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ABSTRACT

As a consequence of galaxy clustering, close galaxies observed on the plane of the sky should be spatially correlated with a probability
that is inversely proportional to their angular separation. In principle, this information can be used to improve photometric redshift
estimates when spectroscopic redshifts are available for some of the neighbouring objects. Depending on the depth of the survey,
however, this angular correlation is reduced by chance projections. In this work, we implement a deep-learning model to distinguish
between apparent and real angular neighbours by solving a classification task. We adopted a graph neural network architecture to tie
together photometry, spectroscopy, and the spatial information between neighbouring galaxies. We trained and validated the algorithm
on the data of the VIPERS galaxy survey, for which photometric redshifts based on spectral energy distribution are also available. The
model yields a confidence level for a pair of galaxies to be real angular neighbours, enabling us to disentangle chance superpositions
in a probabilistic way. When objects for which no physical companion can be identified are excluded, all photometric redshift quality
metrics improve significantly, confirming that their estimates were of lower quality. For our typical test configuration, the algorithm
identifies a subset containing ∼75% high-quality photometric redshifts, for which the dispersion is reduced by as much as 50% (from
0.08 to 0.04), while the fraction of outliers reduces from 3% to 0.8%. Moreover, we show that the spectroscopic redshift of the angular
neighbour with the highest detection probability provides an excellent estimate of the redshift of the target galaxy, comparable to or
even better than the corresponding template-fitting estimate.
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1. Introduction

Knowledge of galaxy distances is of the utmost importance
for cosmology to reconstruct the underlying 3D dark matter
distribution that encapsulates key information about the evo-
lution and matter content of the Universe. On cosmological
scales, the most efficient method for estimating distances is
through their cosmological redshift, which directly connects to
the standard definitions of distance. Sufficiently precise red-
shift measurements allow us to test the world model through
the redshift-distance relation, coupled with standard rulers and
standard candles (e.g. Riess et al. 1998; Perlmutter et al.
1998).

Over the past 25 yr, galaxy clustering measurements from
large redshift surveys have been able to quantify the universal
expansion and growth histories, pinpointing the value of cosmo-
logical parameters to high precision (e.g. Tegmark et al. 2006;
Colless et al. 2003; Blake et al. 2011; de la Torre et al. 2017; Alam
et al. 2017; Pezzotta et al. 2017; Bautista et al. 2021). Even larger
redshift surveys are now ongoing (DESI; DESI Collaboration
2016) or are scheduled to start soon (Euclid; Laureijs et al.
2011), with the goal of further refining these measurements
to exquisite precision and find clues for the poorly understood
ingredients of the remarkably successful standard model of
cosmology.

The redshift is measured from the shift in the position of
emission and absorption features identified in galaxy spectra,

typically through cross-correlation techniques with reference
templates, which capture the full available information (e.g.
Tonry & Davis 1979). Despite the considerable advances of
multi-object spectrographs over the past 40 yr, collecting spec-
tra for large samples of galaxies remains an expensive task. A
cheaper, lower-precision alternative is offered by photometric
estimates, that is, by measurements based on multi-band imag-
ing, in which integrated low-resolution spectral information is
collected at once for large numbers of objects over large areas.
The price to be paid is that of larger measurement errors, together
with a number of catastrophic failures, which limit the scien-
tific usage of such photometric redshifts (photo-zs hereafter) to
specific applications (e.g. Newman & Gruen 2022). Still, when
a sufficient number of photometric bands is available (Benitez
et al. 2014; Laigle et al. 2016; Alarcon et al. 2021) or when even
information about the ensemble mean spectrum can be obtained
(Cagliari et al. 2022), these samples become highly valuable
in many respects. Photo-zs are traditionally estimated by fitting
template spectral energy distributions (SED) to the measured
photometric fluxes (see e.g. Bolzonella et al. 2000; Arnouts et al.
2002; Maraston 2005; Ilbert et al. 2006). Detailed reviews can be
found in Salvato et al. (2019), Brescia et al. (2021), and Newman
& Gruen (2022).

Since the pioneering work of Collister & Lahav (2004;
see also Lahav 1994), who first used artificial neural net-
works (ANN) to obtain photo-z estimates, machine-learning
(ML) algorithms have seen many further applications in this
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Fig. 1. Correlation between the galaxy redshift and that of its nth nearest angular neighbour (n = {1, 2, 3, 4}, left to right), as seen in the VIPERS
redshift survey data, which cover the range 0.5 < z < 1.2. Clearly, while a tight correlation exists for a number of objects, many other angular pairs
just correspond to chance superpositions.

context. These include random forests (Carliles et al. 2010),
self-organizing maps (SOM; Masters et al. 2015), and advanced
ANNs (Sadeh et al. 2016). A notable recent application uses the
full images of galaxies through convolutional neural networks
(CNN; Pasquet et al. 2019; Henghes et al. 2022). All these meth-
ods provide photo-z estimates by using information that is strictly
local, that is, the flux of each object measured in a number of
photometric bands, independently of correlations with the other
galaxies in the sample.

In the specific case when a photometric survey includes spec-
troscopic redshifts for a representative sub-sample spread over
the same area, these represent additional information, which can
be exploited to obtain improved estimates of the missing red-
shifts. Since galaxies are spatially clustered, angular neighbours
on the sky preserve a degree of redshift correlation, depend-
ing on the depth of the catalogue. The deeper the catalogue,
the weaker the correlation because the projection is made over
a deeper baseline. Still, an angular correlation remains, as can
be seen explicitly in Fig. 1, in the data of the VIMOS Public
Extragalactic Redshift Survey (VIPERS; Guzzo et al. 2014).

This correlation was exploited, for example, to improve our
knowledge of the overall sample redshift distribution (Newman
2008), which is a fundamental quantity for many cosmological
investigations such as weak-lensing tomography. With VIPERS,
instead, it was used to estimate the galaxy density field to fill the
gaps due to missing redshifts (Cucciati et al. 2014). Even more
finely, Aragon-Calvo et al. (2015) used the fact that galaxies are
typically confined within cosmic web structures to obtain a dra-
matic improvement in the estimate of photo-zs for ∼200 million
Sloan Digital Sky Survey galaxies, starting from only about one
million spectroscopically measured redshifts.

Our goal with the work presented here has been to opti-
mally retrieve this non-local information from the neighbouring
objects of a given galaxy building upon a specific class of ML
architectures, graph neural networks (GNN). The key property
of this class is the ability to combine information from unstruc-
tured data based on our priors of the task at hand (Bronstein
et al. 2017). The end goal is to obtain an improved estimate of
the galaxy redshift.

As shown by Fig. 1, the existing correlation between angular
neighbours is strongly diluted by the sea of chance superposi-
tions along the line of sight. Thus, the problem can be more
appropriately recast into quantifying the probability that a given
angular neighbour (with known redshift) is a physical compan-
ion for a given galaxy and thus is closely correlated in redshift
as well. Our GNN model, dubbed NezNet, combines the intrinsic

features of a target galaxy and a neighbour, that is, their multi-
band fluxes, the spectroscopic redshift of the neighbour, and their
relative angular distance, to output the probability for the two
galaxies to be spatially correlated. We trained and tested NezNet
using the spectroscopic sample of VIPERS. We show that dis-
carding targets for which no real physical neighbour is identified
with significant probability improves the quality of the asso-
ciated photo-z catalogue obtained through classic SED fitting,
increasing precision and accuracy and reducing the fraction of
catastrophic outliers. Moreover, when real neighbours are identi-
fied, the redshift of the highest-probability neighbour represents
an estimate of the target redshift that is typically more precise
than that obtained through the classical SED fitting.

The idea of using GNNs to draw additional redshift informa-
tion from neighbouring galaxies is not new. Beck & Sadowski
(2019) presented preliminary results of an approach based on
using only the photometry of a neighbourhood of galaxies,
obtaining a 10% improvement on the median absolute devia-
tion of the photo-zs estimated via a single object-based ML
algorithm. The main shortcoming of methods that are based
on apparent neighbours lies in the large fraction of chance
superpositions, as evident in Fig. 1. Here, we reformulated the
problem as a detection task that identifies the physical neigh-
bours of the surrounding spectroscopic objects, also including
the neighbour’s spectroscopic information. In this way, we obtain
a significant improvement.

The paper is organised as follow. In Sect. 2, we give a brief
description of how GNNs work and specify the architecture of
our model. In Sect. 3, we describe the properties of VIPERS
data and the way we prepared the training set, in particular,
how we defined real or apparent neighbouring objects. Section 4
describes how the model is applied to the data and the metrics
we used to quantify the performance of the results. Finally, in
Sect. 5 we present and discuss our results, and we conclude in
Sect. 6.

2. Model

A neural network model can be summarised as a set of non-linear
functions applied to a set of inputs that undergo a linear mapping.
Each mapping has many parameters that are optimised through
a training process that allows the network model to approxi-
mate a wide variety of almost arbitrary functions (LeCun et al.
2015). In its simplest form, a neural network model corresponds
to a multi-layer perceptron (MLP), also known as dense neural
network (Murtagh 1991). For images, neural architectures such
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Fig. 2. Schematic architecture of NezNet. The input features are first processed by a dense network. Message passing between the two layers through
Eq. (1) is then applied to take the relative differences and global values of the features into account. Before the final dense layer, the features are
summed and then reprocessed with an MLP to output the score probability of two galaxies being actual neighbours.

as CNN are more suited because they take our a priori knowledge
about the data structure into account (O’Shea & Nash 2015).

This reasoning can be pushed further by introducing neu-
ral networks for graph representations (Zhou et al. 2018). In this
work, we make use of one key aspect of GNN, that is, message
passing (Gilmer et al. 2017). To fix ideas, the problem we wish
to address is the following: we need to find the spectroscopic
galaxies with the highest probability of being close to a galaxy
for which only photometric information is available. This can be
recast as a classification task for each pair of galaxies, in which
our aim is to distinguish between apparent and real neighbours
when projected on the plane of the sky.

Intuitively, a model that distinguishes between apparent
and real neighbours should be based on the relative difference
between galaxy features. A neural network like this can be
designed by including a layer of the form

xxx′i =
∑

j∈N(i)

h(xxxi, xxxi − xxx j), (1)

where xxxi refers to the array of input features of the node i, N(i)
is the neighbourhood of the same node,

∑
is the aggregation

function that sums the outcomes from each pair of nodes. The
function h is an MLP that explicitly combines the value of the
input feature at the node and the relative difference of that feature
with respect to the neighbour. It is worth noting that this GNN is
both permutation equivariant and permutation invariant, so that
it is not affected by a change in the order of the nodes, that is, the
input galaxies.

The complete architecture of our model is illustrated in
Fig. 2. Each node is a galaxy, whose inputs (e.g. the photomet-
ric measurements) were pre-processed through an MLP before
undergoing the message passing of Eq. (1). We restricted our-
selves to the case of galaxy pairs, so that the neighbourhoodN( j)
includes only one galaxy, and the aggregation function simply
sums the features xxx′1 + xxx′2. This model can be seen as a trivial
version of EdgeConv (Wang et al. 2018), where the adjacency
matrix is a 2 × 2 matrix, with 0 entries for diagonal elements
and 1 for the off-diagonal elements. Finally, the summed features
undergo a last dense layer with a scalar output. All the activation
functions are rectified linear units, with the exception of the final
layer, where we used a sigmoid, to represent a probability for our
classification task.

We call this classification model Nearest-z Network
(NezNet). NezNet provides the probability for a pair of galaxies
to be real neighbours. The loss function adopted to train NezNet
is a standard binary cross entropy,

L =
1
n

n∑
i

[
yi log pi + (1 − yi) log (1 − pi)

]
, (2)

where pi is the output probability of NezNet for each galaxy pair,
while yi = 0, 1 is the corresponding training label, and the sum
is averaged over the mini-batch. To design our model, we made
use of the Spektral library1 (Grattarola & Alippi 2020), where
the EdgeConv layer is conveniently already implemented.

3. Data

We trained and tested our approach on the final data release of
VIPERS (Guzzo et al. 2014; Scodeggio et al. 2018), for which
the redshift correlation between angular neighbours is shown in
Fig. 1. The survey used the VIMOS multi-object spectrograph
at the ESO Very Large Telescope to target galaxies brighter than
iAB = 22.5 in the Canada-France-Hawaii Telescope Legacy Sur-
vey Wide (CFHTLS-Wide) catalogue, with an additional (r − i)
vs. (u − g) colour pre-selection to remove objects at z < 0.5. The
resulting sample covers the redshift range 0.5 ≲ z ≲ 1.2, with
an effective sky coverage of 16.3 deg2, split over the W1 and
W4 fields of CFHTLS-Wide. We used only galaxies with secure
redshift measurements, as identified by their quality flag, cor-
responding to a 96.1% confidence level (see Scodeggio et al.
2018).

For each galaxy in the catalogue, the following information
was considered: the spectroscopic redshift measurement zspec,
the six magnitudes u, g, r, i, z (not to be confused with red-
shift) and Ks, the right ascension α (RA), in radians, and the
declination δ (Dec), in radians.

The angular separation on the sky between two objects with
RA α1 and α2 and Dec δ1 and δ2 is given by the haversine
formula,

∆Θ = arccos (sin δ1 sin δ2 + cos δ1 cos δ2 cos (α1 − α2)) . (3)

We selected the parent photometric sample by applying the
same VIPERS colour and magnitude cuts defined above, so as to
be fully coherent with the spectroscopic data.

4. Application

We set up a training set from the VIPERS W1 galaxy catalogue.
We randomly selected about 3× 104 target galaxies, whose spec-
troscopic redshift during training was ignored. For each of them,
we identified the first nNN angular nearest neighbours as defined
by Eq. (3), which we called spectroscopic galaxies because
their spectroscopic redshift information was used in our model.
Each of these spectroscopic neighbours was associated with the
same target galaxy, but the pairs can be considered as inde-
pendent from one another in our model. Each angular pair was

1 https://graphneural.network

A150, page 3 of 9

https://graphneural.network


A&A 672, A150 (2023)

assigned label 1 when it was a real physical pair, otherwise, it
was assigned a 0. The training set was thus made of galaxy pairs.

A target galaxy of a pair can also be the nearest neighbour
of another target galaxy in another pair. We made this choice in
order to maximise the number of training examples available in
W1. Our final tests on the W4 catalogue show that this does not
lead to any over-fitting of VIPERS data, as the model generalises
well. We note that this setting assumes a ratio of spectroscopic to
photometric objects of 1 : 1. In the Conclusions section (Sect. 6),
we also confirm these results in the more realistic case in which
the number of spectroscopic redshifts used for training are a
fraction of the number of photometric objects.

The definition of a real neighbour is arbitrary; it is reason-
able to consider that two angular neighbours form a physical
pair when their spectroscopic separation is smaller than a given
threshold,

∆z (1 + zspec). (4)

This means that in setting up the training data, there are two
hyper-parameters, the number of nearest neighbours nNN to be
considered, and the spectroscopic separation ∆z. As we show
below, these two hyper-parameters can affect the results signifi-
cantly, and it is thus relevant to set them up wisely, depending on
the specific survey.

For each galaxy in the pairs, the input features of the nodes
in NezNet are the photometry, the spectroscopy, and the angular
position, as listed in Sect. 3. For the target galaxy, we always set
zspec = 0, so that the model considered it as a missing feature,
while providing its value for the neighbouring galaxy. Magni-
tudes were normalised to the range [0, 1], as computed over the
whole VIPERS dataset. The angular inputs were provided in
terms of relative distance with respect to the target galaxy, so that
∆Θ = 0 for the latter, while for the neighbour, it corresponded to
Eq. (3). By adopting this choice, we guaranteed that the model
has translational invariance.

Another tested option (see Sect. 6) is to use the relative dis-
tance in the two sky coordinates RA and Dec as input variables
instead of the angular separation of the two galaxies. This choice
arises because the surface distribution of the sample is not rota-
tionally invariant on the sky because of the technical set-up of
the slits in the VIMOS focal plane, with the spectral disper-
sion oriented along the declination direction. As spectra must
not overlap on the detector, targets need to be separated in Dec
much more than in RA. As a result, the minimum separation
is ∼1.9 arcmin in Dec and 5 arcsec in RA. More details can be
found in Bottini et al. (2005) and Pezzotta et al. (2017, see their
Sect. 4.1). Our experiments show that providing the model with
the angular separation ∆Θ introduces a bias in the redshift met-
rics, which is not observed when the relative separations along
RA and Dec are given. In general, however, we find that the sep-
aration information does not significantly improve the classifier,
and for this reason, we did not use it in our final model. Spa-
tial information instead comes only from the number of nearest
neighbours considered.

The other hyperparameters of the model, that is, the batch
size, number of neurons, and learning rate, have a far weaker
impact than ∆z and nNN, and were set to fiducial values: a batch
size of 32, a learning rate of 0.001, and a total number of param-
eters of the order of a few thousands. We find little difference in
the output metrics of the redshift estimates when the complexity
of the model is increased, or when the batch size and the learning
rate are changed around these fiducial values.

NezNet gives as output the probability for two galaxies to
be real neighbours. As each target galaxy corresponds to nNN

independent pairs, we can select the neighbour with the highest
probability among them. If this probability is below the clas-
sification threshold set to define a positive case, we conclude
that there is no physical neighbour for that target galaxy in the
catalogue. This implies that the probability for the latter is too
high to be an outlier in terms of its properties when compared to
its neighbours. Removing these objects from the final catalogue
significantly improves the metrics when comparing photo-z
and spectroscopic measurements. In particular, the reduction
in the number of catastrophic redshifts confirms our assump-
tion. Finding a true neighbour instead reinforces the confidence
in the photo-z. At the same time, the spectroscopic redshift of
the neighbour in this case is typically an even better estimate of
the target redshift than the SED-estimated photo-z. These tests
are discussed in the following section.

The quantitative comparison between NezNet results, spec-
troscopic measurements z(i)

spec, and SED-fitting estimated photo-
zs was performed using the metrics defined in Salvato et al.
(2019). These are the precision (i.e. the dispersion of the esti-
mated values),

σ =

√√√
1
N

N∑
i

 z(i)
spec − z(i)

1 + z(i)
spec

2, (5)

the bias

b =
1
N

N∑
i

(z(i)
spec − z(i)), (6)

and the absolute bias

|b| =
1
N

N∑
i

|z(i)
spec − z(i)|, (7)

quantifying systematic deviations. Finally, the outliers are
defined as objects for which

|z(i)
spec − z(i)| ≥ 0.15(1 + z(i)

spec). (8)

All the results presented in the following section were obtained
by applying the trained NezNet to a test catalogue built in a sim-
ilar fashion to W1, randomly selecting about 2 × 104 galaxies
from the twin W4 field of VIPERS.

Finally, in the following discussion about our classifier, we
use the notion of the true positive rate (TPR), which is the frac-
tion of correctly predicted positive examples with respect to all
the real positive examples. It is defined as

TPR =
TP

TP + FN
, (9)

where TP stands for true positives and FN stands for false neg-
atives. Similarly, we can define the false positive rate (FPR),
which is the fraction of negative examples classified as positives
with respect to all the real negative examples, which reads

FPR =
FP

FP + TN
, (10)

where FP stands for false positives and TN stands for true
negatives.
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Fig. 3. Central galaxy spectroscopic redshift versus its photometric redshift measured with and without NezNet. The left panel shows the dis-
tribution of photometric vs. spectroscopic estimates in the original data. In the middle panel, we show the same distribution after removing the
galaxies with low score probability from the catalogue (fr stands for the fraction of retained data). Finally, the right panel shows redshift estimates
by assigning the spectroscopic redshift of the neighbour with the highest detection probability to the target galaxy. The model was trained with
nNN = 30 and ∆z = 0.08.

Fig. 4. Same as Fig. 3, but the model was trained with the higher ∆z = 0.15, while nNN = 30 is the same as before.

5. Results

As explained in the previous section, NezNet can be used to
simply clean a photo-z sample by discarding low-probability
neighbours or to provide an alternative redshift estimate derived
from the highest-probability neighbour. This is demonstrated on
the test catalogue in Fig. 3 for a model trained using the hyper-
parameters ∆z = 0.08 and nNN = 30. In addition to the VIPERS
spectroscopic redshifts, this comparison also includes the orig-
inal photo-zs estimated by Moutard et al. (2016) using standard
SED fitting. For these and all following results, angular informa-
tion (i.e. the separation of the two objects on the sky) was not
used as an input variable. The reason for this was already men-
tioned in the previous section, and is discussed again in more
detail below.

Figure 3 shows that by simply dismissing the outliers as iden-
tified by NezNet, all the metrics improve significantly (central
panel). Moreover, when the best neighbour redshifts are adopted
for the target galaxies (right panel), we obtain metrics that are
comparable to or even better than those of the cleaned photo-z
sample. It is worth noting that in this case, the plot shows a
characteristic checkerboard pattern because the spectroscopic
redshift striping is reflected, as spectroscopic redshifts are now
assigned to target photometric objects.

Figure 3 also shows the limits of the method. Comparing the
left panel with the other two, we can note that NezNet tends

to cut off the high-redshift tail of the distribution. This is eas-
ily understood considering the magnitude-limited (iAB < 22.5)
character of the sample used here, which becomes very sparse at
z ≳ 1, where only rare luminous galaxies are present. This means
that the model becomes intrinsically less efficient because fewer
real physical neighbours are available both for the training and
for inference, as is also evident from the density of points at high
redshift in Fig. 1. Devising a different loss function to up-weight
the few physical pairs in this regime might improve the classi-
fication task, but an intrinsic limit to the method clearly exists
when the density of the sample decreases.

Figure 4 shows the same set of plots, but using a higher
value for the spectroscopic separation in the training, that is,
∆z = 0.15. As expected, allowing for a larger separation in the
definition of real angular neighbours discards fewer data. Con-
versely, there is in general a lower precision and a small increase
in the fraction of outliers.

In principle, using a stricter ∆z could remove even more
outliers, retaining only pairs that are closer in redshift and
leading to a smaller, but more precise sub-sample. We explore
this dependence in Fig. 5. Overall, this method is always able
to clean poor estimates from the sample, but at the price of
discarding many data points. The minor improvement in pre-
cision probably does not justify the use of ∆z < 0.08 in the
case of VIPERS, because more than half of the sample is
excluded.
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Fig. 5. Redshift estimates derived from the best nearest neighbour for various ∆z at fixed nNN = 30. Increasing the spectroscopic separation to
define physical neighbours while diminishing the quality of the metrics increases the fraction of data that are not dismissed from the catalogue.

Fig. 6. ROC curve for a varying redshift threshold ∆z at fixed nNN = 30.
The performance of our classifier (AUC) improves as we use a less strict
definition of what we define as a true neighbour. The probability that an
angular neighbour is a physical neighbour increases at larger ∆z, which
is also reflected by the high detection threshold (thr).

It is apparent that the hyper-parameter ∆z is very relevant for
the quality of the classifier. This is made clear by the receiver
operator characteristic (ROC) curve in Fig. 6, which shows the
TPR (Eq. (9)) against the FPR (Eq. (10)), and has been computed
from the target galaxies in the test catalogue by considering their
neighbour with the highest probability. In general, the area under
the curve (AUC) is higher for the better classifier. Increasing ∆z
increases the AUC, which would tend to unity for very high val-
ues of this parameter, as all galaxies would then be considered
real neighbours. However, our ultimate goal is not to increase the
performance of the classifier per se, but to improve the metrics
of our redshift estimates. These show that ∆z ≳ 0.08 represents
the best choice for VIPERS.

The other hyper-parameter of NezNet, that is, nNN, the num-
ber of nearest neighbours considered in the training, has a weaker
impact on the classifier. We show this in Fig. 7, where each ROC
curve corresponds to a model trained with a different nNN, but
all with the same ∆z. A drastic change in nNN does not corre-
spond to comparable changes in the AUC. However, nNN has a
large impact on the redshift estimates, as Fig. 8 shows. A larger
number of angular neighbours increases the probability of find-
ing a physical pair, as is shown by the metrics in Fig. 7. We also
experimented with a higher value of nNN up to 50, but found no
further gain with respect to using nNN = 30. The redshift metrics
start to saturate to the optimal values already above nNN = 10.

Fig. 7. ROC curve for a varying number of nearest neighbours nNN = 30
at fixed ∆z = 0.08. Increasing the number of neighbours that are given in
input to the training seems to make the training more difficult. However,
this test of the classifier does not reflect the quality of the final redshift
estimate, as Fig. 8 shows.

As a further test, we also computed the gradients of the pre-
dictions with respect to their input variables to detect the most
relevant ones, as shown in Fig. 9. It is interesting to see that
the neighbour redshift is a relevant input, as expected, and some
of the photometric bands are even more relevant. This confirms
the intuition that the photometric information of the neighbours
does indeed provide additional information about the relative
distance from the target. In this plot, we also show results for
the case when the angular separation is considered as one of the
input variables. These results show that the angular separation
∆Θ between the target and the neighbour does affect the pre-
dictions. This manifests itself as a bias in the redshift estimates,
as visible in Fig. 10: in this case, NezNet systematically favours
neighbours that are closer to us than the target, increasing the
value of the bias b (Eq. (6)). We also tested what happens when
the angular separation information is rather given in terms of the
relative difference in the angular coordinates RA and Dec of the
two galaxies. In this case, the bias disappears and the results are
comparable to the standard case in which no angle information
is provided. However, in this case, the two parameters clearly
have smaller gradients than when ∆Θ alone is considered, which
suggests that they do in fact not contribute to the predicting
power of the model. For these reasons, the angular separation
is not considered as input variable in our final results.
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Fig. 8. Redshift estimates based on the best nearest neighbour for various nNN at fixed ∆z = 0.08. Increasing the number of nearest neighbours for
each target improves the performance of NezNet in estimating redshifts, as it increases the probability that physical pairs are considered.

Fig. 9. Average absolute values of the gradients of NezNet with respect
to the input features of the neighbours. For each target, we only consid-
ered the neighbour with the highest probability.

Fig. 10. Results of redshift estimates for the target galaxies, in the case
where the angular separation Eq. (3) is an explicit input of the model.
Many galaxies have slightly lower values than the real spectroscopic
value, resulting in a large bias b. Currently, we do not have an explana-
tion of this observed effect.

Fig. 11. Comparison of the redshift distribution for the predictions of
NezNet, and a simpler graph model without message passing. While
the latter performs reasonably well in general, it tends to cut the tail of
the distribution.

One of the novelties of NezNet is the message passing
between node features. This is where GNNs differ from a stan-
dard ANN, where all input variables of both galaxies would be
provided directly to dense layers. We also experimented with
a simpler graph model, closely resembling the architecture of
NezNet, but without message passing. The input features were
processed independently by MLP layers for each node (we tried
using either just one or several layers). The new architecture is as
in Fig. 2, with the exception of h function blocks, which are now
substituted with new MLP blocks, without applying any message
passing. The xxx′i features are summed by the aggregation function,
and the summed features are mapped to the output probability
through final dense layers with sigmoid activation output, just
like in the model with message passing. This kind of model,
which maintains the permutation invariance property of a graph,
is often referred to as a deep set (Zaheer et al. 2017). We find
that this simple model still works remarkably well and is com-
parable to NezNet in general. However, it systematically cuts off
the high-redshift tail of the catalogue (Fig. 11), even though the
overall metrics remain good.

6. Conclusions

We have presented a new ML model, dubbed NezNet, which
for a pair of galaxies takes as input their measured fluxes in a
number of bands together with the redshift of one of the two
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Fig. 12. Redshift estimates based on the best nearest neighbour, obtained by uniformly subsampling the W1 catalogue, at fixed nNN = 30 and
∆z = 0.08. The titles of the panels refer to the surface density of spectroscopic objects of W1 used for training, with Σ referring to the complete
W1 sample. Except for minor fluctuations in the redshift statistics, NezNet maintains a performance similar to the case without subsampling. The
only noticeable trend is the fraction of central galaxies for which a physical pair is found, which decreases for lower densities. This could be due
to the decreasing number of available training data. The percentage of real physical neighbours for a central galaxy, which decreases only slightly
from Σ to Σ/8, remains around 40% and explains why NezNet is still effective.

galaxies. NezNet is capable of probabilistically learning whether
their redshift distance is below a given threshold ∆z, which is
set as a hyper-parameter of the model. The angular separation
between the galaxies is implicit in the training set, as for every
target galaxy we select its first nNN angular neighbours (another
hyper-parameter), but it can be an explicit input variable of the
model. The backbone of the model is a GNN, a class of neural
networks based on message passing and the aggregation of fea-
tures (Fig. 2). This message passing is explicitly performed as a
relative difference between features (Eq. (1)).

NezNet outputs the score probability for a galaxy pair to be
real neighbours. This information that can be used in two ways.
On the one hand, if none of the nNN nearest neighbours is identi-
fied as a physical neighbour, the target galaxy can be considered
an outlier in terms of its properties. This may suggest that it is
an interloper, that is, a foreground or background object with
respect to the volume sampled by the spectroscopic sample we
used for the comparison. It should therefore be discarded from
any sample that aims to cover the same redshift range as the spec-
troscopic catalogue, for instance, via photometrically estimated
redshifts. We have proved this to be true using the VIPERS cat-
alogue. On the other hand, if a physical neighbour is identified,
the target galaxy can be assigned the spectroscopic redshift of
the highest scoring galaxy among the nNN angular neighbours,
providing an independent estimate of its redshift in this way.

These results are summarised in Figs. 3 and 4: when out-
liers as detected by NezNet are discarded, all the metrics of
the sample improve considerably. Moreover, the NezNet redshift
estimates are comparable to or superior in precision to SED-
based photometric redshifts, depending on the values chosen for
the hyper-parameters. Increasing ∆z increases the goodness of
the classifier (Fig. 6), as well as the fraction of retained data
(Fig. 5). Changing nNN has a smaller impact on the classifier
(Fig. 7), although it significantly affects the redshift quality met-
rics because a large enough nNN improves the probability of
detecting a real neighbour; a value nNN ∼ 30 is optimal in the
case of VIPERS (Fig. 8).

It is often the case that the fraction of the parent photomet-
ric sample without a spectroscopic measurement has a higher
density than the spectroscopic sample. VIPERS indeed has a
spectroscopic surface density of Σ ∼ 6 × 103/deg2, to compare
against the photometric surface density Σph ∼ 45×103/deg2. For

this reason, we tested NezNet by varying the surface density of
the spectroscopic sample used during training. We achieved this
by repeating the training procedure on a uniformly subsampled
catalogue extracted from W1. The test was performed on W4
without any subsampling, so that we tested for the effectiveness
of NezNet trained on a lower-density catalogue. Figure 12 shows
that NezNet keeps its effectiveness even when using a subsample
of one-eighth of the original spectroscopic density Σ, similar to
the VIPERS ratio of spectroscopic to photometric objects.

This suggests that NezNet could have an interesting poten-
tial also in the context of future experiments, such as Euclid
or the NASA Nancy Grace Roman mission (Akeson et al.
2019). These slitless spectroscopic surveys will indeed naturally
deliver overlapping photometric and spectroscopic data, which
can be combined using NezNet to improve photometric redshift
estimates.

It is worth stressing that some details of the results presented
here depend on the specific features of VIPERS and its parent
CFHTLS photometric sample. Some of them may have been
advantageous, but others could have penalised the success of the
method. For example, the slit-placement constraints in VIPERS
limits the ability to target close galaxy pairs, which introduces a
shadow in the layout of a VIMOS pointing (see Fig. 6 of Guzzo
et al. 2014), and forces a lower limit in the separation of observ-
able galaxy pairs (see Sect. 4). This means that the training
sample of NezNet was not ideal in our analysis because surely
many of the missed angular pairs were also physical pairs. This
increases our confidence in the obtained results because it shows
that for samples that are characterised by small-scale incom-
pleteness, as is typical of surveys built using fibre or multi-slit
spectrographs, the method still also delivers very useful results.
In the case of the VIPERS data, an interesting exercise in this
respect would be to use the data from the VLT-VIMOS Deep
Survey (VVDS; Le Fèvre et al. 2005) as training sample, which
used the same spectrograph, but with repeated passes over the
same area of 0.5 deg2 that substantially mitigate the proximity
bias. We leave this exercise for a future work.
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