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Serotonin (5 hydroxytryptamine, 5-HT) is a biogenic amine of ancient origin that

is widespread among animals. It plays multiple roles during development and in

adults as neurotransmitter at synaptic level and neuro hormone controlling

complex behaviors in both vertebrates and invertebrates. Tunicates occupy a

key phylogenetic position to understand the evolution of serotonin functions

since they are the sister group of vertebrates. The presence of serotonin in

tunicates was first reported in adults of the ascidian Ciona robusta (formerly

Ciona intestinalis) in the 1946. Since then, serotonin systems have been in many

tunicate species and its functions during embryogenesis and metamorphosis

explored. We reviewed the current knowledge about serotonin in these animals

first by comparing its presence and localization in larvae and adults of different

species. Then, we focused on the model organism Ciona for which data

regarding sequences and expression patterns of genes involved in serotonin

synthesis and function have been reported. Overall, we provided a

comprehensive overview of serotonergic machinery in tunicates and gave

hints for future studies in this field.
KEYWORDS

neurotransmitter, ascidian, serotonin receptor, serotonin transporter, 5-

HT, development
Introduction

Serotonin [5-hydroxytryptamine (5-HT)] is a biogenic amine of ancient origin that

dates back at least 600 million years. It can be found in various unicellular eukaryotes and

nearly all metazoans. Its origin clearly predates the emergence of a centralized nervous

system, playing a key role in chemotaxis and chemo-signaling in unicellular organisms and

functioning as intracellular regulator in multicellular animals (Greczek-Stachura, 2002;

Azmitia, 2007; Nichols and Nichols, 2008; Berger et al., 2009; Lv and Liu, 2017). Very early

in evolution, 5-HT acquired the additional function as a morphogenetic factor, controlling

the proliferation and differentiation of various cell types, including those of the enteric
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nervous system (Fiorica-Howells et al., 2000; Azmitia, 2001; Najjar

et al., 2023). Its morphogenetic role is also prominent during animal

development. In sea urchin and Drosophila, 5-HT is involved in

early embryogenesis, acting as modulator of gastrulation (Colas

et al., 1995; Buznikov et al., 2005). In mammalian and avian

development, 5-HT regulates cardiac morphogenesis and neural

crest cell migration (Yavarone et al., 1993a, 1993b; Moiseiwitsch

and Lauder, 1995; Choi et al., 1997; Neumann et al., 2023).

Later, while maintaining this variety of developmental roles, 5-

HT also began to function as neuromodulator. In many

invertebrates, 5-HT neurons are primary sensory neurons

modulating food intake, defense and locomotor behavior. 5-HT-

synthetizing cells are involved in defense mechanisms in both

cnidarians and insects (Horen, 1972; Weiger, 1997); in leech and

in sea urchin they regulate swimming activity (Kristan and

Nusbaum, 1982; Yaguchi and Katow, 2003) while in lobsters they

control complex social behavior (Kravitz, 2000). In vertebrates, 5-

HT role as modulator of sleep, mood, appetite, and temperature is

also well-known (Azmitia, 2007).

5-HT neurons and their organization are completely different

among animals reaching the higher complexity in vertebrates.

Heterogeneity of 5-HT neurons concerns both their number,

varying from hundreds in mollusks to several thousands in

mammals, and their localization. In invertebrates, serotonergic

system is often associated with sensory organs, and different type

of neurotransmission have been described (Bacqué-Cazenave et al.,

2020). In humans, 5-HT producing cells are found in brainstem, in

the enteric nervous system and in mast cells and modulate the

activity of a variety of other neurons or even of the entire neural

circuits (Azmitia, 2007).

Tunicates have been recognized as the sister group of

vertebrates (Delsuc et al., 2006). Along with cephalochordates and

vertebrates, they form the group of chordates, whose common body

plan is clearly demonstrated by their larvae. Tunicate larva consists

of a trunk that houses the rudiments of the digestive tract and the

anterior part of the central nervous system (CNS), and a locomotory

tail flanked by muscle cells. The tail contains the neural tube

running dorsally to the chord, which is an apomorphy of the

chordate clade. The swimming larva undergoes a deep

metamorphosis that transforms it, in most cases, into a sessile

adult. Additionally, several tunicates exhibit a colonial lifestyle,

making them the only chordates to have evolved this particular way

of life. As a result, these animals possess a combination of both

conserved and derived traits, with the formers mainly displayed by

the larva, the latter mainly found in the adult form (Lemaire, 2011).

Traditionally tunicates include three classes, the pelagic

appendicularians and thaliaceans and the sessile ascidians, with

the last encompassing three orders: Aplousobranchia,

Phlebobranchia and Stolidobranchia, identified mainly by gill

features. Recent phylogenetic analysis has revisited the phylogeny

of tunicates, revealing that the traditionally recognized ascidian

group is indeed paraphyletic, with the thaliaceans being the sister

group of Aplousobranchia plus Phlebobranchia (Delsuc et al., 2018;

Kocot et al., 2018). For the aims of this review, we used the term

“ascidian” to indicate a sessile species and maintained the
Frontiers in Ecology and Evolution 02
traditional subdivisions for comparative purposes, being well

aware that thaliaceans are derived and nested in the ascidian group.

Considering tunicate peculiar features and their key

evolutionary position, 5-HT role and localization have been

explored in different species, applying both morphological and

molecular approaches. The evolution of this ancient and

widespread monoamine represents indeed an intriguing topic

with still many unsolved questions. Defining its role in tunicates

may thus contribute to unveil which aspects are conserved and

which are unique to this group.

In this review, we thoroughly examined the existing literature of

5-HT in tunicates to gather information and provide a

comprehensive overview of its localization in both larvae and

adults. We focused on Ciona robusta and Ciona intestinalis (from

here on Ciona) (Brunetti et al., 2015; Pennati et al., 2015), well-

established ascidian model systems in many research fields (Dehal

et al., 2002; Satoh, 2013; Mercurio et al., 2019a, 2021). Our aim was

to identify both novel and conserved features in comparison to

phylogenetically related organisms. Furthermore, we documented

the current knowledge regarding the genes involved in the synthesis

and functioning of 5-HT, as well as the functional characterization

of the serotonergic system.
Localization in ascidian larvae

5-HT localization by immunohistochemistry proved to be quite

challenging in ascidian larvae, likely due to the low levels of this

molecule. In fact, in Ciona, even if localization in larvae by means of

anti 5-HT antibodies failed, 5-HT was detected by fluorometry after

HPLC from early embryonic stages. In the egg, the reported

concentration was 3.5 ± 2.9 fmoles/individual, and fell to 1.8 ± 1.5

fmoles/individual in the larva and the authors suggested a maternal

origin of 5-HT throughout embryogenesis even if they did not

investigate any enzyme expressions or activities (Razy-Krajka et al.,

2012). 5-HT concentration increased again in the post-metamorphic

stages and these findings align with De Bernardi’s study, which

reported 5-HT immunolocalization in the Ciona visceral ganglion

only in individuals at the onset of metamorphosis (De Bernardi et al.,

2006). To partially overcome this obstacle and clearly visualize at least

the 5-HT-accumulating cells, larvae were treated with exogenous 5-

HT before immunostaining experiments. In this condition, 5-HT

positive cells were easily observed in the dopaminergic neurons of the

ventral sensory vesicle, further suggesting that results were affected by

the low sensitivity of the technique (Razy-Krajka et al., 2012).

Staining experiments with antibodies against 5-HT in the larvae

of Eudistoma olivaceum (Clavelinidae), Aplidium stellatum

(Polyclinidae), and Didemnum candidum (Didemnidae) yielded

similar negative results. Conversely, immunohistochemistry

analysis reported the presence of a 5-HT-like signal in 20 neural

cells of the Herdmania momus (Stolidobranchia) and several of

these neurons showed fibers projecting posteriorly forming a

distinct network. 5-HT immunostaining signal close to the

sensory vesicle was reported also in other Stolidobranchia larvae,

such as Microcosmus exasperatus (Pyuridae), Styela plicata
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(Styelidae), and Molgula occidentalis (Molgulidae), and in the larva

of the Phlebobranchia Ascidia interrupta (Stach, 2005). In Styela

plicata larva, De Bernardi and colleagues detected 5-HT in some

cells of the sensory vesicle surrounding the single sensory organ, the

photolith, and in the adhesive papillae. Similarly, in the larva of

Microcosmus vulgaris (Pyuridae) 5-HT was found in a few cells

close to the gravity sensing otolith (De Bernardi et al., 2006). In

Phallusia mammillata swimming larvae, 5-HT was detected in the

sensory vesicle, adhesive papillae, epidermal trunk neurons, and

epidermal tail neurons (Pennati et al., 2001) while in the larvae of

Botrylloides leachi (Aplousobranchia), 5-HT signal was observed

only in peripheral neurons of the papillae (Pennati et al., 2007b).

The larvae of Aplousobranchia species often exhibit partially

differentiated adult tracts and organs, a phenomenon known as

adultation (Jeffery and Swalla, 1992). In the larvae of these species, 5-

HT could be detected both in larval typical organs and in differentiating

adult ones. In the Clavelina oblunga (Aplouosobranchia) 5-HT

immunoreactivity was found in cells close to the statocyte complex, a

larval organ, and in the branchial basket, an adult organ (Stach, 2005).

Similar findings were observed in C. lepadiformis and C. phlegraea

where 5-HT was immunolocalized in same adult territories as in C.

oblunga and in few marginal neurons of the adhesive papillae (Pennati

et al., 2009).

The larva ofDiplosoma listenarium revealed serotonin in several

neurons of the complex papillae and in the posterior region of the

cerebral vesicle, while differentiating zooids display adult-like

localization (De Bernardi et al., 2006). Although 5-HT levels can

vary among species, its presence remains widespread in tunicate

nervous system and often associated with larval sensory activity.

Moreover, the presence of serotonergic neurons in the adhesive

papillae is a recurrent feature in most of the analyzed ascidian

species. It has been suggested that 5-HT release by these neurons

may play a role in the signaling cascade that triggers metamorphosis

(Pennati and Rothbächer, 2015).
Localization in ascidian adults

Erspamer (1946) was the first to report the presence of 5-HT in

adult tunicates. Since then, 5-HT has been found in adults of a

variety of solitary ascidian including Ciona intestinalis, Ascidiella

aspersa, Ascidia mentula, Styela plicata, and Phallusia mammillata

(Erspamer, 1946; Welsh and Loveland, 1968; Pestarino, 1982;

Sakharov and Salimova, 1982; Georges, 1985). More recently,

immunolocalization experiments confirmed these results. In

adults of Ciona, 5-HT containing cells were reported in the

pharyngeal bands, in the esophagus and in the stomach; some of

them were also aligned in a band extending from the peripharyngeal

band of the branchial basket to the endostyle (Braun and Stach,

2016). In juvenile of P. mammillata, 5-HT-positive cells were found

in the peripharyngeal band, in the gut and two bilaterally symmetric

rows of cells between bands 7 and 8 of the endostyle (Pennati et al.,

2001). This area also contains cells capable of fixing iodine (Nilsson

et al., 1988) and calcitonin-like cells (Thorndyke and Probert,
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1979). A similar localization pattern was also observed in adults

of other ascidian species: Clavelina lepadiformis Diplosoma

listerianum, Ascidiella scabra, Perophora japonica (Braun and

Stach, 2016), Corella parallelogramma (Nilsson et al., 1988; Braun

and Stach, 2016), Botryllus schlosseri (Tiozzo et al., 2009; Braun and

Stach, 2016). Moreover, in the model organism B. schlosseri, 5-HT–

positive cells were found in the buds during blastogenic

development starting from early stages of bud differentiation,

suggesting that 5-HT may play a role in controlling the

morphogenetic processes (Tiozzo et al., 2009) (Figure 1).

It has been proposed that 5-HT occurrence in the pharyngeal

bands of the branchial basket of these filter feeder animals may

serve to control mucus secretion and ciliary beating (Braun and

Stach, 2016). In fact, the branchial basket is bordered by a ciliated

epithelium and covered by mucus secreted by the endostyle. A role

of 5-HT in ciliary beating control was also reported in several

invertebrates as well as in numerous larval forms (Hay-Schmidt,

2000). As an alternative hypothesis, serotonin in peripharingeal

band may serves in mechanosensory neurons (Valero-Gracia

et al., 2016).

The tunicate endostyle is a ventral organ made by folds of the

branchial basket epithelium that displays five/nine zones of

specialized cells, comprising supporting and glandular cells and

cells with iodinating capacity. Serotonin positive cells of the

endostyle are innervated by the subendostylar nerve (Braun and

Stach, 2016). The endostyle is considered homologous to the

vertebrate thyroids due to its capability to produce iodinated

molecules (Godeaux, 1989). Interestingly, 5-HT is also found in

the parafollicular cells of the thyroid, further supporting the

hypothesis of homology between the two organs (Barasch

et al., 1987).

In vertebrates, it is known that 95% of the 5-HT is produced in

the intestine (Banskota et al., 2019). Actually, this was first noted by

Erspamer who discovered “enteramine” in gastrointestinal in a

rabbit (Erspamer and Asero, 1952). Intestinal 5-HT has been

found to modulate various aspects of intestinal function,

including enteric nervous system development, motility, secretion,

inflammation, sensation, and epithelial development (Banskota

et al., 2019; Najjar et al., 2023).

Based on the detailed morphological description provided by

Burighel and Milanesi, the serotonergic cells described in the

digestive system of ascidians may be identified as endocrine cells

(Burighel and Milanesi, 1975), and considered homolog to the

vertebrate enterochromaffin cells (Gershon, 2004). 5-HT-positive

cells are also present in the enteric system of cephalochordates

(Candiani et al., 2001) but not in hemichordates or echinoderms

(Strano et al., 2019; Mercurio et al., 2019b), suggesting that enteric

5-HT may be a novel feature of chordate evolution.

Noteworthy, in all the analyzed species, 5-HT was not detected

in the neural ganglion of the adults. It has been proposed that, after

metamorphosis, which leads to a reduction of the sense organs and

a sessile life style, the function of 5-HT as a neurotransmitter in the

CNS were reduced and could even disappear altogether (Braun and

Stach, 2018).
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Localization in other tunicates

Tunicates also include free-living thaliaceans encompassing

three clades, Doliolida, Salpida and Pyrosomatida, of

holoplanktonic organisms with diverse and complex life cycles.

Doliolida and Salpida present two different forms, the blastozooid

generation, which is produced through asexual reproduction, and

the oozooid generation, which is derived from zygote development.

Pysosomatida are colonial animals with direct development.

5-HT-positive cells have been reported in many thaliacean

species: Thalia democratica (Pennati et al., 2012; Braun and

Stach, 2016, 2018; Valero-Gracia et al., 2016); Doliolum nationalis

(Stach, 2005; Braun and Stach, 2018); Pyrosomella verticillata

(Valero-Gracia et al., 2016; Braun and Stach, 2018), Salpa

fusiformis, Iasis cylindrical, Pyrosoma atlanticum, Pyrostremma

agassizi (Braun and Stach, 2018); Doliolina muelleri and Ihlea

punctate (Valero-Gracia et al., 2016) (Figure 1).

In Salpida and Doliolida species, similar to adult ascidians,

serotonergic cells were found in the peripharyngeal band of the

digestive tract. However, unlike ascidians, 5-HT immunolabelling

was not detected in the endostyle but was instead present in the

cerebral ganglion. It has been proposed that the absence of 5-HT in

the endostyle of salpids and doliolids could be a character associated

with changes in the control of thyroid hormone production

(Valero-Gracia et al., 2016). In Pyrosomatida, 5-HT localization

appears more comparable to that of adult ascidians: in Pyrosoma

agassizi, for example, 5-HT-positive cells were found in the
Frontiers in Ecology and Evolution 04
peripharyngeal band, endostyle, and intestine, but not in the

central nervous system (Braun and Stach, 2018). As Pyrosomatida

are basal thaliaceans (Delsuc et al., 2018; Kocot et al., 2018), they

may have retained plesiomorphyc characters from their sessile

ancestor. It has been proposed that serotonergic neurons might

have a locomotory function by controlling body muscles that have

been lost in sessile ascidians and retained or re-acquired in free

living thaliaceans. 5-HT absence in the CNS of planktonic

pyrosomes could be attributed to their reliance on water flow

generated by ciliary beating, rather than muscle movement, for

locomotion (Braun and Stach, 2018).

Since the complex life cycles of salps and doliolids, the pattern of

distribution of 5-HT-containing cells can differ between oozooid and

blastozooid stages (Braun and Stach, 2018). In salps, fertilization

occurs internally and the zygote develops inside the blastozooid, in

close contact with maternal tissues where a placenta forms. 5-HT

immunolocalization has been observed in placenta of T. democratica

(Pennati et al., 2012), but, as viviparity is a derived tract in salps,

serotonin presence in the placenta should be considered a derived

tract not inherited by the common ancestor of tunicates.

Interestingly, 5-HT and its receptors has also been reported in the

mammalian placenta, where they are believed to play a role not only

in placental development and pregnancy maintenance, but also in

fetal development (Yavarone et al., 1993a; Huang et al., 1998). This

should be considered a homoplasy, most probably due to a conserved

and ancient role of serotonin in embryos development.

In the case of appendicularians, the third and most basal group

of tunicates, only two cells in the posterior part of the neural

ganglion of Oikopleura fusiformis show positive staining against 5-

HT antibodies (Stach, 2005), while no 5-HT-like signal has been

detected in Oikopleura dioica (Braun and Stach, 2016).

A complete overview of serotonin localization in tunicates is

provided in Table 1.
The serotonin machinery

5-HT synthesis pathway involved two fundamental enzymes:

tryptophan hydroxylase (TPH) and 5-hydroxytryptophan

decarboxylase, an aromatic amino acid decarboxylase (AADC).

Moreover, 5-HT concentration in extracellular fluid is regulated

by selective membrane serotonin transporter (SERT) and 5-HT can

be further transported into storage vesicles via a vesicular mono

amine transporter (VMAT). The molecular machinery of serotonin

system has been extensively studied in Ciona.

TPH is the rate limiting enzyme in the biosynthesis of serotonin

and is considered a good marker of serotonergic neurons (Goridis

and Rohrer, 2002). In the genome of Ciona a single gene coding for

a TPH (Ci-TPH) is present and its sequence shares a high similarity

level with those of vertebrates’ ones (Pennati et al., 2007a). In

posterior larval trunk, Ci-TPH expression is restricted to a few cells

grouped into two distinct clusters (Pennati et al., 2007a; Razy-

Krajka et al., 2012) and in posterior muscle cells of the tail (Pennati

et al., 2007a). One gene encoding a vesicular monoamine

transporter (Ci-VMAT) is expressed specifically in the TPH

domain of the trunk (Razy-Krajka et al., 2012).
FIGURE 1

Schematic representation of the distribution pattern of serotonin
positive cells (green dots) in adults of representative tunicates.
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TABLE 1 Distribution of serotonin in diverse tunicate species based on current literature.

class,
order family species stage localization method reference

appendicularia,
copelata oikopleuridae

Oikopleura
fusiformis juvenile, adult cerebral ganglion immunohist Stach, 2005

appendicularia,
copelata oikopleuridae

Oikopleura
dioica adult not detected immunohist Braun and Stach, 2016

appendicularia,
copelata oikopleuridae

Oikopleura
rufescens adult not detected immunohist Stach, 2005

appendicularia,
copelata oikopleuridae Fritillaria sp adult not detected immunohist Stach, 2005

ascidiacea,
aplousobranchia polyclinidae

Aplidium
constellatum larva non detected immunohist Stach, 2005

ascidiacea,
aplousobranchia styelidae

Botrylloides
leachi larva peripheral neurons of the papillae immunohist Pennati et al., 2007b

ascidiacea,
aplousobranchia styelidae

Botryllus
schlosseri adult

peripharyngeal band, endostyle,
esophagus, stomach, intestine, buds immunohist

Tiozzo et al., 2009; Braun and
Stach, 2016

ascidiacea,
aplousobranchia clavelinidae

Clavelina
lepadiformis larva

statocyte complex, branchial basket,
adhesive papillae immunohist Pennati et al., 2009

ascidiacea,
aplousobranchia clavelinidae

Clavelina
lepadiformis adult

peripharyngeal band, endostyle,
esophagus, stomach, intestine immunohist Braun and Stach, 2016

ascidiacea,
aplousobranchia clavelinidae

Clavelina
oblunga larva

statocyte complex, two cells next to
sensory vesicles, branchial basket immunohist Stach, 2005

ascidiacea,
aplousobranchia clavelinidae

Clavelina
phlegraea larva

statocyte complex, the branchial
basket, adhesive papillae immunohist. Pennati et al., 2009

ascidiacea,
aplousobranchia didemnidae

Didemnum
candidum larva non detected immunohist. Stach, 2005

ascidiacea,
aplousobranchia didemnidae

Diplosoma
listenarium larva

neurons of the papillae, CNS,
developing adult organs immunohist. De Bernardi et al., 2006

ascidiacea,
aplousobranchia didemnidae

Diplosoma
listerianum adult

peripharyngeal band,
endostyle, stomach, immunohist. Braun and Stach, 2016

ascidiacea,
aplousobranchia polycitoridae

Eudistoma
olivaceum larva non detected immunohist. Stach, 2005

ascidiacea,
phlebobranchia ascidiidae

Ascidia
interrupta larva CNS immunohist. Stach, 2005

ascidiacea,
phlebobranchia ascidiidae Ascidia mentula adult intestine

histochem.,
immunohist. Erspamer, 1946

ascidiacea,
phlebobranchia ascidiidae

Ascidiella
aspersa adult intestine histochem. Erspamer, 1946

ascidiacea,
phlebobranchia ascidiidae Ascidiella scabra adult

peripharyngeal band, endostyle,
esophagus, stomach, intestine immunohist. Braun and Stach, 2016

ascidiacea,
phlebobranchia cionidae

Ciona
intestinalis

egg, embryos,
post-
metamorphic
stages not specified

fluorometry
after HPLC Razy-Krajka et al., 2012

ascidiacea,
phlebobranchia cionidae

Ciona
intestinalis

pre-
metamorphic
larva viscerall ganglion immunohist. De Bernardi et al., 2006

ascidiacea,
phlebobranchia cionidae

Ciona
intestinalis adult

peripharyngeal band, endostyle,
esophagus, stomach, intestine

histochem.,
immunohist.

Erspamer, 1946; Welsh and
Loveland, 1968; Braun and
Stach, 2016

ascidiacea,
phlebobranchia corellidae

Corella
parallelogramma adult

peripharyngeal band, endostyle,
esophagus, stomach, immunohist.

Nilsson et al., 1988; Braun and
Stach, 2016

(Continued)
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Serotonin transporters (SERTs) are plasma membrane

transporters involved in neurotransmitter re-uptake. They are

Na+-dependent transporters belonging to the solute-linked carrier

family 6 (SLC6) of membrane co-transporters. SERTs are present in

the genomes of practically all Metazoa (Caveney et al., 2006). In

Ciona, Ci-SERT transcripts were detected in the territory of Ci-

Tyrosine hydroxylase, the gene coding for the rate-limiting enzyme

of dopamine, but not in the Ci-TPH domains of the tail-bud

embryos and larvae. It has been proposed that 5-HT could be

stored together with dopamine in the Ci-TH-expressing cells of the

sensory vesicle, a property shared by some vertebrate amacrine cells

of the retina. Although there is no evidence that TPH-positive cells
Frontiers in Ecology and Evolution 06
express any of the two genes encoding aromatic amino acid

decarboxylase (Ci-AADC) described in Ciona, in both TPH and

TH domains the transcripts of GTP cyclohydrolase I (Ci-GCH) are

present. This latter is the enzyme responsible for the synthesis of

tetrahydrobiopterin, an essential cofactor of serotonin and

dopamine synthesis (Razy-Krajka et al., 2012). The absence of

recognized AADC genes expression in TPH positive cells needs to

be further investigated, also exploring the possibility of a maternal

origin of the protein. Interestingly, TPH expression in Ciona adults

indicates that serotonergic neurons are present also in the tentacle

of coronal cells in the oral siphon, considered homologous to

vertebrate hair cells (Rigon et al., 2018).
TABLE 1 Continued

class,
order family species stage localization method reference

ascidiacea,
phlebobranchia perphoridae

Perophora
japonica adult

peripharyngeal band, endostyle,
esophagus, stomach, intestine immunohist. Braun and Stach, 2016

ascidiacea,
phlebobranchia ascidiidae

Phallusia
mammillata larva

sensory vesicle, adhesive papillae,
epidermal trunk neurons, and
epidermal tail neurons immunohist. Pennati et al., 2001

ascidiacea,
phlebobranchia ascidiidae

Phallusia
mammillata adult

peripharyngeal band, endostyle,
stomach, intestine immunohist. Pennati et al., 2001

ascidiacea,
stolidobranchia pyuridae

Herdmania
momus larva CNS cells and fibers immunohist. Stach, 2005

ascidiacea,
stolidobranchia pyuridae

Microcosmus
exasperatus larva CNS immunohist. Stach, 2005

ascidiacea,
stolidobranchia molgulidae

Molgula
occidentalis larva CNS immunohist. Stach, 2005

ascidiacea,
stolidobranchia styelidae Styela plicata adult esophagus, stomach and intestine immunohist. Pestarino, 1982

ascidiacea,
stolidobranchia styelidae Styela plicata larva CNS, adhesive papillae immunohist.

Stach, 2005; De Bernardi
et al., 2006

thaliacea,
doliolida doliolidae

Doliolum
nationalis

oozooid
and blastozooid

dorsal ganglion, ciliated funnel,
intestinal tract immunohist.

Stach, 2005; Braun and
Stach, 2018

thaliacea,
doliolida doliolidae

Doliolina
muelleri phorozooid

cerebral ganglion, ciliated
funnel, esophagus immunohist. Valero-Gracia et al., 2016

thaliacea,
doliolida doliolidae

Doliolina
muelleri larva not detected immunohist. Valero-Gracia et al., 2016

thaliacea,
pyrosomatida pyrosomatidae

Pyrosoma
atlanticum adult zooid

peripharyngeal band,
endostyle, esophagus immunohist. Braun and Stach, 2018

thaliacea,
pyrosomatida pyrosomatidae

Pyrosomella
verticillata adult zooid

peripharyngeal band, endostyle,
esophagus, buds immunohist.

Valero-Gracia et al., 2016; Braun
and Stach, 2018

thaliacea,
pyrosomatida pyrosomatidae

Pyrostremma
agassizi adult zooid

peripharyngeal band,
endostyle, esophagus immunohist. Braun and Stach, 2018

thaliacea,
salpida salpidae Iasis cylindrical oozoid

cerebral ganglion, peripharyngeal
band, esophagus immunohist. Braun and Stach, 2018

thaliacea,
salpida salpidae Ihlea punctata oozooid

cerebral ganglio, peripharyngeal
band, esophagus immunohist. Valero-Gracia et al., 2016

thaliacea,
salpida salpidae Salpa fusiformis

oozooid
and blastozooid

cerebral ganglion, peripharyngeal
band, esophagus immunohist. Braun and Stach, 2018

thaliacea,
salpida salpidae

Thalia
democratica

oozoid
and blastozooid

cerebral ganglion, peripharyngeal
band, esophagus, intestine, placenta immunohist.

Braun and Stach, 2016, 2018;
Pennati et al., 2012; Valero-
Gracia et al., 2016
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5-HT exerts its function by binding to different types of

receptors that in human have been classified into seven families

(5HT 1-7) (Pytliak et al., 2011). With the exception of 5HTR3s, that

are ligand-gated ion channels, all the other serotonin receptors

(5HTRs) are G-protein coupled receptors.

In the genome of Ciona, five genes corresponding to serotonin

receptors have been identified (Mercurio et al., 2023). The

phylogenetic analysis showed that two sequences, 5HT1.1 and

5HT1.2, are basal to all 5HT1 paralogs of vertebrates. One

sequence is ortholog to 5HT2 and has five protein isoforms, one

is an ortholog of 5HT7s, and the last one, 5HT-like, is highly

divergent and basal to all G-coupled 5HT classes. In Ciona

savigny, the coding region of 5-HT2 is included in the largest

intron of the Psmd1-like gene that encodes the non-ATP

regulatory subunit 1 (RPN2) of the 26S proteasome. The 26S

proteasome is a highly conserved multicatalytic protease from

yeast to mammals, which functions to degrade proteins following

ubiquitination. None of the other 5-HT receptor genes show a

similar genomic localization while this organization is shared with

the 5-HT2B gene of all mammals, that are encoded in a large intron

of the proteasome Psmd1 too (Moutkine et al., 2019). Interestingly,

it was suggested that this genomic arrangement may outcome in a

conserved co-regulatory relationship (Assis et al., 2008).

During development, by in situ hybridization, it was possible to

identify the territories of expression of four out of the five identified

5HTRs, with the exception of Ci-5HT2. All analyzed genes showed

an early expression starting from early gastrula. Ci-5HT-like

transcripts were identified with strong signal mainly in territories

of presumptive nervous system, in precursors of the anterior

sensory vesicle and pigment cells, in cells that will contribute to

form larval visceral ganglion and in posterior precursors of the

bipolar tail neurons. The other identified Ci-5HTR genes showed a

broader expression, mainly in mesenchyme cells with a sharp

anterior limit of expression. Ci-5HT7 expression was observed in

cells of the anterior most row of neural plate progenitors including

palp neuron progenitors. The expression of all genes decreased or

were no longer detectable at larva stage (Mercurio et al., 2023).

Importantly, all the Ci-5HTRs were expressed in some territories of

CNS lineage, suggesting their contribution in neural development,

as reported in vertebrates (Romero-Reyes et al., 2021).
Functional evidence

5-HT is a multifaceted molecule that plays many diverse roles

(Berger et al., 2009). Its functions in tunicates are still largely to be

elucidated. Some hints come from pharmacological inhibition/

stimulation of its receptors and transporter (Pennati et al., 2001,

2003; Mercurio et al., 2023). 5-HT involvement in ascidian

embryogenesis has been suggested by the early expression of

5HTRs genes in Ciona, and it was confirmed by treatments with

5-HT active drugs. P. mammillata larvae developed by embryos

exposed at gastrula stage to Ritanserin, a selective 5HT2 antagonist,

showed a roundish head and flat papillae. Juveniles exposed to the

same drug had an enlarged heart with blood cells accumulating in it

(Pennati et al., 2001). Interestingly, in mouse embryos exposure to
Frontiers in Ecology and Evolution 07
Ritanserin induced morphological defects in the head, neural tube

and heart, probably by preventing the differentiation of cranial

neural crest cells and myocardial precursor cells (Choi et al., 1997).

Exposure WAY-100635, an antagonist of 5-HT1 receptors, caused

an impairment on anterior trunk with malformed palps and a

curved tail both in P. mammillata and Ciona larvae (Pennati et al.,

2001; Mercurio et al., 2023). In treated Ciona embryos, the

expression of Ci-Pou IV, a specific marker of sensory neurons,

indicated that the deactivation of 5HTRs disrupted the development

of neurons of palps and tail. Is has been suggested that the lack of

most of the sensory neurons detected in WAY-100635-treated

embryos could be related to drug interference with the complex

interactions between diffusible molecules involved in sensory

neuron specification such as retinoic acid, FGF/MAPK signal, and

the Wnt pathway (Mercurio et al., 2023). Moreover, larvae exposed

to WAY-100635 showed a reduction of pigment in otolith and

ocellus, the sensory organs of the sensory vesicle. The pigment

organs were recognizable by their shape but melanin content was

drastically reduced (Pennati et al., 2003; Mercurio et al., 2023). It

was demonstrated that WAY- 100635 treated embryos displayed a

drastic decrease in expression of Ci-Tcf. This gene is specifically

expressed in the precursor cells of the ocellus and otolith and its

perturbation led to larval sensory organs being only partially

melanized, suggesting a role in pigment cell terminal

differentiation (Squarzoni et al., 2011). 5-HT involvement in

melanin synthesis has been reported in different animals.

Disrupting the serotonin synthesis impaired pigment synthesis in

eyes of Platyhelminthes (Lambrus et al., 2015). Stress conditions

and alterations of 5-HT levels can reduce the production of melanin

in humans as in mouse. Agonists of 5-HT1A and 5-HT1B receptors

proved to be efficient at restoring pigmentation (Wu et al., 2014). In

zebrafish, fluoxetine, a selective inhibitor of serotonin reuptake,

increases melanin synthesis via 5-HT1A receptor (Liu et al., 2019).

Fluoxetine is a selective blocker of SERT that generate an

increase in extracellular 5-HT. In Ciona larvae, exposure to

Fluoxetine reduced spontaneous swimming and the shadow

response that is a light-triggered bout of high-speed swimming. It

was suggested that the DA-synthesizing/5-HT accumulating cells of

the ascidian sensory vesicle play a role in controlling the swimming

behavior in response to light, strengthening the hypothesis of their

homology with the amacrine cells of vertebrates (Razy-Krajka et al.,

2012). The function of 5-HT in modulating swimming behavior is

further supported by Ci-TPH expression in some Cionamuscle cells

of the larval tail, probably at neuro-muscular junctions, suggesting

that 5-HT may regulates the left-right alternate tail contractions

during larval swimming (Pennati et al., 2007a).

The blocking of SERT have effects also on ascidian

metamorphosis. Larvae of P. mammillata exposed to Fluoxetine

exhibited an early onset of metamorphosis. A similar stimulating

effect was obtained exposing competent larvae to an agonist of 5-

HT1 receptor, 8-OH-DPAT. Conversely, 5-HT depletion, by means

of antagonists and by antibody incubation, delayed tail resorption

and the onset of metamorphosis. Therefore, it is likely that 5-HT

plays a key role in the mechanism triggering metamorphosis in P.

mammillata larvae (Pennati et al., 2001). 5-HT role in modulating

the metamorphosis has been assessed in many different pelagic
frontiersin.org

https://doi.org/10.3389/fevo.2024.1378927
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Pennati et al. 10.3389/fevo.2024.1378927
larvae of marine animals such as barnacles, cnidarians and mollusks

(Barlow and Truman, 1992; Couper and Leise, 1996; McCauley,

1997; Zega et al., 2007a, 2007b), suggesting that this could be a

conserved and probably ancient role of 5-HT (Zega et al., 2007b).
Discussion

Serotonin is an ancient molecule that plays crucial roles in

tunicates. Due to their phylogenetic position, tunicates are pivotal in

understanding at least part of the evolutionary history of this

eclectic molecule. They preserved some ancient 5-HT roles, such

as control of ciliary beating and locomotion coordination, which are

also evident in cnidarians (Mayorova and Kosevich, 2013) and the

larvae of various invertebrates (Hay-Schmidt, 2000). 5-HT roles as

neurotransmitter, in morphogenesis and melanogenesis, are likely

to be ancient ones since they have been described also in

platyhelminthes (Lambrus et al., 2015). Conversely, the presence

of 5-HT positive cells in the intestine in tunicates (Pennati et al.,

2001; Tiozzo et al., 2009; Braun and Stach, 2016, 2018),

cephalochordates (Candiani et al., 2001) and vertebrates

(Gershon, 2004) could be a chordate specific novelty, since it has

never been described in other groups (Strano et al., 2019; Mercurio

et al., 2019b). Within the tunicate clade, several events of loss and

gain of function might have occurred in relation to the evolution of

different life cycles. Some of these functions have been probably lost

in appendicularians, the clade for which many details are still in

need of exploration. Swimming larvae of sessile forms use 5-HT to

control locomotion in response to perception of light stimuli and

keep 5-HT role in controlling the timing of metamorphosis. Adults

of these sessile forms might have lost 5-HT in CNS consequently to

loss of locomotion control. Presence of serotonergic neurons in

CNS were regained in doliolids and salps that derive from sessile

forms but that have reconquered a pelagic life style, with

locomotion driven by muscle contractions. An alternative less

parsimonious scenario presumes that Stolidobranchia and the

clade of Phlebobranchia plus Aplousobranchia have lost 5-HT in

adult CNS independently and the sessile ancestor of Doliolida and

Salpida retained it as a plesiomorphic character. The absence of 5-

HT containing cells in the endostyle of salps and doliolids

compared to pyrosomes may result from a secondary loss of

serotonin control over ciliary beating and mucus secretion, as

suggested by Valero-Gracia et al. (2016).

Overall, the multifaceted roles of 5-HT in tunicates underscore

its importance and versatility, prompting further questions about its
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evolutionary journey. Despite significant advancements, many

aspects remain unresolved with functional studies often

fragmentary and focused on a few ascidian species. Moreover,

molecular characterization of the serotonergic system has only

been accomplished in Ciona. Future research should aim to fill

these knowledge gaps and better delineate the specific roles of 5-HT

in these animals, thus providing valuable insight into its conserved

functions and lineage-specific traits.
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