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A B S T R A C T

The research presented in this study offers a contribution to the field of viticulture by testing at lab scale an 
innovative approach for monitoring grape ripening using an autonomous proximal sensing technology.

By leveraging an IoT spectral sensing system, termed i-Grape, the research aims to remotely monitor vineyards 
and provide real-time data on grape ripening status. This system, consisting of tailored optical, host, and 
controller modules, offers a novel solution for continuous monitoring throughout the crop season, overcoming 
limitations associated with traditional sampling methods.

The study conducted comprehensive sampling in the viticulture area of the Douro Valley, collecting data from 
cv. Touriga Nacional and Touriga Franca. Both optical and wet-chemistry analyses were performed on the grape 
samples to develop predictive models for ripening parameters, including Total Soluble Solids (TSS), Potential 
Alcohol (PA), pH, Titratable Acidity (TA), Total Polyphenols (TP), and Extractable Anthocyanins (EA).

Exploratory analysis of the optical data revealed insights into the behaviour of the spectral readouts over time, 
highlighting the evolution of grape ripening and the potential interference factors that need to be addressed for 
accurate modelling. Pre-processing techniques, including background subtraction and Log10 transformation, 
were employed to enhance the quality of the optical data and improve model performance.

Overall, predictive PLS models with good performance were obtained for the estimation of the technological 
ripening parameters (RPD = 2.76 and R2 = 0.86 for TSS; RPD = 2.58 and R2 = 0.85 for PA; RPD = 3.65 and R2 =

0.92 for TA; RPD = 2.27 and R2 = 0.79 for pH), establishing a solid ground for the application of this sensing 
strategy in the field. For the phenolic parameters (TP and EA), the performance of the models is still insufficient 
(RPD = 1.28 and R2 = 0.51 for TP; RPD = 1.55 and R2 = 0.58 for EA). A comparison with existing literature 
highlighting the advancements achieved in terms of predictive performance and operational capabilities has 
been reported. The potential of the i-Grape system to revolutionize grape ripening monitoring by offering a cost- 
effective, non-destructive, and scalable solution for vineyard management has been demonstrated at lab scale.

In conclusion, the research laid the groundwork for further advancements in optical sensing technology for 
viticulture, opening up avenues for future research in optimizing hardware design, data processing algorithms, 
and field implementation strategies to realize the full potential of IoT-based solutions in precision agriculture.

1. Introduction

The wine sector is evolving in an increasingly competitive interna-
tional scenario characterised by new producing countries with innova-
tive strategies in production and trade. In this highly competitive 

market, it is now well-accepted that the quality of a wine depends 
mainly on the qualitative features in terms of the chemical character-
istics of the grapes used to produce it (Giovenzana et al., 2018). More-
over, the wine sector is adapting to changing lifestyles which accelerated 
due to the Covid-19 pandemic (Cavallo et al., 2020). For instance, 
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sustainability concerns have increased but also led to new behaviours 
such as consuming more wine at home (Eurostat., 2019; Vallone et al., 
2019). All these aspects are contributing to a growing interest in more 
sustainable production management, as well as in the quality of the raw 
material – the grapes.

The quality of the grapes relies on their chemical composition, which 
makes the information about grapes’ ripening status the key element to 
producing high-quality wines. Indeed, this heterogeneity of grape’s 
chemical composition can be affected by multiple factors, and it has a 
significant effect on the wine composition and quality (Kontoudakis, 
et al., 2011). The conventional method for monitoring these parameters 
relies on the random sampling of berries in a pre-defined area, followed 
by different destructive wet-chemistry assays for the different target 
parameters (OIV, 2022). This approach is limited by the reduced number 
of samples that can be collected due to the logistic constraints (e.g. the 
distance from the lab to the field) and also the time gap between sample 
collection and results. Furthermore, the use of a destructive assay leads 
to the production of a significant amount of chemical waste, which is a 
critical factor in seeking for a more environmentally sustainable pro-
duction (Casson et al., 2019).

Alternatives to this current standard methodology have been pro-
posed over the last decade, with a particular emphasis on non- 
destructive optical methods that commonly include prediction models. 
One example is the use of a portable Vis/NIR spectrophotometer for the 
quantification of the major technological parameters (Total Soluble 
Solids, pH, Total Acidity) of the maturation process (Giovenzana et al., 
2014, Giovenzana et al., 2015). More recently, portable devices based 
on discrete optical bands have been developed to the same end (Pampuri 
et al., 2021a). Additionally, fluorescence-based instruments (Agati et al., 
2007). have been successfully used to predict phenolic parameters. More 
recently, methods based on computer vision have become an area of 
growing interest due to the possibility of acquiring multiple images and 
automating them (Vrochidou et al., 2021). Although these examples 
represent a significant improvement over the current state of the art, 
they are still unable to be a continuous source of analytical information. 
Most of these methods still require manual data collection (the in-
struments need an operator or are mounted in a vehicle that needs to be 
driven across the vineyard) (Pampuri et al., 2021a; Fernández-Novales 
et al. 2019; Urraca et al., 2016; Giovenzana et al., 2014, 2015; Matese 
and Filippo Di Gennaro, 2015). Moreover, computer vision methods also 
require significant computing power to develop the prediction models 
and then predict the target parameters. The combination of these two 
factors (in addition to the cost of spectrophotometers and cameras) 
makes it difficult to use these analytical tools on a large scale in the field, 
which impacts the number of samples that can be collected during the 
complete period of a crop season (~3 months). In this context, an 
Internet of Things (IoT) spectral sensing system (i-Grape) has been 
proposed in Oliveira et al. (2024) describing the concept of application 
and the technical specification. Such a device can be installed in prox-
imity to the target (bunch) to remotely monitor the vineyard during the 
crop season. However, to make this device practical for winemakers, the 
development of models that can predict grape maturation parameters 
with accuracy and reliability comparable to conventional methods 
(including measurement scales and associated error margins) is 
essential.

Therefore, this study aims to utilize and test the i-Grape prototype by 
developing new prediction models for estimating ripening parameters 
based on optical data collected in a lab environment for two grape va-
rieties, cv. Touriga Nacional and cv. Touriga Franca. The research 
thoroughly examines various aspects of multivariate model develop-
ment, such as the evolution of optical signals throughout the crop sea-
son, potential external interferences affecting measurements, and data 
preprocessing. These new features will introduce new capabilities for 
assessing the grape’s ripening status in a fast, non-destructive fashion, 
which would positively impact the harvesting operations (namely 
operating procedures, scheduling, and classification).

2. Materials and methods

2.1. Spectral sensing system basic specs

The spectral sensing system (Fig. 1) used to measure the reflectance 
of the grapes in a lab environment is a tailor-made IoT end node which 
was introduced (for the first time) in detail by Oliveira et al. (2024)
Briefly, the hardware system is composed of three modules: (i) an optical 
module, which includes the optical components (LEDs and photode-
tectors), (ii) a host module, which includes the LED driver and the 
analog front-end for signal condition, and (iii) a controller module, 
which is a platform that controls the operation of the system, namely the 
spectral sensor protocol sequence, the data storage, and connectivity of 
the system. The optical module, which contacts with the grape berry, is 
composed of four photodiodes (PDs) with an active area of 700 x 700 µm 
surrounded by four chip-level LEDs (~300 x 300 µm) with dominant 
wavelengths of 530, 630, 690, and 730 nm. The optical module was 
produced in RIGID.flex PCB fabrication process from Würth Elektronik 
(Waldenburg, Germany), where the flexible polyimide section connects 
the optical head to the host module.

In this work, the system used for data acquisition included a single 
spectral sensor considering its use in a lab environment. The optical 
module was placed onto a 3D-printed holder, where the grape was 
placed and covered before the measurement cycle began. The optical 
data acquired was stored locally on a micro-SD card (the radio trans-
mission feature of the controller was disabled).

The measurement cycle included the consecutive illumination of a 
single grape berry by an individual LED followed by the signal acqui-
sition in each of the four photodetectors (also labelled as channels for 
the sake of simplicity). In the end, an acquisition with all LEDs off was 
also performed to evaluate any background effects. Therefore, a single 
measurement cycle was composed of 20 individual readouts (sixteen for 
the four combinations of LED-PDs plus four corresponding to the 
acquisition in the absence of illumination).

2.2. Sampling

The experimental activity took place in the viticulture area of the 
Douro Valley at Quinta do Seixo (Valença do Douro, Tabuaço, Portugal, 
latitude: N 41◦10′4.44″ and longitude: W 7◦33′18.36″) owned by Sogrape 
Vinhos since 1987. The vineyard covers 71 ha of century-old vineyards 
on a steep-slope landscape on the south bank of the Douro River. In more 
than 30 years of commercial activity, the company collected data by 
building a historical dataset that was used to verify the ripening trends 
consistency during the experimentation. Activities began from late July 
to mid-September 2020 by collecting a total of 106 grape samples (1 
sample is equivalent to 200 grape berries randomly collected) from six 
dates (Table 1). The sampling was performed on cv. Touriga Nacional 
(TN) and Touriga Franca (TF). TN samples were collected from a pilot- 
vineyard of around 1 ha total area at Quinta do Seixo (Tabuaço, 
Portugal) whereas TF samples came from different vineyards across the 
Douro Valley region. A total of 106 samples (75 from TN and 31 from 
TF) were analysed using both the spectral sensing system and the stan-
dard procedures for the reference wet-chemical analyses.’

2.2.1. Optical analysis
Fig. 2 shows the experimental protocol used for analyzing each 

sample with the spectral sensing system and conventional wet-chemistry 
assays. Each sample, consisting of 200 berries collected from the pilot 
vineyard at Quinta do Seixo in Tabuaço, Portugal, underwent a two-step 
analysis process. First, 30 berries from each sample were optically 
analyzed using the spectral sensor. The optical signatures of these 30 
berries were averaged to obtain a representative signal for the entire 
sample of 200 berries. Subsequently, the same 200 berries were 
analyzed using the traditional wet-chemistry assays employed by the 
winery, Sogrape Vinhos. During the optical analysis, each berry was 
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placed on the optical module and covered with a 3D-printed cap before 
the optical measurement routine was manually initiated by the operator.

2.2.2. Reference analysis
The reference analyses were performed in the Sogrape’s laboratory 

(Quinta do Seixo, Tabuaço, Portugal) immediately after the sampling in 
the field and the optical analysis. A total of 200 random berries (2 to 3 
berries from each grape bunch) per sample were collected and analysed 
from each plot. The reference analyses performed were: (i) Total Soluble 
Solids (TSS, ◦Brix) using a digital refractometer (PAL-1 ATAGO, Japan), 
(ii) Potential Alcohol (PA, % vol), (iii) Titratable Acidity (TA, g of tar-
taric acid L-1) using an automatic titrator (TitroMatic KF 1S, Crison In-
struments, Italy), (iv) Total Polyphenols (TP, mg/dm− 3) calculated by 
direct measurement of the optical density at 280 nm, under a 1-cm 
quartz cell (Ribéreau-Gayon et al., 1998), (v) Extractable Anthocya-
nins (EA, mg/dm-3) calculated through Glories’ method (Ribéreau- 
Gayon et al., 2006) based on the Optical Density measurements at 280 
and 520 nm using a UV/Vis spectrophotometer and (vi) pH (pH meter, 
PCE Inst. GmbH, Germany).

Fig. 1. Spectral sensing system with optical sensing head (a), operative representation of the system for data acquisition (b), and schematic representation of the 
optical head structure (c).

Table 1 
Full calendar and number of samples collected in 2020 campaign for cv. Touriga 
Nacional (TN) and Touriga Franca (TF).

Varieties

Time TN TF

t0 July 23rd July 23rd
Samples 14 10
t1 August 5th August 10th
Samples 11 3
t2 August 20th August 17th
Samples 12 5
t3 September 3rd August 24th
Samples 12 6
t4 September 10th August 31st
Samples 12 3
t5 September 17th September 14th
Samples 14 4
Tot samples 75 31

Fig. 2. Sampling procedure for data collection (optical and reference).
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2.3. Modelling

Multivariate data analysis was carried out using Matlab® version 
2020b (The MathWorks, Inc., Natick, MA, USA). This involved both the 
PLS-Toolbox package (Eigenvector Research, Inc., Manson, Washing-
ton), built-in, and custom functions.

Different spectral pre-processing techniques were considered to 
remove any irrelevant information (offsets and scattering) that could 
negatively affect the regression models. By the end, the readouts were 
treated row-wise with Log10 (to improve correlation with the reference 
data) and autoscaled column-wise (before applying scale-dependent 
multivariate analysis methods such as Principal Components Analysis 
(PCA) or Partial Least square Regression (PLS) to minimize location 
differences and to give the same importance to all the optical outputs.

PCA was applied to the data matrix of readouts to investigate the 
variability in the optical results. Subsequently, latent variable modelling 
was conducted using the PLS method, which linearly maximizes the 
covariance between the optical readouts and the reference analyses 
(TSS, PA, pH, TA, TP, and EA) (Oliveri et al., 2020). To verify the 
robustness of the developed PLS models, a uniform and representative 
subdivision of the samples was performed using the Kennard–Stone 
duplex algorithm (Kennard & Stone, 1969). Such method was used to 
partition the entire dataset (106 sample units) into the calibration set 
(75 sample units, thus the 70 % of 106) and prediction set (the rest of 31 
sample units used as external validation set).

The model’s accuracy was then assessed using several metrics: RMSE 
(root mean square error), bias, and R2 (coefficient of determination). 
High model performances are associated with low values of error and 
bias, and high values of R2 (as maximum equal to 1). Besides, the RPD 
(residual prediction deviation, i.e. the ratio between the standard de-
viation related to the response variable of the set of data and the root 
mean squared error associated) was calculated. As a reference, a RPD 
between 1.5 and 2 indicates the capability of the model to distinguish 
low from high values of the response variable. When the RPD falls within 
2 and 2.5, the model is capable of providing approximate quantitative 
predictions. Instead, an RPD higher than 2.5 indicates a high level of 
prediction accuracy (Nicolai et al., 2007).

These evaluations were conducted for the calibration set (using 
RMSE, Calibration Bias, and R2), and the prediction set (external vali-
dation, evaluated with RMSEP, Prediction Bias, and R2Pred). Moreover, 
the cross-validation strategy (internal validation) was used to choose the 
optimal number of latent variables (model complexity) to maximize the 
model reliability, balancing good predictions, and preventing overfitting 
(Tugnolo et al., 2021). Thus, an internal cross-validation set obtained 
using the venetian blinds method with 5 data splits was evaluated with 
RMSECV, CV Bias, and R2CV.

Finally, to assess the contribution of each combination of LED-PD to 
build the six independent predictive models, the VIP (Variable Impor-
tance in the Projection) scores were calculated. The VIP score is the 
squared function of the PLS weights taking into account the amount of 
explained “y” (response variable) variance in each dimension. The VIP 
value is calculated for each variable (combination of LED-PD). There-
fore, the VIP scores provide information about the significance of each 
variable on the latent variables (LV). A higher VIP score indicate 
increased importance of the corresponding variable. A threshold crite-
rion for variable selection is set at VIP score values greater than 1.0, as 
these variables are deemed to have the most significant influence on the 
model (Pampuri et al., 2021b).

3. Results and discussions

3.1. Reference data analysis

This study covered the grape ripening evolution across the whole 
timeframe of the process, from veraison to harvest. Figs. 3 and 4 sum-
marize the descriptive statistics (for each sampling time) related to the 
grape’s wet-chemistry reference analysis (TSS, PA, pH, TA, TP, and EA) 
carried out on the two varieties considered (TN and TF). The mean, 
median, interquartile range (IQR), and data range were represented in 
the graphs. Moreover, potential outliers (observations beyond the data 
range whisker length) were also reported. By default, a potential outlier 
is a value that is more than 1.5 times the IQR (away from the bottom or 
top of the box). However, no reference sample was considered a true 
outlier to be discarded from the data set.

Fig. 3. Descriptive statistics of the reference analysis for TSS (a), PA (b), pH (c), TA (d), TP (e), and EA (f) obtained from cv. Touriga Nacional (TN) samples at each 
sampling time.
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Overall, for variety TN (Fig. 3), a clear trend over time for both 
technological and phenolic maturation parameters was observed. This 
fact can be associated with the sampling strategy design that consisted of 
multiple sample collections within the same parcels of the vineyards. 
TSS (Fig. 3a) ranged from 6.4 ◦Brix to 33.7 ◦Brix and it follows that PA 
(Fig. 3b) ranged from about 3.2 % to 21.04 %. Especially, for these two 
parameters, very high values were obtained at the end of the sampling 
campaign due to the use of this grape to produce fortified wine (e.g. Port 
wine).

Concerning TF variety (Fig. 4), the sampling campaign was per-
formed in different vineyards, altitudes, and soil. Due to this additional 
geographic variability of the samples, a wider standard deviation in the 
maturation values was observed when compared to TN. Such 
geographical variability is also found at t4, where higher maturation 
values were obtained compared to t5 suggesting a sampling of grape 
fully ripe and ready to be harvested. Regarding TP (Fig. 4e), no samples 
were analysed at t0.

3.2. Optical data exploratory analysis

The lab optical acquisitions were managed considering the potential 

conditions that the sensor has to face once placed into the grape bunch in 
the field: (i) the noise produced by environmental light, (ii) the physical 
features of the grape berries, (iii) the increase in the size of the bunch, 
(iv) the variable optical gap and (v) the sensor position inside the grape 
bunch which may change during the ripening process. To minimize 
these issues and maximize the information collected, the measurements 
were performed using a case to reproduce a dark room to have similar 
field conditions to a sampling performed overnight in future application.

Firstly, a visual interpretation of the optical readouts acquired was 
performed. Fig. 5 shows the mean sensors’ readouts (20 variables) at 
each sampling time coming from the signal recorded by each PD 
(labelled as ch1, ch2, ch3, and ch4 for the sake of simplicity). A more 
focused description of the optical signals at each sampling time has been 
reported in Figure S1. The measurement routine turns on one LED at a 
time starting following the order: 730, 690, 630, and 530 nm. Finally, 
the signal with all the switched LEDs off has been collected with the four 
PDs to detect background signals. Overall, the final output provides a 
complete profile that is comparable with the typical Vis/NIR spectrum of 
dark grape berries as reported by Pampuri et al. (2021a) and Giovenzana 
et al. (2018). Higher reflectance values associated with complete green 
samples (very unripe berries) were observed at the beginning of the 

Fig. 4. Descriptive statistics of the reference analysis for TSS (a), PA (b), pH (c), TA (d), TP € and EA (f) obtained from cv. Touriga Franca samples at each sam-
pling time.

Fig. 5. Sensor readouts of each LED read by each photodetector (–ch) including the background condition with LED switched off for cv. Touriga Nacional mean 
optical outputs (a) and cv. Touriga Franca mean optical outputs (b).
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ripening season (t0), which is due to the low concentration of antho-
cyanins. Then, as the ripening process progresses, the color evolution 
due to the accumulation of phenolic compounds leads to lower reflec-
tance values (Bigard et al., 2019). Focusing on each variety (TN and TF), 
the mean reflectance impact for TN (Fig. 6a) remains qualitatively more 
distributed along the time than TF (Fig. 6b) where the mean signal after 
t0 remains almost stable, especially for the readouts at 530 and 630 nm.

Fig. 6 shows the PCA outcomes (scores and loadings) performed on 
the optical readouts after autoscaling (Log10 transformation has not 
been used during the exploratory analysis of the optical data). The score 
plot (Fig. 6a) shows the behaviour of the samples (labelled according to 
the sampling time) in the orthogonal space defined by PC1 and PC2. 
About 80 % of the total variability is described by PC1 which highlights 
the pigmentation process that occurred from t0 to t1/t2. This behaviour 
has been confirmed by the constant positive loadings of PC1 (Fig. 6b). 
Given the variables with the LED switched on, the primary factor 
describing this component is likely the decreasing interactance trend in 
the readout. This behavior is attributed to pigmentation, reflecting the 
increasing concentration of anthocyanins, which is closely related to the 
passage of time and the maturation process. Moreover, looking into the 
loadings of PC2, the readouts without illumination (the background) are 
the main descriptor of such principal component (almost 9 % of the total 
variability). Thus, since the data variance of the background is ascrib-
able as a source of noise, this source of interference has been removed 
from the calibration dataset.

Therefore, the raw optical data matrix has been mathematically 
treated to reduce the background effects. In detail, for each readout with 
LED switched on (the reflectance readout of each LED at each channel), 
the corresponding background value was subtracted. Then, the new data 
matrix was re-explored to study the effects of pre-treatment, as well as to 
verify that the information contained is related to the chemical char-
acteristics of the sample.

Fig. 7 shows the PCA outcomes performed on the pre-processed data 
matrix after readout transformation using Log10 and autoscaling (col-
umn-wise normalization). Fig. 7a shows the combined contribution of 
the PC1 and PC2 scores related to the two main information contained in 
the new dataset. Firstly, at positive values of PC1, a clear separation 
(from negative to positive values of PC3) of the samples (very unripe 
berries with green skin) at t0 according to the two varieties considered 
(TN and TF). Instead, at negative values of PC1, the maturation process 
after veraison has been highlighted from positive to negative values of 
PC3. No background contribution appeared on the three major compo-
nents (Fig. 7c).

3.3. Models calculation

Following the promising outcomes from this initial phase of data 
processing exploration using PCA, six independent regression models 
were developed following the PLS method for predicting technological 

and phenolic grape ripening parameters using the optical readouts after 
Log10 transformation and autoscaling normalization. The PLS method 
has been chosen (between the various regression methods) considering 
the technical features of the spectral sensing system. PLS can analyse 
data with strongly collinear, noisy, and numerous X-variables (readouts) 
(Wold et al., 2001). At this stage, such an assumption fits properly with 
the proposed system as it can acquire optical readouts at 4 different 
wavelengths with 4 PDs providing at the end 16 outputs highly corre-
lated where the PDs physical position (on the optical spot) and the grape 
geometry influence the optical information. PLS has proven to be a 
capable simple linear method to be able to minimize such sources of 
noise maximizing the covariance between the readouts and the six 
reference parameters.

To build robust models capable of predicting unknown samples, the 
original dataset of 106 samples was split (using the Kennard–Stone 
duplex algorithm) into two independent datasets: a calibration set 
(comprising 70 % of the samples) and a prediction set (with the 
remaining 30 % of the samples). The descriptive statistics of the total 
and split datasets are summarized in Table 2. Instead, the estimation 
performance of the prediction set is summarised in Table 3
(supplementary information about the figure of merits in calibration, 
cross-validation “CV” and prediction has been reported in Figures S2 and 
S3). Since the PLS method, like many other multivariate calibration 
methods (e.g., support vector machines and artificial neural networks), 
is prone to over-fitting or under-fitting (which may limit their predictive 
ability), the cross-validation step is essential to determine the correct 
number of latent variables to address these issues (Gowen et al., 2011). 
Indeed, the permutation of different sets of cross-validation provided 
RMSECV values that were comparable with the RMSEP values, sug-
gesting a low risk of incorrect model fitting. Focusing on the model’s 
performance in terms of RPD, promising results were obtained for the 
technological maturation parameters regression models (RPD > 2.2 for 
TSS, PA, TA, and pH). However, fairly lower performances (RPD of 1.28 
and 1.55 for TA and EA, respectively) have been obtained for the 
phenolic maturation predictive models (compared with the technolog-
ical ones) suggesting the capability of the models to only discriminate 
between low and high values of TP and EA. This poor predictive per-
formance is remarkably noticeable in the moments close to the harvest 
where the high anthocyanin concentrations generate very low reflec-
tance readouts (especially with the LED at 530 and 630 nm) that do not 
allow an accurate estimate of phenolic parameters in the crucial moment 
of the maturation process.

VIP scores were calculated (Fig. 8) from each independent PLS 
model. The VIP highlighted the crucial combination of LED-PD for 
predicting TSS, PA, TA, pH, TP, and EA. As expected, the LED and PD 
position influenced the model building. Indeed, although the LED illu-
mination is the same for the quartets of PDs, the amount of photons 
received by each PD changes according to the proximity to the LED. 
Such an effect is well highlighted in almost all the models for the third 

Fig. 6. PCA outcomes (scores and loadings) on spectral sensors readouts (raw data). (a) scores plot, labeled according to the sampling time, and (b) loadings plot of 
the first two principal components.
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channel (ch3) at 530 nm.
Overall, the wavelength at 730 nm holds major importance in con-

structing quite all the models. Instead, at 530 nm, while it frequently 
surpasses the threshold value of 1, its significance is attributed solely to 
channel number three (ch3), which receives more light than the others. 
This implies that enhancing the power of the green LED (530 nm) could 
potentially be beneficial for enhancing chemical information collection 
at this wavelength and, consequently, improving the predictive perfor-
mance of the models. Only one exception is made for the TP model (the 
worst one) where 530-ch1, 530-ch2 and 530-ch4 seems to be more 
informative than the third one (530-ch3). Such a result combined with 
the poor performance of the model suggests a significant presence of 
noise in the optical data mainly driven by the LED at 530 nm. Its in-
efficiency in capturing chemical information related to phenolic matu-
ration can be ascribable to potentially low power and diminished 
effectiveness caused by the purplish colour development.

Fig. 7. PCA outcomes (scores and loadings) after data pre-processing: 8a) scores plot, colored according to the sampling time; (8b) scores plot inset; 8c) loadings plot 
of the three lower order components.

Table 2 
Descriptive statistics of grape composition parameters after Kennard–Stone duplex algorithm dataset division*.

Parameter Dataset Calibration Prediction

mean std n ◦ range mean std n ◦ range mean std n ◦ range

TSS (◦Brix) 21.30 7.19 106 6.40–33.70 20.83 7.39 75 7.00–33.70 22.45 6.64 31 6.40–33.10
PA (%) 12.47 4.73 106 3.20–21.04 12.16 4.87 75 3.60–21.04 13.22 4.34 31 3.20–20.61
TA 

(g/L Tartaric acid)
7.84 6.18 106 2.94–25.93 8.35 6.27 75 2.94–23.26 6.60 5.87 31 3.38–25.93

pH 3.50 0.34 106 2.87–4.13 3.46 0.35 75 2.87–4.13 3.58 0.30 31 2.92–4.01
TP (mg/L) 59.52 20.40 96 25.80–124.70 61.37 21.61 68 25.80–124.70 55.03 16.58 28 31.60–102.80
EA (mg/L) 333.43 166.55 106 3.48–708.06 317.92 167.96 75 3.48–656.99 370.95 159.52 31 5.80–708.06

*TSS = total solids soluble; PA = potential alcohol; TA = titratable acidity; TP = total polyphenols; EA = extractible anthocyanins; std = standard deviation; n◦ =

number of samples.

Table 3 
Figures of merit of the PLS models. *.

Qualitative 
parameter

LVs RMSE R2 RMSEP R2 

Pred
Bias 
Pred

RPD

TSS (◦Brix) 4 1.95 0.92 2.41 0.86 − 0.07 2.76
PA (%) 4 1.33 0.92 1.68 0.85 0.03 2.58
TA (g/L Tartaric 

acid)
4 1.35 0.95 1.61 0.92 − 0.26 3.65

pH 4 0.12 0.89 0.13 0.79 0.005 2.27
TP (mg/L) 2 11.03 0.73 12.98 0.51 − 5.82 1.28
EA (mg/L) 4 72.2 0.81 103 0.58 − 15.13 1.55

* LVs = number of latent variables; RMSE = root mean square error of cali-
bration; R2 = coefficient of determination; RMSEP = root mean square error of 
cross-validation; R2 Pred = coefficient of determination in Prediction; Bias Pred 
= Prediction Bias; RPD = residual prediction deviation.
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3.4. Comparison with the state of the art

Several analytical approaches have been sought for effective and 
non-destructive methods that could explore a large number of samples 
and provide a rapid and comprehensive overview of the ripening pro-
cess. Indeed, the scientific literature reports different applications where 
the advantages of optics, initially using benchtop instruments and then 
handheld and/or autonomous devices are widely explored (Tardaguila 
et al., 2021). Technological advancement and cost reduction (due to the 
massification of miniaturized optical components) have driven many 
fields of application, including viticulture (Krause et al., 2021). 
Certainly, the performance of these devices varies according to their 
technical features but also to the method of sampling and model 
development.

The outcomes attained in this study are comparable with those found 
in the literature using full-range Vis/NIR spectrometers. In 2015, Gio-
venzana et al. obtained comparable results using a portable Vis/NIR 
device (400–1000 nm Jaz, Ocean Optics, Dunedin, FL) for the devel-
opment of PLS models (RPD of 2.26, 2.66, 1.61, 1.51, and 1.98 for the 
estimation of TSS, TA, PA, EA, and TP, respectively).

One step forward has been given by Fernández-Novales, et al. 
(2019), who reported the quantification of TSS, anthocyanins, and TP in 
grape berries under field conditions using an on-the-go Vis/NIR spec-
troscopic system (570 and 990 nm, Polytec GmbH, Waldbronn, Ger-
many) acquiring from a moving platform at 0.30 m of distance. The 
authors provided a real alternative application with a significant pre-
dictive performance for two of the three parameters under study (RPD of 
3.52, 2, and 1.31, for the estimation of TSS, anthocyanins, and TP, 
respectively). This approach was capable of non-destructively 
appraising and mapping the vineyard grape composition variability 
with a high spatial and temporal resolution. However, the topography is 
an important factor that (in some extreme hilly and mountainous con-
ditions) could reduce the mapping effectiveness of such an approach. 
More recently, Pampuri et al. (2021a) proposed a compact optical device 
(covering 12 wavelengths, from 450 nm to 860 nm) based on LEDs and 
multi-spectral sensors that integrate Gaussian filters into standard CMOS 
silicon via nano-optic deposited interference filter technology (AMS, 
models AS7262 visible and AS7263 NIR, Premstaetten, Austria). 
Although the device presented by Pampuri et al. (2021a) and the ones 
presented in this work share some similar acquisition features, the re-
sults showed a lower predictive performance (RPD of 1.45, 1.44, 1.33 for 
the estimation of TSS, TA, and pH, respectively) when compared to the 
results presented in Table 3. This suggests improvements in both tech-
nological aspects (customization of the device’s architecture and defi-
nition of the optical bands) and methodological aspects (sampling and 
modelling). It is important to note that none of these instruments were 

capable of autonomous operation, potentially delivering useful infor-
mation with acceptable uncertainty across both spatial and temporal 
resolutions. Moreover, the storing of such additional information over 
the years contributes to the development of an historical dataset that 
helps monitor climatic impacts, optimize quality, plan resources, sup-
port research, enhance marketing, and ensure regulatory compliance, 
ultimately improving wine production and sustainability.

4. Conclusions and future perspectives

In this work, an optical prototype based on spectral sensing tech-
nology (monitoring of four optical bands in Vis/NIR range), for grape 
maturation control was used for the prediction of the technological 
parameters of grape’s ripening at a lab-scale. The readouts acquired with 
the miniaturized sensor provided reliable data to develop prediction 
models for the target parameters.

Overall, predictive models with good performance were obtained for 
the estimation of the technological ripening parameters (RPD = 2.76 
and R2 = 0.86 for TSS; RPD = 2.58 and R2 = 0.85 for PA; RPD = 3.65 and 
R2 = 0.92 for TA; RPD = 2.27 and R2 = 0.79 for pH), establishing a solid 
ground for the application of this sensing strategy in the field. For the 
phenolic parameters (TP and EA), the performance of the models is still 
insufficient (RPD = 1.28 and R2 = 0.51 for TP; RPD = 1.55 and R2 = 0.58 
for EA), which is consistent with previous works reported in the litera-
ture (Kemps et al., 2010; Guidetti et al., 2010; Aleixandre-Tudo et al., 
2019). An approach based on fluorescence signals (Agati et al., 2013) 
instead of the diffuse reflectance based on Vis/NIR spectral bands used 
here can be the key to improving this lower performance.

This new generation of spectral sensing devices can be viewed as a 
starting point of a new concept of cost-effective IoT end-nodes which 
could be distributed in the vineyard at fruit-set (open bunch) and that 
will then be enveloped by the grape bunch as the grape grows on it. Its 
stand-alone operation makes it possible to acquire optical data and 
predict the most important ripening parameters directly from the field 
measurements taken inside the bunch.

Further developments of the work described here will include the 
expansion of the prediction models to other grape varieties (including 
white grapes), as well as the definition of the data pipeline for processing 
field data. Moreover, several potential challenges in the system’s field 
operation can be expected. The first challenge pertains to the sensor’s 
positioning, which may change throughout the season due to alterations 
in the grape berry, such as dehydration or varying weather conditions. 
Another issue is determining the number of sensors needed to monitor a 
specific area, which remains unresolved. Finally, applying prediction 
models developed in one crop season to the following year might be 
problematic if there are substantial differences in the grape’s ripening 

Fig. 8. Variable importance in projection scores of the PLS models for TSS (a), PA (b), TA (c), pH (d), TP and EA (f).
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Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (Eds.). (2006). Handbook 
of enology, volume 2: the chemistry of wine-stabilization and treatments (Vol. 2). 
John Wiley & Sons.

Tardaguila, J., Stoll, M., Gutiérrez, S., Proffitt, T., Diago, M.P., 2021. Smart applications 
and digital technologies in viticulture: A review. Smart Agric. Technol. 1, 100005.

Tugnolo, A., Giovenzana, V., Beghi, R., Grassi, S., Alamprese, C., Casson, A., 
Casiraghi, E., Guidetti, R., 2021. A diagnostic visible/near infrared tool for a fully 
automated olive ripeness evaluation in a view of a simplified optical system. 
Comput. Electron. Agric. 180, 105887.

Urraca, R., Sanz-Garcia, A., Tardaguila, J., Diago, M.P., 2016. Estimation of total soluble 
solids in grape berries using a hand-held NIR spectrometer under field conditions. 
J. Sci. Food Agric. 96 (9), 3007–3016.

Vallone, M., Alleri, M., Bono, F., Catania, P., 2019. Quality evaluation of grapes for 
mechanical harvest using vis NIR spectroscopy. Agric. Eng. Int. CIGR J. 21 (1), 
140–149.

Vrochidou, E., Bazinas, C., Manios, M., Papakostas, G.A., Pachidis, T.P., Kaburlasos, V.G., 
2021. Machine vision for ripeness estimation in viticulture automation. 
Horticulturae 7 (9), 282.
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