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Abstract. There can be many reasons why students fail to answer correctly to summative tests 
in advanced computer science courses: often the cause is a lack of prerequisites or misconcep-
tions about topics presented in previous courses. One of the ITiCSE 2020 working groups in-
vestigated the possibility of designing assessments suitable for differentiating between fragili-
ties in prerequisites (in particular, knowledge and skills related to introductory programming 
courses) and advanced topics. This paper reports on an empirical evaluation of an instrument 
focusing on data structures, among those proposed by the ITiCSE working group. The evalua-
tion aimed at understanding what fragile knowledge and skills the instrument is actually able to 
detect and to what extent it is able to differentiate them. Our results support that the instrument 
is able to distinguish between some specific fragilities (e.g., value vs. reference semantics), 
but not all of those claimed in the original report. In addition, our findings highlight the role 
of relevant skills at a level between prerequisite and advanced skills, such as program com-
prehension and reasoning about constraints. We also suggest ways to improve the questions 
in the instrument, both by improving the distractors of the multiple-choice questions, and by 
slightly changing the content or phrasing of the questions. We argue that these improvements 
will increase the effectiveness of the instrument in assessing prerequisites as a whole, but also 
to pinpoint specific fragilities. 

Keywords: data structures and algorithms, prerequisite skills, prerequisite knowledge, miscon-
ceptions, CS2, computer science education, qualitative content analysis. 
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1. Introduction 

Many students of Computer Science (CS) programs often struggle with courses focused 
on programming, algorithms, or data structures and sometimes fail to achieve desired 
learning outcomes (Zingaro et al., 2018). Teachers have a responsibility to assess and 
investigate why their students possibly fail. However, there are numerous different rea-
sons why students fail to answer an assessment question correctly including a slip or, 
more fre quently, lack of prerequisites, misconceptions (i.e., incorrect or incomplete 
mental model of the related topics, see Qian and Lehman (2017); Margulieux et al. 
(2021)), or not having internalized the topic to a high enough level. In this paper, we 
call all of these fragilities, or more specifically fragile knowledge and skills, follow-
ing the terminology proposed by Perkins and Martin (1985). They claim that students’ 
difficulties in programming “stem from knowledge that is fragile in several ways, i.e., 
partial knowledge, inert knowledge, lack of a critical filter, misplaced knowledge, and 
conglomerated knowledge” (ibid. p. 1). 

Considering all these reasons why a student may answer incorrectly, understand-
ing why a student is struggling is a challenging proposition. Even more so in advanced 
courses, when the cause for wrong answers could be unrelated to the new topics, and 
instead con cern topics covered in previous programming courses. This is illustrated by 
Valstar et al. (2019) who found a correlation between a student’s score on the final exam 
in an upper-level data structures course, and their ability to answer questions on point-
ers and trac ing recursion. This observation shows that it is also important to consider 
the impact of knowledge and skills from previous programming courses, which we will 
refer to as pre requisites. 

To explore this, a 2020 ITiCSE working group (Nelson et al., 2020) explored what 
programming-related prerequisites a student needs to be proficient with in order to cor-
rectly answer questions in a latter course. The working group focused on questions that 
involve some amount of code (i.e., not purely theoretical questions), and concluded that 
many require proficiency with both prerequisites and the topics of the current, advanced, 
course (advanced topics). This means that if a student answers a question incorrectly, it 
is difficult to locate the cause (or causes) of the incorrect answer. To address this prob-
lem, the working group (Nelson et al., 2020) proposed assessments which are able to 
differentiate between weaknesses with programming prerequisites and with advanced 
topics. They also discussed a collection of design principles and strategies that can be 
used to construct differentiated assessments. 

In this paper, we empirically evaluate one of the differentiated assessment proposed 
in Nelson et al. (2020), which the authors claim is able to differentiate between weak-
nesses in programming prerequisites and weaknesses related to advanced topics in a 
data struc tures and algorithms course. Specifically, the assessment (Nelson et al., 2020, 
Appendix M.1.4) consists of the listing of a program and a set of related questions, con-
cerning the implementation of a queue as an expandable circular array. More precisely, 
here we con sider a slightly modified version (henceforth referred to as “the Instrument”, 
see Section 3) of that set of questions. 
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To empirically evaluate the Instrument, we conducted semi-structured interviews 
and analyzed them with qualitative content analysis – following the methodology de-
scribed in Schreier (2014). We pose the following research questions: 

RQ1 What fragile knowledge and skills is the Instrument able to detect? 
RQ2 To what extent is the Instrument able to differentiate between fragilities, both 

between prerequisites and advanced topics, and among specific prerequi-
sites? 

Note that instead of the term weakness, used by Nelson et al. (2020), we use the term 
fragile in accordance with the terminology of Perkins and Martin (1985). 

In order to address these RQs, we administered the Instrument to 18 students at two 
institutions in two different countries, and interviewed them with the aim of uncovering 
fragilities related to their incorrect answers. Relevant transcribed excerpts both from 
the interviews and the written answers were then analyzed. The findings show that the 
In strument is able to detect most of the “weaknesses” (fragilities) expected by Nelson 
et al. (2020), though not all of them. Hence we advise some changes to improve the 
Instrument. 

For many questions from the Instrument, the cause of wrong answers can be tracked 
back to difficulties in high-level skills such as program comprehension and reasoning 
about constraints. Indeed they are typically not well developed at the end of introduc-
tory programming course(s) or sometimes not explicitly taught at the introductory 
level (Lis ter et al., 2006a). Yet, they are typically not considered to be advanced topics 
either. They could therefore be seen as middle-ground skills. Even though such skills 
were discussed by Nelson et al. (2020) among the prerequisites, our findings show that 
they clearly have a different role than the knowledge of basic programming, such as 
control flow constructs or arrays. Overall, our findings about the role of these middle-
ground skills suggest that they should be more explicitly recognized, and incorporated 
into the CS curriculum. 

The remainder of this paper is structured as follows: Section 2 presents related 
work, Section 3 introduces the Instrument in detail, and Section 4 presents the methods 
used. After that, Section 5 presents the results from the written answers as well as the 
findings from the interviews, and Section 6 relates them to each other and discusses our 
findings. Finally, we conclude the paper in Section 7. 

2. Related Work 

In this section, we consider previous work related to this study. In Section 2.1 we ex-
plore differentiated assessments. Then, we present prerequisite skills that students learn 
during introductory programming courses in Section 2.2, and how these relate to the 
concept of abstraction in Section 2.3. Finally, we present research done on data struc-
tures and algorithms courses in Section 2.4. 
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2.1. Differentiated Assessments 

In previous ITiCSE Working Groups, at least two approaches to differentiated assess-
ments have been explored. In this context, a differentiated assessment is an assessment 
that aims to identify whether or not a student understands all topics in addition to 
providing a sum mative score. One of these approaches was explored by Luxton-Reilly 
et al. (2018), who aimed to create a set of small and self-contained questions that could 
be used together to explore a student’s understanding of individual concepts. Another 
approach was explored by a 2020 Working Group (Nelson et al., 2020). Rather than 
creating small self-contained questions, the 2020 Working Group examined to what 
extent it would be possible to iden tify individual areas of fragile knowledge from in-
correct answers to questions that cover larger combinations of topics. The report first 
considers several CS questions on advanced CS topics, including the questions from the 
BDSI, which is a validated concept inventory on data structures (Porter et al., 2019), 
and studies which prerequisite skills these questions depend on and whether they can 
diagnose difficulties with prerequisite skills. Principles are then discussed that help de-
sign differentiated assessments. Finally, examples of dif ferentiated assessments are de-
veloped based on those principles. All such examples can be seen as applied questions 
(similar to our research), as they include a piece of code related to the advanced topics 
to be assessed, and they ask students to answer questions based both on the analysis of 
the code and their knowledge of advanced topics. For these reasons, these assessments 
are suitable to expose possible fragilities in prerequisites. 

2.2. Prerequisites from Basic Programming Courses 

In this paper we empirically evaluate the Instrument, therefore this section introduces 
re search on prerequisites from basic programming courses and defines those prerequi-
sites. Even though there is no clear definition of what introductory programming courses 
should cover (e.g., the inclusion of object-orientation is often debated), there is a general 
consen sus that they should include basic knowledge of programming constructs. This is 
reflected in the list of prerequisites proposed by Nelson et al. (2020), which is based on 
the ACM 2013 Curriculum Guide (Joint Task Force, 2013) and the list of core concepts 
taught in CS1 by Goldman et al. (2008). 

Difficulties related to these skills can be explained by misconceptions, for example 
“er rors in conceptual understanding” of programming constructs (Qian and Lehman, 
2017). Misconceptions in introductory programming have been studied extensively 
(see e.g., Fisler et al., 2017; Sorva, 2013; Qian and Lehman, 2017). One particular 
finding by Fisler et al. (2017) is that some of these misconceptions are not overcome 
by students them selves, thus highlighting the importance of teaching them continuous-
ly throughout the education. However, as not all errors made by students are caused by 
a specific incorrect mental model, we use the more generic expression fragile knowl-
edge suggested by Perkins and Martin (1985). The authors use the term to add nuance 
about students’ knowledge in programming. The idea is that it is not necessarily clear 
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cut whether students know or do not know something in the realm of programming, 
rather they may “sort of know” some thing, but not enough to solve a problem. They 
define fragile knowledge as knowledge that is partial, hard to access, and that is often 
misused. Specifically the authors present four categories of frailties. First is partial 
knowledge, where students’ knowledge gaps impair their functioning. Second is inert 
knowledge, which is knowledge that the students possess but fail to muster when they 
need it. Third is misplaced knowledge, where the students’ knowledge of something 
that is unsuitable for the current task impairs the students’ ability to solve the current 
problem. Fourth is conglomerated knowledge, where the students’ fail to follow the 
strict semantic and syntactic rules for the programming language, treating it more like 
a natural language. 

Besides the skills that specifically relate to some programming construct, Nelson 
et al. (2020) identified also some broader skills related to reading and understanding 
code: 

Tracing  ● is the ability to trace a piece of code, that is to simulate its execution, step 
by step, on a given input/instance, while keeping track of the state of the computa-
tion. This can be done with the support of some external representation such as a 
trace table to keep track of the variable values. Tracing requires correct knowledge 
of the programming language syntax and semantics of the constructs used in the 
code to be traced, that is, it requires an accurate mental model of the machine 
(Izu et al., 2019). Moreover this skill includes the ability to rigorously follow the 
steps as specified by the program, without skipping parts, guessing the outcome or 
jumping to hasty conclusions. 

In addition to Tracing, there are other skills that still relate to reading and under-
standing code, but further demand a high-level cognitive effort. They could thus be 
placed at the Analyze or Evaluate levels in the revised Bloom’s taxonomy (Anderson 
et al., 2001). They are as follows: 

Metatracing  ● refers to the ability of realizing when tracing some specific por-
tions of code, on some specific input, would be helpful in order to understand 
the code’s be havior and purpose (Nelson et al., 2020). In some ways it is hy-
pothesis/goal driven tracing, either by a weak or strong hypothesis or goal. Iden-
tifying relevant and signifi cant inputs for an algorithm/function/method is also 
covered by this skill. Although metatracing clearly requires tracing skills, it 
goes further than that. We consider trac ing to be located in the Apply level and 
metatracing at the higher Evaluation level in the revised Bloom’s taxonomy 
(Anderson et al., 2001). Therefore, metatracing also has a crucial role in pro-
gram comprehension tasks. 
Program comprehension  ● is defined as the “process in which an individual con-
structs their mental model of a program” (Izu et al., 2019, p. 28). As such, it is a 
broad and articulate process, which requires various skills (including basic knowl-
edge of pro gramming language syntax, tracing, and metatracing skills). However, 
in this paper we use program comprehension to refer specifically to the higher 
level skills that en ables a student “to see the forest, not only the trees” (Lister 
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et al., 2006b, p. 122). In other words, to put together many single pieces of un-
derstanding into a consistent integrated model of what the program does and how 
it does it. 
Reasoning about constraints  ● is the last prerequisite skill mentioned by Nelson 
et al. (2020). It refers to the ability of distinguishing what is known and what 
is not known about the program or its specification, identifying properties (e.g., 
invari ants, pre/post-conditions) and relationships among different parts of the pro-
gram, and considering their implications on its behavior. 

One of the main differences between basic prerequisite skills and these higher cogni-
tive levels skills (metatracing, program comprehension, reasoning about constraints) is 
that such tasks involve some sort of abstract thinking. 

2.3. Prerequisite Skills and Abstraction 

While conducting research into differentiated assessments, especially when using the 
type of questions examined by Nelson et al. (2020), it is important to take abstraction 
into account due to the complexity in the questions. The role of abstraction in CS educa-
tion is broadly acknowledged (Mirolo et al., 2021; Aharoni, 2000). However, this is a 
complex “soft concept” that is hard to define formally, and which is difficult to charac-
terize in this context, making it difficult to understand how to teach and assess it (Haz-
zan, 2008). Re lating to programming and algorithms, Perrenet et al. (2005) proposes a 
hierarchy (called PGK hierarchy) of four abstract levels for the concept of algorithms: 
understanding the execution on particular inputs on a specific machine (Execution level); 
grasping the algo rithm as described in a programming language by a program (Program 
level); envisioning the algorithm as an abstract object independent from any specific 
language (Object (al gorithm) level); and finally perceiving the algorithm as a strategy to 
solve the implied problem (Problem level). In the program comprehension process, all 
these levels need to be considered. For instance, tracing pertains to the Execution level, 
abstract tracing to the Program level, describing what a method does is at the Object 
level, whereas summarizing the purpose of a program is at the Problem level. 

Statter and Armoni (2020) explored abstraction in programming education further. 
Based on the PGK hierarchy, they have identified six operational dimensions that define 
CS abstractions: 1) the use of an algorithm, 2) working only at the algorithmic level (Ob-
ject level), 3) using black boxes, 4) the ability to distinguish between different levels of 
CS abstraction, 5) the ability to move freely between different levels of CS abstraction, 
and 6) the ability to decide at which levels of CS abstraction to work. They conclude 
that since ab straction is a fundamental idea of CS, it should probably be reflected in the 
learning goals of CS curricula. However, teaching CS abstractions is a very challeng-
ing task. Students tend to perceive problems and solutions at the lower levels of PGK 
hierarchy, and they of ten have problems working on higher levels such as black boxes. 
Further, several authors identify the need for computer scientists to work with creating 
abstractions at different levels (Hartmanis, 1994) and being able to think at different 
levels of abstraction (Wing, 2006). 
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2.4. Research on Data Structure Courses 

Students’ performance in data structure courses have been investigated previously. Cor-
ney et al. (2014) asked students in their second programming course to explain in plain 
En glish object-oriented data structures problems that involve recursion. The results 
showed that many students struggle with this task, and the authors found a strong cor-
relation be tween students’ ability to read and explain code at abstract level and their 
performance in writing code on data structures. While this study did not investigate 
the causes of such difficulties, results from a study conducted by Valstar et al. (2019) 
reported a strong cor relation between answering questions on prerequisite knowledge 
and the students’ scores on the final exam. More than 30% of students could not answer 
questions on pointers and trace recursion, which underlines the importance of creating 
differentiated assessments. 

Students’ performance has also been investigated without focusing on the impact 
of prerequities (Danielsiek et al., 2012; Tenenberg and Murphy, 2005; Zingaro et al., 
2018). Student misconceptions concerning heaps, hashtables, and with recursive struc-
tures (e.g., linked lists, trees, and binary search trees) (Danielsiek et al., 2012; Zingaro 
et al., 2018). Further, Tenenberg and Murphy (2005) found issues with students grasp of 
tracing recur sive algorithms and computing the run-time efficiency of algorithms. They 
also found that students performed best on questions related to the interface of stacks, 
queues, and trees. 

Aharoni (2000) took a qualitative approach, investigating students’ cognitive pro-
cesses through semi-structured interviews. The author investigated their perception of 
data struc tures (e.g., arrays), arguing that understanding develops over a continuum of 
levels of ab stractions, which is rooted in constructivism, and introduces the concept 
of programming-context thinking vs. programming-free thinking. Programming-con-
text refers to levels of abstractions that are closely aligned to the underlying notional 
machine, hence explicitly linked to the programming language. In other words, un-
derstanding occurs with the refer ence to implementation. Instead, programming-free 
thinking occurs when understanding refers to the abstract form of a data structure 
without reference to any particular imple mentation. This paper, like the aforemen-
tioned research, also uses a qualitative approach, but with the aim of exploring fragile 
knowledge in the context of a data structures, rather than their perception of the data 
structure. 

3. The Instrument 

In this section we describe the Instrument under evaluation, which can be found in its 
entirety in Appendix A. The Instrument is a slightly varied version of the one proposed 
by Nelson et al. (2020, Appendix M.1.4). It consists of the listing of a Java program and 
a questionnaire of related questions. 

The Instrument’s program (identical to the original by Nelson et al. (2020)) imple-
ments a queue as an expandable circular array, equipped with two indices, lo and 
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hi, that identify the head and tail of the queue respectively. The variables are partially 
ob scured, and the circular nature of the data structure means that lo is sometimes a 
number higher than hi. An integer N keeps track of the number of items currently in 
the queue. Hence, the circular distance between hi and lo is always equal to N. 
The class contains two methods (insert and remove) that implement the typical 
operations of the queue, and a rebuild method that is used by insert to double 
the size of the circular array whenever it is filled. Hence, the array length is always 
greater than the queue size, and is always a power of two. The rebuild method 
also rearranges all the elements that are currently in the queue so that, after the method 
is executed, they are all placed at the beginning of the array. To implement this, the 
method uses modulo operator. 

The Instrument’s questionnaire contains seven multiple-choice questions (Q1–Q3, 
Q6, Q8–Q10). In addition, there are two open-ended questions (Q4a and Q11) that ask 
students to write their answers in natural language . The rest of the questions require to 
trace a frag ment of code that calls methods defined in the listing and to provide some 
representation of the resulting state of the data structure (Q4b, Q5, and Q7). Questions 1 
to 7 aim at assess ing the students’ comprehension of the given code. In order to answer 
correctly, students need to understand both the mechanics of the implementation (i.e., 
the circularity of the array and the rebuild strategy) and to comprehend the resulting be-
havior (i.e., the FIFO policy). The first question asks the student to identify which data 
structure is implemented by the class. Questions 2–6 aim at verifying that the answer 
to the first question was not a guess, as well as the student’s understanding of various 
details of the implementation. Question 6 was not present in the original assessment 
proposed in Nelson et al. (2020), but we added it to address the circularity of the queue 
and the fact that the size of the array is always a power of two. 

In the context of the PGK hierarchy (Perrenet et al., 2005) described in Section 2.3, 
questions Q1 to Q7 can be situated at different levels. For instance, Q1 (identifying 
that the code implements a FIFO data structure) is at the Problem level, Q4b (trace the 
rebuild method) is at the Execution level, and Q6 (which states are possible?) is at 
the Object (algorithm) level. 

The remaining questions 8–11 focus on algorithm analysis, which is an advanced 
topic in this context. Thus, in this study, we focus on questions 1–7 that we hypothesize 
are able to reveal fragile knowledge in prerequisites. 

3.1. Prerequisite Skills Assessed by Each Question 

Nelson et al. (2020) discusses the prerequisites and advanced skills assessed by each 
ques tion, and which individual fragilities would be made visible from the students’ 
answers. This is done in two separate parts of the WG report, namely Appendix M.1.2 
and M.1.5. We summarize here the claims related to questions 1–5 and 7 for future 
reference in the rest of the paper. It is worth mentioning that no formal empirical evalu-
ation was carried out by Nelson et al. (2020), and the claims are based on the authors’ 
argumentation. 
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 Q1 A wrong answer could be attributed to bad knowledge of advanced topics (un-
derstanding data structures and ability to distinguish them) or to bad program 
com prehension skills. However, the correct answer could be guessed by doing 
cursory examination of the code since the wrong options can be excluded easily 
(Nelson et al., 2020, p. 38). 
 Q2 A student who does not understand the circular nature of this queue implementa-
tion might wrongly choose option (d). The question, however, does not assess 
circularity explicitly and the correct answer might also be guessed by looking 
at some surface features of the code. The question also addresses the possible 
confusion between the length of the array and the number of elements currently 
in the queue. 
 Q3 Understanding the circularity and the rebuilding strategy are essential for an-
swering this question (with full awareness). A student who does not understand 
the circular nature of this queue implementation might wrongly choose option 
(b). However, as for Q2, this question does not assess circularity explicitly and 
the correct answer might also be guessed by looking at some surface features of 
the code. 
 Q4 Part (a) requires students to reason about constraints. A relevant observation to 
an swer this question is that N should always be equal to the circular distance 
between hi and lo, which does not hold in the state given in the question. Part 
(b) assesses knowledge on operators (modulus) and arrays, and requires tracing 
code on a specific instance. 
 Q5 Understanding the circularity and the rebuild strategy are essential for answer-
ing this question as well. Different approaches can be used to answer the ques-
tion. One could trace the code line by line (but it would be a long, tedious, and 
possibly error-prone task), or trace the code at a higher level, relying on their 
understanding of how the queue is implemented. The second part of the question 
(how many times the rebuild method has been called) also assesses prerequisite 
knowledge on conditionals, and ascertains that the rebuild strategy has been un-
derstood. To understand the rebuild strategy, one needs knowledge about condi-
tionals and arrays. 
 Q7 This question assesses knowledge about values and references. 

Beside the above remarks on specific questions, the WG report (Nelson et al., 2020, 
p. 23) claims that questions 1, 2, 3, and 4 “require close inspection of the code to figure 
out how the data structure works, which in turn require skills related to code comprehen-
sion” (Nelson et al., 2020, p. 23). The WG report further claims Q2, Q3, and Q4 to be 
connected, in that answering correctly to Q2 and Q3 is a “good step toward” answering 
Q4 correctly (Nelson et al., 2020, p. 38). 

Many of the claims reported above state that understanding both the circular nature 
of the array and the rebuilding strategy are important steps towards answering the ques-
tions correctly. It is not clear, however, whether these skills are considered prerequisites 
(related to code comprehension) or as advanced skills related to data structure knowl-
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edge. Nevertheless, since there was not any specific question to assess circularity, as 
also noted by Nelson et al. (2020), we added a new question for this, with the following 
rationale: 

 Q6 This question assesses the understanding of circularity. It also relates to the pos-
sible length of the circular array implementing the queue. Answering the ques-
tion requires reasoning about constraints. 

In this paper, we evaluate the Instrument’s validity according to Kane’s framework 
(Kane and Bejar, 2014). We do this by using the questions in actual learning settings in 
an empir ical study. Thus, we not only used the question set in actual courses, but also 
interviewed the learners to understand how well the questions are able to differentiate 
between prereq uisite skills and advanced skills. We did this by probing on students ap-
proach to solving the problems in the Instrument. 

4. Study Methods and Design 

Section 4.1 describes how students were invited to participate in the study, how the 
written answers were collected, and how the interviews were collected. Section 4.2 then 
describes the theory and details behind Qualitative Content Analysis (QCA) (Schreier, 
2014), which was used to analyze the collected data. After that, Section 4.3 provides 
background infor mation about the learners and the learning context used in the study, 
and finally Section 4.4 describes the modifications made to the Instrument in order to 
make it suitable for the learners. 

4.1. Data Collection 

We collected data from a total of three courses, two held in Sweden and one in Finland. 
Students were invited to participate in the study by an e-mail sent to their university 
e-mail account 2–3 weeks before the final exam in each course. The invitation instruct-
ed students to answer the questions of the Instrument (attached to the e-mail), and send 
back their answers (either typed, or handwritten and scanned) along with any notes. 
Students who did so within the 7 allotted days were invited to an interview. 

In the e-mail, students were informed that participation was voluntary and would not 
affect their grading of the final exam. Students were motivated to participate in the study 
by highlighting that the participation would be helpful to prepare for the final exam, as 
they would get feedback on their answers. 

Before the interviews, we marked students’ written answers either as correct or 
incor rect. If a written answer included incorrect reasoning, it was graded as incorrect to 
support investigating the student’s reasoning further in the interview. Fig. 1 (in the Ap-
pendix) shows an overview of the written answers. 

Interviews. A total of 18 students were interviewed as depicted in Table 1. An ad-
ditional 10 students submitted solutions, but were either unavailable for interview, or 
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submitted their answers too late. The interviews were conducted by a teacher at the same 
institution as the course was given, in the local language. Since interviews were con-
ducted before the final exam, we ensured that students were interviewed by a teacher that 
was not involved in the course the student was taking. This is to avoid a situation where 
students are hesitant to express their uncertainties due to fear of affecting their grade. 
Before each interview, the interviewee’s answers were graded in order to identify ques-
tions that were answered incorrectly. The interviewees were not informed of whether 
their answers were correct or not until after the interview, at which point they received 
written feedback to their answers. Each interview lasted for about 30 minutes, and was 
recorded with the consent of the interviewees. 

In order to explore students’ approach to answering the questions, the interviews 
were conducted as semi-structured interviews (Adams, 2015). As such, the interviews 
were structured around a set of pre-determined questions with the aim of leading the 
intervie wee into the right topic. For each question, the interviewer asked the student to 
describe how the interviewee arrived at their answer (reminding them of their written 
answer if necessary). Depending on the interviewee’s answer, the interviewer then asked 
follow-up questions with the goal of identifying any fragile knowledge or skills the 
student had. As we were particularly interested in any fragilities that caused incorrect 
answers, the in terviewer focused on questions where the student answered incorrectly. 
Thus, questions with incorrect answers were discussed more in depth during interviews, 
while questions answered correctly were sometimes skipped altogether due to a lack 
of time. During the interview, interviewers were careful not to reveal correct answers 
or otherwise influence participants’ thinking for subsequent questions. As some of the 
questions depend on each other, the questions were discussed in the order they appear 
in the Instrument. 

As previously stated, the follow-up questions aimed at clarifying students’ reason-
ing and at uncovering misconceptions. This follows the guidelines mentioned in Adams 
(2015). To illustrate these follow-up questions, we provide some examples: 

“What is the difference between a queue and a priority queue?” – Question 1 ●
“Why did you choose this option and none of the others?” – Question 3 ●
The interviewer shares a notepad and writes the initial state given in the question.  ●
“Please write below, if you executed rebuild step by step, what would hap-
pen?” – Question 4b
“What operations lead to this particular case?” – Question 6 ●
“On which line does the length of the array ●  A increase?” – Question 6

Table 1 
Details of the three courses examined in this paper

Sweden Finland 
Course 
Programming language 

A 
C++ 

B 
Java 

C 
Python 

Completed the Instrument 
Interviewed 

8 
7 

4 
1 

16 
10 
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4.2. Qualitative Content Analysis 

To analyze the interviews, we used QCA as described in Schreier (2014). The purpose of 
the method is to systematically describe the meaning of qualitative interview data. Re-
searchers split the data into mutually exclusive segments. Each segment is given a single 
code, which represents one particular meaning. Moreover, the codes form a hierarchy (a 
coding frame), typically with two main groups. The analysis is conducted by following 
a predefined series of steps. The objective of the analysis is to describe the data through 
coding in a compact way. The results of qualitative analysis may include representation 
of code frequencies, but the coding frame might be the end result as well. Like quanti-
tative content analysis, QCA uses a systematic approach to content analysis. However, 
instead of merely coding segments based on objective criteria, QCA also considers the 
latent and context-dependent meaning of the content (i.e., the researcher’s interpreta-
tion) (Schreier, 2014). Note that onwards, we use the terms label and codebook for the 
corresponding terms code and coding frame introduced by Schreier (2014). This is to use 
the words code and coding only in the connotation of program code. 

Codebooks in QCA have three main requirements (Schreier, 2014). Unidimensional-
ity means that one codebook, the hierarchical category of labels, should cover only one 
con cept. Mutual exclusiveness has two subrequirements: the labels of the same code-
book must be mutually exclusive, and one segment can have only one label from the 
same codebook. This is to ensure that a segment is not assigned two opposite meanings. 
Exhaustiveness means that all relevant aspects of the material are covered by a label. 

In our work, the codebook requirements of QCA are met as follows. Unidimensional-
ity is met, because we have only one main concept: the fragility, meaning the hierarchy 
of skills and knowledge. Mutual exclusiveness of labels is taken as an assumption, 
starting with the deductively predesigned codebook in Nelson et al. (2020). Mutual ex-
clusiveness of segments means that a student’s answer to a particular Instrument ques-
tion can have multiple labels only if the answer is split into different segments, each 
labeled as a dif ferent fragility. As each segment is given only one label, we are able to 
pinpoint which exact pieces of the interview recordings are the supporting evidence for 
one specific label. Moreover, by mutual exclusivity we ensure that two labels indeed 
represent different phe nomena. Finally, we assume that the predesigned codebook is 
designed to be exhaustive, but we reserve the right to modify the codebook to fulfil this 
requirement. 

We believe QCA is a suitable method for analyzing the Instrument empirically for the 
first time while being open for alternative hypotheses. In our research setting, the code-
book is needed to represent students’ different fragilities with prerequisite and advanced 
skills. Moreover, latent and context-dependent analysis of meaning, in other words, in-
terpretation of students’ answers, is needed for two purposes. First, the initial codebook, 
proposed by the designers of the Instrument (Nelson et al., 2020), describes fragilities 
on a generic level, which requires situation-dependent interpretation, i.e., there are no 
objec tive decision rules for labelling categories. Second, the initial codebook does not 
yet have empirical support for its labels and structure. Thus, the qualitative evidence in 
our work would support quantitative testing of the Instrument later. 
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The steps of our analysis process are described below and correspond to those de-
scribed in (Schreier, 2014). The process itself is divided into two consecutive phases. 
The pilot phase tests the codebook with a subset of the material, while the main 
phase ana lyzes all the material with an established codebook. While the order of 
the steps describes a deductive process, some steps were iterated to utilize inductive 
reasoning. 

Selecting material.  ● A diverse subset of data was selected to build an initial 
codebook in the pilot phase. Each team of two researchers in Sweden and Finland 
selected three interviews in the local language for the pilot phase. At least one of 
these interviews were used by both researchers in the team. 
Building a codebook.  ● This involves building the hierarchy of categories 
which are used to describe the pieces of the material. As Nelson et al. (2020) 
had proposed a codebook for general prerequisite skills, the goal was to build a 
codebook for frailties that were excluded by Nelson et al. (e.g., related to data 
structures and algorithms). Our hierarchy is made of the frailties that students 
display, i.e., we build the codebook in a concept-driven way similarly to the 
method explicitly proposed by Nelson et al. (2020). At this point, the research-
ers from Sweden and Finland discussed their proposed additions to the code-
book from the previous phase, so that they could be merged into one. 
Segmentation.  ● The two teams of researchers from Sweden and Finland each 
analyzed the previously selected set of interviews independently. They selected 
segments, i.e., pieces of discussion and activity, so that each segment could later 
be assigned a single label. The Swedish pair selected segments from transcribed 
interviews. The Finnish pair instead viewed their video recordings and noted 
quotes, descriptions of activities, and short hypotheses in the local language 
along with timestamps. Due to mutual exclusiveness, the segments could not 
overlap. The length of a single segment varied from a single phrase to a couple 
of lines of dialogue. Primarily, we used a thematic criterion for segmentation: a 
student’s written or spoken answer to each question of the Instrument formed a 
segment. If a segment seemed to contain evidence for multiple labels, the seg-
ment was further split to indicate which phrases or passages of dialogue represent 
a single label. 
Trial labelling.  ● After segmenting the interviews, the researchers indepen-
dently labelled each segment with a single label from the codebook. This was 
done in the pilot phase to study to which extent the original codebook by Nel-
son et al. (2020) with the pro posed additions could be applied to the interview 
material. To verify the consistency of the labelling, the researchers in each pair 
compared their labelling and discussed any discrepancies until an agreement 
was reached. These discussions were partially conducted in-person in Sweden, 
but both countries relied heavily on online meetings. 
Evaluating and modifying the codebook.  ● The codebook was evaluated 
against the following criteria: A codebook should be consistent so that two la-
belers assign the same label to the same segment. Moreover, the validity of 
the codebook means ex haustiveness (extensive coverage of the material) and 



M. Begum et al.70

relevance to the research ques tions. In this phase, the main analysis phase, the 
Swedish and Finnish researchers discussed together how well the given code-
book (Nelson et al., 2020), with the pro posed additions, applied to the data and 
which cases (segments) were difficult to as sign a label. All of these discus-
sions were conducted through a series of online meet ings. The labelling was 
also available to all researchers through shared documents. Recordings were, 
however, not shared outside of the country they were recorded in for privacy 
reasons. As a result of this phase, the codebook was revised to meet the above-
mentioned criteria. 
Main analysis.  ● In the main phase, the rest of the material was labeled with the 
revised codebook. We used two labelers per interview similarly to the trial label-
ling. The Swedish and Finnish results were then combined for the next step. 
Presenting and interpreting the findings.  ● The labeled segments from all stu-
dents were translated in to English, and sorted first by the question, and second by 
the label (specific fragility). Then, the codebook was presented with illustrative 
quotes forming a text matrix. Each column of the matrix was a student’s interview 
answers to a particular Instrument question. Correspondingly, rows corresponded 
to labels and each cell contained the English-translated segment (direct quote or 
description of ac tivity) that acts as evidence for the label. All 7 researchers in the 
team examined the text matrix, and discussed the contents through online meet-
ings until an agreement was reached. In particular, the focus of these discussions 
was if a segment contains enough evidence for the assigned label and whether or 
not the label was correctly assigned. In some cases, these discussions led to fur-
ther revisions of the codebook, which meant that this and the previous step had to 
be re-visited iteratively. 

Finally, a note about transcription. In Sweden, one interviewer transcribed the inter-
views fully in the local language as intelligent verbatim transcription. The transcripts 
contained literal meaning of the dialogue between the interviewer and the interviewee, 
omitting nonverbal communication and utterances, with timestamps locating discussion 
on each Instrument question. In Finland, transcription was done selectively after the 
analyzing pair agreed on interview quotes that represent the evidence for a single label. 
However, when one research team member requested more information on a labeled 
segment in the Evaluating and modifying the codebook step, another team member re-
viewed the video or transcript representing the segment, and provided longer translation 
with more context. 

4.3. Context 

As mentioned previously, data was collected from three courses, two held in Sweden 
and one in Finland. All three courses were large programming courses with 85–250 
students attending each one. The courses were all given during the second year of 
their programs, and aimed at teaching data structures and algorithms to students who 
already knew pro gramming from a previous CS1 course. The textbook for the courses 
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was OpenDSA (Shaf fer et al., 2011), an open, online textbook for Data Structures and 
Algorithms. In addition to textual descriptions of the material, OpenDSA also contains 
interactive components such as detailed visualizations and animations of many data 
structures and algorithms. In particular, OpenDSA covers queues, both at an abstract 
level (i.e., the details of the ADT), and different implementations of this ADT. One of 
the implementations covered in detail is a circular array implementation that is simi-
lar to the one in the Instrument. In addition to the material covered by OpenDSA, the 
courses also involve a number of computer lab assignments where students implement 
and use various data structure. While none of the assignments require students to imple-
ment a circular queue like the one in the Instrument, there are assignments that require 
utilizing queues (e.g., for graph traversals). All courses ended with a final exam. 

Even though one course was given for CS programs, and the remaining two were 
given for non-CS programs, all courses focus on introducing data structures and al-
gorithms so that students can select and use appropriate data structures in their work. 
They also focus on the ability to reason about the time-and space-complexity of pro-
grams. As a way to reach these goals, the courses expose students to various imple-
mentations of common data structures. This serves two purposes: first, they are used 
as examples to practice algorithm analysis, and second, a rough understanding of the 
implementation makes it easier to re member the characteristics of the data structure, 
which in turn makes it easier to reason about them in the context of larger programs. 
For this reason, the Instrument is relevant to the courses, even though none of them 
have the explicit goal that students need to know how to implement a circular queue. 
Rather, the Instrument is relevant because it focuses on analyzing a small implementa-
tion of an ADT (a queue) that should be familiar to the students. The focus is thus on 
the analysis and reasoning, rather than having previously memorized the implementa-
tion of a circular queue. 

Sweden. Course A in Sweden is given early in the second year for two bachelor CS 
programs. Students from both programs have studied programming for a year before the 
course. Students from one of the programs start out programming in Python, transition 
to C++, and later work in other languages such as Ruby during their first year. Students 
from the other program are initially taught Ada, but quickly transition to C++ and con-
tinue working with C++ during the remainder of their first year. As all students have 
worked with C++, the course is taught in C++. 

Course B is similar to course A, but is given for non-CS majors attending a five year 
program. These students have previously taken two introductory courses in Java, and 
this course is therefore taught in Java. Apart from this difference, the courses are very 
similar in nature, including the final exam. Both courses are given in Swedish. The final 
grade in both courses is entirely based on the result from the final exam. 

Finland. The course in Finland is targeted to the second year students in several 
five year non-CS bachelor engineering programs. All students have previously taken 
at least one introductory programming course in Python, and therefore the course is 
taught in Python. The final grade is the weighted average of weekly assignments and 
the final exam. 
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4.4. Adapting the Instrument to Different Programming Languages 

The questions were translated into the local spoken languages of the two institutions 
and the original Java program was translated into C++ (see Appendix B) for course A in 
Swe den, and into Python (see Appendix C) for the course in Finland to correspond the 
pro gramming language used in the courses. 

The C++ and Python implementations were not designed to exploit all the features 
of a specific language or even to be idiomatic for the target language. Instead we tried, 
in each language, to preserve the abstract description we presented in Section 3. The 
given implementation should present to the student a clear model of the mechanics of 
the data structure, without resorting to language features not necessarily known to be-
ginners. We deliberately avoided using any high level features available to professional 
programmers, which might obscure the educational goals (namely, analyzing a specific 
implementation of the queue ADT). 

C++ version. Although the C++ translation almost directly maps to the Java implemen-
tation, there are three significant differences: 

The Java version makes explicit that the 1. Key parameter for the generic type 
refers to a Comparable type, which is not possible in C++ (prior to C++20). 
This is not utilized in the Java implementation, but it suggests the data structure is 
a container for ordered objects, thus making it superficially suitable for a priority 
queue. 
Similarly to the Java version, the C++ version uses a fixed size array (allocated 2. 
using new) to implement the circular array. Contrary to the Java version, however, 
this requires storing the length of the array separately. This is done in a variable 
called A_length. 
The C++ version explicitly frees the memory in the rebuild, where the Java ver-3. 
sion relies on the implicit garbage collector. 

Python version. The Python translation was intended to reproduce the mechanics of 
the data structure in the syntax most familiar with the students, even though a profes-
sional Python programmer would likely have used a different approach. It has three 
significant differences: 

Python has no syntactic way to reduce the visibility of methods, thus the rebuild 1. 
method is not different in any way from the insert and remove operations. We 
decided not to use the conventional naming with the underscore (_rebuild) 
because, even if it is an explicit convention of the language1, it could be a source 
of confusion for Python novices. 
Python does not have static typing, thus the methods have a signature which does 2. 
not explicitly state the intended type of the parameters and return values. We avoid-
ed the use of type hints since this aspect was considered not relevant for the Instru-
ment (it concerns a generic collection of data) and their use is still uncommon. 

1 https://docs.python.org/3/tutorial/classes.html#tut-private 
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The underlying array of values was implemented by using a Python list, a basic 3. 
data type in that language, but in fact a dynamic structure in itself. Using actual 
(statically allocated) array types would have increased the complexity of the code, 
possibly obscuring the key parts. The explicit allocation of the slots of the array 
was simulated by using None elements. 

5. Results 

This section presents the results of the analysis conducted as described in Section 4. The 
first subsection presents an overview of the written answers to the Instrument. This is 
then followed, in the second subsection, by the results of the qualitative analysis of the 
interviews. 

The remainder of this paper refers to individual students using a single letter fol-
lowed by an integer. The letter corresponds to the programming language used in the 
course that the student attended (C for C++, J for Java and P for Python). As differ-
ent programming languages were used in all three courses, this uniquely identifies the 
course that the student attended. The integer then identifies individual students within 
each course. For example, C2 is student number 2 in the course that used C++ (i.e., 
course A in Sweden). 

5.1. Written Answers 

Table 2 presents the written answers to questions 1–7 of the Instrument, given by the 
18 students that were interviewed. The answers from the 10 students that were not inter-
viewed are left out due to space limits. Only 4 students answered questions 4b and 6 cor-
rectly. The other questions mostly got correct answers. We next summarize the mistakes 
found in the written answers, question by question. 

Each of Q1, Q2, and Q3 had a frequent incorrect answer. In Q1, the only incor-
rect answer which the interviewed students selected was option (c), that is, the data 
structure would be a priority queue. In the answers for the 10 students who were not 
interviewed, one picked (option a, Stack) and another picked (option d, Union find). 
Similarly, all incorrect answers to Q2 indicated that the number of elements in the data 
structure was given by the length of the array (option b), rather than the value of the 
variable N (option a). For Q3, all students who answered incorrectly were interviewed, 
and all incorrect answers are thus present in Table 2. Three of these answers incorrectly 
established lo < hi as an invariant (option b), one believed hi == N to be an 
invariant (option d), and another answered that none of the proposed options were an 
invariant. 

In Q4a, most students correctly found that the state was invalid by counting the 
number of non-zero elements in the array. Some students (e.g., C7) also identified that 
the modular difference between lo and hi did not match the value of N. Inter-
estingly enough, three students provided a sequence of insertions and removals that 
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allegedly would produce the state in the question. In the second part of the question, 
Q4b, most students failed to trace the behavior of rebuild from the (invalid) state 
presented in the first part. Only six out of the 28 students answered the question cor-
rectly. All the incorrect answers failed to compute the contents of the array, but most 
managed to predict the values of lo and hi. A number of patterns are visible from 
the contents of the array. Some students (e.g., C1 and P3) answered with an array with 
less than eight elements. Some students copied three (e.g., P5) or four (e.g., C2) rather 
than two elements. Finally, some students (e.g., C6 and P6) reordered the elements ac-
cording to the logic in rebuild, while others (e.g., C2 and P9) incorrectly preserved 
the original order. 

While Q4a seems easier than Q4b (11 vs. 4 correct written answers), one student’s 
answer was graded as incorrect for Q4a but correct for Q4b. P1 identified an incorrect 
invariant lo < hi in Q3. Superficially, they answered correctly in Q4a that the state 
is impossible, but used two arguments, the first false and the second true: (i) the invariant 
lo < hi does not hold for the state, and that (ii) the value of N should be 4, not 2, 

Table 2
Written answers to the questions 1–7 of the Instrument, given by the 18 students that were 
interviewed. The line in italic contains the correct answer to each question and the last line 
contains the total number of correct answers. The other rows represent each interviewed 
student. Notation: ✓ correct answer (otherwise student’s answer); ∅ none of the options in a 
multiple-choice question; ✗ incorrect reasoning; * answer matches closely the indicated item

1 2 3 4a 4b 5 6 7
A lo hi A lo hi N rebuild A B

Correct b a a - 1, 3, 0, 0, 0, 0, 0, 0 0 2 3 0 1 1 1 a, c 3 2

J1 c b ✓ - - - - 3 ✓ ✓ ✓ 3 a 1 ✓
C1 ✓ ✓ ✓ ✓ 1, 3 ✓ ✓ ✓ ✓ ✓ ✓ - a, b, c, d ✓ ✓
C2 ✓ ✓ ✓ ✓ 3, 8, 4, 1, 0, 0, 0, 0 ✓ 4 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓
C3 ✓ ✓ ✓ ✗ unclear ✓ ✓ ✓ ✓ ✓ ✓ ✓ a ✓ ✓
C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C5 c b ✓ ✗ 3, 8, 4, 1 ✓ 4 ✓ ✓ ✓ ✓ ✓ e* 1 ✓
C6 c ✓ ✓ ✓ 1, 3, 8, 4 ✓ ✓ 3 ✓ 3 ✓ ✓ c, d, e ✓ ✓
C7 ✓ ✓ ✓ ✓ 1, 3, 8, 4, 0, 0, 0, 0 ✓ 4 ✓ ✓ ✓ ✓ ✓ a, b, c, d ✓ ✓
P1 ✓ ✓ b ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∅ ✓ ✓
P2 ✓ ✓ ✓ ✓ 1, 3, 8, 4, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P3 c ✓ d ✓ 8, 4, 3, 1 ✓ ✓ 3 ✓ ✓ ✓ 3 a, b, e [3] []
P4 ✓ ✓ ∅ ✗ 3, 8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ a 1 ✓
P5 ✓ ✓ ✓ ✗ 8, 3, 8, 0, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ a, b 1 ✓
P6 c ✓ b ✓ 1, 3, 8, 0, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ c ✓ ✓
P7 ✓ ✓ ✓ ✓ 1, 3, 8, 0, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ a, b, c, d 1 ✓
P8 ✓ b ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ a, b, c, d 1 ✓
P9 ✓ b b - 3, 8, 4, 0, 0, 0, 0, 0 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ None None

P10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ c ✓ ✓

Total 13 14 13 11 4 14 4 9
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because it is the number of elements. Because the student’s answer included incorrect 
reasoning, it was graded as incorrect. For Q4b, P1 only provided the correct end state. 

Most students answered Q5 correctly. All six incorrect answers had an array with 
an incorrect length (either 1, 3, or 4 elements instead of 2). Only five students in to-
tal an swered Q6 correctly. Here, students were asked to determine which of the five 
states were possible after a partially unknown sequence of insertions and removals have 
been exe cuted. Fourteen of the incorrect answers included one of the options where the 
length of the array would not be possible (options b and d). A less frequent mistake was 
not to se lect either option (a) (4 students) or (c) (6 students). Finally, student C5 found 
no option to be viable and instead provided another state that was similar to option (e). 
Student P1 believed that no option was reachable since elements are inserted in the 
beginning of A. 

Finally, for Q7, the most common answer (8 of 11 incorrect answers in total) was 
that a == 1 (instead of a == 3) after executing the code. The remaining incor-
rect answers stated that a and b contains arrays (P3 and P16), or that a == b == 
None (P9). 

5.2. Codebook of Fragilities 

The labelling of the excerpts from the interviews resulted in seven labels describing dif-
ferent fragilities. Each label is based on the observations from previous work (Nelson 
et al., 2020), with minor alterations to align with the data. We group the labels into three 
major groups. 

The first group consists of three labels that represent misconceptions about specific 
aspects of the notional machine. Thus they cover skills that would be considered prereq-
uisites to a data structures and algorithms course. These closely match the codebook 
from Nelson et al. (2020) and are defined as follows: 

Operators  ● Excerpts with this label show fragile “skills related to operators 
[which] cover both being able to use arithmetic and comparison operators. Ex-
amples of these include questions related to operator precedence and Boolean 
logic” (Nelson et al., 2020, Table 1). 
Arrays  ● Excerpts with this label show fragile knowledge about “declaring and 
indexing arrays [including] what happens when the index is out of bounds” (Nel-
son et al., 2020, Table 3). The label also includes fragile skills in using “loops to 
iterate arrays, either using regular loops and indices, or any dedicated syntax for 
the task” (Nelson et al., 2020, Table 2). 
References  ● Excerpts with this label show fragile skills in differentiating “be-
tween val ues and references (or pointers) to values”, and identifying “differences 
between mak ing copies of a value and a reference to a value” (Nelson et al., 2020, 
Table 3). 

The second group of two labels represent higher level skills. These are skills that 
are in some way introduced early on in CS education, but which typically take time to 
become proficient in. As described in Section 2.2, these are partially based on the higher-
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level skills described in Nelson et al. (2020), but also on overarching statements made 
by the authors of the Instrument. The labels are defined as follows: 

Reasoning about constraints  ● As defined in (Nelson et al., 2020), this label 
describes fragile knowledge when reasoning (semi-formally) about constraints 
enforced in the code. For example, the student may reason incorrectly, because 
they fail to identify some constraint enforced by the code; fail to utilize identified 
constraints; or establish contradictory or false constraints. 
Program comprehension  ● Excerpts with this label show fragile knowledge 
when build ing a complete, consistent and integrated understanding of the behav-
ior of the pro gram by means of an accurate inspection of the code. In particular, 
we use this label for claims of students who make an educated guess on a par-
ticular program behav ior without basing their argument on the program code, or 
specifically motivates their claims. For example, a student may guess the pur-
pose of the program based on surface features, such as the names of functions or 
variables. While this skill is not formally present in the codebook proposed by 
Nelson et al. (2020), the authors in formally noted that program comprehension 
was required to correctly answer some questions in the Instrument. As this label is 
closely related to the previous one, we distinguish them based on the detail of the 
observations. Detailed and more formal observations were tagged as Reasoning 
about constraints, while informal observa tions (i.e., some level of guessing) were 
tagged as Program comprehension. 

The last group of two labels refer to concepts that are specific to the advanced topic 
studied in this paper, data structures and algorithms. Therefore, these are not present in 
(Nelson et al., 2020). The labels are defined as follows: 

DS knowledge  ● Excerpts with this label show fragile factual knowledge about 
different Data Structures (DS), including their semantics or how they are imple-
mented. Dif ficulties in distinguishing between different data structures is also 
marked with this label. The excerpts with this label typically show students mak-
ing incorrect state ments about some data structure. This was mentioned as an is-
sue in (Nelson et al., 2020), but not formally defined in detail, as the focus was on 
the prerequisite skills and not on the advanced topics. 
ADT vs. implementation  ● Excerpts with this label show confusion between the 
abstrac tion provided by an Abstract Data Type and its implementation. For ex-
ample, in the context of the Instrument, a student may confuse the queue (an 
abstract container of elements) with the array (that is used to store the elements in 
the queue). In partic ular, the former abstraction never contains “empty” elements, 
while the latter has to deal with empty positions in the array. 

5.3. Interview Excerpts Revealing Fragile Knowledge 

Table 3 summarizes what fragilities were found for each of the 18 interviewed students. 
The table is based on the text matrix discussed in Section 4.2. Notice that this table is a 
high-level representation of the data: a single student’s answer to a single question may consist 
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of multiple segments, and thus have multiple labels (e.g., student C1 is labeled both Arrays 
and Program comprehension in Q4b). The mutual exclusiveness requirement discussed in 
Section 4.2 still holds, as each code was assigned to a different segment in the text matrix. 

The remainder of this section contains a detailed description of the fragilities found, 
and how they appeared in the interviews. The notation in the students’ quotes is as fol-
lows: square brackets [] denote transcriber’s clarification, dots [...] indicate omitted 
speech, and the monospace font is our post-transcript choice to emphasize when the 
student refers to the program code. 

5.3.1. Basic Prerequisites: Operators, Arrays, and References 

Two students showed fragile knowledge concerning Operators, and in particular the 
mod ulo operator, when tracing the rebuild function in Q4b. This evidence is in the 
form of students who made incorrect statements about the meaning of the operator, 
which is illustrated by quotes from P4 and P9: 

Isn’t that percent sign that the integer is taken into account, so that 
when that becomes less than one then it is like zero. [Student P4] 

Table 3 
Outcome of the qualitative analysis of interviews and open answers. Labels 1–3, 4a, 4b, 
and 6–7 indicate some fragility related to the respective question for a particular student. 
Legend: * Python-specific issues with array iteration, † relying on the surface features of 

the program, ‡ correct written answer. 

Basic prerequisites High-level prerequisites Advanced topics
Student Op. Array Ref. Reasoning constr. Program compr. DS knowl. ADT vs. impl.

J1 – – 7 6 1†, 4b, 5† 1 2
C1 – 4b – 4a‡, 6 4b† – –
C2 – – 7 – 4b – 4a‡
C3 – – – 6 1‡†, 4a, 6† 1‡ –
C4 – – 7‡ – – – –
C5 – – 7 – 1†, 2, 4a, 6‡ – –
C6 – – – 6 1†, 4b 1 –
C7 – – – 6 – – –
P1 – 6* – 4a – – 6
P2 – 4b* – – – – –
P3 – 4b* – 3, 4b 1† – –
P4 4b – – – 6 – –
P5 – – 7 4a, 6 4b, 6 – –
P6 – 4b* – – 1† 1 2‡
P7 – 4b* 7 6 – – –
P8 – – 7 6 – – –
P9 4b 4b*, 7* – 3 – – 2, 3
P10 – – – 6 – – –

Total 2 7 7 12 10 4 5
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I would remember that it [referring to the modulo operation] is a 
truncating division. [Student P9] 

The most common fragility among the basic prerequisites concerns Arrays, and was 
found in seven students. One such issue was uncertainty about array indexing. For ex-
ample, P9 implied that in the assignment tmp[i] = A[j], that tmp[i] would 
re main at its current value if A[j] is out of bounds. This is visible when the student 
traces rebuild in Q7 during the interview. After loop iteration i == 1 the student 
makes the following statement. 

tmp = [3, None], because at that location in A [index 1 at 
Python list A == [3] ] there is nothing. [Student P9] 

From Table 3 we can also see that many of the Finnish students had Python-specific 
issues with arrays. One such an example is P1 who did not understand the syntax for 
creating arrays in Python. When asked about the line: tmp = [None] * (2 * 
len(self.A)) they answered: 

Will that become like... it multiplies that None with that double 
length. I’m not quite sure. [Student P1] 

Aside from this occurrence, most of the language-specific issues with this label 
belong to students who incorrectly assumed that the range statement in the for 
loop, used for iterating through the array, would yield one extra iteration (i.e., three 
instead of two). This is, for example, illustrated by P2 when asked about their answer 
to Q4b: 

I found right away a mistake I made, so it does not take the first four 
values but two, no, three. [Student P2] 

This issue was sometimes also visible in the written answers for Q4b. For example, 
students P5, P6, P7, and P9 had three nonzero elements in their written answers to Q4b 
in Table 2. 

Finally, we found seven students who had fragile knowledge of References. This was 
revealed by Q7, where variables w and z refer to the same instance of the queue. The 
students failed to realize this, and instead believed that a copy was made: 

When object z of class Y was made, then the z copied into the 
variable w, then an insert was made on w, but it will not change 
that z. [Student P7] 

When w = z, I’m unsure whether z changes if w changes. 
[Student P5] 

w will be, like, a data structure that is assigned z’s contents, or 
something like that. [Student J1] 
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5.3.2. Fragilities in Prerequisite High-Level Skills 

From Table 3, we can see that having fragilities in high-level prerequisite skills were the 
most common issues found in the interviews. 

We found evidence that 11 students had issues related to Reasoning about constraints 
in Questions 3, 4a, 4b, and 6. For example, students have difficulties in recognizing that 
hi can be less than lo, as illustrated by P1 when asked about their answer to Q3, and 
C1 when asked about their answer to Q4a: 

lo should be less than hi [Student P1] 

I thought that they were linked, that hi was always going to be a 
higher position [Student C1] 

Another example from Q3 is P3, who concluded that hi equals N is an invariant 
since rebuild assigns hi to N: 

I have looked at that point that always if one adds something there 
it will do that rebuild [...] In rebuild it sets self.hi to 
self.N. [Student P3] 

The question with most evidence of fragility in reasoning about constraints was Q6. 
The excerpts show that students incorrectly conclude that the inserted elements need to 
be consecutive: 

The only thing I know is that 1, 2 and 3 should be after each other.  
[Student C3] 

[...] and the three were after each other, then we should have a se-
quence of 1, 2, 3. [Student J1] 

there couldn’t be empty slots between the elements. [Student P5] 

So I arrived at the conclusion that it should be possible to have empty 
slots in the middle, but not in the beginning. [Student C6] 

Another property that was problematic in Q6 was the length of the array A. In particu-
lar, some students believed that the number of elements in the queue had to coincide with 
the variable A_length: 

Its size should be dependent on the A_length variable.  
[Student C6] 

Others failed to consider that the length had to be a power of two due to the fact that 
rebuild always doubles the size of the array: 

So the size... These three must follow each other, regardless of size, as 
long as the size is larger than three values. [Student C1] 
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We found evidence that 11 students had fragile knowledge and skill in Program 
com prehension. As described above, excerpts in this category indicate that students 
did not conduct a careful analysis of the code necessary to understand its behavior, but 
drew in correct conclusions based on some amount of guessing. The following excerpts 
illustrate these kinds of statements, which all led to some kind of incorrect conclusion 
about the data structure: 

I didn’t feel it was relevant [...] It looked like a stack [Student C6] 

I answered to this by quite a gut feeling [Student P5] 

I was very uncertain here. [...] So I think I guessed if it was that [...] 
[Student C4] 

I thought it may [...] I might not understand exactly what the code 
does in detail but I kind of know [...] [Student J1] 

Furthermore, for the cases marked with a dagger (†) in Table 3, we have evidence 
that the observations are based on surface level features of the code, such as names of 
functions and variables. In this case, the names insert and remove lead to cor-
rect conclusions regarding the functionality of the respective functions, as illustrated 
by J1: 

We have an insert function and a remove function. And it 
stands to rea son that they should insert and remove. [Student J1] 

However, the conclusions drawn from the name rebuild were often not correct: 

I thought it may be a priority queue and that’s why rebuild is 
there. [Student J1] 

I think that the rebuild function changes the structure according 
to when some new element is added, so that it changes the order ac-
cording to that priority. [Student P3] 

Similarly, the presence of None (in the Python version) was incorrectly seen as 
indi cating leaves in a tree structure: 

[...] a data structure which is built in a tree-like way and because 
there were those None values, I thought that they are those kinds of 
branches. [Student P6] 

As for tracing and metatracing, some students mentioned in the interview that they 
did trace (or tried to trace) the code. In particular this occur for questions Q4b, which 
asks the state of variables after the execution of rebuild. It was difficult to identify 
clearly when students have difficulties in tracing or meta-tracing. When scaffolded to 
trace the code closely during the interviews, all students were able to simulate the step-
by-step execution of code while keeping track of the state of the computation. When 
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errors occurred, they were due to slips, or to specific misconceptions, e.g, relating to the 
Python range. 

Finally, there was one inconclusive segment, P1’s interview answer to Q3. It was ex-
cluded from Table 3, because we could label it both as Reasoning About Constraints and 
Program Comprehension, which would have violated the mutual exclusiveness criteria: 

I kind of deduced that lo would be the smallest, or first element in the 
list, for example, zero or whatever it usually is; and then ..., or the first 
location where there is not None. So, for example, if there is None, 
if the list is None, 1, 2, None, then the first would be zero, then 
lo would be 1 and hi would then be 3. So hi depicts the the first 
None in the list, its location in there, and lo depicts the first actual 
element. [Student P1] 

To illustrate qualitative content analysis in detail, we have provided a further exam-
ple of segmenting and labeling an interview excerpt. Table 4 shows a piece of dialogue: 
seg ments S0, S1, and S2 are adjacent in the interview transcript. The interviewer asks 
student P6’s reasoning behind their answer to Q1. The interviewer’s question deliber-
ately asks to elaborate the difference between the correct answer (queue) and the answer 
option that the student selected (priority queue). Segments S1 and S2 form together the 
student’s entire answer to the interviewer’s question. 

P6’s interview answer in Table 4 is an example of interview data which has multiple 
student’s claims open to interpretations. In S1, the student implies that a priority queue 
is a tree, although it is actually an abstract data type. Based on this observation, we have 
labeled it as a fragility in Data structure knowledge. An alternative interpretation is that 
the student tries to explain an implementation of a priority queue, a binary heap, which 
is indeed based on a binary tree. This interpretation would give the possibility to code 
S1 as an ADT versus implementation issue. However, it is equally possible that by “tree-
like way”, the student means any tree structure they have encountered on their course. 
Therefore the alternative interpretation is weaker. 

To illustrate how a single answer to a single question can be labelled with multiple 
labels, consider student P6’s answer in Table 4. Segment S2 shows the student’s further 
confusion. One could speculate that by tree branches and None values, the student 

Table 4 
An example of segment splitting in qualitative content analysis

Segment Label

Context: Student P6’s written answer to Q1 is “priority queue” 

S0 Interviewer: “What do you think is the difference between a queue and a priority queue?” 

S1 Student: “A priority queue is a data structure which is built in a tree-like way ...” DS knowl. 

S2 “...and because there were those None values, I thought that they are those kinds of 
branches. When I thought about how it could be a queue, somehow those None values 
made me think about the queue, that can it be a queue.” 

Program 
compr. 



M. Begum et al.82

had meant a binary tree with some children set to None (similar to null pointers in 
C++). However, the evidence here is too scarce for us to pinpoint a confusion between 
certain data structures. The stronger evidence we see here is more implicit. When they 
try to recognise the data structure, they are relying on surface features of the program 
code, that is, the None values. It is likely that when answering the first Instrument 
question, the student has not traced the code at all. Therefore, S2 is labeled as Program 
comprehension. As such, using this approach we never had a case where we wished to 
assign more than one label to a single segment. 

5.3.3. Fragile Knowledge of the Advanced Topics 

From Table 3, we can see that the first seven questions also revealed fragile knowledge 
of the advanced topics assessed by the Instrument, that is data structures and algo-
rithms. 

We found evidence of fragilities with data structure knowledge, and we thus used 
the label DS Knowledge to mark excerpts that show lack of factual knowledge of data 
struc tures. As can be seen in Table 3, the evidence for this was only found in answers 
to Question 1. This evidence was mostly regarding the union-find data structure. For 
example, J1 did not know what union-find was, while C3 believed it to be an algorithm 
instead of a data structure: 

About union-find, I was like, no. I haven’t even encountered that one. 
[Student J1] 

I can see right away that it can’t be union-find, since that is an algo-
rithm. [Student C3] 

A number of students also confused the common illustration of a data structure and 
its typical implementation. For example, union-find is often illustrated as a graph where 
nodes have a single link to a parent node, but is implemented as an array: 

[...] and I don’t know, union find [...] I think union find has something 
to do with graphs, so I didn’t feel it was relevant. [Student C6] 

Similarly, a priority queue is often implemented as a heap, but it has other implemen-
tations as well. Furthermore, heaps are typically illustrated as trees, but they are typi-
cally stored in an array as the heap property allows that efficiently. This confused C3 and 
P6 in different ways: 

Then we have a priority queue, that is, I think it’s the same thing as a 
heap. Since it has nodes and pointers and such. So it’s either a stack 
or a queue. [Student C3] 

A priority queue is a data structure that is built in kind of tree-like 
way, so that when there was those None values, I though that they 
are like branches. [Student P6] 
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We found seven students who showed confusion with ADT vs. implementation. For 
example, in Q2, some students confused the length of the array with the length of the 
data structure (queue): 

Return A.length, right. I thought that since, well, I thought of A 
as the data structure itself. [Student J1] 

I think the command takes the length of A, that is, how many elements 
there are in the list. [Student P9] 

When asked, P9 also revealed that they were aware that such an answer would in-
clude the None elements in the underlying Python list. Another such example is P6 
who was unsure what elements are supposed to be included in the data structure in the 
interface: 

I was not sure whether all elements here are wanted, that could it 
only be those values given by the user. I was not sure which one it was 
meant. [Student P6] 

A similar confusion was also visible in Q4a, where the students were asked if a par-
ticular state is possible: 

A holds four elements, but N only holds the value two, and I thought 
that should not be possible. [Student C2] 

5.4. Programming Language Specific Issues 

We also detected three language-specific issues in the interviews. The issue with the 
range keyword in Python was already described above, as it is closely related to ar-
rays. The remaining issues are described here, as they are not entirely in line with the 
research objective of the Instrument, and we do not have much conclusive evidence for 
them. 

The first such example is a student who incorrectly believed that the expression 
[None] * 8 in Python would create 8 separate lists (P3). This is not something that 
was covered in detail earlier the data structures and algorithms course. Similarly, some 
students (e.g., P4) did not understand what public and private functions mean in the con-
text of an object. Again, this is at least partially due to not covering these topics in detail 
in prior courses, and since Python does not differentiate between public and private 
functions apart from naming conventions. 

A similar issue emerged for students taking the C++ version of the Instrument. In this 
particular case, student C5 expressed that they did not know the meaning of the state-
ment delete []tmp: 

And then that delete operation came, that I did not entirely... un-
derstand what I should do. [...] [Student C5] 
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Again, it is likely that the student has not seen that particular syntax for a delete 
op eration before, as modern C++ recommends working with higher level abstractions 
rather than arrays in the style of the C programming language. 

6. Discussion 

In this study, a theoretically designed Instrument (described in Section 3) is evaluated 
empirically for the first time. The research questions in Section 1 reflect the following 
hy potheses. First, if a student answers incorrectly to the Instrument questions related to 
data structures and algorithms, they have fragile knowledge or skills relating to prerequi-
sites and/or to data structures and algorithms topics. Second, the questions in the Instru-
ment can detect particular fragilities based on a student’s answer. To test the hypotheses, 
we used qualitative content analysis introduced by Schreier (2014). 

In this section we discuss the results presented in Section 5. First, we consider each 
In strument’s question in lights of Research Question 1: “What fragile knowledge and 
skills is the Instrument able to detect?” and discuss how this compares to the prior analy-
sis by Nelson et al. (2020). In addition, we give suggestions about what changes are 
advisable to further improve the ability of individual questions to detect fragile knowl-
edge of prereq uisites. In Section 6.2 we address Research Question 2: “To what extent 
is the Instrument able to differentiate between fragilities, both between prerequisites and 
advanced topics, and among specific prerequisites?” Finally, in Section 6.3 we discuss 
threats to validity, and the extent to which the results presented in this paper apply. 

6.1. Analysis of Instrument Questions 

Q1–Q4a. First, some options of these multiple-choice questions worked as was ex-
pected. The most common incorrect answer in Q1 was that the class behaved like a 
prior ity queue. Interviewed students with this answer showed fragile knowledge with 
program comprehension. Q2 revealed either difficulties with program comprehension 
or confusion between an ADT and its implementation when a student answers (b) there. 
This was con firmed in four interviews. Four interviewed students answered Q3 incor-
rectly, and three of them had fragile skills when reasoning about constraints. Similarly, 
an incorrect answer to Q4a reveals mostly fragile skills in reasoning about constraints. 
These findings were consistent with the design intention (Nelson et al., 2020). 

Second, Q1–Q4a had unreliability with the distractor options. Table 2 shows that some 
answer options were rarely or never selected. In addition, the interviews indicate that if 
a student answers Q1 correctly, they still might have difficulties with program compre-
hension or fragile data structure knowledge. The correct answer in Q3 seems too easily 
identifiable as correct. A correct answer to Q4a may hide fragilities that a student has, be-
cause not all the invariants are needed to be identified to answer the question correctly. 

We recommend altering these questions as follows. Q1 would have a free text answer 
instead of multiple choices. Q2 and Q3 would ask selecting all options that apply. Fur-
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thermore, convert option lo = hi to lo <= hi in Q3, as some students excluded 
the original options due to equality, and option hi < N to hi < A.length, as 
that is less obvious. Omitting the contents of A in Q4a might steer the students to think 
about the circular distance. 

Q4b: Trace rebuild. The interviews revealed fragile knowledge of operators, arrays, 
and in program comprehension as expected in Nelson et al. (2020), as our program 
compre hension label includes program tracing. 

We discovered the following patterns between written answers and identified weak-
nesses. In Table 2, P6, P7 and P9 have copied three array elements due to an off-by-one 
error with Python-specific range syntax, coded as array iteration. P4 and P9 have 
dif ficulties with operators, typically the modulo operator, resulting in incorrect order 
of ele ments. In contrast, P5, C2, and C5 have similar answers, but did not show fragile 
knowl edge of operators in particular. It is possible that other issues masked this. 

P1 is an outlier, as they answered correctly to Q4b, but incorrectly to Q4a. They 
iden tified an incorrect invariant lo < hi in Q3. As mentioned in Section 5.3.2, it 
is unclear whether this was caused specifically by a weakness in identifying program 
constraints or more generally program comprehension, therefore P1 has no label for Q3 
in Table 3. The student only provided the end state in Q4b, leaving the details of their 
reasoning unknown. Unfortunately, the interviewer did not notify the student of the in-
consistency between their answers to Q3, Q4a, and Q4b. One explanation for the incon-
sistency is that the student answered the Instrument questions in numerical order, also 
meaning Q4a before Q4ab. In Q4b, they began to apply detailed program tracing first 
time. However, tracing only the rebuild function does not contradict with the assumed 
lo < hi invariant. This lack of detail in the answers is a property of the instrument: 
if the Instrument had requested a detailed answer to Q4b, that might itself give a hint to 
apply program tracing, masking the fragility in metatracing. 

Finally, some students found it confusing to trace rebuild from a state they had 
found to be inconsistent in Q4a. Some of them tried to fix the state before tracing. Oth-
ers either could not, or did not trace the code closely enough, while others had issues 
under standing the modulo operator. As such, we recommend providing a different state 
for Q4b than the one used in Q4a, which students have already deemed to be invalid. 

Q5: Trace insert + remove. Only three of 18 interviewed students answered incor-
rectly that the array A would have size of 1 and contain the value 3. Of those, two 
students showed fragile skills in with program comprehension. J1 relied on the surface 
features of the code, assuming the behavior of the data structure on the names insert 
and remove. C5 was unsure what the code does, but managed to trace it correctly in the 
interview. P3 was not asked about Q5 due to time constraints. These cases match Nelson 
et al. (2020): students either trace the code in detail or at a high level. We suggest keep-
ing Q5 as is, because it explicitly assesses when the array is rebuilt. 

Q6: Circularity. Students struggled with three aspects of Q6 in the interview. Three stu-
dents, C1, P7, and P8, included the options having an array length of five, indicating a 
failure to identify the constraint that the size of the array is a power of two. Meanwhile, 
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excluding (c) [2, 3, -, 1] and (d) [2, 3, -, -, 1] likely indicates not having 
understood the circularity: interviews of C3, P4, and P5 revealed a belief that the last three 
elements should be located consecutively in the array. Finally, some students struggled 
with how to approach the problem, because the unknown sequence could not be traced. 

Q6 does not distinguish between the constraint cases 2k versus 2k for the length of 
the array. We recommend adding an option with an array with length of 6. Also, as this 
question was relatively difficult, some students might benefit from a hint that the un-
known sequence of operations only includes inserts and removes. 

Q7: References. The major finding of Q7 supports the intended design that this ques-
tion would assess references. Eight of eleven incorrect answers to Q7 was that a = 
1, b = 2. All seven corresponding interviews revealed issues with references. The 
remaining students (3 incorrect answers, 2 interviewed) provided a nonnumerical an-
swer, suggesting other fragilities. 

However, the authors of Nelson et al. (2020) also hypothesized that the answer a 
= 3, b = 2 would indicate that students were unable to distinguish between dif ferent 
instances of the data structure. We found no such answers in our data set, which could 
simply mean that this fragility is rare among the students that answered the Instru ment. 
Another possibility is that most students traced the code at a high-level (indicated in some 
interviews), and since students did not need to trace the insert and remove opera-
tions in details, difficulties with separating different instances would not be visible. 

Moreover, a student might arrive at the incorrect answer a = 1, b = 2 with a 
cor rect understanding of references. This might happen if the student assumes that the 
data structure is a minimum priority queue and traces insert and remove at a 
high level. It might be useful to add an additional element to y in order to detect if this 
is the case, as a similar issue would then be visible in the value of b. 

6.2. Differentiated Assessment 

Our findings suggest that the questions in the Instrument are indeed useful to differenti-
ate fragile prerequisite knowledge and skills from fragilities in advanced topics. The 
incorrect answers to questions Q1 and Q3–Q7 were often caused by fragile prerequisite 
knowledge, as can be seen in Table 3. Although the Instrument is able to distinguish 
between prereq uisites and advanced topics, it cannot always differentiate among the 
specific fragilities in prerequisites. For instance, Nelson et al. (2020) introduce the label 
Basic Notational Machine that separate skills such as Array iteration and Arrays (de-
claring and indexing arrays). We were not able to differentiate these from each other. 
Instead, the categories were merged to form a single fragility (Array). 

In comparison, fragilities related to the advanced topic (data structures and algo-
rithms) were found to directly contribute to errors only for questions Q1 and Q2 (and, 
in a single case, for Q3, Q4a, and Q6 each). In particular, students who struggled to 
distinguish be tween abstract data types and their implementation failed either Q2 or Q3, 
therefore these two questions together have the potential to highlight fragilities with data 
structures and algorithms. 
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We found evidence that Q4b indicate fragile knowledge of operators (modulo in 
partic ular), and two Python-specific issues: array iteration (off by one with range) 
and creating an array with a predetermined number of empty cells. Nelson et al. (2020) 
added Q7 (orig inally numbered in the paper as Question 6) to detect specific issues with 
references. Our results support the claim that a particular incorrect answer to this ques-
tion does indeed reveal fragilities with values and references. 

Fragile skills in reasoning about constraints were observed in Q3, Q4a and Q6. This 
is not unexpected, since these are the three questions that, more evidently, address the 
understanding of circularity and the rebuilding policy. 

What is most evident from Table 3, however, is that due to fragile skills, 16 students 
struggled with either program comprehension, reasoning about constraints, or both. 
It can be argued that these high-level skills are not typically taught in an introductory 
pro gramming course explicitly, as part of the syllabus, but these are still expected to be 
learned (Izu et al., 2019). These prerequisites were those we qualified as being high-
level (Section 5.3.2), and were indeed grouped as such by Nelson et al. (2020), even 
though they were still considered to be prerequisites. Regardless of this, our findings 
show that they have a different role compared to the knowledge of basic programming 
notions such as control flow constructions, operators, or arrays. 

In this way, the aforementioned high-level skills are similar to the findings of Fisler 
et al. (2017) regarding scope, aliasing and mutation. The authors observed that these 
con cepts are expected to be taught in an introductory course, but yet students struggle 
with them throughout their education. The authors hypothesize that this is because they 
are not taught explicitly enough in the introductory course, and after that students are ex-
pected to learn the details themselves. As such, these high-level skills are not considered 
to be ad vanced topics covered by the Instrument. Therefore, they might most appropri-
ately be seen as middle-ground skills, located between introductory programming and 
advanced skills, as they represent skills that can not be expected to be fully developed 
after an introductory programming course. 

As discussed in Section 2.3, it is worth connecting these middle-ground skills to ab-
straction skills, which are notoriously difficult to teach and assess (Mirolo et al., 2021). 
In particular, they align well with the higher levels of the hierarchy proposed by Perrenet 
et al. (2005) and the operational dimensions of Statter and Armoni (2020), since they re-
quire understanding the code at a higher level, as understanding what the program does 
for some particular input is not enough. 

This ability to switch between different levels of abstraction (reasoning on high-lev-
el behaviors vs. tracing the code in detail) was also visible for students who struggled 
to dif ferentiate between the ADT and its implementation. Abstraction has a significant 
role also in relation with another high-level skill that was included by Nelson et al. 
(2020) among the prerequisites skills, namely meta-tracing. See, e.g., Statter and Ar-
moni (2020) about the importance of knowing when it is feasible to use the high-level 
reasoning, and when it is necessary to trace the code closely. From both the written 
answers and the interviews, it is difficult to say whether the students were actually able 
to trace the code autonomously when answering the questions, and whether or not they 
even tried to trace it. The inter views did not help us understand which meta-tracing ac-
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tivities students conducted: when, and on which inputs, they decided to trace portions 
of code in order to understand its be havior. Nevertheless, the fact that students were 
often found to guess what this behavior would be, lead us to hypothesize that they either 
failed to recognize the need to trace the code closely, or did not have the skills to do it. 
That is, even if we did not find ultimate ev idence for this, the impression is that there 
are fragile meta-tracing skills besides program comprehension issues and the ability to 
reason about constraints. 

As has been shown in this paper, the Instrument seems to be able to reveal fragile 
high-level skills as well as highlight some particular more fundamental fragilities (un-
less they are hidden by lack of high-level skills). Overall, our results emphasize the 
importance of the high-level skills, and validate some of the hypotheses in Nelson et al. 
(2020). We suggest modifications for the questionnaire, which could be then used as a 
part of prelim inary test for a data structures and algorithms course. However, the Instru-
ment requires revisions and more empirical research to ensure its reliability. In addition, 
we suggest that the skills labelled as high-level skills should be considered to be middle-
ground skills rather than prerequisites, and that the creators of assessments should dis-
tinguish them to better account for their importance. 

6.3. Limitations 

The sample size – 28 written answers and 18 interviews – was adequate for qualita tive 
study. The limited number of subjects, however, have implications on what type of 
conclusions can be drawn from the results. While the data shows fragile knowledge and 
skills, it is not possible to interpret the absence of fragility for some question as a proof 
that the particular question do not assess that fragility. A qualitative study design should 
include a sampling strategy which evolves over time. In contrast to random sampling 
used in quantitative research, qualitative research may aim collecting information-rich 
samples which vary from each other, thus vastly representing the phenomenon to be 
studied (Rap ley, 2014). Unfortunately, the study design did not include a choice of a 
sampling strategy. Due to the small and self-selected group of students that were inter-
viewed, it is possible that a student with some particular fragility was not a part of the 
group of interviewees. 

The study had differences in the ways of transcription for the two local interview lan-
guages (intelligent verbatim vs. selected quotes and descriptions). Verbatim transcripts 
are not always necessary, if one can label a time segment in a digital recording that can 
be easily retrieved (Barbour, 2014). Indeed, due to timestamps, it was possible to review 
certain segments of our interview videos and produce as verbatim transcripts translated 
in English. A greater concern is likely a case where the original analyzer of the inter view 
produced too short a segment transcribed in English. We experienced the latter in the 
Presenting and interpreting the findings phase of the analysis with the whole research 
team (see Section 4.2), but if one researcher decided they need more context to verify 
a segment, another researcher provided a longer transcript or description for them from 
the original video recording. 
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Certain fragilities (e.g., program comprehension) seem to hide more fundamental 
ones (e.g., knowledge of array indexing) during the interviews. For example, it is diffi-
cult to re liably assess whether a student who is unable to trace programs also has fragile 
knowledge of the modulo operator or not. The small and self-selected data set could 
therefore be the reason why some expected fragilities were not found. See, for instance, 
the failure to dif ferentiate between different instances in Q7. Finally, the small sample 
size might hide some infrequent patterns. A larger data set could give more insights on 
how to interpret the results for Q4b. 

Some of the fragilities were detected during the interviews, although the student 
an swered correctly to the question. This was partially found to be due to inadequate 
distrac tors. Some students might have guessed the answer, which is typical in multiple-
choice questions. The small data set limits our ability to evaluate the extent of this type 
of issues. 

Although the fact that the data set includes students from multiple countries and 
in volve multiple programming languages is a strength of the data set, this does intro-
duce potential sources of errors. In particular, the different spoken languages means that 
stu dents from different countries were interviewed by different interviewers. Further-
more, different spoken and programming languages may highlight the same concept 
in differ ent lights, and for spoken languages, some of this nuance might be lost when 
translated into English. In spite of these difficulties we found many similarities between 
the different countries, which suggests that these potential problems were at least not 
major enough to mitigate our conclusions, but the results are generalizable at least to in-
stitutions with sim ilar academic culture. As previously mentioned, the results show that 
some of the fragili ties are specific to a particular programming language. This means 
that, while many of the findings here are independent of the context, care needs to be 
taken when translating the code in the Instrument into different programming languages, 
as new types of problems may appear. 

7. Conclusion 

7.1. Program Comprehension and Reasoning about Constraints as  
Key Middle-ground Skills 

The empirical evaluation supports many, but not all of the claims by Nelson et al. (2020) 
on the Instrument’s capability of differentiating between skills related to prerequisite 
and advanced topics. We suggested ways to improve the Instrument’s questions, both by 
im proving the distractors of the multiple-choice questions, and by slightly changing the 
con tent or phrasing of the questions. Based on our data, we argue that these improve-
ments will increase the Instrument’s effectiveness in assessing prerequisites as a whole, 
but also to pinpoint specific fragilities. 

Our data shows that the skills previously labelled as high-level skills (such as pro-
gram comprehension and reasoning about constraints) seem to be the cause for many 
students answering incorrectly to many of the questions in the Instrument: these skills 



M. Begum et al.90

seem to bear a major responsibility in hindering the proficiency in more advanced skills. 
Therefore we suggested adding the category of middle-ground skills to the framework of 
Nelson et al. (2020), in order to highlight their special role. In fact these skills are often 
considered to be prerequisites in latter courses and are not usually taught explicitly in 
that context. However, our data shows that students still struggle with them in courses 
on data structures and algorithms. As such, the situation for these skills is similar to what 
Fisler et al. (2017) observed for concepts such as scope, mutation and aliasing. Latter 
courses expect students to have familiarity with them, but the introductory courses do 
not cover them explicitly enough. Our results highlight the importance of teaching these 
middle-ground skills ex plicitly at an early stage in the education, and to continue teach-
ing them throughout the education to allow students to master them, as it is difficult to 
fully develop them only in one introductory course. Exercises that ask to analyze a por-
tion of code and reflect on the behaviour that it determines, such as the ones proposed 
by the Instrument, can be fruitfully used as learning tools or to provide formative assess-
ments for these middle-ground skills. 

7.2. Future Work 

Some of the fragile prerequisite skills that the Instrument was designed to identify, such 
as tracing and meta-tracing, in this report were folded under the label Program compre-
hension. Part of the reason for this is the difficulty of identifying precisely what specific 
fragility a student has, even when employing semi-structured interviews. Further stud-
ies are needed to address this finer level of granularity. A possible approach could be to 
conduct a think-aloud study to follow students’ lines of reasoning, or to observe students 
working in pairs on the Instrument’s questions, by analysing students’ strategies and 
con versations during the problem solving process. 

As already discussed, what we identified as middle-ground skills are in fact crucial to 
progress further, but it may be unreasonable to expect wide proficiency with these skills 
after introductory programming courses. However, how this should be dealt with within 
the constraints of introductory and advanced courses needs further research. 

Given the Instrument’s ability to differentiate between certain prerequisites, middle-
ground skills, and advanced skills, it would be interesting to explore integrating the 
In strument into a learning management system. This would allow the learning manage-
ment system to tell the students not only if they passed or failed, but direct students 
towards the most effective remediation. For example, if a student is identified as having 
an issue with basic prerequisites about array indexing, they could be asked to review 
relevant fun damentals or pointed to follow-up questions dealing with this issue. 

Finally, in this work we focused on one of the questions proposed by Nelson et al. 
(2020), but the report also discussed questions related to other advanced course topics. 
More work would be needed to generalize our results to other contexts, however we 
hy pothesize that middle-ground skills play again a major role, whenever students are 
asked to answers questions and reflect about a given portion of code and the behaviour 
that it determines. 
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Appendix A. The Instrument 

Consider the following code when answering the questions below: 

Class Y behaves like which well-known data structure? 1. 
Stack (a) 
Queue (b) 
Priority queue (c) 
Union find (d) 
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A. The Instrument

Consider the following code when answering the questions below:

1 public class Y<Key extends Comparable<Key>>
2 {
3 private Key[] A = (Key[]) new Comparable[1];
4 private int lo, hi, N;
5 public void insert(Key in)
6 {
7 A[hi] = in;
8 hi = hi + 1;
9 if (hi == A.length) hi = 0;

10 N = N + 1;
11 if (N == A.length) rebuild();
12 }
13 public Key remove() // assumes this is not empty
14 {
15 Key out = A[lo];
16 A[lo] = null;
17 lo = lo + 1;
18 if (lo == A.length) lo = 0;
19 N = N - 1;
20 return out;
21 }
22 private void rebuild()
23 {
24 // The line below is essentially:
25 // Key[] tmp = new Key[2*A.length]
26 // with keys being comparable.
27 Key[] tmp = (Key[]) new Comparable[2*A.length];
28 for (int i = 0; i < N; i++ )
29 tmp[i] = A[(i + lo) % A.length];
30 A = tmp;
31 lo = 0;
32 hi = N;
33 }
34 }

1. Class Y behaves like which well-known data structure?
(a) Stack
(b) Queue
(c) Priority queue
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Write the body of a method2.  int size() that returns the number of elements 
in the data structure. 

 (a) return N; 
 (b) return A.length; 
 (c) return A[N]; 
 (d) return hi - lo; 

Which invariant does the data structure maintain after every public operation? 3. 
(An invariant is a condition that the data structure ensures is true after each opera-
tion) 

 (a) N < A.length 
 (b) lo < hi 
 (c) hi < N 
 (d) hi == N 

Assume that: 4. 
A holds 3 8 4 1
lo holds 3 
hi holds 2 
N holds 2 

Is the above situation something that can occur by calling a sequence of (a) 
insert and remove? If yes, give such a sequence, otherwise explain 
why not. 
What are the contents of(b)  A, lo and hi after executing rebuild in 
this state? 

Draw the data structure (including the contents of 5. A and the values of hi, lo, 
and N) after the following operations, and indicate how many times rebuild 
were called: 

Given the following partially known sequence of operations, what are the possible 6. 
contents of A? Select all that apply. Empty boxes are considered empty by the 
data structure (i.e., they contain something that the data structure does not care 
about). 
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(d) Union find
2. Write the body of a method int size() that returns the number of elements in

the data structure.
(a) return N;
(b) return A.length;
(c) return A[N];
(d) return hi - lo;

3. Which invariant does the data structure maintain after every public operation? (An
invariant is a condition that the data structure ensures is true after each operation)
(a) N < A.length
(b) lo < hi
(c) hi < N
(d) hi == N

4. Assume that:
A holds 3 8 4 1

lo holds 3
hi holds 2
N holds 2
(a) Is the above situation something that can occur by calling a sequence of

insert and remove? If yes, give such a sequence, otherwise explain why
not.

(b) What are the contents of A, lo and hi after executing rebuild in this state?
5. Draw the data structure (including the contents of A and the values of hi, lo, and N)

after the following operations, and indicate how many times rebuild were called:

1 Y y = new Y();
2 y.insert(1);
3 y.remove();
4 y.insert(2);
5 y.remove();
6 y.insert(3);

6. Given the following partially known sequence of operations, what are the possible
contents of A? Select all that apply. Empty boxes are considered empty by the data
structure (i.e., they contain something that the data structure does not care about).

1 Y y = new Y();
2 // an unknown sequence of operations
3 y.insert(1);
4 y.insert(2);
5 y.insert(3);
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(d) Union find
2. Write the body of a method int size() that returns the number of elements in

the data structure.
(a) return N;
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(d) return hi - lo;
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lo holds 3
hi holds 2
N holds 2
(a) Is the above situation something that can occur by calling a sequence of

insert and remove? If yes, give such a sequence, otherwise explain why
not.

(b) What are the contents of A, lo and hi after executing rebuild in this state?
5. Draw the data structure (including the contents of A and the values of hi, lo, and N)

after the following operations, and indicate how many times rebuild were called:

1 Y y = new Y();
2 y.insert(1);
3 y.remove();
4 y.insert(2);
5 y.remove();
6 y.insert(3);

6. Given the following partially known sequence of operations, what are the possible
contents of A? Select all that apply. Empty boxes are considered empty by the data
structure (i.e., they contain something that the data structure does not care about).

1 Y y = new Y();
2 // an unknown sequence of operations
3 y.insert(1);
4 y.insert(2);
5 y.insert(3);
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(a) 1 2 3
(b) 1 2 3
(c) 2 3 1
(d) 2 3 1
(e) 1 2 3

What are the values of 7. a and b after executing the following piece of code? 

How many array accesses does a single call to8.  Y.remove take in the worst 
case? (To make this well-defined, we assume that the compiler performs no 
clever optimi sations. That is, every array access we’ve written in the code will 
actually be per formed.) 

 (a) ∼ 4N 
 (b) 2 
 (c) ∼ 2N 
 (d) 7 

How many array accesses does a single call to the most expensive public method 9. 
of Y take in the worst case? 

linear in (a) k – 
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(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(k). 
constant – (b) 
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(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(1). 
linearithmic in (c) k – 
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(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(k log k). 
quadratic in (d) k – 
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(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(k2). 
What is the number of array accesses per operation in the following sequence 10. 
of 2k operations, starting from anempty data structure: y.insert(1); 
y.remove(); y.insert(2); y.remove(); y.insert(3); 
y.remove(); ... y.insert(k); y.remove(); 
Note: The amortized case describes the average, or expected, runtime of an op-
eration. 

linear in (a) k in the worst case and in the amortized case. 
constant in the worst case. (b) 
constant in the amortized case, but linear in (c) k in the worst case. 
quadratic in (d) k in the worst case. 

True or false: The data structure 11. Y uses space linear in N. Explain you answer on 
a separate piece of paper. (Be as formal and short as you can, but not shorter. If 
you use more than half a page of text you’re on the wrong level of abstraction.) 
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(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)
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Appendix B. The Code in C++ 

Below is the C++ version of the code from the Instrument for reference. 
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B. The Code in C++

Below is the C++ version of the code from the Instrument for reference.

1 template <class Key>
2 class Y
3 {
4 public:
5 void insert(Key in)
6 {
7 A[hi] = in;
8 hi = hi + 1;
9 if (hi == A_length) hi = 0;

10 N = N + 1;
11 if (N == A_length) rebuild();
12 }
13 Key remove() // assumes this is not empty
14 {
15 Key out = A[lo];
16 A[lo] = Key{};
17 lo = lo + 1;
18 if (lo == A_length) lo = 0;
19 N = N - 1;
20 return out;
21 }
22 private:
23 Key *A{new Key[1]};
24 int A_length{1};
25 int lo{0}, hi{0}, N{0};
26 void rebuild()
27 {
28 Key *tmp = new Key[2*A_length];
29 for (int i = 0; i < N; i++ )
30 tmp[i] = A[(i + lo) % A_length];
31 delete []A;
32 A_length = 2*A_length;
33 A = tmp;
34 lo = 0;
35 hi = N;
36 }
37 }
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Appendix C. The Code in Python 

Below is the Python version of the code from the Instrument for reference. 
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C. The Code in Python

Below is the Python version of the code from the Instrument for reference.

1 class Y:
2

3 def __init__(self):
4 self.A = [None]
5 self.lo = 0
6 self.hi = 0
7 self.N = 0
8

9 def insert(self, input):
10 self.A[self.hi] = input
11 self.hi = self.hi + 1
12 if (self.hi == len(self.A)):
13 self.hi = 0
14 self.N = self.N + 1
15 if (self.N == len(self.A)):
16 self.rebuild()
17

18 def remove(self): # assumes self is not empty
19 output = self.A[self.lo]
20 self.A[self.lo] = None
21 self.lo = self.lo + 1
22 if (self.lo == len(self.A)):
23 self.lo = 0
24 self.N = self.N - 1
25 return output
26

27 def rebuild(self):
28 tmp = [None] * (2 * len(self.A))
29 for i in range(0, self.N):
30 tmp[i] = self.A[(i + self.lo) % len(self.A)]
31 self.A = tmp
32 self.lo = 0
33 self.hi = self.N



Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 99

Appendix D. Overview of the Written Answers 
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D. Overview of the Written Answers

0% 50% 100%

1: ADT

2: Size

3: Invariant

4a: Invalid state

4b: Trace rebuild

5: Trace insert + remove

6: Circularity

7: References

8: Complexity of remove

9: Worst-case

10: Complexity of sequence

11: Memory usage
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Correct answers

All (28)
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Fig. 1. Overview of the correct answers to each of the questions (1–11). The number inside each bar refers to
the number of correct answers, while the length of each bar corresponds to the percentage of correct answers.
Question 11 was considered correct as long as the justification for the answer was correct.

Fig. 1. Overview of the correct answers to each of the questions (1–11). The number inside 
each bar refers to the number of correct answers, while the length of each bar corresponds 

to the percentage of correct answers. Question 11 was considered correct as long as the 
justification for the answer was correct. 




