
Qsmodels: ASP Planning in Interactive Gaming
Environment�

Luca Padovani1 and Alessandro Provetti2

1 M2AG: Milan-Messina Action Group
DSI–Università degli studi di Milano. Milan, I-20135 Italy

luca@mag.dsi.unimi.it.
http://mag.dsi.unimi.it/

2 M2AG: Milan-Messina Action Group
Dip. di Fisica–Università degli studi di Messina. Messina, I-98166 Italy

ale@unime.it

Abstract. Qsmodels is a novel application of Answer Set Programming
to interactive gaming environment. We describe a software architecture
by which the behavior of a bot acting inside the Quake 3 Arena can
be controlled by a planner. The planner is written as an Answer Set
Program and is interpreted by the Smodels solver.

This article describes the Qsmodels project, which grew out of a graduation
project [3] is currently under development. The aim of this project is twofold.

First, we want to demonstrate the viability of using Answer Set Programming
[1] (ASP) in an interactive environment. The chosen environment is the Quake
3 Arena (Q3A) game from id Software; recently most of the source codes have
been released to the public. Q3A is a first person shooter : the player’s goal is to
kill enemies using weapons and upgrades found inside the game field (normally
a labyrinth). The human-like enemies found within Q3A are called BOTs. Like
in the most computer games, Q3A bots behave according to the rules of a finite-
state automaton (FSM) defined by expert game programmers.

The second objective is to implement and experiment with the high-level
agent architecture described by Baral, Gelfond and Provetti [2]. Such schema
consists in the following loop: Observe–Select Goal–Plan–Execute.

The Qsmodels architecture consists of two layers: a high level, responsible
for mid- and long-term planning, and a (low level) in charge of plan execution
and emergency state reactions. The high level has been developed mainly in
ASP on the Smodels platform. I.e., smodels computes the answer sets of a logic
program which characterizes all successful plans of a given length, following the
more or less standard encoding found in [1]. The computed answer set is passed
to the low-level layer that inspects it, extracts relevant syntactic informations
and executes the required actions.
� Work supported by the Information Society Technologies programme of the Eu-

ropean Commission, Future and Emerging Technologies under the IST-2001-37004
WASP project.

J.J. Alferes and J. Leite (Eds.): JELIA 2004, LNAI 3229, pp. 689–692, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://mag.dsi.unimi.it/


690 L. Padovani and A. Provetti

The high-level layer of our project realizes a Q3A agent which, starting with
the knowledge about the game field similar to that of an intermediate-level hu-
man player, tries to beat his opponents by facing them only when in a better
condition for the attack. To achieve this result, we have added to the planner a
very simple learning system which keeps track of opponent’s behavior in order
to better guess future moves.

Even though we are still in the experimental phase, we submit that our
architecture has several advantages over the traditional schema for the AI part of
games. Namely, our solution is easier to develop and keeps the AI at higher level
of abstraction. The easiness in development is reached by keeping the planning
rules separated from the world model description rules, so that they can be
written even by AI beginners. Also, Qsmodels could be used for virtual-reality
AI experiments; the use of a computer game as the laboratory environment
allows choosing the level of abstraction of the physical model while, -at the same
time- giving a useful visual feedback of agent’s actions.

Finally, this project may help in evaluating the feasibility of using smodels
in near real-time applications and environments. Indeed, we noticed a high com-
putational demand to achieve realistic real-time behaviors. More code analysis
and optimization is in demand.

Fig. 1. The Qsmodels Architecture

The Qsmodels software components can
be divided in 3 parts: i) the ASP plan-
ner, ii) the Q3A C++ interface, which im-
plements sensing and plan execution, and
iii) the C++ low-level AI. The execution
model of Q3A, shown in Fig. 1, is sum-
marized as follows. First, MOD-1 does the

sensing phase by inspecting some Q3A memory areas; then, the computed infor-
mations is translated into high-level fluent values and added to the planner. The
planner is first grounded by lparse then passed to smodels, which computes
one of its answer sets. Finally, MOD-2 extracts the plan from the answer set and
executes it by calling the relative Q3A traps.

Methodology

Our implementation required a lot of work and experiments in order to interface
the existing software components, Q3A and smodels. The development of the
agent required getting an in-depth knowledge of Q3A internal functions, most
of which are not documented. Smodels, on the other hand, has been used as an
external process, invoked by system calls. We are planning to switch to an API
interface soon.

The two layers of Q3A work are executed concurrently: while the high level
does the planning the low level is responsible for plan execution and reactive
behavior in emergency situations. Events are deemed unforeseen when their oc-
cur makes the status of the domain incompatible with the assumptions made
during the planning phase. It should be noticed that the low-level layer inherits



Qsmodels: ASP Planning in Interactive Gaming Environment 691

some powerful functionality from Q3A, such as the combat and shooting actions,
which are seen as atomic from the upper level.

To make our agent act realistically in its domain, we set the frequency of
sensing at ten times per second. This measure has to do with the way actions
are executed: each action may consists of several repeated calls, until the goal
of the specific action is reached. So, since the plan execution is more associated
with the frame frequency of the game than with the plan actions, sensing needed
to be executed even during action execution.

To realize a reaction behavior, we have introduced so-called pre-emption rules
which describe emergency behaviors in accordance with the environment and
status of the plan. Pre-emption rules will be described in later sections.

Execution Cycle

The execution cycle of our application is shown in Figure 2. The first step is
sensing, where we access Q3A memory searching for informations such as the
agent state (position, health level . . . ) and availability of bonuses (health and
ammunition tokes). Then, we check whether any emergency is happening, e.g.,
the agent is under attack, or he/she is facing the enemy, or he/she is behind the
enemy etc. If any of these situations holds, then we execute the pre-emption rules
to find those that apply to the present emergency and state. If no pre-emption
rule applies then the execution cycle resumes.

Fig. 2. Execution Cycle.

After sensing, if no emergency is de-
tected we check whether a plan is cur-
rently available; if not, then we ask for a
new one. Thus, we first translate the Q3A
memory states in fluents, which are add as
facts to the planner itself. Finally, we pass
the augmented logic program to the exter-
nal component QsmodelsServer, which is
in charge of the smodels interface. The in-

formation embodied in the new fluents includes the agent’s position, it’s health
and weapons state and the positions of known active objects. We include also a
couple of atoms describing the last known enemy position — expected new enemy
position to try to find usual routes taken by the enemy.

If a plan is available, then we have to check if any of the agents or enemies
actions have invalidated the assumptions made at the planning phase. Indeed,
since actions take some seconds to be executed and also the smodels computation
can take several seconds, this situation would frequently happen, e.g., if the
enemy takes a weapon that the agent was supposed to go get, the plan has to
be invalidated since the weapon is not available anymore.

Let now consider plan execution. Each action available to the agent has been
associated to a trap to Q3A system calls. The available actions are of course at
very high level. This way, we have been able to reuse most of the basic AI work
made by id Software: such as path finding and aiming. So, the available actions
are: move towards – pick health – pick ammo – attack and elude. All these



692 L. Padovani and A. Provetti

actions except for attack are variations of move towards, since to get an object
we have to reach it. Action attack simply passes the control to the low-level AI
in a situation where the agent will certainly has to attack the enemy.

The Use of Pre-emption Rules
The game field of Q3A can be described as very dynamic. So, it would be unfea-
sible to recompute the plan each time some aspect of the environment changes.
In this sense, the introduction of the so called Pre-emption rules has probably
been the most important step toward the realization of believable Q3A bots,

Pre-emptive rules allows describing a high-level reaction system in which we
specify the reaction behavior of the agent and let smodels compute the actual
reaction rules linked to the current plan. For each considered emergency situation
and each time frame of the generated plan we get an appropriate reaction rule.

When an emergency happens our modification to Q3A searches the corre-
sponding rule (time and event) through the rules and executes the action inside
the body of the rule. As a result, pre-emption rules dictate a behavior somewhat
similar to that of a FSM. However, in our case, the reaction is integrated in
the planner and evaluated by the same inferential engine. Therefore, we couple
a time-consuming planning system for long-term reasoning to a more efficient
reaction system for quick reactions.

Application Experience
Our testing platform consists of a set of Q3A standard game levels in which our
agent engages a duel against a human player. We require the game server (in
our case an Intel P4 2.0GHz)to be run on a separate machine than that of the
human player, due to the high computational power required by smodels.

The plan extraction phase can require up to 6/7 seconds, depending on the
plan length. This delay is almost transparent to the human opponent, since dur-
ing the planning our agent tries to hide. Should the agent meet the enemy then,
the pre-emption rules together with the low-level AI will make it act quickly,
usually avoiding the confrontation.

In Qsmodels plans the last action is always attack since the overall goal is to
kill the enemy. However, the last action seldom gets executed since when emer-
gency situations happen the pre-emption rules take control of the bot, canceling
the residual part of the plan.

References

1. C. Baral, 2003. Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press.

2. C. Baral M. Gelfond and A. Provetti, 1997. Representing Actions: Laws, Observa-
tions and Hypotheses. Journal of Logic Programming, 31(1-3).

3. L. Padovani, 2004. Answer Set Programming in Interactive Gaming Environment.
Graduation project in Informatics (in Italian). University of Milan. Available from
http://mag.usr.dsi.unimi.it/

4. Web location of the smodels solver: http://www.tcs.hut.fi/Software/smodels/


	Methodology
	Execution Cycle
	The Use of Pre-emption Rules
	Application Experience



