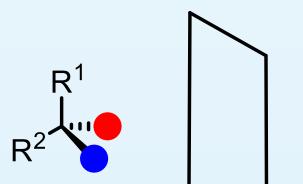
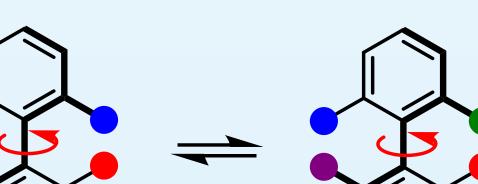
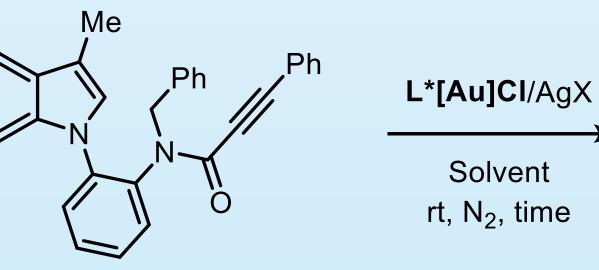

Gold catalyzed asymmetric synthesis of axially chiral indole-fused diazocines.

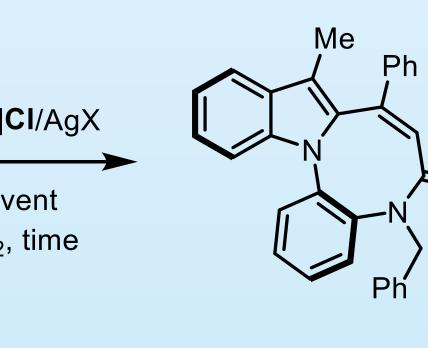

<u>S. Meraviglia,</u>^a V. Pirovano,^a G. Abbiati^a, E. Brambilla^a.

^aDipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Via G. Venezian 21, 20133, Milano, Italy; e-mail: silvia.meraviglia@unimi.it



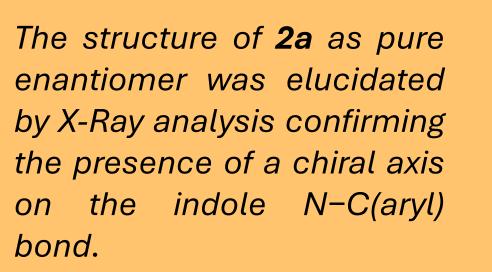
Atropisomerism, also called **axial chirality**, is a particular kind of chirality in which the rotation of a σ bond is constrained because of the steric or electric effects of bulky substituents. This type chirality shows **great potential for drug development** and has been observed in natural products. In addition, **many chiral catalysts and ligands** that are frequently used in asymmetric synthesis are axially chiral compounds.²

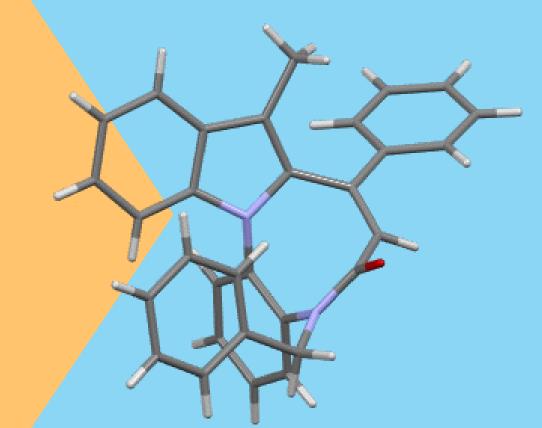



Objective

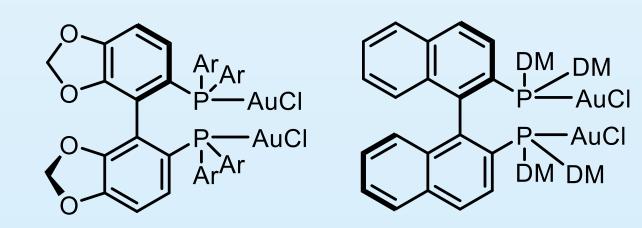
Among these substrates, axially chiral indole derivatives have been recognized as **an important class of five-membered heterobiaryls**, because of their presence in some natural alkaloids, chiral phosphine ligands and bioactive molecules.³ Taking into account these premises, we are now developing a gold catalyzed asymmetric synthesis of axially chiral indole-fused diazocines.

Screening of the reaction conditions

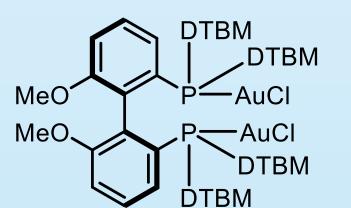


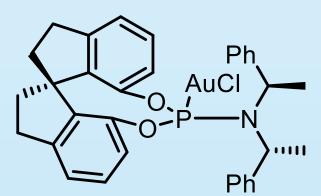

2a^a

^a Only major enantiomer is represented.
--

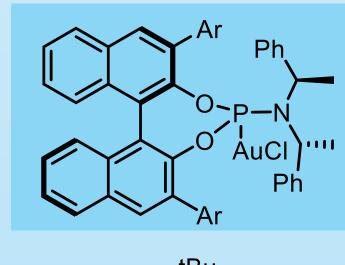

1a

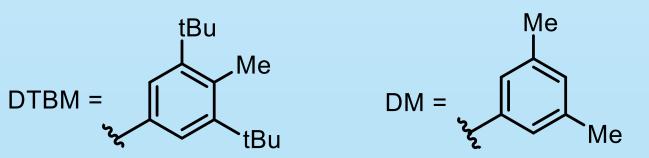
Scope of the reaction




Entry	L*[Au]Cl (5 mol%)	AgX (5 mol%)	Solvent	Time (h)	Yield (%)	e.r.
1	(R)-DTBM-SEGPHOS Au_2Cl_2	AgSbF ₆	DCM	24	Traces	/
2	(R)-DM-SEGPHOS Au_2Cl_2	AgSbF ₆	DCM	48	17	30:70
3	(R)-DM-BINAP- Au ₂ Cl ₂	AgSbF ₆	DCM	48	20	45:55
4	(R)-DTBM-BIPHEP- Au ₂ Cl ₂	AgSbF ₆	DCM	24	/	/
5	(S,R,R)-SPINOL- AuCl	AgSbF ₆	DCM	24	82	48:52
6	C1	AgSbF ₆	DCM	24	75	70:30
7	C2	AgSbF ₆	DCM	24	99	92:8
8	C3	AgSbF ₆	DCM	48	71	75:25
9	C4 ^b	AgSbF ₆	DCM	48	26	72:28
10	C5	AgSbF ₆	DCM	48	56	65:35
11	C6 ^b	AgSbF ₆	DCM	48	/	/
12	C2	AgBF ₄	DCM	29	66	95:5
13	C2	AgNTf ₂	DCM	29	78	93:7
14	C2	AgTf	DCM	48	41	93:7
15	C2	AgSbF ₆	Toluene	48	38	98:2
16	C2	AgBF ₄	Toluene	48	/	/
17	C2	AgSbF ₆	DCE	24	95	90:10
18	C2	AgSbF ₆	Cl-Ph	25	94	98:2

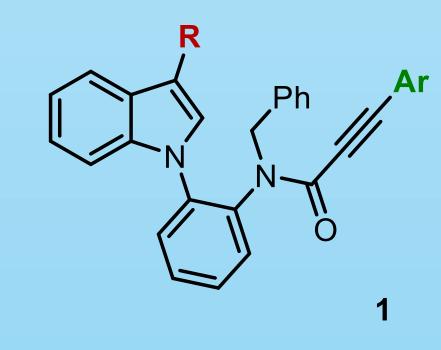
SFar *Giscienze* Farmaceutich

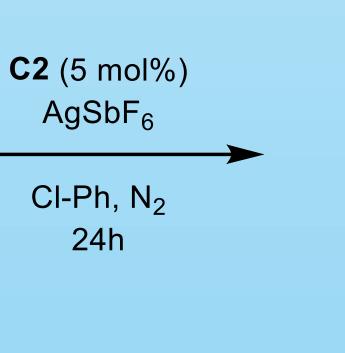

Ar = DTBM (R)-DTBM-SEGPHOS Au₂Cl₂ (R)-DM-BINAP-Au₂Cl₂ Ar = DM (R)-DM-SEGPHOS Au₂Cl₂



(R)-DTBM-BIPHEP-Au₂Cl₂

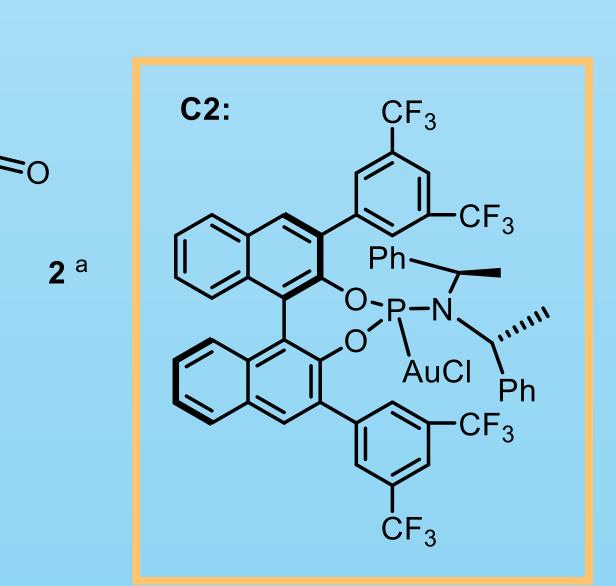
(S,R,R)-SPINOL-AuCI

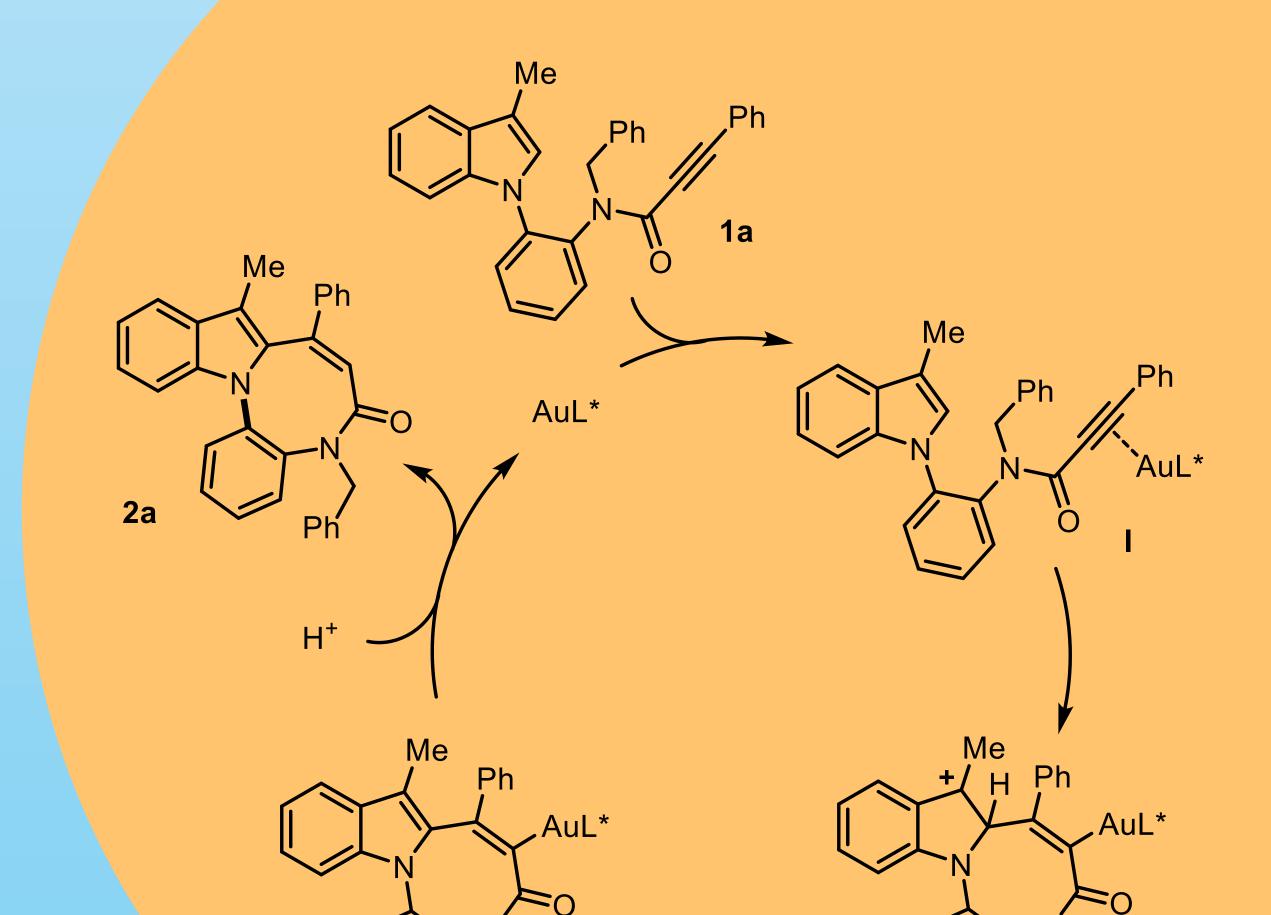



Ar = 2-naphtyl C1 Ar = 3,5-CF₃-Ph C2 Ar = pyrenyl C3 Ar = 2,4,6-triiPr-Ph C4 Ar = 1-naphtyl C5 Ar = antracenyl C6

Reaction conditions: catalyst (5 mol%), AgX (5 mol%), 1 mL solvent, at rt for 10 minuts, then **1a** (0.1 mmol), at rt for 24-48 h. ^b Catalyst was prepared in situ from the corresponding ligand and (CH₃)₂SAuCl.

Proposed mechanism⁴





Variation on the indole ring

R = Me **2a** 94% e.r. 98:2 R = Et **2b** 81% e.r 96:4 R = Ph **2c** 88% e.r. 92:8 Variation on the aryl ring

Ar = 4-Me-Ph **2d** 72% e.r. 98:2 Ar = 4-MeO-Ph **2e** 86% e.r 98:2 Ar = 4-F-Ph **2f** 76% e.r. 98:2 Ar = 3-Me-Ph **2g** 42% e.r. 97:3 Ar = 2-Napht **2h** 78% e.r. 98:2

In progress

Future perspectives

Optimization of the reaction conditions Preliminary scope with different functional groups on the aryl and the indole ring

Expansion of the scope with other functional groups and protecting groups for the amidic nitrogen

Evaluation of the rotational energy of the chiral axis

References

Ar

Ph

1. Org. Chem. Front. **2022**, 9, 2280–2292.

2. J. Med. Chem. 2011, 54, 7005–7022; J. Med. Chem. 2022, 243, 114700.

3. Chem. Eur. J. **2020**, *26*, 15779–15792.

4. Chem. Comm. 2012, 48, 6550–6552; Chem. Rev. 2021, 121, 8756–8867.

Acknowledgements

We acknowledge MUR-Italy (PostDoc fellowship to E. Brambilla) for financial support. Prof. S. Rizzato is thanked for X-ray analyses, D. Nava and L. Feni (University of Milan) are thanked for NMR and HPLC analyses. Mass spectrometry analyses were performed at the Mass Spectrometry facility of the Unitech COSPECT (University of Milan).