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Abstract

We are witnessing a widespread adoption of artificial intelligence in healthcare.

However, most of the advancements in deep learning in this area consider only uni-

modal data, neglecting other modalities. Their multimodal interpretation necessary for

supporting diagnosis, prognosis and treatment decisions. In this work we present a deep

architecture, which jointly learns modality reconstructions and sample classifications

using tabular and imaging data. The explanation of the decision taken is computed by

applying a latent shift that, simulates a counterfactual prediction revealing the features

of each modality that contribute the most to the decision and a quantitative score indi-

cating the modality importance. We validate our approach in the context of COVID-19

pandemic using the AIforCOVID dataset, which contains multimodal data for the early

identification of patients at risk of severe outcome. The results show that the proposed

method provides meaningful explanations without degrading the classification perfor-

mance.
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1. Introduction

In the last decade, the practice of modern medicine has started to heavily rely on

the utilization of data coming from multiple sources [1]. At the same time, artificial

intelligence (AI) has achieved state-of-the-art results in various domains [2], health-

care included. Nevertheless, most of the deep neural networks applied to medical tasks

consider only one data modality, neglecting information available in other sources.

However, analyzing medical findings is multimodal by its very nature: a characteris-

tic that, in turn, asks for developing AI approaches able to process data of different

modalities [3, 4]. This has fostered the rise of multimodal deep learning (MDL) [4],

which aims to develop learning models able to process and link information gathered

from different modalities. MDL is a topic where researchers have investigated several

methods to learn together multimodal information via early, late, and joint fusion [4],

as it will be presented in section 2.

With the goal of reaching high performance, many complex AI models developed

so far have a black-box nature [5], neglecting trust and transparency [6], two features

that are of particular importance in biomedicine [7]. Indeed, a lack in explainability

limits the application of AI models into the clinical practice. To overcome this limita-

tion, in the last years large research efforts have been directed towards explainable AI

(XAI), which aims to explain how a black-box model produces its outcomes.

In healthcare, the need of multimodal models and of explainability make multi-

modal explanations vital to develop robust and trustworthy AI models. This hap-

pens because multimodal models extract more comprehensive information than the

unimodal models, so that their explanations could offer more insights into the avail-

able medical data. The multimodal setting of XAI explores the complementary and

explanatory strengths of the different modalities, with the goal of obtaining better ex-

planations that localize the relevant features and modalities [8]. Despite this relevance,

to the best of our knowledge, the biomedical literature lacks of explainable deep multi-

modal models. For this reason we present a novel end-to-end multimodal architecture,

with intrinsic explanations, that jointly learns modality reconstructions and multimodal

classification using imaging and tabular modalities. With this architecture we extract
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deep multimodal representations of the data; then, we apply a latent shift to simulate a

counterfactual prediction, thus obtaining an intrinsic explanation that reveals how and

why the model arrived at a particular decision.

We test our approach in the context of the COVID-19 pandemic using the AIfor-

COVID public dataset [9] for three reasons. First, the development of AI-based tools

supporting COVID-19 prognosis exploiting multimodal data is still an open research

issue addressed by few work in the literature [9, 10, 11, 12, 13, 14, 15], which will

be discussed in section 2. Second, while there is a lack of multimodal XAI (MXAI)

approaches in general, no one has proposed multimodal explanations to gain trust and

transparency in COVID-19 prognosis. Third, the AIforCOVID dataset is the largest

publicly available repository containing chest X-ray (CXR) images and clinical data

collected at the time of hospitalization, further to clinical outcomes stratifying patients

into those with and without risk of a severe disease progression [16]. It is worth noting

that, in general, images and clinical data are two important sources of information in

medicine. Indeed, the former allows radiologists to focus on visual evidence for both

diagnostic and prognostic purposes, whereas the latter which are usually stores as tab-

ular data, offer to clinicians a concise and multi-dimensional assessment of patients’

health status. Hence, having both the modalities should be important to test MDL and

MXAI approaches that would support the medical decision process.

The main contributions of our work are:

• The development of an intrinsic explainable architecture specifically designed

for multimodal classification.

• The introduction of a joint learning approach that enables to simultaneously train

both the data reconstruction and the classification tasks using tabular and imag-

ing data.

• The proposal of a novel latent space counterfactual method that allows for ex-

plainability in both multimodal and unimodal contexts. It reveals the modalities

and features that contribute the most to the decision-making process.

• The effective application of the proposed approach in the context of the COVID-
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19 pandemic to early identify patients at risk of severe outcomes, using the pub-

licly available AIforCOVID dataset.

• The validation of the proposed method, strengthened by a reader study with four

radiologists, showing that it provides meaningful explanations without sacrific-

ing the classification performance.

The rest of the manuscript is organized as follows. Section 2 introduces the state-

of-the art of both MDL and MXAI. Then, section 3 presents our novel architecture

and training procedure, and it explains the MXAI method extracting multimodal ex-

planations. In section 4 we describe the dataset used to validate the methods, the

pre-processing phase on the data, the implementation setup and the validation strat-

egy adopted. Section 5 presents and discusses the obtained results, whilst section 6

provides concluding remarks.

2. Background

In this section we first present the state-of-the-art of MDL in the context of COVID-

19 prognosis prediction by using images and tabular clinical data, whereas the inter-

ested readers can deepen MDL in healthcare in recent surveys [1]. Indeed the literature

is quite large and its review is out of the scope of this work. Second, given the lack of

MXAI approaches in COVID-19 prognosis [17], we will summarize MXAI research in

healthcare, whilst the readers can refer to [18] for XAI applications on unimodal data

in COVID-19 imaging. We will conclude this section by summarizing the motivations

of this work.

2.1. MDL

There is a general consensus that medical images complemented by clinical data

can help physicians, and radiologist in particular, better understanding the patient’s

state, thus advancing to a more informative decision making process [19]. In this re-

spect, research in the field of MDL has been increasing [4] since multimodal data give

the opportunity to train models that can learn the complex dynamics behind a disease.
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The level at which the fusion of input modalities occurs in the network is usually

distinguished into early, intermediate or late fusion [4]. Early fusion combines raw

data or extracted features by the different modalities which are fed to a simple learner,

whilst late fusion combines at the decision level the outputs of networks independently

trained on each modality. Intermediate fusion learns a joint representation of different

modalities at a shared representation layer, by propagating the loss back to the feature

extractor network in an end-to-end manner.

The application of AI in COVID-19 using medical imaging and clinical data has

mainly focused on discriminating patients suffering from COVID-19 pneumonia from

those which are healthy or affected by different types of pneumonia [20]. Neverthe-

less, only four work investigated patients’ stratification into mild and severe outcomes

using such multimodal data [9, 13, 14, 15], which can be further divided in three using

computed tomography (CT) scans [13, 14, 15] and one using CXR images [9].

In [13] the authors proposed a deep network using CT scans and 53 clinical fea-

tures to detect the potential malignant progression of mild patients. Via a multi-layer

perceptron (MLP) processing the clinical features only, their method gets an embed-

ding that is then concatenated in an early fusion approach with the flattened CT scan.

This new vector then fed a Long short-term memory (LSTM) network followed by a

fully-connected (FC) network, which produces the output. On a private cohort of 199

patients, they obtained an accuracy of 79.20%. In [14] the authors used 130 clinical

features and CT scans to discriminate between negative, mild and severe COVID-19

cases via an early fusion of a VGG-16 and a 7-layer FC network. They used a private

dataset containing 1521 patients, achieving an accuracy equal to 81.10%. Fang et al

applied joint fusion combining CT scans and 61 clinical features, which fed a deep

network to predict COVID-19 malignant progression [15]. The approach extracts the

abstract representations of CT images using a 3D ResNet, and of the clinical data via a

FC network. These two embeddings are concatenated and given to an LSTM followed

by another FC network. The whole architecture is training in an end-to-end modal-

ity. On a private dataset containing 1040 patients they achieved an accuracy equal to

87.70%.

It is worth noting that CXR helps indicating abnormal formations of a large va-
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riety of chest diseases by using a very small amount of radiation, whilst CT delivers

a much higher detail level of the lungs’ structures. Furthermore, X-ray equipment

is much smaller, less complex, and with lower costs than CT scans; it also prevents

other three limitations of CT imaging, i.e., the lack of available machines’ slots, the

difficulty of moving bedridden patients, and the long sanitation times. For these rea-

sons, several authors indicated that CXR imaging fit well with the needs of COVID-19

pandemic [21]. Let us now focus on the only work that uses CXR images and clini-

cal data for the COVID-19 prognosis [9]. There, the authors presented three different

multimodal AI approaches, offering also baseline performance on the AIforCOVID

dataset, which we will present in section 4 together with the best results attained. The

first method, named as handcrafted approach, computed first-order and texture features

from the images, which are then stacked in an early fusion fashion with the clinical

features, then feeding different learners among which the Support Vector Machine re-

sulted to be the best. The second approach, referred to as hybrid, combines automatic

features extracted by a convolutional neural network with the clinical ones; then it runs

a feature selection stage whose output is given to the learner. The hybrid approach

achieved the best results using the GoogleNet and the Support Vector Machine classi-

fier. The third approach, named as end-to-end, performs intermediate fusion of the two

modalities by defining a multi-input network concatenating hidden vectors of the two

modalities. This architecture contains three main branches: two process independently

CXR scans and clinical features to get a small number of relevant and abstract features,

while the third one concatenates such embeddings that is given to a FC network, which

outputs the prognosis.

2.2. MXAI

High performing deep models are often black-boxes, which hide their decision-

making process, making it hard to understand why a certain result is obtained. This

has boosted the growth of XAI, and many unimodal methods have been proposed to

extract explanations on how the model has interpreted the data [6] with applications to

different fields. In particular, many authors agree that explanations are strongly recom-

mended in medical applications [22], because this would help mapping explainability
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with causability that, in turns, would allow practitioners to understand why a model

came up with a result.

The only available review on MXAI [23] surveys its applications in computer vision

and natural language processing, showing that MXAI lacks in the medical field. This

is confirmed by the position paper [24], which states that in radiology there is a lack of

integrative methods that, combining imaging and tabular data, provide explanations on

the decisions taken. This confirms the need of multimodal explanations to capture the

complexity of all the factors underlying a disease. Indeed, for a medical task to have

a comprehensive global view of the data and of the system, an ideal MXAI method

should be able to identify the importance of each modality and the importance of each

unimodal feature.

The MXAI review [23], even if it does not focus on the medical field, is also in-

teresting because it groups XAI algorithms adopting three different criteria. First, it

focuses on the stage at which the XAI can be applied, identifying pre-modeling, during

modelling and post-hoc modeling explanations [23]. As their names explain, the pre-

modeling methods’ explainability is included before the model development, during

modelling include the models which are usually explainable by design and employ in-

trinsic methods, and post-hoc modelling is applied after the model is developed by ex-

tracting explanations via perturbations or backpropagation methods [25]. Second, with

reference to the scope of the explanation, XAI models can be either local or global [23],

depending if the explanation regards a single instance or the model as a whole. The

third criterion deal with the dependency of the XAI algorithm, so that it distinguishes

model specific and model agnostic explanations [23]. While the interested readers can

deepen [23] to have more details, on the basis of this survey we observe that there is

a lack in multimodal intrinsic explainability, i.e., methods able to return multimodal

local explanations.

As mentioned in the forewords of this section, the analysis of the literature that uses

multimodal data for COVID-19 prognosis shows that, to the best of our knowledge,

none has investigated MXAI in this field yet.
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2.3. Motivations

Multimodal settings have improved the predictive power of models in many appli-

cations thanks to the interaction of different modalities, via a richer representation with

task-relevant features [8]. Nevertheless, this availability of information from different

modality makes explainability a key necessity to reduce the opacity of the multimodal

deep architectures [7]. This has recently fostered the raise of MXAI, which has mainly

focused on computer vision and natural language processing. Indeed, the literature

on XAI in medical applications has concentrated more on unimodal attribution meth-

ods, struggling in having explanations of neural networks working on multiple data

sources. Therefore, developing multimodal methods for explainability is an urgent and

open issue, also because the development of multimodal deep architectures in different

healthcare applications asks for novel approaches to open such black boxes. In turn,

this can help physicians, patients and regulators to trust the decisions taken. Among

the several fields where MDL and MXAI can be applied, we test our methodology to

the early identification of COVID-19 patients at risk of severe outcome using imaging

and tabular data, because the survey of the literature presented hereinbefore shows that

few work has addressed this challenge, despite the disruptive impact of this disease

worldwide.

3. Methods

In this section we present a novel architecture that exploits joint learning, for which

we design an intrinsic counterfactual MXAI approach to extract explanations of a clas-

sification task. In general, counterfactual explanations refer to a type of explanation

that aims to comprehend the causes of an observed outcome by exploring alternative

scenarios, which helps in gaining a deeper understanding of the causal relationships

that led to the observed outcome [5]. Such multimodal explanations will permit users

to understand not only the importance of each modality for each classification, but also

the features which contributed the most to the decision for every single modality.

We first present the architecture of the multimodal model; second we focus on the

training approach and, third, we detail the intrinsic MXAI method.
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3.1. Notation

The notation used henceforth makes us of the following symbols:

• T and I are the tabular and the imaging modalities, respectively;

• xT and xI are the inputs for the tabular and imaging modality, respectively;

• AE and CAE are the autoencoder and convolution autoencoder which receive as

input xT and xI , respectively. Both are composed of an encoder EAE , ECAE and

a decoder DAE , DCAE , respectively;

• hT ∈ Rn and hI ∈ Rm are the latent vectors of the AE and the CAE, respectively.

Their concatenation produces the multimodal embedding h ∈ Rn+m;

• x̂T and x̂I are the outputs produced by the AE and the CAE, respectively, repre-

senting the reconstruction of the inputs xT and xI ;

• CMLP is the multi-layer perceptron receiving the vector h to perform the classifi-

cation;

• y ∈ Rc is the output vector of CMLP, which expresses the predicted posterior

probability, with c being equal to the number of classes;

• LT , LI , LC are the loss functions of the AE, CAE and CMLP, respectively, whose

linear combination results in L, weighted by the corresponding scalar parameters

γT ∈ R, γI ∈ R, γC ∈ R;

• hλT ∈ Rn, hλI ∈ Rm and hλ ∈ Rn+m are the modified vector embeddings of hT , hI

and h, respectively, regulated by scalar parameter λ ∈ R;

• x̂λT , x̂λI and yλ ∈ Rc are the outputs produced by DAE , DCAE and CMLP, respec-

tively, when the input is hλT , hλI and hλ, respectively;

• ∆T ∈ R and ∆I ∈ R express the resulting modality importance comparing hT

with hλT and hI with hλI , respectively;

• ∆̂T ∈ Rn, ∆̂I ∈ Rm express the resulting unimodal feature importance comparing

x̂T with x̂λT and x̂I with x̂λI , respectively.
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Figure 1: Schematic view of the multimodal deep architecture: for each instance, the input modalities xT and
xI feed into their corresponding encoders EAE and ECAE , obtaining the unimodal embeddings hT and hI ,
respectively. These embeddings are then concatenated into the multimodal embedding h, which subsequently
feeds into the decoders DAE , DCAE , and the classifier CMLP. The resulting outputs are the reconstructions x̂T ,
x̂I , and classification y, respectively. The model is trained by simultaneously minimizing the reconstruction
losses LRT , LRI , and the classification loss LC .

3.2. Architecture

Here we present the structure of the designed classification model that works with

T and I. The proposed multimodal architecture consists of three blocks: an autoen-

coder (AE), a convolutional autoencoder (CAE), and a multi-layer perceptron classifier

(CMLP). As shown in Figure 1, the network has two inputs and three outputs. The tab-

ular modality xT feeds the AE, whereas the imaging modality xI is given to the CAE.

Both are composed of an encoder and a decoder, returning the reconstruction of the

respective modality, x̂T and x̂I . By concatenating the two embeddings hT and hI we

get h, which is given to the CMLP classifier that returns the classification vector y. The

entire architecture is trained in an end-to-end manner, via a linear combination of three

loss functions, two for reconstruction (LT and LI) and one for the classification (LC).

This overview reveals that our framework jointly learns deep representations of

imaging and tabular data to perform a classification task. Indeed, it learns a feature

space with local modality structure able to be used for reconstruction, and it manipu-

lates the combined feature space by incorporating a classification oriented loss.
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Autoencoders. An AE and a CAE are artificial neural networks which learn an approx-

imation to the identity function, with the goal of minimizing the distance between the

outputs x̂T , x̂I and the inputs xT , xI , respectively. The encoders EAE and ECAE com-

press the corresponding inputs xT , xI to a latent space representation hT and hI , using

fully connected layers in the AE and convolutional layers in the CAE, respectively.

The decoders DAE and DCAE use the bottleneck latent space representation hT and hI

to reconstruct the inputs xT , xI in x̂T , x̂I , respectively. Therefore:

hT = EAE(xT ) (1)

hI = ECAE(xI) (2)

x̂T = DAE(hT ) (3)

x̂I = DCAE(hI) (4)

When training the AE and the CAE we aim to minimize the distance between its inputs

and outputs over all samples, using as reconstruction loss functions LT and LI for the

tabular and imaging modalities, respectively. We constrain the dimension of latent

spaces hT and hI to be lower than input data xT and xI , respectively, forcing both the

AE and the CAE to capture the most salient features of the data. This is a well-known

approach to avoid identity mapping [26].

Classifier. The two embeddings hT and hI are concatenated in h and used as input to

the fully connected CMLP, which performs the classification task returning y, So that:

y = CMLP(h) (5)

The goal of this block is to minimize the classification error with a classification loss

LC . Note that the final layer of the CMLP uses the Softmax activation function, such

that
c∑

i=1

yi = 1 (6)

This implies that y can be considered as an estimate of the posterior probability.
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End-to-end training. In this way, the network’s training can be back-propagated in an

end-to-end manner, via a linear combination of the three loss functions:

L = γT LT + γI LI + γC LC (7)

where γT , γI , and γC are parameters, which regulate the importance of each loss func-

tion.

This approach has the beneficial effect of being able to learn embedded features in

an end-to-end way, which are jointly used to perform data reconstruction and classi-

fication, minimizing the reconstruction loss of AE and the CAE and the classification

loss of the CMLP. Our key idea is that the co-learning of the AE, the CAE and the

CMLP is beneficial to learn features from the tabular and imaging modality to obtain

a classification and a good reconstruction useful for the explainability, presented in

section 3.4.

3.3. Three-stage training

Given the complex structure of the architecture proposed, we train the network with

a three-stage procedure, which adapts the γT , γI , γC parameters in way to concentrate

the training on different parts of the network. The three stages are:

1. Setting γT = 1, γI = 0 and γC = 0 to train only the weights of the AE;

2. Setting γT = 0, γI = 1 and γC = 0 to train only the weights of the CAE;

3. Setting γT = 1, γI = 1 and γC = 1 to train all the weights of network.

The main idea is to help the training of the CMLP classifier, giving initialization

weights that constrict an optimal modality embedding for reconstruction, expressing a

good summary of the data. Notice also that, given the architecture of the network, it is

irrelevant if we invert stage 1 and 2 since the AE and CAE have no weights in common.

In step 3 we decided to set all the parameters to 1 so that all the tasks would have equal

weight.

3.4. MXAI

We use a gradient update, also referred to as latent shift, that can transform the

latent representation of the inputs to exaggerate or curtail the features used for predic-
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Figure 2: Schematic view of the MXAI framework: once the model is trained, each instance’s multimodal
embedding h feeds into the decoders DAE , DCAE , and the classifier CMLP, according to colors that specify
that portion of h is given to each network. The decoders and the classifier provide the original reconstructions
x̂T , x̂I , and classification y. Via the latent-shift method we obtain a λ > 0, which gives us a flip in the
classification yλ by feeding the shifted multimodal embedding hλ to CMLP. By feeding this new embedding
to DAE and DCAE , we obtain new reconstructions x̂λT and x̂λI . By comparing h with hλ, x̂T with x̂λT , and x̂I

with x̂λI , we obtain the corresponding multimodal and unimodal explanations, respectively.

tion. Via the latent shift explanations we obtain both modality importance and feature

importance for each prediction.

Latent shift. The only requisite to apply latent shift to a network is of having all the

network components, which receive the latent vector h, to be differentiable. With the

AE, a CAE and a CMLP we satisfy this requisite and, in addition, they are simple to

implement and train. Once these components are trained, we extract the explanation as

shown in Figure 2. Multimodal input instances xT and xI are encoded producing the

multimodal latent representations hT and hI , which are combined into h, as already

described. Perturbations of this latent embedding are computed via

hλ = h − λ
∂CMLP(h)
∂h

(8)
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where λ ∈ R is a parameter establishing how much the original embedding is modified.

With λ > 0, we expect that CMLP(hλ) would provide a prediction yλ so that

max(y) ≥ yλ(arg max(y)) (9)

This implies that, as λ increases, we expect a flip of the predicted class. In other words,

guided by the direction of variation of the output in the latent space determined by the

gradient of network output, we are interested in determining the λ value for which a

classification label flip occurs. With too small values of λ, for the smoothness principle,

the difference between the original modality input and the reconstruction will not be

large enough to change the prediction of the model. On the contrary, too large values of

λ would distort the reconstruction so much that it will not be useful for explainability.

Thus, to find the value of λ where the class flip occurs, we use an iterative search that,

starting from λ = 0, and using a fixed step heuristically set to 10, increases λ until

yλ , y.

We produce λ-shifted counterfactual multimodal reconstructions xλT , xλI and output

probabilities yλ defined as:

x̂λT = DAE(hλT ) (10)

x̂λI = DCAE(hλI ) (11)

yλ = CMLP(hλ) (12)

where hλT and hλI are given by:

hλT = hT − λ
∂CMLP(h)
∂hT

(13)

hλI = hI − λ
∂CMLP(h)
∂hI

(14)

so that hλ is the concatenation of hλT and hλI .

It is worth noting that finding an informative latent space relies on the quality of the

AE and CAE. This justifies even more the use of the three-stage training, facilitating

the training of the AE and CAE.
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Modality importance. Since the multimodal embedding h is composed by the con-

catenation of the unimodal embeddings hT and hI , we know to which modality each

element of h is associated to. Once calculated hλT and hλI , we compute the modal-

ity normalized absolute differences, to understand how much each element has been

shifted:

∆T =
||hT − hλT ||1

n
(15)

∆I =
||hI − hλI ||1

m
(16)

where n and m denote the number of elements in each vector, and ||.||1 denotes the

l1-norm. Hence, ∆T and ∆I express the importance of each modality: the more a

modality embedding has changed, the more important it is for the classification of a

given sample.

Feature importance. Similar to the modality importance, we now focus on an approach

to reveal which features per modality are more important for the classification of a

certain instance. Using the shifted reconstructions x̂λT and x̂λI , we compute the absolute

differences with the original reconstructions x̂T and x̂I

∆̂T = |x̂T − x̂λT | (17)

∆̂I = |x̂I − x̂λI | (18)

Note that ∆̂T and ∆̂I make us understand for each feature how much it has changed for

the classification shift. The more a feature changes, the more important it is for the

classification. This works for both modalities, resulting ∆̂T to be an importance vector

for the tabular modality and ∆̂I to be an importance matrix for the imaging modality.

Putting our method in the taxonomy. Following the taxonomy introduced in section 2

and originally presented in [23], our proposal is an hybrid between during and post-hoc

modelling as it exploits a specific network architecture using both perturbations and

backpropagation methods to extract the explanations. In particular our method uses

counterfactual explanations, specifying the minimal desired changes required to flip
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the decision, mapping the class-specific and discriminative features of each modality.

In addition, our MXAI method is local, since we are interested in explaining how

the model functions at instance level. Finally, our method is model-specific since its

architecture is constructed in a way to output the explanations.

4. Experimental configuration

In this section we introduce the used dataset and how the two modalities are pre-

processed to train the network. Then, we deepen the validation phase of the proposed

MXAI method where we conducted a reader study with four COVID-19 expert radiol-

ogists.

4.1. Dataset

For the last two years the world has been struck by the COVID-19 pandemic caus-

ing millions of cases and deaths. During this period, many researchers practitioners

and companies have developed novel AI methods and tools to combat the rising of the

pandemic by deepening the virus’s understanding. Many studies have focused their

attention on unimodal data using CXR, CT or clinical examinations to replace or to

supplement the reverse transcriptase-polymerase chain reaction tests. But given the

multimodal nature of medicine, both imaging data and clinical information can help

radiologists and practitioners on determining the source of symptoms, stratifying the

disease severity, and establishing the best treatment plan for the patient’s specific needs.

We use the AIforCOVID imaging archive [9] because it is the only publicly avail-

able multimodal dataset on COVID-19 stratification, as shown in the survey [16]. The

archive includes clinical data (tabular modality) and CXR scans (imaging modality)

of 820 patients recorded from six different Italian hospitals. In particular, there are

120, 104, 31, 139, 101, and 325 patients per hospital. The interested readers can refer

to [9, 27, 28, 29, 30] for further details.

The patients’ data were collected at the time of hospitalization if the TR-PCR test

resulted positive to the SARS-CoV-2 infection. All the patients were assigned to the

mild or severe class, on the basis of the clinical outcome. The mild group includes
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384 patients who were either sent back to domiciliary isolation or hospitalized without

any ventilatory support, whereas the severe group is composed of 436 patients who

required non-invasive ventilation support, intensive care unit admission, or those who

died. Furthermore, any AI model trained on the AIforCOVID dataset is exposed to a

diverse range of patient populations since it incorporates data from multiple centers,

which should help ensure that the model is more generalizable and applicable to a

wider extent.

4.2. Pre-processing

We applied the same pre-processing procedure and validation approach presented

in [9] to avoid any performance bias, which are now briefly summarized for the sake

of presentation.

Tabular data. We use the 34 clinical descriptors indicated in [9] which are not direct

indicators of the prognosis. Missing data were imputed using the mean and the mode

for continuous and categorical variables, respectively. A min-max scaler was applied

along the variables to have the features all in the same range [0, 1].

Imaging data. This modality consists of CXR scans, which were processed by extract-

ing the segmentation mask of lungs, using a U-Net trained on two non-COVID-19 lung

datasets [31, 32]. The mask was used to extrapolate the minimum squared bounding

box containing both lungs. The extracted box was then resized to 224 × 224 matrix,

and normalized with a min-max scaler bringing the pixel values in the range [0, 1].

4.3. Implementation setup

Here we describe the architectures of the three blocks of the model, as well as the

parameters and settings used during training.

The AE’s input and output layers consist of 34 (one for each feature) and 2 (one for

each class) neurons, respectively. Its encoder and decoder are composed of fully con-

nected hidden layers activated by ReLU functions. We opted to use such architectures

since these feed-forward networks are able to learn a low-dimensional representation
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before being fused with the other modality [33]. Both EAE and DAE have 6 hidden

layers and n = 8. The loss function LT is the mean squared error (MSE).

The CAE is a 2D ResNet101 [34], which we selected because of the skip connec-

tions that mitigate the problem of the vanishing gradient, ensuring high fidelity image

reconstruction. Both the input and the output of the network have a 224 × 224 di-

mension, so that the dimension of the embedding is m = 4608. The dimensions the

embeddings of both the AE and the CAE were chosen small enough to prevent the

curse of dimensionality. To facilitate the reconstruction training, this model was pre-

trained trained on 4 different CXR datasets [35], that in total account for a total of

674525 scans. For consistency, the corresponding loss function LI is the MSE.

Let us now focus on the CMLP classifier: its input and output layers consist of 4616

and 2 neurons (one for each class), respectively. It is composed of 7 fully connected

hidden layers (with 512, 256, 128, 64, 32, 16, 8 neurons, respectively) activated by

ReLU functions, with a Softmax activation in the output layer. We design this structure

to gradually learn the classification from the multimodal embedding. The loss function

LC is the cross-entropy.

For all the three stages of the training, introduced in section 3.3, we adopt the

same training procedure of [9], now summarized. To prevent overfitting of the CAE,

we applied the following image random transformations: horizontal or vertical shift

(−20 ≤ pixels ≤ 20), random zoom (0.9 ≤ factor ≤ 1.1), vertical flip, random rotation

(−15◦ ≤ angle ≤ 15◦), and elastic transform (20 ≤ α ≤ 40, σ = 7). No augmentation

was applied on the tabular data. The loss functions LT , LI , LC and L are regulated by

an Adam optimizer with an initial learning rate of 0.001, which is scheduled to reduce

by an order of magnitude every time the minimum validation loss does not change for

10 consecutive epochs. To prevent overtraining and overfitting we fixed the number of

maximum epochs to 300, with an early stopping of 25 epochs on the validation loss.

4.4. Validation approach

To understand the robustness of the model we trained the network in 10-fold strat-

ified cross-validation (CV), and leave-one-center-out CV (LOCO), following the same

experimental procedure described in [9], thus ensuring a fair competition between the
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approaches. In CV, the fold distribution of the training, validation and testing sets is

70%-20%-10%, respectively. In LOCO validation we study how the models generalize

to different data sources, since in each fold the test set contains all the samples belong-

ing to only one of the six hospitals that, of course, are not in the training and validation

sets.

All the experiments were performed using a batch size of 16 on a NVIDIA TESLA

A100 GPU with 32 GB of memory, using PyTorch as the deep learning library.

4.5. Sanity check

To study the validity of the proposed MXAI method, we conducted a reader study

with four radiologists assessing the prognosis of 96 patients randomly extracted. Each

radiologist has more than 10 years of experience. The radiologists R1, R2, R3, R4

were presented with a survey that has two aims. The first is to compare our method’s

classification performance with the one of human experts. The second is to understand

if the importance metrics ∆T , ∆I , ∆̂T and ∆̂I , returned by our method, are coherent

with the ones selected by the radiologists, which we denote as ∆Ri
T , ∆Ri

I , ∆̂
Ri

T and ∆̂
Ri

I .

In particular, ∆Ri
T , ∆Ri

I are the modality importance for the ith radiologist, and ∆̂
Ri

T , ∆̂
Ri

I

are the unimodal feature importance vector and matrix for the ith radiologist. The

survey was executed in double-blind, where no interaction between the radiologists

was permitted.

In the survey, each radiologist observed both data modalities at the same time for

each patient and performs the prognosis task. Afterwards, the radiologists have to at-

tribute an importance score, on a scale from 1 to 5, indicating how much significant

each modality was for the prognosis task. The grading of the scores are: 1 insignifi-

cant, 2 a bit significant, 3 neutral, 4 significant, 5 important. A Softmax activation is

applied constraining such values on the range [0, 1], where 0 means that the considered

modality has no importance and 1 attributes the maximum importance. As mentioned

before, these modality importance are denoted as ∆Ri
T , ∆Ri

I . The radiologist has the pos-

sibility to attribute the same importance to each modality if he/she believes that, for

that patient, both modalities had the same impact in the decision.

Then, to understand the most important features for each modality, we asked the
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radiologist to select the clinical variables and to segment the areas of interest in the X-

ray image most useful to stratify the patient, collecting ∆̂
Ri

T and ∆̂
Ri

I , which are boolean,

where elements equal to 1 correspond to important features. On both ∆̂
Ri

T and ∆̂
Ri

I a

min-max normalization is applied on each instance, putting the elements on the range

[0, 1], where 0 means that the considered feature has no importance and 1 attributes the

max importance.

In the case of modality importance, we would expect a high intersection between

the information reported by the radiologists ∆Ri
T and ∆Ri

I with the output of our method

∆T and ∆I , respectively; the same holds in the case of unimodal feature importance,

when comparing ∆̂
Ri

T and ∆̂
Ri

I with ∆̂T and ∆̂I , respectively.

The surveys were executed on Google Forms, and the tool utilized to show and to

segment the CXR scans was ITK-SNAP [36].

4.6. Statistical analysis

The accuracy, the sensitivity and the specificity are the evaluation metrics used to

assess the classification performance, as in [9]. To asses if there exists a difference

between the performance of our model and the baseline model we apply the one-way

ANOVA and, to interpret the statistical significance, we used the pairwise Tukey test

with a Bonferroni p-value correction at α = 0.05.

As described at the end of the previous section, we validate the MXAI modality

importance ∆T , ∆I and the feature importance ∆̂T , ∆̂I , comparing them with the impor-

tance proposed by the radiologists ∆Ri
T , ∆Ri

I and ∆̂
Ri

T , ∆̂
Ri

I , respectively.

For the modality importance, we calculate the Pearson correlation ρ, and the paired

sample t-test between the vector of importance modality (∆T and ∆I) over the instances

given by our method, with the corresponding importance (∆Ri
T and ∆Ri

I ) vector reported

by the radiologists. With the resulting statistics we can comprehend the measure of

dependency between our method and the radiologists. The higher ρ, the more our

explanations are coherent with the importance scores reported by the radiologists, if

the resulting t-test is not statistically significant (p-value > 0.05).

Turning our attention to the feature importance, we compute the intersection over

union (IoU) between the feature importance proposed by the radiologists (∆̂
Ri

T and ∆̂
Ri

I )
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and the importance resulting from the latent shift (∆̂T and ∆̂I), respectively. For the

tabular modality IoUT , we take the important features presented by the radiologists ∆̂
Ri

T

and the binarized feature vector ∆̂
b
T (such that the values of ∆̂T which are < 0.5 are set

to 0 and the ones ≥ 0.5 are set to 1), and compute

IoUT =
∆̂

Ri

T ∩ ∆̂
b
T

∆̂
Ri

T ∪ ∆̂
b
T

(19)

The higher the metric, the more concurrences there are between our method and the

human annotation. Similarly, when analyzing the imaging modality IoUI we take the

segmented mask returned by the radiologists ∆̂
Ri

I and the binarized attribution map ∆̂
b
I

(such that the values of ∆̂I which are < 0.5 are set to 0 and the ones ≥ 0.5 are set to 1),

and compute

IoUI =
∆̂

Ri

I ∩ ∆̂
b
I

∆̂
Ri

I ∪ ∆̂
b
I

(20)

As before, the higher the metric, the more concurrences there are between our method

and the human annotations.

5. Results and discussion

In this section we present the results obtained, dividing the discussion into five sub-

sections that, in order, deal with the classification and reconstruction performance, the

three-stage training assessment, MXAI performance, an ablation study and forthcom-

ing clinical applications.

5.1. Classification and reconstruction performance

Table 1 shows the classification performance and its columns specify: the learn-

ing model (human radiologists included), the validation approach (CV, LOCO or the

reduced set of images used for the survey), the evaluation metrics employed, i.e., accu-

racy, sensitivity and specificity, for which we show the mean and the standard deviation

of the metric in CV and in LOCO. The table is organized into four horizontal sections:

the first, the second and the fourth report the performance attained by learning models,

whereas the third shows the performance of the four radiologists. In particular, the first
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Table 1: Classification performance.

Model Validation Accuracy (%) Sensitivity (%) Specificity (%)

Our proposal
(three-stage training)

CV 76.75±5.32 78.58±6.48 74.55±5.86
LOCO 74.21±6.08 76.73±18.88 68.40±15.46
Survey 76.77 78.54 74.57

AIforCOVID [9] CV 76.90±5.40 78.80±6.40 74.70±5.90
LOCO 74.30±6.10 76.90±18.90 68.50±15.50

R1 Survey 68.75 43.75 93.75
R2 Survey 72.92 70.83 75.00
R3 Survey 76.04 70.83 81.25
R4 Survey 72.92 62.50 83.33

Our proposal
(one-stage training)

CV 70.38±1.78 72.57±1.72 68.62±1.12
LOCO 68.35±1.17 70.92±1.08 62.16±1.89
Survey 70.48 72.51 68.67

section shows results of our proposal and the second includes the best baseline model

presented by [9], which were attained by the hybrid approach.

Given that our method aims to increase the explainability of the model and not

necessarily increase the performance, we first verify that with the co-learning we do

not have a drop in performance with respect to the baseline [9]. The results show that

our model, even if it co-learns two tasks at once, obtains a performance similar to [9].

In fact, the differences between our model and the baseline on all metrics, in both CV

and LOCO, are not statistically significant (p-value > 0.05). This suggests that our

method is resilient to the notion that a decrease in performance is required to obtain

better explanations.

We now compare our results with those of the radiologists: our proposal provides

larger accuracy and sensitivity, while the specificity is lower. This happens because

predicting the prognosis of a patient affected by COVID-19 is a difficult task, giving a

hint that AI could aid practitioners in the decision-making process.

Let us recall that our method is jointly trained to classify and reconstruct the inputs

via the autoencoders: for this reason in Table 2 we show the MSE of AE and CAE, i.e.,

the two autoencoders working with the T and I modalities, respectively. As in Table 1,

here we have a similar row-column organization. Turning our attention to the first

section of this table, it is worth noting that the small values of the MSE confirm the high

quality of the reconstruction for both modalities. This ensures that our MXAI method
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Table 2: Reconstruction performance.

Model Validation Modality MSE

Our proposal
(three-stage training)

CV T 0.04±0.01
LOCO T 0.05±0.02
Survey T 0.04
CV I 0.03±0.01
LOCO I 0.04±0.02
Survey I 0.03

Our proposal
(one-stage training)

CV T 0.09±0.04
LOCO T 0.11±0.05
Survey T 0.09
CV I 0.07±0.02
LOCO I 0.09±0.03
Survey I 0.07

Table 3: ρ (on the lower triangular) and the corresponding t-test p-value (upper triangular) of the modality
importance, computed for each pair between our model and the radiologists.

Our proposal R1 R2 R3 R4

Our proposal - 0.26 0.50 0.37 0.42
R1 0.78 - 0.28 0.32 0.45
R2 0.84 0.90 - 0.35 0.50
R3 0.77 0.82 0.78 - 0.41
R4 0.79 0.77 0.83 0.85 -

can provide good interpretability since it relies on the quality of such reconstructions.

5.2. Three-stage training assessment

To validate the three-stage training introduced in section 3.3, we compare the classi-

fication and reconstruction performance with those attained adopting a one-stage train-

ing, which consists of skipping phases 1 and 2 of our method and directly train, in

an end-to-end manner, the entire network with the combined loss L, without any pre-

training. The corresponding results are shown in the last section of Tables 1 and 2. In

the case of classification performance (Table 1), we observe that the one-stage training

provides lower performance than our three-stage proposal, whatever the performance

metric and whatever the validation approach. Furthermore, such performance differ-

ences are all statistically significant (p-value < 0.01). Similar considerations hold in

the case of reconstruction performance (Table 2). These results confirm the useful-

ness of the three-stage training procedure, which aids the multimodal joint model in

converging to a better solution.
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Table 4: IoUT (lower triangular) and the IoUI (upper triangular) of the feature importance, computed for
each pair between our model and the radiologists.

Our proposal R1 R2 R3 R4

Our proposal - 59.62±3.13 62.97±2.61 63.77±2.25 64.63±2.76
R1 52.37±3.12 - 60.56±2.78 63.42±3.39 61.81±3.28
R2 54.72±2.86 52.37±2.78 - 60.98±3.76 62.44±2.99
R3 53.52±3.21 54.69±3.42 51.23±2.98 - 63.36±3.64
R4 51.31±2.69 52.73±3.31 54.66±2.79 55.43±3.05 -

5.3. MXAI performance

We now focus on validating the explanations provided by our proposal. Specifi-

cally, using the patients included in the survey, we compare the modality and feature

explanations of our model to the importance reported by the radiologists.

Before going deep with the results, let us recall that in section 3.4, we formally put

in relationship the counterfactual explanations with the data (equations 15, 16, 17, 18).

Indeed, in the case of modality importance (∆T and ∆I), a counterfactual explanation

highlights how large is the perturbation of the abstract representation of the clinical

features or of the images caught by the latent space (equations 15 and 16). In the

case of the importance of each feature (∆̂T and ∆̂I), a counterfactual explanation works

at level of each descriptor: for clinical data it represents how large is the variation

between the original and the reconstructed clinical information (equation 17), whereas

for imaging data it measures pixels variations (equation 18). The quantities defined

in such four equations are then considered in the sanity check (section 4.5), which we

introduced to validate the MXAI method.

According to section 4.6, where we explain how we quantitatively compare the ex-

planations provided by the model and those provided by the four radiologists, Table 3

shows the Pearson correlation ρ and the corresponding t-test p-values computed be-

tween the importance vector of a modality reported by our method and the importance

vector reported by each radiologist. These results reveal a high measure of dependency

between our method and the radiologists and among the radiologists, suggesting that

our model gives reasonable modality importance while producing the prognosis.

Let us now consider the unimodal feature importance: in this case Table 4 shows

the IoUT and IoUI for each possible pair between our model and the radiologists. As
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Table 5: Comparison of IoUT and IoUI of the feature importance, computed between XAI methods and the
radiologists. The values in the table are the mean and standard deviation of IoU across all radiologists.

XAI Method IoUT IoUI

Our Proposal 52.98±2.97 62.75±2.69
Integrated Gradients 53.10±3.05 63.20±2.83
LIME 52.70±3.22 62.90±2.98
SHAP 53.05±3.12 63.10±2.91

mentioned in section 4.6, these metrics permit us understand the coherence between

the returned feature importance. These scores not only show that the radiologists have

a fairly high degree of intersection of important features among each other, but also

that the degree of intersection is of the same magnitude even with our proposal. This

implies that our model concentrates on the relevant features of each modality when

making the decision on the prognosis.

As stated in section 2, there is currently a lack of multimodal XAI methods in the

literature. Therefore, to further validate the performance of our explanations, we com-

pared the unimodal explanations generated by our method with other well-established

XAI methods, namely Integrated Gradients, LIME, and SHAP [6]. We selected these

methods because they can be applied to both tabular and imaging modalities, they are

model-agnostic, i.e., they can be used with any model irrespective of its underlying

architecture, and they all offer local explanations. Specifically, we extract the explana-

tions by utilizing the CMLP, EAE , and ECAE modules for each modality, respectively. In

Table 5, we present the average IoUT and IoUI across the feature importance scores

from all the radiologists for both our proposal and the competing methods. The results

demonstrate that our unimodal explanations are not statistically different from these

XAI methods (p-value > 0.05), indicating that our approach is coherent with state-of-

the-art methods from a unimodal perspective. Furthermore, it is worth noting that our

proposed method not only introduces unimodal explanations but also incorporates mul-

timodal explanations, a novel feature that is not available in existing XAI techniques.

5.4. Ablation study

We now discuss what happens when only one modality is available. To this end,

we ran two experiments: in the first we removed the AE and we trained again the
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Table 6: Classification performance in the ablation study

Model Validation Modality Accuracy (%) Sensitivity (%) Specificity (%)

Our Proposal

CV T 75.78±0.75 76.63±0.71 74.74±1.02
LOCO T 73.48±3.20 69.87±3.11 79.56±8.60
Survey T 75.69 76.65 74.71
CV I 74.14±1.03 74.57±1.78 73.96±1.21
LOCO I 70.46±1.06 72.03±1.02 69.55±1.61
Survey I 74.32 74.42 73.88

AIforCOVID [9]

CV T 75.70±0.80 76.00±0.70 75.40±1.10
LOCO T 73.40±4.40 69.90±15.80 79.50±13.60
CV I 74.20±1.00 74.80±1.90 73.80±1.30
LOCO I 70.50±1.00 72.00±1.10 69.60±1.50

Table 7: Reconstruction performance of the ablation study.

Model Data Modality MSE

Our Proposal

CV T 0.03±0.01
LOCO T 0.04±0.02
Survey T 0.03
CV I 0.02±0.01
LOCO I 0.03±0.02
Survey I 0.02

other part of the model, i.e., we worked only with the imaging modality disregarding

the tabular clinical data. In the second we flipped the ablation, removing the CAE

and, thus, we did not consider the images. Table 6 shows the results we achieved in

the case of experiments ran in CV, LOCO and using the survey images. Furthermore,

the third columns specifies the modality used. As before, we also show the hybrid

baseline model presented in [9], which is trained only on one modality. The results of

our proposal shows that using only the tabular clinical data or only the imaging data

provides similar results, which do not statistically differ from each other, whatever the

performance score considered (p-value > 0.05). Furthermore, in comparison with the

performance of the full multimodal approach (first section of Table 1), we notice that

both unimodal models report a statistically significant drop in performance (p-value <

0.01), whatever the validation approach or the performance score. As before, we notice

that our model, even if it co-learns two tasks at once, obtains similar performance to the

hybrid model, i.e., the best baseline model of [9]. In fact, the difference between our

model and the baseline model on all metrics, in both CV and LOCO, is not statistically

significant (p-value > 0.05).
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Table 8: IoUT (lower triangular) and the IoUI (upper triangular) of the feature importance for models trained
in ablation, computed for each pair between our model and the radiologists.

Our proposal R1 R2 R3 R4

Our proposal - 60.31±2.98 62.45±2.31 63.57±2.49 64.22±3.58
R1 53.63±2.45 - 60.56±2.20 62.10±3.10 61.90±2.98
R2 54.65±2.95 52.45±3.21 - 61.07±3.30 62.90±3.20
R3 54.49±3.03 53.99±3.32 50.89±3.00 - 62.88±3.50
R4 50.40±3.01 52.41±3.40 52.54±3.11 55.30±2.87 -

For completeness, Table 7 shows the reconstruction results in terms of MSE for

each modality. In comparison with Table 2, as expected, we notice that the reconstruc-

tion error has significantly decreased (p-value > 0.05) becaause the model can focus

on one modality at a time, making it easier to learn an efficient embedding mapping.

As before, we also investigate the results in terms of explainability. Straightfor-

wardly, in this case the modality importance does not make sense, so that Table 8

reports the IoUT and the IoUI of new unimodal feature importance. These results

show that, even if we have a drop in classification and reconstruction performance, the

explanations are consistent between the radiologists and between our method and the

radiologists, suggesting that the MXAI method is robust to a missing modality [37, 38].

5.5. Clinical perspective and case studies

In a clinical practice scenario, we believe that our AI system can serve as a precur-

sor to subsequent multimodal research for predicting the evolution of COVID-19. Its

classifications and explanations can assist radiologists in performing prognosis tasks.

Indeed, on the one side, in [39] the authors showed that the rise of X-ray severity

over the course of COVID-19 infection increases the sensitivity of COVID-19 detection

using CXR over time (55% at ≤ 2 days to 79% at > 11 days), whilst it decreases the

specificity (83% at ≤ 2 days to 70% at > 11 days). On the other side, as Table 1 shows,

our proposal provides a larger sensitivity than the radiologists, suggesting that it can

anticipate the evolution of positive COVID-19 cases, that is in an initial phase of the

disease when the patient accesses the emergency department, our approach achieves a

sensitivity (78.56%) equal to that which the X-ray alone shows after several days.

Furthermore, the proposed architecture has the beneficial feature to offer transpar-
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Figure 3: Four case studies: for each we show the feature importance indicated by our proposal (∆̂T and
∆̂I ) and the corresponding important features indicated by radiologists (∆̂Ri

T and ∆̂Ri
I ) for the tabular and the

imaging modalities, respectively. The rows show examples of patients with mild (first and third row) and
severe (second and fourth row) outcomes, for both success (first and second row) and failure cases (third and
fourth row) of our model.

28



ent decisions since, for each patient, the radiologists can observe at the same time the

original data (both the clinical features and the X-ray image), the modality importance

∆T and ∆I , and the unimodal feature importance ∆̂T and ∆̂I . With ∆T and ∆I , the

radiologists would be guided to understand on which modality to concentrate more

on. Instead, with ∆̂T and ∆̂I we guide the radiologist to concentrate on certain clinical

characteristics and on specific areas of the X-ray scan.

Figure 3 presents four case studies. It is organized in four columns: the first two

show the feature importance indicated by our proposal (∆̂T and ∆̂I), whereas the third

and the fourth show the corresponding important features indicated by radiologists (∆̂
Ri

T

and ∆̂
Ri

I ), for the tabular and the imaging modalities, respectively. The tabular clinical

data importance ∆̂T is represented as a bar-plot on the ∆̂T column, so that the longer

the bar, the more important the clinical variable is. For the sake of visualization, we

only show the features part of ∆̂
b
T , keeping the magnitude of the importance computed

according to equation 17. The X-ray image importance map ∆̂I is shown as a heatmap

on the original scan, which represents the relevance of each pixel in the image for

the prognosis task on a color scale ranging from blue (low importance) to red (high

importance) on the ∆̂I column. Looking at the figure by row, the first group of rows

shows two success cases, where our classifier correctly classifies the patient’s outcome,

whereas the second group of rows shows two failure cases, where our classifier incor-

rectly classifies the patient’s outcome. In both cases of classification success or failure,

we present an example from both the mild and severe classes. Note that all these cases

have been correctly classified by the radiologist. In the success examples, we note a

strong agreement between our proposal and the radiologist for both modalities. Specif-

ically, in both mild and severe cases, the tabular features are the same, and the most

important pixels for the model largely overlap with the area of interest segmented by

the radiologist. In the failure cases, our model assigns importance to tabular features

and to image regions that are different from those highlighted by the radiologist. We

speculate that this may be the reason for the model incorrect predictions. In particular,

in the mild case, only three out of five most important tabular features coincide with

those suggested by the human expert, whilst for the severe case there is no overlap.

Additionally, if we turn our attention to the images, both the mild and severe cases
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exhibited a very low intersection between the most important regions for the models

and the manually segmented areas.

6. Conclusion

In this work we presented an end-to-end multimodal architecture that jointly learns

modality reconstructions and multimodal classification using tabular clinical and imag-

ing data. With respect to the literature using such modalities for medical tasks, we deem

that our method is the only one which offers intrinsic model-specific local multimodal

explanations. In particular, multimodal explanations are computed by exploiting the la-

tent space learnt by jointly training the end-to-end architecture and using a latent shift-

based counterfactual method. We tested our approach in the context of the COVID-19

pandemic using the AIforCOVID public dataset, which includes both X-ray and clini-

cal data. The extensive quantitative experimentation shows that the latent space retains

features useful to succeed both in a reconstruction and classification task and, thus, re-

sulting in an informative space for the latent-shift method. Moreover, the sanity check,

although very time-consuming, was very useful since it showed a high intersection be-

tween the explanations provided by the method and those of the radiologists, both for

the modality and the feature importance.

A reflection on this work highlights two main limitations. The first is that the re-

liability of the explanations the method produces is constrained by its reliance on the

classification and reconstruction performance of the model. As all components of the

method are data-driven and there is no dedicated module for explainability, the gen-

eralizability of the explanations could be limited by the quality of the data. In this

respect, we plan to evaluate the effectiveness of our methodology on different datasets

from different domains and with different data types. The second limitation stems from

noticing that, although our proposal identifies the importance of each modality and

the importance of each unimodal feature per sample, it does not find out high-level

concepts, including those expert-based. To cope with this issue we deem that concept

knowledge mining [40, 41] could be a viable solution that we plan to investigate in fu-

ture work to enable human experts to better understand how the prediction is identified
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by the model.
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