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Abstract: During the latest years, artificial intelligence, and espe-
cially machine learning (ML), have experienced a growth in popu-
larity due to their versatility and potential in solving complex
problems. In fact, ML allows the efficient handling of big volumes
of data, allowing to tackle issues that were unfeasible before,
especially with deep learning, which utilizes multilayered neural
networks. Cardiac computed tomography (CT) is also experiencing
a rise in examination numbers, and ML might help handle the
increasing derived information. Moreover, cardiac CT presents
some fields wherein ML may be pivotal, such as coronary calcium
scoring, CT angiography, and perfusion. In particular, the main
applications of ML involve image preprocessing and postprocess-
ing, and the development of risk assessment models based on
imaging findings. Concerning image preprocessing, ML can help
improve image quality by optimizing acquisition protocols or
removing artifacts that may hinder image analysis and inter-
pretation. ML in image postprocessing might help perform auto-
matic segmentations and shorten examination processing times, also
providing tools for tissue characterization, especially concerning
plaques. The development of risk assessment models fromML using
data from cardiac CT could aid in the stratification of patients who
undergo cardiac CT in different risk classes and better tailor their
treatment to individual conditions. While ML is a powerful tool
with great potential, applications in the field of cardiac CT are still
expanding, and not yet routinely available in clinical practice due to
the need for extensive validation. Nevertheless, ML is expected to
have a big impact on cardiac CT in the near future.
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I n the last decades, computed tomography (CT) has become
a mainstay in the evaluation of patients with coronary

artery disease (CAD) and is recommended by several guide-
lines. According to the most recent guidelines from the
European Society of Cardiology,1 calcium scoring using CT
bears a class IIb recommendation as a risk modifier for
asymptomatic subjects, albeit not recommended to detect
obstructive CAD. Moreover, CT angiography bears a class
I recommendation for initial assessment of CAD in
symptomatic patients, wherein CAD cannot be excluded by
clinical assessment. In fact, CT angiography shows a high
negative predictive value for excluding CAD and can thus be
considered as a gatekeeper for invasive coronary angiog-
raphy. More recently, new techniques that add functional
analysis to anatomic imaging have been introduced. One of
them is CT-derived fractional flow reserve (FFR), which
allows estimation of residual vessel percentual blood flow
after a stenosis through computational fluid dynamics
models, that well reflects FFR values obtained at invasive
coronary angiography. CT-derived FFR seems to provide
incremental diagnostic value to CT angiography, potentially
allowing the avoidance of invasive testing in some instances.2

A second, promising technique is CT myocardial perfusion
(CTP), which allows the assessment of the functional sig-
nificance of stenotic lesions by assessing the wash-in and
wash-out of contrast media in the myocardium. CTP can be
performed at rest, like traditional CT angiography, but its
main application, which allows the detection of inducible
ischemia, is in stress CTP, which is performed during phar-
macological stress. CTP can be static or dynamic, as regards
whether the acquisition is performed at a single time point
during the first-pass perfusion, or at multiple time points
during the first-pass perfusion capturing the full signal
intensity-time curves. Dynamic CTP has been proven to
improve the diagnostic performance of CT angiography and
yield a very high prognostic value for the occurrence of
adverse cardiac events.3,4 CTP was shown to add diagnostic
accuracy to CT angiography along with CT-FFR, and pro-
spective, multicenter studies that evaluate the impact of CTP
on patient care are currently underway.5,6 Myocardial per-
fusion can also be assessed from magnetic resonance imaging,
which yields high accuracy for the detection of inducible
ischemia. However, CTP may bear some advantages over
magnetic resonance imaging such as the higher availability
and lower cost, and the radiation dose related to such tech-
niques, albeit non-null, is reasonably low.

Parallel to these advances in functional imaging, radi-
ology has of late seen a steep rise in the use of artificial
intelligence (AI), as reflected by a rapidly growing body of
related literature. AI may be defined as the ability of a system
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to interpret data and to learn from it through adaptation,
achieving the desired goals, allowing the analysis of large
data sets in a short time, and the appraisal of complex pat-
terns and relationships. This latter skill may provide AI an
edge over human performance and be particularly relevant
with the rise of big data.7 Machine learning (ML) is a branch
of AI in which models are built on the basis of training data
sets that yield predictions for new, potentially large data sets
without specific training. Deep learning represents a techni-
que of ML that exploits artificial neural networks. These may
be defined as deep neural networks (DNN) when multiple
layers are utilized to predict an output from a given input. An
example of a single-layer neural network versus a DNN is
depicted in Figure 1.

With regard to cardiovascular imaging, AI may be par-
ticularly helpful in dealing with the optimization of image
acquisition, in helping with image postprocessing that requires
more and more time and skill as imaging tests become widely
available and the number of analyzed features increases expo-
nentially, and in developing new prognostic biomarkers for risk
assessment. There is increasing literature on the potential and
use of AI in cardiac CT. This work aims to outline some of the
most recent ML-based innovations involving calcium scoring,
CT angiography, and CTP. CT-FFR is another application in
which AI plays an important role, but, in view of its com-
plexity, this application will not be discussed here.

AI FOR CALCIUM SCORING
Coronary artery calcium (CAC) scoring is a CT screen-

ing tool for CAD, based on CAC that can be sensitively
detected on noncontrast-enhanced cardiac scans. The amount
of CAC is usually expressed as calcium volume, and as

Agatston score.8 The latter is used to guide the clinical man-
agement of patients, based on Agatston score categories that
relate cardiovascular risk or percentile scores based on age and
gender. The CAC score can be obtained by postprocessing of
dedicated cardiac CT scans, by selecting calcium that lies in
the coronary arteries and excluding other potential calcific
areas such as bones or valvular calcifications (Fig. 2).

Concerning CAC, ML applications have been mostly
focused on automatic detection and scoring, which may be
particularly helpful in reducing postprocessing times, espe-
cially given that the demand for cardiac CT is rapidly
increasing and CAC scoring may in the future be used for
cardiovascular screening.9 Among the first studies testing
ML for fully automated CAC scoring is work by Wolterink
et al.10 They relied on the first identification of CAC based
on intensity on noncontrast CT scans, and subsequent
classification in coronary and noncoronary calcifications
based on analysis of additional features such as size, shape,
and location with a decision tree-based approach, followed
by quantification. This method was tested on 1013 consec-
utive CT scans, and it reached a sensitivity of 0.87 for CAC
lesions. There was a κ of 0.94 in assigning CAC-based risk
categories compared with manual segmentation by a human
observer, thus indicating strong agreement. A subsequent
study by Wolterink et al11 aimed to quantify CAC on CT
angiography scans with the aid of paired convolutional
neural networks, achieving a satisfactory sensitivity of 0.71
and 83% agreement in CAC-based risk classification com-
pared with manual annotation by an expert human
observer. Yang et al12 aimed to automatically detect calci-
fied lesions of the coronary arteries using automatic CTA
vessel segmentations performed in contrast-enhanced scans
and registering them for calcium detection on noncontrast

FIGURE 1. Examples of a single-layer neural network (NN) used for machine learning, versus a 4-hidden layer deep NN.

FIGURE 2. Automatic detection of calcium on unenhanced computed tomography scan of the heart.
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scans. They achieved a high sensitivity of 0.94 compared
with an experienced human observer on a data set of 40 CT
examinations. A CAC segmentation method developed by
Shahzad et al13 was also tested on the same data set, yielding
a slightly lower, albeit high, sensitivity of 0.85. Automatic
CAC detection was also studied on low-dose, noncontrast
CT scans acquired for lung cancer screening, which have
been demonstrated to be reliable sources for CAC
detection.14 Lessman et al15 achieved a κ of 0.91 for Agat-
ston risk classification compared with an expert human
observer. They used DNNs for automated CAC detection
on 1687 nonenhanced, low-dose CT scans from the National
Lung Screening Trial.16 Another study by Cano-Espinosa
et al17 also utilized nongated, nonenhanced scans for
Agatston score computation, reaching similar conclusions.
On a database of 5973 scans, they used 4973 cases for
training a 3D DNN and 1000 for testing, reaching a strong
positive correlation (r= 0.93) with manual Agatston scoring.
As regards CAC assessment on both contrast and non-
contrast chest CT, Siemens (Siemens Healthineers, Erlan-
gen, Germany) recently developed a preliminary applica-
tion, AI-Rad Companion, which allows CAC quantification
as absolute volume based on chest CT images. Examples of
Ai-Rad Companion outputs in a healthy subject and in one
patient with coronary calcifications may be seen in Figures 3
and 4. The performance of CAC assessment based on AI
software in the clinical setting is yet to be established for
large clinical samples.

AI has also been used to develop more comprehensive
models involving CAC and other patient factors for the
prediction of CAD. Namely, one study by Al’Aref et al18

utilized ML to build a model that yielded a good area
under the curve (AUC) of 0.881 (95% confidence interval
[CI], 0.869-0.895) in predicting obstructive CAD. Such a
model was developed with a gradient-boosting ML algo-
rithm for binary classification in obstructive CAD versus
nonobstructive CAD on 13,054 included patients, split in a
3:1 ratio between training and validation sets. The model
exploited calcium scoring combined with clinical variables
such as age, sex, symptoms, and cardiovascular risk fac-
tors. Another study by Han et al19 on 86,155 patients,
combining 70 parameters including CAC, described a ML
model for mortality risk assessment, which exhibited an
AUC of 0.78 (95% CI, 0.66-0.90) on a validation cohort of
4915 patients.

Overall, automated Agatston score evaluation based
on ML methods has reached good results. Risk prediction
through ML adding CAC to other variables has been per-
formed on vast samples; however, results still show a certain
degree of room for improvement. In fact, while an AUC
over 0.8 may indicate good performance, from a clinical
perspective, it is ever important to not underestimate the
probability of false negatives when ascertaining patients’
risk, so that no patient may be undercared for. AI appli-
cations in image preprocessing for artifact reduction may be
helpful in increasing postprocessing performance of CAC
scoring, but, for this, there is still limited literature evidence.
Future developments for AI in CAC are likely to include
postprocessing applications with even higher agreement
with human readers and thus viable for wide-scale clinical
practice, possibly integrating preprocessing algorithms to
enhance image quality.

FIGURE 3. Output from Ai-Rad Companion in a subject with no coronary calcifications. *Lobes where lesions were detected.
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AI FOR CORONARY CT ANGIOGRAPHY
CT angiography is a key tool for the assessment of

patients with chest pain, with a high negative predictive
value for coronary stenoses that allows safe exclusion of
epicardial CAD (Fig. 5), thus acting as the gatekeeper for

invasive testing.20 CT angiography allows for accurate
anatomic delineation of stenotic lesions, and, to a certain
extent, for functional evaluation with the aid of novel bio-
markers such as FFR or CTP.1 Moreover, CT angiography
has been reported to add prognostic value, even in instances

FIGURE 4. Output from Ai-Rad Companion in a patient with mild coronary calcifications. *Lobes where lesions were detected.

FIGURE 5. Example of detection and dedicated depiction of the coronary arteries on a computed tomography coronary angiography scan.
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when its use was labelled as “inappropriate.”21 ML calcu-
lations of FFR perhaps represent the most developed
application in this field, as ML has been shown to be a valid
substitute of more cumbersome computational fluid
dynamics approaches.22 However, given its broadness and
complexity, such a topic might probably benefit from a
dedicated commentary. ML approaches in CT angiography
involve applications related to image acquisition and image
preprocessing, postprocessing, and risk prediction.

Concerning image acquisition and image preprocess-
ing, different studies have used ML methods for opti-
mization of protocols, as artifacts such as blooming
subsequent to the presence of calcific plaques, and to a
lesser extent with newer CT technology, and motion arti-
facts can occur in CT angiography. For instance, Tatsu-
gami et al23 proposed an ML algorithm involving a 10-layer
DNN for image restoration, which was tested on 30
patients undergoing CT angiography. The application of
this algorithm led to higher image score quality, assessed by
an experienced human observer using a 4-point scale,
compared with hybrid iterative reconstruction (2.96 vs.
3.58, respectively). Another study, by Lossau et al,24

described an ML-based algorithm for motion estimation
and correction in CT angiography, which was tested on 12
real-world clinical cases, outlining its feasibility and yield-
ing better subjective image quality scores, as assigned by
experienced researchers. Liang et al25 described an addi-
tional motion correction algorithm, aimed for image qual-
ity improvement in patients with high heart rate (over 75
beats/min). Such an ML-based approach significantly
improved image quality, from 2.81 to 3.56 on a 4-point
scale, as evaluated by an experienced radiologist.

With regard to image postprocessing, one of the main
goals of AI in CT angiography is automated coronary seg-
mentation, along with automated delineation and quantifica-
tion of coronary plaques and stenoses.26 One potential
endpoint of this effort to optimize patient management would
be to obtain an automated CAD-Reporting and Data System
(CAD-RADS) score, which is a standardized system for
reporting results with regard to coronary stenoses in patients
undergoing CT angiography, strongly related to clinical
outcomes.27 In this regard, among the first studies was one by
Higgins et al28 from 1996, which automatically extracted a
model of arteries from CTA scans using a system based on the
ANALYZE framework. Zhou et al,29 in 2012, developed a
method by extracting the coronary arterial tree from CTAs,
which exhibited a miss rate of 25 coronary segments over 20
cases. In 2014, Zhou et al30 achieved a sensitivity of 0.86 for
the overlap between automatic and manual segmentation with
an upgrade of the previously developed model. In a more
recent work, by Ghanem et al,31 a method of automated
coronary wall detection was proposed. This included seg-
mentation of atherosclerotic plaques, recording a dice sim-
ilarity coefficient around 80%. Some commercially available
software has attained good performance in automated coro-
nary segmentation on CTA; however, performances on diffi-
cult cases, such as patients with coronary anomalies, stenoses,
or calcifications, are still not completely satisfactory. This
software does not use AI, and it might be possible that the
introduction of MLmight help overcome the issues that render
automatic segmentation tricky in some instances. Among the
difficulties that can hamper automated coronary segmentation,
the image quality might be the most relevant, especially con-
sidering the small diameter of the coronary arteries. This may
partially explain why fully automated coronary segmentation

has not yet reached optimal performances for more complex
anatomies or extensive coronary atherosclerosis.

Another field where AI can prove useful in CTA is
plaque analysis, as the different composition of coronary
plaques might lead to different patient outcomes. On this
subject, a study by van Assen et al32 investigated an AI-
based automated model for plaque analysis and character-
ization, which allowed prediction of adverse outcomes. This
kind of model significantly increased the accuracy of adverse
event prediction compared with the analysis of only clinical
variables from 0.629 to 0.872. Zreik et al33 proposed an ML-
based, convolutional neural network approach for detecting
and classifying coronary plaques and stenosis. The authors
used coronary CT angiography scans from 81 patients for
network training, and 17 for validation, and found an
accuracy of 0.77 for plaque analysis and of 0.80 for stenosis
analysis. The accuracy of AI-based analysis was not sig-
nificantly different from the accuracy for human observers,
which were 0.80 and 0.83, respectively. Zhao et al34 pro-
posed another automatic plaque detection and classification
framework based on ML and feature analysis, yielding an
accuracy of 0.94 compared with an experienced human
observer on 18 CT angiography examinations.

With regard to risk assessment, some large cohort studies
have been performed to predict outcomes based on patient
characteristics such as risk factors and cardiac CT results.
Among the most recent studies conducted on large cohorts is
one by van Rosendael et al35 who added plaque assessment to
an ML approach for risk stratification. Their model analyzed
35 different CT angiography variables and was based on gra-
dient-boosted decision trees. The data set of 8844 patients was
divided in a 4:1 ratio between training and validation. The ML
approach to risk stratification yielded a c-statistic of 0.771,
significantly higher than c-statistics for non-ML approaches
(ranging from 0.685 to 0.701). Motwani et al36 developed and
tested an ML model for predicting mortality utilizing features
from CT angiography, on a population of 10,030 patients with
suspected CAD. Of the cohort, 90% was used for training and
10% for testing. The AUC of their model was 0.79 (95% CI,
0.77-0.81), compared with the highest AUC obtained from
traditional risk assessment of 0.64 (0.62-0.66).

CT angiography is most likely the field of cardiac CT,
not including CT-FFR, where ML sees the widest available
ranges of published studies and applications. However,
some postprocessing applications, for instance plaque seg-
mentation and quantification, have yet to reach good per-
formance due to the associated intrinsic difficulties. Another
important issue weighing on the task of coronary segmen-
tation is the lack of big, labelled data sets, also derived
from the fact that manual coronary labelling is a highly
time-consuming task. Considering this perspective, future
developments might include the creation of additional open-
access data sets labelled by experts that would allow the
training and testing of novel ML algorithms on reliable
sources. The prognostic value of ML in CT angiography
shows promising results with regard to the prediction of
adverse outcomes. This may be especially interesting, as
studies in this field were conducted on large samples, thus
potentially providing additional value to the currently
available models (Table 1).

AI IN CTP
Given the relative novelty of CTP, so far, only a few

studies have developed related AI applications. An example of
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myocardial CTP image postprocessing is depicted in Figure 6.
Concerning image postprocessing, Xiong et al37 compared 3
different ML approaches with the segmentation of CTP
images, which they tested on 140 cases. They found that one
of them, AdaBoost, performed better than the other 2, with an
AUC of 0.73, compared with manual segmentation by an
experienced observer. On the same topic, Han et al38 proposed
a supervised ML algorithm based on a gradient-boosting
classifier for resting CTP analysis. This algorithm was tested
on 252 patients with suspected CAD. The study showed that
adding resting CTP to the assessment of patients with CT
angiography brought a significant increase in diagnostic AUC
for functionally significant stenosis from 0.68 (95% CI, 0.62-
0.74) to 0.75 (95% CI, 0.69-0.81).

Among the potential future uses of ML in CTP,
automatic segmentation of the myocardium with automatic

assessment of perfusion defects on both static and dynamic
data sets might be particularly beneficial, to reduce human
postprocessing times in view of the growing numbers of
CTP examinations performed.39 Moreover, including CTP
data in risk assessment ML models may potentially lead to a
further increase in prognostic accuracy, as multivariate
analyses previously showed promise in this regard.3

CONCLUSIONS
While CT for the assessment of CAD has not been the

main field of application of ML techniques in radiology,
recent studies show promising findings that suggest a growth
toward wider investigation and application of such techni-
ques for thoracic and cardiovascular CT.40 The largest
samples in the field of ML with the inclusion of cardiac CT

TABLE 1. Main Applications of Machine Learning in Cardiac CT, Divided in Fields According to CAC, CT Angiography, or CTP

Calcium Scoring
Computed Tomography

Angiography
Computed Tomography

Perfusion

Image
preprocessing

Image quality improvement: image
restoration,23 motion estimation
and correction,24 adjustment for
heart rate25

Image
postprocessing

Automatic quantification on
noncontrast CT: high concordance
with Agatston scores assigned by
an experienced reader (κ= 0.9410)

Coronary segmentation: DSC 0.8031

including coronary wall and
plaque contouring

Segmentation of CTP
images: AUC of 0.7337

compared with an
experienced reader

Automatic quantification on contrast-
enhanced CT: high sensitivity in
detecting calcifications compared
with an experienced reader
(sensitivity 0.9412)

Plaque detection and characterization:
predicting outcomes subsequent to
automatic plaque characteristics with
an accuracy of 0.872,32 and accuracy
of 0.9434 for plaque detection and
classification

Rest CTP assessment: AUC
of 0.7538 for functionally
significant stenosis

Automatic quantification on nongated
CT: high concordance with Agatston
scores assigned by an experienced
reader (κ= 0.9115)

Risk assessment Risk of obstructive CAD: AUC of
0.88118 including CAC and clinical
data

Risk of major cardiac events: AUC
of 0.7936 combining CT angiography
features and clinical data

Risk of mortality: AUC of 0.78
including CAC and clinical data19

The most recent studies or the ones yielding the best performances for each specific application are briefly outlined.
DCS indicates dice similarity coefficient.

FIGURE 6. Example of myocardial computed tomography perfusion postprocessing analysis, depicting areas with different degrees of
perfusion in different colors, as reported in the colormap on the right.

J Thorac Imaging � Volume 35, Supp. 1, May 2020 Deep Learning in Cardiac Computed Tomography

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. www.thoracicimaging.com | S63
This paper can be cited using the date of access and the unique DOI number which can be found in the footnotes.



have focused on CAD prediction. The number of studies
that focus on cardiac CT preprocessing and postprocessing
is more extensive, but sample sizes in CAD CT image pre-
processing and postprocessing studies using AI are still
limited. The reason for this may be heterogeneity in image
acquisition, and difficulties related to the lack of availability
of large data sets labelled by experts. While, so far, only a
few ML applications are available for routine use in clinical
cardiac CT practice due to the need of extensive validation,
this is projected to change soon. New AI solutions are
currently becoming clinically available such as the AI-Rad
Companion for chest CT applications. One of the first AI-
based cardiac CT solutions that seem close to clinical
implementation is automated CAC scoring. New applica-
tions or models are expected to be of potential benefit for all
aspects involving CAD assessment on cardiac CT.
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