, and a study
start date of 1 January 2020. The search initially identified 107 clinical trials, which were manually
reviewed, resulting in a final count of 102 trials; Supplementary S2: Complete list of factors quantified
by protein array in three out of three ADSC secretome samples, as reported in Giannasi [12]. Column
A contains the original list, with the mean concentration expressed in pg/mL. Column B lists the
corresponding gene IDs submitted to STRING. Duplicates are highlighted in red; Supplementary
S3: List of enriched biological processes obtained through STRING analysis. Pathways selected for
anti-inflammatory and immunomodulatory effects are highlighted in green, those related to bone
regeneration are highlighted in red, and pathways associated with wound healing and soft tissue
regeneration are highlighted in blue.
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