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THE KAWAMATA-MORRISON CONE CONJECTURE FOR

GENERALIZED HYPERELLIPTIC VARIETY

MARTINA MONTI AND ANA QUEDO

Abstract. A Generalized Hyperelliptic Variety (GHV) is the quotient of an abelian

variety by a free action of a finite group which does not contain any translation. These

varieties are natural generalizations of bi-elliptic surfaces. In this paper we prove the

Kawamata-Morrison Cone Conjecture for these manifolds using the analogous results

established by Prendergast-Smith for abelian varieties.

1. Introduction

1.1. The cone conjecture. The investigation of the Ample Cone and the Cone of

curves within algebraic projective varieties is pivotal in the realm of algebraic geometry,

in particular within birational geometry. One of the core insights of to the Minimal

Model Program is the realization that a wealth of information concerning morphisms

from projective varieties to projective spaces is encapsulated in the nef cone. This cone,

arising as the closure of the Ample Cone and dual to the Cone of curves, serves as a

key focal point. Given its convex nature, employing tools from Hyperbolic Geometry

and Convex Geometry offers avenues for deeper comprehension of it. For instance, Fano

varieties exhibit a simplicity in their nef cones since these cones are rational polyhedral

cones [17, Theorem 3.7], i.e. their elements are R≥0-linear combinations of a finite set

of integer vectors. However, once left the world of Fano varieties, the cones may be

very complicated. Of particular interest are varieties with numerically trivial canonical

bundles (K-trivial varieties), where the nef cone can exhibit different behaviors, ranging

from rational polyhedral structures to configurations with infinitely many extremal rays.

Nevertheless, there exists a pursuit for finiteness structure concerning the nef cone. The

Cone Conjecture, proposed first by Morrison [28] and then reformulated by Kawamata

[41], delineates the precise finiteness behavior of certain cones associated with K-trivial

varieties. The conjecture predicts that for a K-trivial projective smooth variety Y such

cones can be covered by translates of a rational polyhedral cone by the action of auto-

morphisms of Y via their pull-back. More precisely, let N1(Y ) be the real vector space

spanned by Cartier divisors modulo numerical equivalence. The closed cones Nef(Y ) and

Mov(Y ) in N1(Y ) are the closures of the cones spanned by the ample and movable divi-

sors, respectively. We denote by Nef(Y )e and Mov(Y )
e

the intersection Nef(Y ) ∩ Eff(Y )

and Mov(Y ) ∩ Eff(Y ), respectively, where Eff(Y ) is the cone of effective divisors.
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Conjecture 1.1 (Kawamata-Morrison). Let Y be a smooth projective variety with

KY ≡ 0. Then:

(i) There exists a rational polyhedral cone Π which is a fundamental domain for the

action of the automorphism group Aut(Y ) on the effective nef cone Nef(Y )e in the

following sense:

a. Nef(Y )e = Aut(Y ) ·Π, i.e. Nef(Y )e =
⋃

ϕ∈Aut(Y )

ϕ∗Π,

b. It holds (IntΠ) ∩ ϕ∗(IntΠ) = ∅ unless ϕ∗ = id in GL(N1(X)).

(ii) There exists a rational polyhedral cone Π′ which is a fundamental domain (in the

sense above) for the action of the birational automorphism group Bir(Y ) on the

effective movable cone Mov(Y )
e

.

The connections with birational geometry become more evident in this statement. The

first item of the conjecture would imply that faces of Nef(Y )e corresponding to birational

contractions or fiber space structures are finite up to automorphisms (see [37, Section 1]),

while the second one would imply, modulo standard conjectures of the Minimal Model

Program, the finiteness of minimal models, up to isomorphisms (see [9, Theorem 2.14]).

Conjecture 1.1 is known as Kawamata’s Cone Conjecture [41]. While the original ver-

sion, Morrison’s version, of the Cone Conjecture [28] is stated for the cone Nef(Y )+ and

Mov(Y )
+

which are the convex hull of Nef(Y ) ∩ N1(Y )Q and Mov(Y ) ∩ N1(Y )Q, re-

spectively. For the nef cone, the connection between these two different versions of the

Cone Conjecture can be explained by the following inclusion Nef(Y )e ⊆ Nef(Y )+ which is

know in general for projective smooth K-trivial variety Y (see for example [22, Theorem

2.15]), while the reverse inclusion is still wide open. Specifically, the exact relation is

unveiled by a seminal work of Looijenga from Convex Geometry, see Lemma 4.15, which

implies that part (i) of Conjecture 1.1 is is equivalent to the following one (see also [15,

Corollary 2.6]).

Conjecture 1.2. Let Y be a smooth projective variety with KY ≡ 0.

(1) There exists a rational polyhedral cone Π which is a fundamental domain for the

action of the automorphism group Aut(Y ) on Nef(Y )+ (Morrison’s version) .

(2) Nef(Y )+ = Nef(Y )e.

The idea behind splitting the Cone Conjecture for the nef cone into these parts lies

in the fact that, in the setting of Convex Geometry, the convex hull of rational points

emerges as a more natural object than the effective cones. A strategy to tackle this

conjecture entails deploying general tools of Convex Geometry to establish part (1) of

Conjecture 1.2 (Morrison’s version), followed by a deeper investigation into the geometric

properties of the varieties to verify part (2) of Conjecture 1.2. It is worth noting that a

more generalized version of this conjecture exists for klt Calabi-Yau pairs, see [37].

Over the years, the conjecture has spurred a flurry of research activity, leading to signi-

ficant advancements and conjectural extensions. Conjecture 1.1 has been validated in

numerous instances. In the realm of dimension 2, pioneering proofs were initially provided
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by Sterk [35], Namikawa [30], Kawamata [41], and Totaro [37]. In higher dimensions, seve-

ral results have been established for distinct classes of varieties. Notably, Prendergast-

Smith [34] verified the conjecture for abelian varieties, while Amerik-Verbistky [26], [3],

[2] extended it to IHS manifolds. Moreover, albeit in very specific cases, the conjecture

has been demonstrated for Calabi-Yau manifolds (see [23], [31], [32], and [21]).

1.2. The cone conjecture under étale quotients. The Beauville-Bogomolov decom-

position theorem [7] states that all complex projective manifolds Y with numerically

trivial canonical bundle admit a finite étale cover X → Y isomorphic to the product of

abelian varieties, simply connected Calabi-Yau manifolds and Irreducible Holomorphic

Symplectic Manifolds (IHSM). This prompts a natural question: if Conjecture 1.1 holds

true for X, can we infer its validity for Y ? Pacienza and Sarti in [33] provided an affir-

mative response for coverings of prime degree of IHS type, in these cases the resulting

manifolds are called Enriques manifolds. In this article, we explore the scenario where the

cover X is an abelian variety. More precisely, a Generalized Hyperelliptic Variety (GHV)

is the quotient Y = X/G where X is an abelian variety and G ≤ Aut(Y ) is a finite

group acting freely on X without any translations, (see Remark 2.4). By construction,

GHVs have an infinite fundamental group, and their canonical bundle is numerically

trivial. These varieties, first introduced by Lange [18], are natural generalizations of

bi-elliptic surfaces. Subsequently, various mathematicians have continued to investigate

these manifolds, as evidenced by works [10], [11], [12], and [27]. It is important to note

that there is a full classification of these varieties up to dimension 4: for surfaces the sem-

inal works of Bagnera and de Franchis [5], Enriques and Severi [13], [14]; for threefolds

Lange [18] and Catanese and Demleitner [11]; for fourfolds Demleitner [12]. In particular,

their existence is guaranteed in all dimensional cases, see [18] and [1].

The principal goal of this article is to establish Conjecture 1.2 for the wide class of GHVs.

Specifically, our main result is the following.

Theorem A. Let Y = X/G be a Generalized Hyperelliptic Variety. Then, part (i) of

Conjecture 1.1 is verified and Mov(Y )
e
= Nef(Y )e = Nef(Y )+ = Nef(Y ). In particular,

also part (ii) of Conjecture 1.1 is verified.

A core idea underlying the proof of Theorem A lies in the ability to describe the nef

cone of Y in terms of the G-invariant nef cone of X and to establish connections between

the automorphisms of Y and the one in the normalizer NAut(X)(G). Specifically, assuming

the conjecture holds true for a variety X, one may seek to establish the existence of a

rational polyhedral fundamental domain Π for the action of NAut(X)(G) (or a subgroup

H thereof) on
(
Nef(X)G

)+
and subsequently project Π under π∗, yielding a rational

polyhedral fundamental domain for the action of Aut(X) on Nef(Y )+. Actually, we

demonstrate that it suffices to provide a rational polyhedral cone Π ⊂
(
Nef(X)G

)+
such

that Amp(X)G ⊂ H · Π for some H ≤ NAut(X)(G) to obtain a rational polyhedral

fundamental domain for the nef cone of the quotient Y = X/G, see Proposition 5.2.
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For abelian varieties X, Prendergast-Smith [34] translates the conjecture 1.1 for the

nef cone into a well-known problem of Convex Geometry concerning the existence of a

rational polyhedral fundamental domain for the action of arithmetic groups on homoge-

neous self-dual cones (we refer to Section 4 and Theorem 4.14 for further details). Our

approach mirrors this connection with Convex Geometry. Specifically, we establish that

the G-invariant R-algebra EndR(X)G assumes a certain matrix algebraic structure (Theo-

rem 6.2). Moreover, by using that CAut(X)(G) and Amp(X)G can be embedded in this

algebra, we ascertain their properties to be an arithmetic group and a homogeneous self-

dual cone, respectively. This connection with the theory of reduction enables us to invoke

the main result of this theory (Theorem 4.14) which guarantees the existence of a rational

polyhedral cone Π ⊂
(
Nef(X)G

)+
such that Amp(X)G ⊂ CAut(X)(G) · Π. Additionally,

for GHVs Y (as for abelian varieties) we have Mov(Y )
e
= Nef(Y )e = Nef(Y )+ = Nef(Y )

(Proposition 5.3), thereby the validity of the Cone Conjecture for the nef cone implies

the one for the movable cone.

This paper is structured as follows. In Section 2, we lay the groundwork by intro-

ducing GHVs and revisiting their key properties. Sections 3 and 4 serve to recapitulate

the essential findings in abelian varieties and Convex Geometry, including the Reduc-

tion Theory, which are crucial to our proof. Section 5 is dedicated to reformulating the

cone conjecture for étale quotients, with a particular focus on GHVs. The heart of our

article lies in Section 6, wherein we present the proof of our main result, Theorem A, as

explained previously.

Acknowledgements. The authors gratefully acknowledge Alessandra Sarti for intro-

ducing the problem and engaging in discussions throughout the writing process. Special

thanks are extended to Gianluca Pacienza for suggesting the topic. Additionally, the au-

thors express their gratitude to Alice Garbagnati and Carolina Araujo for their invaluable

feedback on the final version of the article.

The first author acknowledges Cécilie Gachet for insightful discussions and contributions

during a winter school in Rennes and beyond. Gratitude is also extended to Enrica Floris

for her helpful insights. She would like to thank the Departments of Mathematics of Uni-

versité de Poitiers and Universidad de la Frontera for the financial support during her

stay in Chile, which facilitated productive discussions with esteemed mathematicians for

the present paper. Acknowledgements are extended to the Departments of Mathematics

of Università degli Studi di Milano for the fundings. The first author is supported by the

“VINCI 2022-C2-62” grant issued by the Université Franco-Italianne. The second author

expresses gratitude to Mikhail Belolipetsky for elucidating various perspectives on arith-

metic groups, a crucial concept in this research. Furthermore, gratitude is expressed to

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the finan-

cial support received during her stay in Poitiers, which facilitated the collaboration that

resulted in the successful completion of this paper.



THE KAWAMATA-MORRISON CONE CONJECTURE FOR GHV 5

2. Generalized Hyperelliptic Varieties

In this section we introduce our main objects and we recall the main proprieties.

Definition 2.1. A complex torus is the quotient of Cn by the action of translations of a

lattice Λ ≃ Z2n. If the torus has a positive line bundle it is called abelian variety.

Definition 2.2. A Generalized Hyperelliptic Variety (GHV) is a manifold not isomorphic

to an abelian variety but which admits an abelian variety as étale Galois cover.

Remark 2.3. If Y is a GHV, by definition, there exists an abelian variety X and a group

G ≤ Aut(X) acting freely on X such that Y = X/G. In particular, since Y is not

isomorphic to an abelian variety, G does not contain only translations. In fact, one can

assume that G does not contain any translation. Indeed, if 〈id〉 6= G0EG is the subgroup

of translations then Y is also the quotient of the abelian variety X ′ = X/G0 by the free

finite action of the group G′ = G/G0 which does not contain any translation.

Remark 2.4. We observe that every projective compact manifold Y with numerically

trivial canonical bundle whose universal cover is Cn is a GHV. Indeed, the fundamental

group π1(Y ) is isomorphic to a torsion-free crystallographic group Γ ∈ Iso(Cn), i.e. it

is discrete under compact-open topology, Cn/Γ is compact and Γ acts freely. By the

first Bierbebach theorem ([36, Theorem 2.1]), we know that Γ is characterized by the

following exact sequence:

1 −→ Λ −→ Γ −→ G −→ 1

where Λ is a subgroup of translations (which is maximal abelian and normal of finite

index) and G is a finite group. Therefore, Y = Cn/Γ can be also obtained as the quotient

of the complex torus T = Cn/Λ by the action of the finite group G = Γ/Λ which acts

freely and does not contain any translation (since Γ acts freely and Λ is the maximal

abelian and normal of finite index). Moreover, since Y is projective and π : T −→ Y is

finite, we get that T is a projective complex torus and so Y is a GHV.

Proposition 2.5. Let Y = X/G be a GHV and D be a Cartier divisor on it. We denote

by [D]num the class of D in N1(Y ). Then [D]num in Eff(Y ) if and only if [D]num in

Nef(Y ).

Proof. We recall that the statement is true for abelian varieties, [6, Lemma 1.1]. Let

π : X −→ Y be the étale Galois cover. The statement easily follows using that D is

nef/effective on Y if and only if π∗D is nef/effective on X. �

Proposition 2.6. Let Y = X/G be a GHV manifold. Then:

(i) It holds Aut(Y ) ≃
NAut(X)(G)

G
where NAut(X)(G) is the normalizer of G in Aut(X).

(ii) The pull back map π∗ defines the following isomorphisms:

Amp(Y ) ≃ Amp(X)G Nef(Y ) ≃ Nef(X)G.

Proof. (i) The following homomorphism of groups is well-defined



6 MARTINA MONTI AND ANA QUEDO

Φ: NAut(X)(G) Aut(Y )

αX αY

where αY is such that

X X

Y Y

αX

αY

is commutative. By [27, Corollary 1.7], it

follows that Φ is surjective and Ker(Φ) = G. Hence, we conclude by the first

theorem of isomorphism.

(ii) Let us consider the following homomorphism

π∗ : N1(Y ) N1(X)G

D π∗D

which is an isomorphism of vector spaces. Since π is a finite morphism, by [16,

Proposition 4.4] the pull back π∗D with D ∈ N1(Y ) is ample if and only if D is

ample. Thus we have the first isomorphism. The second one follows since the nef

cone is the closure of the ample cone.

�

3. Preliminaries on Abelian varieties

In this section we recall the main proprieties of abelian varieties that will be useful in

the subsequent sections, we refer to [19].

3.1. Endomorphism algebra of abelian varieties.

Definition 3.1. An automorphism of an abelian variety X is a biholomorphic map. An

endomorphism of an abelian variety X is an automorphism that is compatible with the

group structure.

We denote the group of automorphism of X by Aut(X). We recall that any ϕ in

Aut(X) is a composition of an endomorphism and a translation.

Let us denote by End(X) the ring of endomorphisms of X and by EndQ(X) = End(X)⊗Q

its extension on Q, called Q-endomorphism algebra. In this section, we recall some

properties of the Q-endomorphism algebra, for further details see [19, Chapter 5].

Definition 3.2. An isogeny ϕ : X → Y of abelian varieties is a surjective endomorphism

with finite kernel. If such ϕ exists then X and Y are said to be isogenous.

Remark 3.3. An isogeny ϕ ∈ Hom(X,Y ) is invertible only in HomQ(X,Y ), see [19,

Proposition 1.2.6].

Definition 3.4 (Section 2.4, [19]). The dual abelian variety X̂ of X = Cn/Λ is the

quotient of the C-antilinear form Ω := HomC(C
n,C) by the action of the dual lattice

Λ̂ = {l ∈ Ω: Iml(λ) ∈ Z for every λ ∈ Λ}.
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By [19, Proposition 2.4.1]: X̂ ≃ Pic0(X) = ker(c1) where c1 : Pic(X) −→ NS(X) is

the first Chern class. Given an homomorphism ϕ : X → X with analytic representation

ϕ̃ : Cn −→ Cn, the (anti)-dual map ϕ̃∨ : Ω −→ Ω induces a homomorphism ϕ̂ : X̂ −→ X̂

called the dual map of ϕ, see [19, Section 2.4].

Let D ∈ Pic(X), for any point x ∈ X the line bundle t∗xD ⊗D−1 has zero first Chern

class, where tx is the translation by x. We get a group homomorphism, as follows, for

any D ∈ Pic(X):

φD : X X̂ ≃ Pic0(X)

x t∗xD ⊗D−1

(3.1)

Let us denote by L an ample line bundle on X. Since L is ample, φL : X −→ X̂ is an

isogeny and so the inverse φ−1
L : X̂ −→ X is well-defined in HomQ(X̂,X). This allows to

define an involution on EndQ(X) as follows:

′ : EndQ(X) EndQ(X)

ϕ ϕ′ := φ−1
L ϕ̂φL.

(3.2)

The involution above is called Rosati involution. It is positive-definite with respect to

the reduced trace TrQ over Q, i.e. ∀ϕ ∈ EndQ(X) then TrQ(ϕ◦ϕ′) > 0, see [19, Theorem

5.1.8].

The following result, well-known to people working with abelian varieties, describes

the R-algebra EndR(X) := EndQ(X)⊗R as a product of certain matrices algebras. The

result follows combing the Poincarè reducibility Theorem [19, Theorem 5.3.7] and the

classification of Q-division algebras with a positive-definite involution due to Albert [29,

IV.21 Theorem 2, page 201].

Theorem 3.5 (Corollary 3.5 [34]). Let X be an abelian variety. Then, we have the

following isomorphism of R-algebra:
(
EndR(X),′

) ≃
−−−−−→

(∏

i

Matri(R)×
∏

j

Matsi(C)×
∏

k

Mattk(H), †
)

where the Rosati involution ′ is sent to the positive-definite involution † given by the

conjugate transpose on each factor.

3.2. Nef cone of an abelian variety. In this section, we recall the description of the

nef cone inside the R-algebra EndR(X).

Theorem 3.6 (Section 5.2 [19]). Let X be an abelian variety and L be the ample line

bundle defining the Rosati involution ′ in (3.2). There is an embedding



8 MARTINA MONTI AND ANA QUEDO

f : N1(X) EndR(X)

D φ−1
L φD

where φL and φD are defined as in (3.1). In particular:

N1(X) ≃ {ϕ ∈ EndR(X) : ϕ = ϕ′} := Ends
R(X).

Following [34] we recall that the action by pullback of Aut(X) on N1(X) can be

extended as an action of EndR(X)× on EndR(X).

Lemma 3.7 (Corollary 2.4.6. (d) [19]). Let X be an abelian variety. If ϕ ∈ End(X)

and D ∈ Pic(X), then

φϕ∗D = ϕ̂ ◦ φD ◦ ϕ. (3.3)

Theorem 3.8 (Section 4 [34]). Let X be an abelian variety. Then, the group EndR(X)×

acts on EndR(X) as follows:

α : (EndQ(X) ⊗ R)× GL(EndQ(X)⊗ R)

ϕ α(ϕ) : l 7→ ϕ′ ◦ l ◦ ϕ

(3.4)

where ′ is defined in (3.2) and this extends the action of Aut(X) on N1(X) by pullbacks.

Proof. It is easy to prove that α defines an action. We prove that it preserves N1(X)

and it acts on it by pullbacks, i.e. for every ϕ ∈ EndR(X)× the following diagram is

commutative:

N1(X) EndR(X)

N1(X) EndR(X)

f

ϕ∗ α(ϕ)

f

where f is defined in Theorem 3.6. For every D ∈ N1(X) we have:

α(ϕ)(f(D)) = ϕ′f(D)ϕ = ϕ′φ−1
L φDϕ

(3.2)
= φ−1

L ϕ̂φLφ
−1
L φDϕ

(3.3)
= φ−1

L φϕ∗D = f(ϕ∗D).

�

4. Reduction theory in Convex Geometry

In this section we recall the main result of reduction theory for arithmetic groups acting

on homogeneous self-dual cones.

Let V be a finite-dimensional R-vector space.

Definition 4.1. We say that V has a k-structure for a subfield k ⊂ R if it is obtained

by extension of scalars from a vector space Vk over k.

A C ⊂ V \ {0} is a cone if it is a non-degenerate convex cone.
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Definition 4.2. The convex hull of C is the cone of convex combination of points in C,

i.e. convhull(C) = {
∑

aici | ai ∈ R≥0,
∑
i

ai = 1 and ci ∈ C}.

The rational hull of C, denoted by C+, is the convex hull of the rational points in C, i.e.

C+ = convhull (C ∩ VQ).

We denote the group of transformations of C by Aut(C) = {ϕ ∈ GL(V ) : ϕ(C) = C}.

Definition 4.3. A cone C is said to be homogeneous if Aut(C) acts transitively on it,

i.e. for every x, y ∈ C there exists ϕ ∈ Aut(C) such that ϕ(x) = y.

Let C∨ ⊂ V ∨ be the set of linear forms in V ∨ that are non-negative on C. The dual cone

C∨ is the interior of C∨ \ {0}.

Definition 4.4. A cone C is said to be self-dual if there exists a positive-definite form

on V such that the resulting isomorphism between V and V ∨ transforms C into C∨.

Due to a result of Vinberg we known that homogeneous self-dual convex cones can be

completely classified into a small number of cases, see [38].

Definition 4.5. Let Ci ⊂ Vi cone in the vector space Vi for i = 1, 2. We define the

direct sum C1 and C2 in vector spaces V1 ⊕ V2 to be the cone C1 ⊕ C2 := {v1 + v2 ∈

V1 ⊕V2|vi ∈ Ci} and call a cone indecomposable if it cannot be written as the direct sum

of two nontrivial cones.

Theorem 4.6 (Remark 1.11 [4]). Any convex cone C ⊂ V can be written as a direct

sum ⊕iCi of indecomposable cones. The product
∏
i

Aut(Ci) is a finite-index subgroup

of Aut(C). The cones Ci are homogeneous and self-dual if and only if C is too. Any

indecomposable homogeneous self-dual cone is isomorphic to one of the following:

1. the cone Pr(R) of positive-definite matrices in the space Hr(R) of r × r real

symmetric matrices;

2. the cone Pr(C) of positive-definite matrices in the space Hr(C) of r × r complex

symmetric matrices;

3. the cone Pr(H) of positive-definite matrices in the space Hr(H) of r × r quater-

nionic symmetric matrices;

4. the spherical cone {(x0, . . . , xn) ∈ Rn+1 | x0 >
√

x21 + . . . x2n} ;

5. the 27-dimensional cone of positive-definite 3× 3 octonionic Hermitian matrices.

The inner product for which the cone is self-dual is 〈x, y〉 = Tr(xy∗) in all cases except

4, and the usual inner product on Rn+1 in case 4.

Moreover, Vinberg [39] computed the automorphism groups of all the cones in the list

of Theorem 4.6. In particular, we have the following result.

Theorem 4.7 ([39]). Let C be one of the cones Pr(F) in the previous theorem where

F = R,C, or H. The identity component Aut(C)0 of the automorphism group of C

consists of all R-linear transformations of Hr(F) of the form D 7−−−→ M †DM for some

M ∈ GL(r,F) where M † is the conjugate transpose.
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Definition 4.8. An algebraic group G over a field k is an algebraic variety over k endowed

with a group structure such that the following homomorphisms:

µ : G×G G i : G G

(g, h) gh g g−1

are morphisms of varieties.

An algebraic group G is said to be defined over a subfield K ⊂ k if the polynomial

equations defining it have coefficients in K. We denote the underlying structure of K-

variety of G by G(K).

An algebraic group G is said to be a linear algebraic group if it admits a closed (with

respect to the Zarisky topology) embedding ρ : G →֒ GL(n, k) for some n ∈ N, i.e.

ρ(G) := G(k) is a subgroup defined by polynomial equations with coefficient in k.

Another basic theorem about the automorphism group of a homogeneous self-dual cone

is due to Vinberg [39].

Theorem 4.9 ([39]). Let C ⊂ V be a self-dual convex cone. Then the automorphism

group Aut(C) is the group of real points of a reductive algebraic group.

Definition 4.10 (Section 7.C, [8]). Let G be an algebraic linear group in GL(n,C) for

some n defined over Q. We define G(Z) := G ∩ GL(n,Z). A subgroup Γ ⊂ G(Q) is said

to be arithmetic if it is commensurable with G(Z), i.e. G(Z)∩Γ is of finite index in both

G(Z) and Γ.

Remark 4.11. It is proved in [8, Section 7.C] that the property of being arithmetic it is

invariant under Q-isomorphisms.

Definition 4.12. Let V be a finite-dimensional vector space over R and C be a cone.

Let Γ ≤ GL(V ) be a group such that preserves the cone C, then a fundamental domain

for the action of Γ on C is a subset Π ⊂ C such that

a. Γ ·Π = C, i.e
⋃
γ∈Γ

γ(Π) = C;

b. γ(Π) ∩Π 6= ∅ has non-empty interior if and only if γ ∈ ker(Γ −→ GL(V )).

The basic problem in reduction theory, which dates back to Minkowski, is the following:

given a homogeneous self-dual cone C and an arithmetic group Γ ≤ Aut(C) there exists

a fundamental domain for the action of Γ on C? Borel has produced a theory of coarse

fundamental domains (called Siegel sets) for arithmetic subgroups Γ. This theory has

provided a tool to Ash to show the existence of a fundamental domain for actions of

arithmetic groups on homogeneous self-dual cones.

Definition 4.13. A cone C ⊆ V , with dim V = n, is said to be polyhedral if it is finitely-

generated, i.e. there is a set of vectors {v1, . . . , vk} ∈ V such that C = {a1v1+· · ·+akvk |

ai ∈ R>0, vi ∈ Rn}.

A polyhedral cone is said to be rational when it is generated by integers vectors, i.e.

C = {a1v1 + · · ·+ akvk | ai ∈ R>0, vi ∈ Zn}
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Theorem 4.14 ([4]). Let C be a homogeneous self-dual cone in a real vector space V with

Q-structure. Let Aut(C) be the automorphism group of C and Aut(C) be the associated

reductive algebraic group which exists in view of Theorem 4.9. Assume that the connected

component of identity Aut(C)0 is defined over Q. Then, for any arithmetic subgroup Γ

of Aut(C)0 there exists a rational polyhedral cone Π ⊂ C+ such that (Γ · Π) ∩C = C.

As Ash pointed out in [4, pag. 75] starting from Π is possible to construct a rational

fundamental domain for the action of Γ on C.

We also recall the following lemma which is seminal work of Looijenga [25, Definition-

Proposition 4.1, Application 4.14].

Lemma 4.15. Let Λ be a finitely generated free Z-module, and let C be a strict open

cone in the R-vector space ΛR := Λ ⊗ R. Let C+ be the convex hull of C ∩ ΛQ. Let

(C∨)◦ ⊂ (ΛR)
∨ be the interior of the dual cone of C. Let Γ be a subgroup of GL(Λ) which

preserves the cone C. Suppose that

• there exists a rational polyhedral cone Π ⊂ C+ such that Γ ·Π ⊃ C;

• there exists an element η ∈ (C∨)◦ ∩ (ΛQ)
∨ whose stabilizer in Γ (with respect to

the dual action of Γ on (ΛQ)
∨) is trivial.

Then Γ ·Π = C+, and in fact there exists a rational polyhedral cone Π′ ⊂ C+ which is a

fundamental domain for the action of Γ on C+.

5. The cone conjecture for GHV

In this section, we see how the Conjecture 1.1 can be reformulated for étale quotients

and in particular for GHV.

Lemma 5.1. Let Y be a normal projective variety. Then there exists η ∈ (Amp(Y )∨)◦∩

(N1(Y )Q)
∨ such that its stabilizer for the action of Aut(Y ) (on (N1(Y )Q)

∨) is trivial.

Proof. See the proof of [15, Proposition 2.3] �

Proposition 5.2. Let X be a compact projective manifold and G ≤ Aut(X) a finite

group that acts freely on it. We denote π : X −→ Y = X/G. Assume the existence of a

rational polyhedral cone Π ⊂ Nef(X)G ∩ Eff(X) such that Amp(X)G ⊂ H · Π for some

H ≤ NAut(X)(G). Then Y satisfies conjecture 1.2, i.e. the Morrison Cone Conjecture

and Nef(Y )e = Nef(X)+.

Proof. Let us consider π∗(Π): it defines a rational polyhedral cone in Nef(Y )e ⊆ Nef(Y )+

(the last inclusion holds by [24, Lemma 5.1]) such that:

Amp(Y ) ⊂ (H/G) · π∗(Π) ⊂ Aut(Y ) · π∗(Π).

These inclusions together with Lemma 5.1 allow us to apply Lemma 4.15 and obtain

that Aut(X) · π∗(Π) = Nef(Y )+. In particular, there is a rational fundamental domain

for the action of Aut(Y ) on Nef(Y )+. Therefore, part (1) of conjecture 1.2 is verified.

Moreover, since π∗(Π) ⊂ Nef(Y )e we have Nef(X)+ = Aut(X) · π∗(Π) ⊂ Nef(Y )e, thus

we obtain Nef(X)e = Nef(X)+. Therefore part (2) of conjecture 1.2 is satisfied. �
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Corollary 5.3. Let Y be a GHV. Then

• part (ii) (the birational version) of the Cone Conjecture 1.1 follows from part (i)

(the automorphism version)

• part (2) of Conjecture 1.2 is verified, i.e. Nef(Y )e = Nef(Y )+. In particular

Nef(Y )e = Nef(Y )+ = Nef(Y )

Moreover, the Morrison’s Cone Conjecture 1.2 is equivalent to the Kawamata’s Cone

Conjecture 1.1.

Proof. In general the following inclusions hold: Nef(Y )e ⊆ Mov(Y )
e
⊆ Eff(Y ). Since by

Proposition 2.5 we have Nef(Y ) = Eff(Y ), it follows Nef(Y )e = Mov(Y )
e
= Eff(Y ). This

implies the first statement.

We prove that Nef(Y )e coincides Nef(Y )+. It holds Nef(Y )e ⊆ Nef(Y )+ by [24, Lemma

5.2]. We observe that Nef(Y )+ = Amp(Y )+ ⊂ Nef(Y ), hence since Nef(Y )e = Nef(Y )

we obtain the reverse inclusion and so the equality. �

6. Proof of the main theorem

In this section we are going to proof Theorem A, namely the Cone Conjecture 1.1 for

GHV. Due to the results of the preceding section, Proposition 5.2 and corollary 5.3, it’s

enough to provide the existence of a rational polyhedral cone Π ⊂ (Nef(X)G)+ such that

Amp(X)G ⊂ CAut(X)(G) · Π. To achieve this, we adopt the following strategy: we es-

tablish that the cone Amp(X)G is a homogeneous self-dual cone and that the centralizer

CAut(X)(G) defines an action of an arithmetic group on it. This understanding allow us

to invoke the main result of reduction theory, outlined in Section 4, thereby culminating

in the affirmative assertion of the existence of the desired Π.

In the following X is an abelian variety and G ≤ Aut(X) is a finite group.

6.1. The G-invariant R-algebra EndR(X)G. Let us recall the action defined in Theo-

rem 3.8:

α : EndR(X)× GL(EndR(X))

ϕ α(ϕ) : l 7→ ϕ′ ◦ l ◦ ϕ

which extends the action of Aut(X) on N1(X) by pull back. Let us denote by Lin(G)

the group generated by the linear part of every g ∈ G. Since Lin(G) ≤ End(X)×, it acts

on the Q-algebra EndQ(X). For simplicity we say that G acts on EndQ(X).

Definition 6.1. EndQ(X)G := {ϕ ∈ EndQ(X) | g′ϕg = ϕ for every g ∈ Lin(G)}.

In this subsection we prove that EndQ(X)G is a finite dimensional Q-algebra with a

positive definite involution. Additionally, we deduce that EndQ(X)G ⊗ R is isomorphic

to a certain algebra of matrices, similar to Theorem 3.5. More precisely:

Theorem 6.2. Let X be an abelian variety and G ≤ Aut(X) be a finite group (which

does no contain any translation). Then:
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(i) EndQ(X)G is a finite dimensional Q-algebra with an involution ι given by ι(x) = x′

for every x ∈ EndQ(X)G ⊆ EndQ(X) which is positive-definite with respect to the

trace reduce over Q.

(ii) We have the following isomorphism of R algebras:

Ψ: (EndQ(X)G ⊗ R, ι) (
∏
i

Matli(R)×
∏
j

Matmi
(C)×

∏
k

Matnk
(H), †)≃

where the involution ι is sent to the conjugate transpose † on each factor.

Before proving the theorem above we recall fundamental results about finite-dimensional

algebra with positive-definite involution.

Definition 6.3. An algebra A is called simple if A2 = {ab : a, b ∈ A} 6= 0 and it has no

proper ideals.

A finite-dimensional algebra A is said to be semisimple if it can be expressed as a

Cartesian product of simple sub-algebras.

Lemma 6.4 (Lemma 8.4.5 [40]). Let Ak be a k-algebra, for a subfield k ⊂ R, and τ be

a positive-definite involution with respect to the trace. Then Ak is semisimple.

Remark 6.5. Let Ak as in Lemma 6.4 and consider the decomposition Ak =
∏
i

Ai into

simple sub-algebra Ai ⊂ Ak. Then τ preserves this decomposition, i.e. τ(Ai) = Ai for

all i. Indeed if τ(Ai) = Aj for i 6= j, then Aj is a simple factor and AiAj = 0. Therefore

Tr(Aiτ(Ai)) = Tr(AiAj) = 0 which is a contradiction since τ is positive definite with

respect to the trace.

Lemma 6.6 (Lemma 5.5.1 [19]). For any simple R-algebra AR of finite dimension

with a positive-definite involution there is an isomorphism of R-algebra from (AR, τ)

to (Matn(F), †) for some n ∈ N, where F = R,C,H and † is the correspondent conjugate

transpose on each field.

Let us return to our situation. Given X abelian variety we have the finite dimensional

Q-algebra EndQ(X) with the Rosati involution ′. The Rosati involution ′ depends on the

choice of the ample line bundle L. Since we are considering X with an action of a finite

group G, we can choose L to be G-invariant.1 Hence we have φL = φg∗L
(3.3)
= ĝφLg for

every g ∈ G. This leads to the following relation:

∀g ∈ G g′
(3.2)
= φ−1

L ĝφL = φ−1
L ĝφLgg

−1 = g−1. (6.1)

Remark 6.7. We remark that ∀f, g ∈ EndQ(X) it holds

f ′g′ = (gf)′, (6.2)

see [19, Section 5.1]

We are in position to prove Theorem 6.2.

1If L is not invariant, we can consider
∑

g∈G

g∗L which defines a G-invariant ample line bundle since L 6= 0

and ample.



14 MARTINA MONTI AND ANA QUEDO

proof of Theorem 6.2. (i) We first prove that EndQ(X)G is a well-defined sub-algebra

of the finite dimensional Q-algebra EndQ(X), i.e. the algebra operations of EndQ(X)

are G-equivariant. In the following x, y ∈ EndQ(X), λ ∈ Q and g ∈ G:

1. α(g)(x + y) = g′(x+ y)g = g′xg + g′yg = α(g)(x) + α(g)(y),

2. α(g)(λx) = g′λxg = λα(g)(x),

3. α(g)(xy) = g′xyg = g′xgg′yg = α(g)(x)α(g)(y) we use g′g = id by (6.1).

Clearly, the multiplicative and additive identity are in EndQ(X)G as well as the

multiplicative and additive inverse. Thus, EndQ(X)G is a finite-dimensional Q-

algebra. We prove that the Rosati involution ′ on EndQ(X) is G-equivariant, i.e.

ι defines an involution on EndQ(X)G. For every g ∈ G, the following diagram is

commutative:

EndQ(X) EndQ(X)

EndQ(X) EndQ(X).

′

α(g) α(g)

′

Indeed for every ϕ ∈ EndQ(X) it holds

α(g)(ϕ′) = g′ϕ′g
(6.2)
= (g′ϕg)′ =

(
α(g)ϕ

)′
.

Therefore ι is well-defined on EndQ(X)G. In particular, it is still an involution and

positive-definite with respect to trace.

(ii) By (i) EndQ(X)G ⊗ R is a finite dimensional R-algebra with positive involution,

hence by Lemma 6.4 it is a semisimple R-algebra, i.e,

EndQ(X)G ⊗ R =
∏

i

Ai with Ai’s simple R-algebras of finite dimension.

Moreover, by Remark 6.5 we have that ι preserves each simple factor Ai of the above

decomposition, hence ι|Ai
defines an involution on Ai which is positive-definite for

all i. By applying at each factor the classification of finite-dimensional simple R-

algebra with a positive-definite involution, see Lemma 6.6, we obtain the following

isomorphism of R algebras:

Ψ: (EndQ(X)G ⊗ R, ι) (
∏
i

Matli(R)×
∏
j

Matmi
(C)×

∏
k

Matnk
(H), †)≃

�

Remark 6.8. Using the definition of the action of G on EndQ(X) (Theorem 3.8), we have

that

EndR(X)G = EndQ(X)G ⊗ R.

6.2. The G-invariant ample cone of X. In this sub-section we prove that the G-

invariant ample cone Amp(X)G is a homogeneous self-dual cone.

Definition 6.9. We define the R-vector space N1(X)G := {D ∈ N1(X) : G-invariant}.

We define the G-invariant ample cone Amp(X)G := {D ∈ Amp(X) : G-invariant}.
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Theorem 6.10. Let X be abelian variety and G ≤ Aut(X) be a finite group. Then the

G-invariant ample cone is isomorphic to :

Amp(X)G
≃

−−−−−→
⊕

i

Pli(R)⊕
⊕

j

Pmi
(C)⊕

⊕

k

Pnk
(H) ⊆ Ψ(EndR(X)G)

where Pl(F) is the cone of positive-definite hermitian matrices of dimension l over the

field F and Ψ is defined in Theorem 6.2. In particular, it is a homogeneous self-dual

cone.

Proof. By Theorem 3.6, we have the following isomorphism of R-vector spaces:

f : N1(X) Ends
R(X)

D φ−1
L φD,

≃

where Ends
R(X) denoted the space of R-endomorphisms on X fixed by the Rosati invo-

lution. In Theorem 3.8, we prove that the action α : EndR(X)× −→ EndR(X) extends

the action of Aut(X) on N1(X) by pullbacks, i.e. for every g ∈ G we have the following

commutative diagram:

N1(X) Ends
R(X)

N1(X) Ends
R(X)

f

g∗ α(g)

f

Therefore:

f(N1(X)G) = (Ends
R(X))G

= {x ∈ EndR(X) | x′ = x and α(g)(x) = x for every g ∈ G}

= {x ∈ EndR(X)G | ι(x) = x}.

(6.3)

By Theorem 6.2 we have the following isomorphism of R-algebras

Ψ: (EndR(X)G, ι) (
∏
i

Matli(R)×
∏
j

Matmi
(C)×

∏
k

Matnk
(H), †)≃

which combines with equation (6.3) yields to the following isomorphism of vector spaces

(Ψ ◦ f) : N1(X)G
⊕
i

Hli(R)⊕
⊕
j

Hmi
(C)⊕

⊕
k

Hnk
(H) ⊂ Ψ(EndR(X)G)≃

where we use additive notation for N1(X)G to emphasise that it need not be a sub-

algebra of EndR(X)G. By [19, Remark 5.2.5] we know that the embedding f establishes

a bijection between ample line bundles on X and totally positive endomorphisms in

Ends
Q(X), i.e. endomorphisms in Ends

Q(X) such that all the zeros of their characteristic

polynomial are positive. Therefore, we obtain:

(Ψ ◦ f) : Amp(X)G
⊕
i

Pli(R)⊕
⊕
j

Pmi
(C)⊕

⊕
k

Pnk
(H) ⊂ Ψ(EndR(X)G).≃
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By Theorem 4.6 we know that a cone C =
⊕
i

Ci is homogeneous self-dual if and only if

each indecomposable cone Ci’s is too. By the classification of the homogeneous self-dual

indecomposable cones, see Theorem 4.6, we know that each factor Pl(F) of Amp(X)G is

a homogeneous self-dual cone, hence we have that Amp(X)G is a homogeneous self-dual

cone.

�

6.3. Action of the centralizer. We prove that the centralizer CAut(X)(G) defines an

arithmetic subgroup in Aut(Amp(X)G)0.

Lemma 6.11. Let X be an abelian variety and G ≤ Aut(X) be finite group. The group

of units
(
EndR(X)G

)×
is an affine algebraic group defined over Q and CEnd(X)×(G) is

an arithmetic subgroup.

Proof. By Theorem 6.2 part (i) EndQ(X)G, as finite dimensional Q-algebra, is a finite

dimensional Q-vector space and, since EndR(X)G = EndQ(X)G ⊗ R, it defines a Q-

structure on EndR(X)G. We set the following isomorphism as affine spaces:

EndQ(X)G ≃ Qd EndR(X)G ≃ Qd ⊗ R ≃ Rd.

We denote by AQ the d-dimensional Q-algebra EndQ(X)G and by AR its extension over

R, so EndR(X)G. We consider the following injective map:

j : (AR)
× AR ×AR

x (x, x−1).

This map yields to the following description of (AR)
× as Zariski closed in the affine space

AR ×AR ≃ R2d:

(AR)
× j
≃ {(x, y) ∈ AR ×AR | xy − 1 = 0} = V (xy − 1) ⊂ AR ×AR ≃ R2d.

Therefore, (AR)
× is an affine algebraic subgroup G of the affine space R2d. Since the

equation defining (AR)
× is in fact over Q, we have that (AR)

× is an affine variety defined

over Q. Moreover, we observe that the group of Q-points of (AR)
× is (AQ)

×.

We now prove the arithmetic part. First we recall that by (6.1) we have g′ = g−1 for all

g ∈ G, hence:

CEnd(X)×(G) = {ϕ ∈ End(X)× | g′ϕg = ϕ for every g ∈ Lin(G)} =
(
End(X)G

)×
.

Moreover, given an abelian variety X ≃ Cn/Λ there is the following faithful representa-

tion (called rational representation):

ρ : End(X) EndZ(Λ) ≃ Mat2n(Z)

ϕ ϕ̃
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where ϕ̃ is the unique C-linear map such that ϕ̃(Λ) ⊆ Λ inducing ϕ. We can extend ρ

R-linearly obtaining the following groups monomorphism

ρR : EndR(X) −֒−−−−−−→ Mat2n(R).

Moreover, we restrict ρR to the group of units of G-invariant R-endomorphisms, yielding

the following embedding:

ρR :
(
EndR(X)G

)×
GLR(Λ⊗ R) ≃ GL2n(R)

which, in particular, is a morphism of Q-algebraic groups, i.e. it is a closed embedding.

Since ρR

((
End(X)G

)×
)

⊂ GL2n(Z), we obtain:

(
End(X)G

)×
≃ Im(ρR) ∩ GL2n(Z) = ρr

((
EndR(X)G

)×
)
∩ GL2n(Z).

Therefore, denoting the algebraic group G = ρR

((
EndR(X)G

)×
)

we have

G(Z)
ρR
≃

(
End(X)G

)×
,

which by Definition 4.10 proves that CEnd(X)×(G) =
(
End(X)G

)×
is an arithmetic group

in
(
EndR(X)G

)×
.

�

The following lemma tell us that when we look at the pull-back action of Aut(X) on

N1(X) we can forget about the translation.

Lemma 6.12. Let X be an abelian variety and let us consider the following homomor-

phism:

α : Aut(X) GL(N1(X))

ϕ (ϕ∗ : D 7−−−→ ϕ∗D).

Then, α(Aut(X)) = α(End(X)×). In other words, every translation of X acts as the

identity on N1(X).

Proof. We prove that for every translation t ∈ Aut(X) on X then α(t) = t∗ = idN1(X).

Let us denote by [D]num ∈ N1(X) = (Div(X)/ ≡) ⊗ R the numerical class of D. We

recall that on N1(X) the equivalence coincides with the algebraic equivalence, see [20,

Remark 1.1.21], therefore [D]num = [D]alg in N1(X). Let D be a Cartier divisor, we have

OX(D − t∗D) ∈ Pic0(X). Therefore, since Div(X)/ ∼alg≃ Pic(X)/Pic0(X) we obtain

[D−t∗D]alg = [D−t∗D]num = 0. Thus t∗ = idN1(X) and α(Aut(X)) = α(End(X)×). �

Lemma 6.13. Let X be an abelian variety and G ≤ Aut(X) finite group. The following

Q-morphism of algebraic groups
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ρ :
(
EndR(X)G

)×
Aut(Amp(X)G)0 ⊂ GL(N1(X)G)

ϕ ρ(ϕ) : x 7→ ι(ϕ) ◦ x ◦ ϕ

is surjective.

Proof. It is clear that is a morphism of algebraic groups. Moreover it is also well-defined

as morphism of Q-varieties
(
EndQ(X)G

)×
−→ GL(N1

Q(X)G).

Assume, for simplicity, that EndR(X)G has a single direct factor. Using the notation of

Theorem 6.2:

Ψ:
(
EndR(X)G, ι

) ≃
−−−−→

(
Matl(F), †

)

Ψ:
(
EndR(X)G

)× ≃
−−−−→ GLl(F)

and by Theorem 6.10 we have

(Ψ ◦ f) : Amp(X)G
≃

−−−−→ Pl(F)

where F = R,C,H. Thus we have:

(
EndR(X)G

)×
Aut(Amp(X)G)0 ϕ ρ(ϕ) : x 7→ ι(ϕ) ◦ x ◦ ϕ

GLl(F) Aut(Pl(F))
0 M ρ(M) : D 7→ M †DM

≃ Ψ

ρ

≃

Ψ Ψ Ψ

ρ′

Theorem 4.7 guarantees the surjectivity of ρ since every automorphism in Aut(Pl(F))
0

are of the form D 7→ M †DM with M ∈ GLl(F). The proof can be generalized in the

case EndR(X)G ≃
∏
i

Matli(R) ×
∏
j

Matmi
(C) ×

∏
k

Matnk
(H), since for a C =

⊕
i

Ci the

identity component Aut(C)0 is isomorphic to
∏
i

Aut(Ci)
0 by Theorem 4.6. Thus, the

surjectivity of ρ follows by applying the previous proof at each factor. �

Remark 6.14. We note that by definition ρ of Lemma 6.13 is nothing else that the

restriction of

α : EndR(X)× GL(EndR(X))

ϕ α(ϕ) : l 7→ ϕ′ ◦ l ◦ ϕ

to the G-invariant endomorphism. In particular since by Theorem 3.8 α is the extension

of the action of Aut(X) by pull-backs on N1(X), we deduce that ρ is the extension of

the action of CAut(X)(G) by pull-backs on N1(X)G. Therefore, by the previous Lemma

we deduce:

ρ(CAut(X)(G)) = ρ(CEnd×(X)(G)).

Proposition 6.15. Let X be an abelian variety and G ≤ Aut(X) be a finite group. Then

the centralizer CAut(X)(G) defines an arithmetic subgroup in Aut(Amp(X)G)0.

Proof. Let us consider the Q-morphism of algebraic groups:

ρ :
(
EndR(X)G

)×
−→ GL

(
N1(X)G

)
.
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Since, by Lemma 6.13, Aut(Amp(X)G)0 is the image of ρ we obtain that it is an algebraic

group defined over Q. By Remark 6.14 we have that ρ(CAut(X)(G)) = ρ(CEnd×(X)(G)).

Moreover, by Lemma 6.11 CEnd×(X)(G) is an arithmetic subgroup of
(
EndR(X)G

)×
and

since the property to be arithmetic is preserved under Q-epimorphism, see [8, Remark

8.22], we obtain that ρ(CAut(X)(G)) is an arithmetic subgroup in Aut(Amp(X)G)0. �

6.4. Proof of Theorem A. We are in position to prove Theorem A.

Proof of Theorem A. In view of Proposition 5.2 and Corollary 5.3, it is sufficient to

provide a rational polyhedral cone Π′ ⊂
(
Nef(X)G

)+
such that Amp(X)G ⊂ H · Π′

for some H ≤ NAut(X)(G). By Theorem 6.10, Amp(X)G is a homogeneous self-dual

cone. By Proposition 6.15, ρ(CAut(X)(G)) is an arithmetic subgroup of Aut(Amp(X)G)0.

By applying Theorem 4.14 of reductive theory: there exists a rational polyhedral cone

Π′ ⊂
(
Nef(X)G

)+
such that Amp(X)G ⊂ (CAut(X)(G) ·Π′). �
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