Abstract Submission

P4_39

T1 - Extraterrestrial mineralogy
The minerals and the fluids of the ocean worlds

IMA2022-1671

Salt hydrates diversity at high pressure and low temperature relevant for icy moons.

Baptiste Journaux^{*} ¹, Anna Pakhomova², Ines Collings³, Sylvain Petitgirard⁴, Tiziana Boffa Ballaran⁵, Dongyang Huang ⁴, Jason Ott⁶, J. Michael Brown¹, Stella Chariton⁷, Vitali Prakapenka⁷, Michael Hanfland², Gaston Garbarino², Davide Comboni², Konstantin Glazyrin⁸

¹Earth and Space Sciences, University of Washington, Seattle, United States, ²ESRF, Grenoble, France, ³EMPA, ⁴ETH Zurich, Zurich, Switzerland, ⁵BGI, Bayreuth, Germany, ⁶University of Washington, Seattle, ⁷APS-GSECAR, Chicago, United States, ⁸DESY - PETRA III, Hamburg, Germany

Please designate the presenter/contributor author(s)?: Baptiste Journaux

Abstract Content: The water-rich layer of icy moons of the outer solar system contains a variety of organic (e.g. CH₄, NH₃, CO₂) and inorganic (e.g. NaCl, MgSO₄, Na₂SO₄, MgCl₂) solutes detected by robotic mission like NASA Cassini and Galileo probes. Many of the geological processes on these moons, like cryovolcanism tectonics, oceanic evolution, involve processes of partial melting and fractional crystallization of ices and hydrate species. If the ice thermodynamic is relatively well constrained at the high pressure and low temperature conditions found inside these moons, the stability of hydrates and their diversity remains unexplored. We will present here results from *in situ* single crystal X-Ray diffraction in a cryostat-cooled diamond anvil cell that allowed us to discover and characterize salt hydrates in the H₂O-(Na⁻,Cl⁺,Mg²⁺,SO₄²⁻) systems at high pressures and low temperatures. Formation of a diversity of highly hydrated salt species at moderate pressures suggests a pressure-induced hydration process. We will discuss the implication of our results for chemical physics and mineralogy of icy ocean worlds as well as for the upcoming exploration of icy worlds of our solar system by NASA and ESA robotic space missions.

Disclosure of Interest: None Declared